
On Comparison of ARIMA and RNN
Models in Predicting Stock Indices

Matti Staudinger

School of Science

Bachelor’s thesis

Espoo 2.12.2021

Supervisor

Assoc. Prof. Pauliina Ilmonen

Advisor

Assoc. Prof. Pauliina Ilmonen

Copyright © 2022 Matti Staudinger

The document can be stored and made available to the public on the open in-
ternet pages of Aalto University.
All other rights are reserved.

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the bachelor’s thesis

Author Matti Staudinger

Title On Comparison of ARIMA and RNN Models in Predicting Stock Indices

Degree programme Bachelor’s Programme in Science and Technology

Major Mathematics and Systems Sciences Code of major SCI3029

Teacher in charge Assoc. Prof. Pauliina Ilmonen

Advisor Assoc. Prof. Pauliina Ilmonen

Date 2.12.2021 Number of pages 26 Language English

Abstract
The behavior of stock indices is difficult to predict because of their erratic nature.
When predicting the value of stock indices, it is possible to try to take many variables
into account, such as political or economical changes or the previous values of the
index itself.

The purpose of this thesis is to compare autoregressive integrated moving average
(ARIMA) models and recurrent neural networks (RNN), when predicting S&P 500
and OMXH25 stock indices in a reasonably stable time period. Short-term forecasts
of the indices are produced and compared. Only the information about the index
close values are used when making the predictive models. The different predictions
are then compared and their use as a supportive tool is assessed when making an
investment decision.

For an investor an ability to make good predictions would result in monetary gains
and resulting mathematical models can be used in automated trading algorithms. It
is also beneficial to understand what kind of methods are suitable for stock index
prediction.

Based on the results of this thesis, the ARIMA and RNN models produce similar
predictions. Neither can be said to be better than the other, when predicting the
development of a stock index. Neither method was able to make good predictions
as the resulting average errors were near or over the average daily fluctuations of
the index. Only some one day predictions achieved better results and the largest
average errors were too large for the models to be used as a reliable decision making
tool for investments. None of the forecasts were unable to anticipate future changes
of indices.

Keywords Time series, ARIMA model, Recurrent Neural Network, Stock index

Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Tekniikan kandidaatintyön tiivistelmä

Tekijä Matti Staudinger 58344S

Työn nimi ARIMA- ja neuroverkkomallien vertailua osakeindeksejä ennustettaessa

Koulutusohjelma Teknistieteellinen kandidaattiohjelma

Pääaine Matematiikka ja systeemitieteet Pääaineen koodi SCI3029

Vastuuopettaja Prof. Pauliina Ilmonen

Työn ohjaaja Prof. Pauliina Ilmonen

Päivämäärä 2.12.2021 Sivumäärä 26 Kieli Englanti

Tiivistelmä
Osakeindeksien käyttäytymistä on vaikea ennustaa, koska ne vaihtelevat epäsään-
nöllisesti. Kun indeksin arvoa ennustetaan, voidaan yrittää ottaa huomioon monien
muuttujien vaikutuksia, kuten politiikan ja talouden muutoksia sekä indeksin omia
aiempia arvoja.

Tämän kandidaatintutkielman tavoitteena on kehittää ja vertailla perinteisiä ti-
lastollisia autoregressiivisiä integroituja liukuvakeskiarvoisia (ARIMA) malleja ja
takaisinkytkettyihin neuroverkkoihin (RNN) perustuvia malleja ennustettaessa S&P
500- ja OMXH25-indeksejä kohtalaisen vakaalla ajanjaksolla. Osakeindeksien ly-
hyen aikavälin ennusteita ja ennustemalleja tehtäessä käytetään tietoa vain indeksin
omista aiemmista päätösarvoista. Tämän jälkeen eri ennusteita vertaillaan toisiinsa.
Lopuksi arvioidaan niiden hyödyntämismahdollisuuksia sijoituspäätöstä tehtäessä.

Sijoittajille on merkittävää taloudellista hyötyä kyvystä ennakoida indeksin kehitystä,
ja ennustamisen yhteydessä syntyviä matemaattisia malleja voidaan käyttää auto-
matisoiduissa kaupankäyntialgoritmeissa. On myös hyödyllistä ymmärtää, millaiset
menetelmät sopivat osakeindeksien ennustamiseen.

Tulosten perusteella ARIMA- ja RNN-mallit tuottavat samankaltaisia ennusteita.
Kumpaankaan tapaan perustuvan mallin ei voida sanoa olevan parempi osakein-
deksin kehitystä ennakoitaessa. Kumpikaan menetelmä ei kyennyt tekemään hyviä
ennusteita, vaan suurin osa keskimääräisistä virheistä oli yli indeksin keskimääräisen
päivävaihtelun. Vain osa yhden päivän ennusteista tuotti parempia tuloksia, ja osassa
mallien tuottamat virheet olivat liian suuria, jotta niitä voisi käyttää luotettavana
työkaluna investointipäätöksiä tehtäessä. Mikään ennusteista ei myöskään kyennyt
ennakoimaan indeksien tulevia muutoksia.

Avainsanat Aikasarjat, ARIMA-malli, Takaisinkytketty neuroverkko, Osakeindeksi

5

Contents

Abstract 3

Abstract (in Finnish) 4

Contents 5

1 Introduction 6

2 Background 7

3 Datasets and methods 8

3.1 Standard and Poor’s 500 index . 8

3.2 OMX Helsinki 25 index . 8

3.3 Datasets . 8

3.4 Seasonal autoregressive integrated moving average models 9

3.5 Analysis setting for predictions using ARIMA 14

3.6 Recurrent Neural Networks . 15

3.7 Analysis setting for predictions using RNN 19

4 Results 20

5 Summary and future prospects 24

6

1 Introduction

Values of stock indices are predicted using a variety of different methods, because
there are significant financial benefits for investors from the ability to anticipate
the development of a stock index. Another motivation for stock index prediction
is forecasting the future state of the economy, as the changes in stock indices are
usually followed by changes in the economy (Bosworth et al., 1975).

The methods of stock index prediction are divided into technical analysis, which
is based on the past values of the index and fundamental analysis, which in turn
looks at the financial information and future prospects of the companies included in
the index, such as turnover, profitability and order backlog. Forecasting models can
be utilized in automated trading and for example, software robots that are able to
quickly utilize vast amounts of data are controlled by mathematical models.

Family of autoregressive integrated moving average (ARIMA) models are used in
the statistical analysis of time series. ARIMA models can be used for describing
the behavior of time series or for predicting its future values. Similar predictions
can be done with recurrent neural networks (RNN), that are a type of artificial
neural network (ANN). ANNs are inspired by biological neural networks and they
consist of several layered neurons or computation nodes that use series subsequent
computations to produce output values from input values. The models used for
computations are learned from examples.

This thesis compares traditional statistical ARIMA models and RNN models on
predicting stock indices when their movements are reasonably stable, so for example
stock market crashes are not considered. Only short term predictions are made and
no external explanatory variables will be used, meaning that only the previous close
values of the index itself were used for predicting. The Standard& Poor’s 500 (S&P
500) index, which consists of the 500 largest companies in the United States, and
the OMX Helsinki 25 (OMXH25) index, which consists of the 25 largest companies
on the Helsinki Stock Exchange, were chosen as indices to forecast.

The background of ARIMA and RNN models and previous research about stock
indices will be discussed in chapter 2. Datasets, methods, mathematics used in
ARIMA and RNN models and settings for analysis are presented in chapter 3.
Chapter 4 consists of prediction results. Finally conclusions and future prospects are
discussed in chapter 5.

7

2 Background

Autoregressive moving average (ARMA) processes are discrete time processes that
are used when analyzing and predicting time series. There has been research in
this area beginning with Yule (1927) describing concepts of autoregressive processes
while studying the number of sunspots. Autoregressive integrated moving average
models, which try to transform the non-stationary time series to stationary through
differencing, are a generalization of the ARMA models. The processes are named
seasonal autoregressive integrated moving average (SARIMA) processes when possible
seasonality is taken into account (Brockwell and Davis, 2009; Box et al., 2015).

Also other methods can be used for making predictions. Some of them rely on
artificial neural networks. ANNs are a subfield of machine learning, which in turn
is a subfield of artificial intelligence. Artificial neural networks began with the
mathematical modelling of human neurons (McCulloch and Pitts, 1943). One of
the first applications of neural networks was in binary pattern recognition and
prediction of the next bit (Widrow and Hoff, 1960). Recurrent neural networks and
backprobagation have been developed by Rumelhart et al. (1986) and they are used
for processing sequences of values, such as a time series of a stock index. Currently
recurrent neural networks are often used in natural language processing and speech
recognition (Goodfellow et al., 2016).

Stock indices measure the performance of the stocks of the market in question. Large
cap indices, such as S&P 500 and OMXH25, consist of stocks of some or all of the
largest companies in the corresponding stock exchange (S&P Global, 2021b; Nasdaq,
Inc., 2020). Generally stock indices also measure the economic growth or decline,
but that is not always the case (Bosworth et al., 1975).

There are different ways to construct an index. For example, in market capitalization
weighted or market-cap-weighted indices larger companies have more impact on the
value of the index. Float adjusted indices take the amount of shares publicly available
into account when calculating the value. There can be additional constraints to the
construction of indices such as individual companies cannot constitute for more than
a certain amount of the index or companies must be selected from all business areas
(S&P Global, 2021b; Nasdaq, Inc., 2020).

There have been many previous studies about stock price prediction. Ariyo et al.
(2014) describe building ARIMA models for stock prediction and conclude that
ARIMA models can be effective in short term stock price prediction. Mondal et al.
(2014) write about the effectiveness of ARIMA models on stock price forecasting
and find that ARIMA models achieve 85 % accuracy on predictions when comparing
predicted prices to actual ones. And Selvin et al. (2017) compare different neural
network models on predicting stock prices. They have come to the conclusion that
deep learning models, such as RNNs, are good at identifying underlying patterns in
time series of stocks.

8

3 Datasets and methods

This section discusses Standard and Poor’s 500 and OMX Helsinki 25 indices, how
they are constructed and what information can be spotted by inspecting the series.
Then the methods used for building models for computing from 1 to 5 step predictions
are described and the section ends with the specification of analysis settings.

3.1 Standard and Poor’s 500 index

S&P 500 index includes 500 large companies that are listed in one of the U.S. primary
stock exchanges that include the New York Stock Exchange (NYSE) and Nasdaq
for example. Companies are picked in the index to represent 11 different sectors of
industry. Generally the largest companies by their turnover are included, but selection
is ultimately done by the Index committee. S&P 500 is a market capitalization
weighted index, meaning that larger companies have more impact on the index.
Each company’s weight is calculated by market cap/total of all market caps, where
market cap = price · available shares. Weighting is done quarterly and index is
reconstituted yearly meaning that without any extraordinary situation companies
can be removed from the index only on that occasion (S&P Global, 2021b).

3.2 OMX Helsinki 25 index

OMXH25 index includes 25 largest companies by their turnover that are listed in the
Nasdaq Helsinki stock exchange. Index measures the performance of these stocks and
market capitalization weighting is used. Additionally each weight is constrained to a
maximum of 10 %. Companies including to index and their weights are determined
twice a year (Nasdaq, Inc., 2020).

3.3 Datasets

In this thesis forecast models are built for two reasonably stable time periods, meaning
that major shocks in the economy are excluded. The aim is to find and compare
models that predict future values of indices in a stable time period, not to predict
economic turnarounds. Chosen periods are the year 2015 (1.1.2015 - 31.12.2015) and
from early 2016 to the end of 2017 (1.3.2016 - 31.12.2017). In addition to these,
models are built for the whole time series from 1.1.2015 to 31.12.2019.

Datasets have been preprocessed so that if any value is missing, due to a bank holiday
or a saving error, the previous day’s observation is used in place of the missing value.
This ensures that there are no gaps in the time series and used tools work as planned.

Figure 1 shows the time series of closing values of the S&P 500 and OMXH25 indices
from each trading day. Series have been scaled so that both indices begin from the

9

Figure 1: Time series of S&P 500 and OMXH25 indices from 2015 to 2019. Both
time series are scaled to begin from 1 on 1.1.2015. There is a downward trend visible
in the year 2015, an upward trend from early 2016 to the end of 2017 and a downward
trend from mid 2018 to the end of 2018.

value of 1 at the beginning of 2015. The final value of the both time series is the
last trading day of 2019. The data was downloaded from S&P Global (2021a) and
Nasdaq, Inc. (2021) websites.

Both time series have strong visible changes around the imaginary trendline. In the
year 2015 both indices have a slight downward trend, but the OMXH25 index has
greater variance and a steep rise in the beginning of 2015. Then from early 2016 to
the end of 2017 both indices are in a stable upward trend. OMXH25 gained value
faster in mid 2016, early 2017 and mid 2017. There is a dip followed by a recovery
in early 2018 and a strong downward trend is visible from mid 2018 to the beginning
of 2019. This drop of indices seems to be similar for both. Then there is a strong
upward trend in the early months of 2019 following with a drop. While the gain in
the indices is similar, the drop is greater in the OMXH25 index. Rest of the year
2019 indices rise and the rise is steeper in the S&P 500 index.

To conclude there are three major changes in the trend for both indices: in the early
2016, mid 2018 and in the beginning of 2019. It seems possible that the OMXH25
index has greater variance than the S&P 500 index. There is no clear seasonality
visible in the indices.

3.4 Seasonal autoregressive integrated moving average mod-
els

Autoregressive or AR models explain the future values of the variable in question
using a linear combination of the past values. AR processes can be of different orders.
The order defines how many past values are picked as explanatory variables. AR

10

process of order p, AR(p) is defined

xt = ϕ1xt−1 + ϕ2xt−2 + ... + ϕpxt−p + ϵt, (1)

where xt is the t:th value in the time series, ϕ1...ϕp are the parameters of AR model
and ϵt is the error of the model.

Moving average or MA models explain the future values of the variable in question
using a linear combination of the past error terms. As with AR processes, MA
processes can be of different orders and the order defines how many past error terms
are selected as explanatory variables. MA process of order q, MA(q) is defined

xt = ϵt + θ1ϵt−1 + θ2ϵt−2 + ... + θqϵt−q, (2)

where xt is the t:th value in the time series, θ1...θq are the parameters of the MA
model and ϵi is the i:th error of the model.

ARMA(p, q) process is a linear combination of AR(p)-, and MA(q)-processes and is
defined

xt =
p∑︂

i=1
ϕixt−i +

q∑︂
i=1

θiϵt−q + ϵt. (3)

Only ARMA processes with certain parameter values are stationary (Box et al.,
2015).

ARIMA(p, d, q) process represents possibly a non-stationary time series. This time
series may be transformed into a stationary one by differencing it d times

zt = xt − xt−1, (4)

where zi are the differences of two consecutive values. For example when removing a
linear trend from the time series, it is differenced once. With a polynomial trend
more differentiations are needed. Differencing cannot transform all non-stationary
time series into stationary ones. If after the time series is differenced d times
and a stationary time series is obtained, an ARMA(p, q) model can represent the
transformed time series.

Seasonal ARMA or SARMA(P, Q)s is an ARMA process where dependencies between
its values are s steps apart, where s is the length of season and P and Q are the order
of the process

xt =
P∑︂

i=1
Φixt−is +

Q∑︂
i=1

Θiϵt−is + ϵt. (5)

11

Seasonal differencing is required when taking into account seasonal changes in time
series. Like differencing, this is sometimes needed to perform D times to produce
stationary time series. Seasonal differencing transforms the original time series to a
new one

zt = xt − xt−s. (6)

SARIMA(p, d, q)(P, D, Q)s process combines all previous models.

xt =
p∑︂

i=1
ϕixt−i +

P∑︂
i=1

Φixt−is +
q∑︂

i=1
θiϵt−q +

Q∑︂
i=1

Θiϵt−Qs + ϵt (7)

A SARIMA model gives interpretable results when the time series it describes is
or can be transformed into a stationary one. A time series is stationary when it’s
expected value and variance don’t depend on time. Variance also needs to be finite
and the autocovariance of the time series needs to depend only on the difference
between the values. This can be examined when looking at the plot of the time series.
Stationary time series doesn’t show any trend, seasonality or systematic changes in
variance.

SARIMA models have several parts to be identified. First the time series needs to be
stationary. If it is not, differencing or other methods are needed. If the time series
can be transformed into a stationary by differencing d times, d determines the I-part
of the model. Model might also require seasonal differencing. It is possible that the
time series needs other types of transformations, such as logarithmic transformation,
to produce stationarity or that the time series cannot be transformed into stationary
one.

Figure 2 illustrates an example from S&P 500 from 1.3.2016 to 31.12.2017, where the
original time series (upper part) shows a clear trend and is non-stationary. When
it is differenced once, a stationary time series is produced (lower part). No more
transformations are required and I-part is identified as d = 1.

If the time series is stationary, possibly after the differencing, the order of AR- and
MA- parts are identified by inspecting the autocorrelation function (ACF) and partial
autocorrelation function (PACF). If the time series is non-stationary, analysis of
ACF and PACF should not be used.

ACF ρ of xt at lag h is

ρx = γx(h)/γx(0) = Corr(xt+h, xt), (8)

where

γx(h) = γx(h, 0) = Cov(xt+h, xt). (9)

12

Figure 2: Time series of S&P 500 index from 1.3.2016 to 31.12.2017 both original
and differenced. Original shows a clear upward trend, while there is no trend visible
in the differenced one.

PACF α of xt at lag k is
α(k) = ϕkk, k ≥ 1, (10)

where ϕkk is

⎡⎢⎢⎢⎢⎣
ρ(0) ρ(1) ρ(2) . . . ρ(k − 1)
ρ(1) ρ(0) ρ(1) . . . ρ(k − 2)

... ...
ρ(k − 1) ρ(k − 2) ρ(k − 3) . . . ρ(0)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ϕk1
ϕk2
...

ϕkk

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ρ(1)
ρ(2)

...
ρ(k)

⎤⎥⎥⎥⎥⎦ . (11)

AR(p) processes have the values of PACF equal to zero after lag of p and the values
of ACF decay exponentially. MA(q) processes have the values of ACF equal to zero
after lag of q and the values of PACF decay exponentially. For the ARMA(p,q)
processes both ACF and PACF decay exponentially. Seasonal AR(P) process has the
values of PACF equal to zero after lag of P · s with spikes s units apart. Similarly
seasonal MA(Q) process has the values of ACF equal to zero after lag of Q · s with
spikes s units apart (Brockwell and Davis, 2009).

The autoregressive and moving average orders and seasonality of a SARIMA model
can be selected by examining the ACF and PACF of a stationary time series. For
example Figure 3 shows the ACF and PACF plots of a once differenced S&P 500
time during training 1.3.2016 - 2.12.2016. Values of ACF and PACF show possible
spikes at the lag of 3. This would result in the SARIMA(0, 1, 0)(1, 0, 1)3 to be
selected as the model. However, there are multiple possible spikes: at lags of 1, 3,

13

Figure 3: ACF and PACF values of differenced S&P 500 during the training perioid
of 1.3.2016 - 2.12.2016. Both show values that are near the border of condifence
interval at the lags of 1, 3, 5 and 6.

5 and 6. They are near the border of the confidence interval and none of them are
clearly significant. It suggests that another model could also be selected to describe
the time series. Possible spikes at large lag values are not considered.

For determining if autocorrelations and partial autocorrelations differ significantly
from zero, confidence intervals are computed from standard deviation, which are
in turn computed with Bartlett’s formula (Brockwell and Davis, 2009). For these
computations level α is given and it results in (1 − α) · 100% confidence intervals. An
example of such a confidence interval can be seen as the light blue area in Figure 3.

The parameters, ϕi, Φj, θk and Θl, of the obtained ARIMA model need to be
estimated. This can be done by using for example linear or non-linear least squares
method, maximum likelihood method or Bayes’ theorem (Box et al., 2015). Parameter
estimation is done in this thesis using Kalman filtering in Statsmodels library for
Python (Fulton, 2015). There are also other available methods for parameter
estimation in Statsmodels.

Once specific parameters for the model are obtained, it needs to be validated. This
includes the calculation of residuals. Residual or residual error ei is the difference
between real value xi and predicted value x̂i

ei = xi − x̂i, (12)

Then it is checked that residuals are not correlated. This can be done by visual
inspection of the residual plot. Residuals of a prediction should be evenly spread

14

around zero and there shouldn’t be any patterns visible.

Figure 4: Errors of 1 to 5 step predictions of S&P 500 index with
SARIMA(0,1,0)(1,0,1)3 model. Errors are evenly spread on both sides of zero
and there are no patterns visible.

For example when predicting S&P 500 index with SARIMA(0,1,0)(1,0,1)3 model,
the prediction errors for steps one to five in Figure 4 are evenly distributed and show
no signs of autocorrelation. This suggests a valid model.

3.5 Analysis setting for predictions using ARIMA

In this thesis ARIMA models are used to produce from one to five step predictions of
S&P 500 and OMXH25 indices. One step prediction corresponds with a one business
day and 5 step prediction forecasts index value one week ahead. Mean squared error
is used as the error term, since it is desired to avoid large errors in the forecast as
large errors can result in large financial loss.

For shorter time series 1.1.2015 - 31.12.2015 and 1.3.2016 - 31.12.2017 first 200
observations and for the longer series from 1.1.2015 to 31.12.2019 the first 800
observations are used for training the model. These correspond to time spans of
around 10 months for the shorter time series and 3 years and 4 months for the longer
time series.

If data seems to have a trend, it is removed by differencing. Autocorrelation functions
and partial autocorrelation functions are plotted with a confidence level of α = 0,2 for
determining the ARIMA models. ACFs, PACFs and ARIMA models are calculated
with Python using Statsmodels library (Seabold and Perktold, 2010).

15

Table 1: ARIMA models used for predicting each time series. Models are selected
based on need for differencing and ACF and PACF plots.

time series model
S&P 500 2015 SARIMA(0,1,0)(1,0,1)4
OMXH25 2015 SARIMA(0,1,0)(1,0,1)4
S&P 500 2016-2017 SARIMA(0,1,0)(1,0,1)3
OMH25 2016-2017 SARIMA(0,1,0)(1,0,1)5
S&P 500 2015-2019 SARIMA(0,1,0)(1,0,1)6
OMXH25 2015-2019 SARIMA(0,1,0)(1,0,1)5

After differencing and plotting autocorrelation and partial autocorrelation functions,
the models can be determined. The resulting models are listed in Table 1. In
addition to these ARIMA models, a model making predictions based on trendline or
ARMA(0,0) model is chosen as a comparison in all time series.

The ARIMA models are used for making predictions from one to five steps ahead.
When predicting multiple steps ahead the previous predictions will be used in the
prediction of the next value. The current prediction will be temporarily added into
the time series before making the next prediction. For example in the case of 5 step
prediction, the 1 to 4 step predictions will be the last values of the time series. After
one iteration of predictions from 1 to 5 steps, the next business days real index value
is added to the data and parameters ϕi, Φj, θk and Θl of the ARIMA model are
re-estimated. Model itself, meaning the order of autoregressive, moving average and
seasonality, remains the same. This continues until all data is used. This means that
as more and more data is added, more information is available for estimation.

When predictions are ready, squared errors e2
i are calculated for all predictions and

mean squared errors

mse =
∑︁n

i=1 e2
i

n
, (13)

where n is the number of predictions made, are calculated to describe the accuracy
of the model when predicting the time series in question.

3.6 Recurrent Neural Networks

In machine learning neural networks consist of several layers of neurons, nodes or
predictors that map the input vector to a predicted output label.

Neuron in Figure 5 is a mathematical function that takes input values x1, . . . xn, and

16

Figure 5: Neuron takes an input vector and maps it to an output using linear
combination and a possibly non-linear activation function.

produces a weighted sum

z =
n∑︂

i=1
wixi, (14)

where wi are the weight parameters used for mappings between neurons. Then an
activation function g is applied to this sum and it produces the output value ŷ

ŷ = g(z) = g(
n∑︂

i=1
wixi). (15)

Activation function allows the model to non-linearly map the input values to output
values (Jung, 2018). In this thesis a rectified linear unit or ReLU and hyperbolic
tangent or tanh activation functions are used in the hidden layers. ReLU activation
function

g(z) = max{0, z} (16)

outputs the value of variable or zero. Tanh activation function

g(z) = tanh z = ez − e−z

ez + e−z
(17)

maps the variable between -1 and 1. In the final output layer a linear activation
function is used, which leaves the weighted sum of inputs untouched. It is possible to
choose any activation function even though there is a habit of using specific functions
in certain situations (Goodfellow et al., 2016; Géron, 2019).

When neurons are connected with each other an artificial neural network is formed.
ANN presented in the Figure 6 consists of several layers of neurons. A layer takes
the outputs from the neurons of the previous layer as input, maps them to output
and passes them to the next layer until final output values are produced.

17

Figure 6: Neural network maps the feature vector or input into a label vector or an
output using several layers of neurons. Each neuron is connected to all neurons of
the previous and next layer.

First layer of an ANN is called the input layer and it consists of neurons containing
the values of the feature vector. That is, it contains the attributes that are used for
learning. In this thesis the input vector contains differences between two consecutive
close values of a stock market index. This is followed by one or more hidden layers.
They contain layers of neurons that map the input received from the previous layer
to an output. The activation function in hidden layers is typically non-linear and it
is often efficient to have more than one hidden layer (Thomas et al., 2017). The final
layer of an ANN is the output layer. It contains the neurons producing final output
values of the model. In this thesis output values will be the 1 to 5 step predictions
for the change in index values and linear activation function is used as a real value is
needed as an output.

If an ANN is used for a sequence of mappings and the information of all mapping is
wanted to store, recurrent neurons can be used. A recurrent neuron stores information
about previous timesteps in memory cells and its value is called cell state

ht = f(ht−1, xt), (18)

where ht is the current cell state, ht−1, is the previous cell state and xt are the input
values in each time step. The output of a recurrent neuron depends on the weighted
sum, as with neuron (Figure 5), cell state and activation function.

When these recurrent neurons are stacked into layers, a sequence to sequence RNN
in Figure 7 is formed. It takes a sequence as an input and produces a sequence as an

18

Figure 7: In RNN each layer takes also the previous time steps cell states of the
memory cells as input.

output. As RNN consists of recurrent neurons it makes the learning of sequential
patterns in training data possible (Goodfellow et al., 2016; Géron, 2019).

For an ANN to be useful, its weight parameters need to be selected in a meaningful
way. Here the concept of loss helps. Loss is given by the loss function that evaluates
the precision of the model, that is how large of a penalty is perceived when the
estimated value differs from the true value. Loss and loss function are used for
training the model and ANNs weights are optimized so that there is a minimal loss
for the training data.

Loss function is not fixed and its selection is a design choice. For prediction of real
values, loss functions relating to distance measures can be a good choice. In this
thesis mean squared error is used as the loss function. This is used also for evaluating
the precision of the model just as with ARIMA models, making the comparison of
models possible.

Often the optimization problem of finding weights that minimize the loss function
is not trivial and this optimization is done by using a gradient descent algorithm.
Generally these algorithms involve taking a gradient of the loss function to find a
direction in which the loss increases fastest and then taking a step, of a size η or
learning rate, to the opposite direction. Then the weights are updated correspondingly
so that the loss becomes smaller. This is iterated until a local minimum is found or
another condition for ending the search is met.

Computing of the gradients can be done through backpropagation. This involves
computing the partial derivatives one layer at a time, beginning from the last layer.
Then this intermediate result is used for calculating the partial derivatives for the
next layer. This is repeated until the gradient is computed. When calculating
gradients for RNNs it is called backpropagation through time. Here the weights
connecting recurrent neurons between time steps are taken into account (Goodfellow
et al., 2016).

In this thesis adaptive moment estimation or Adam (Kingma and Ba, 2014) is used for
optimizing the weights. Adam is a gradient based method for stochastic optimization.
It helps to solve the possible issue with diminishing or exploding gradients when

19

training the neural network with backpropagation. There are also several other
well-established optimization methods and it is a design choice what method to use
(Goodfellow et al., 2016).

Lastly, some sort of regularization is needed. Regularization is a term that is used
when talking about methods to avoid overfitting. One simple regularization method
is called dropout (Srivastava et al., 2014). With dropout in all training steps, all
other neurons than the ones in the output layer, have a probability of p to be ignored
or dropped out during that step. This p is called the dropout rate. The dropout
forces the network not to rely on just a few connections.

3.7 Analysis setting for predictions using RNN

Recurrent Neural Networks used in this thesis were programmed with Python using
Keras (Chollet et al., 2015) a high level API of TensorFlow (Abadi et al., 2015).
Finding suitable models was a trial and error process that was supported by examples
(Goodfellow et al., 2016; Géron, 2019). Differentiated time series of the indices was
used for training the RNN models as was with the ARIMA models.

Table 2: Hyperparameter selection for the two RNN models was a trial and error
process that resulted in two working models.

model hidden
layers

neurons in
hidden layer

activation
function optimizer loss batch size epochs

RNN-2 2 10 tanh Adam mse 5 5
RNN-3 3 20 ReLU Adam mse 5 10

Two different RNNs were selected as models. Hyperparameters were selected through
an experimentation process and results can be seen in Table 2. In addition to
these selections a dropout rate of 0,1 was used in all models. When choosing the
hyperparameters, one parameter at a time was altered until the validation error of
the chosen model didn’t get any smaller. When tuning the hyperparameters 20 % of
the training data was used as validation data.

Both models have an output layer of 5 neurons. The outputs predict the daily change
of the stock market index in question from 1 to 5 steps ahead. The output layer uses
linear activation function as the predicted value is a real number (Géron, 2019).

Hyperparameter batch size gives the number how many training samples from the
training data are used at a time for training the model or updating the weights.
Hyperparameter epoch gives the number how many times the whole training data is
looped through during the training process.

20

4 Results

When making one to five step predictions of the six time series, four different types
of models are used: trendline or ARMA(0,0), a SARIMA, a RNN with 2 hidden
layers and a RNN with 3 hidden layers. This totals in 24 sets of predictions and 30
sets of comparisons as all four models are compared in each time series with each
prediction length. The performance of these predictions is assessed by comparing
their mean squared errors that can be found in Tables 3 - 8. The smallest error in
each comparison is indicated with a green cell.

Table 3: Table containing the mean squared errors for all predictions for S&P 500
index from 1.1.2015 to 31.12.2015.

models 1 step 2 step 3 step 4 step 5 step
SARIMA (0,1,0)(1,0,1)4 363,60 699,87 855,76 936,61 1112,39

ARMA(0, 0) 346,52 666,17 812,43 896,12 1072,37
RNN 3-layers 375,58 690,52 792,05 901,46 1082,45
RNN 2-layers 350,52 678,63 803,20 889,77 1078,19

Table 4: Table containing the mean squared errors for all predictions OMXH25 index
from 1.1.2015 to 31.12.2015.

models 1 step 2 step 3 step 4 step 5 step
SARIMA (0,1,0)(1,0,1)4 1413,91 2699,99 3361,37 4317,10 5467,46

ARMA(0, 0) 1410,75 2717,20 3347,14 4263,94 5386,73
RNN 3-layers 1496,39 2902,22 3536,63 4459,72 5772,70
RNN 2-layers 1491,34 2844,64 3528,28 4526,19 5748,91

Tables 3 and 4 contain the mean squared errors for the time series of S&P 500 and
OMXH25 indices from 1.1.2015 to 31.12.2015. Errors are considerably smaller for
models predicting S&P 500 as its values are smaller and it shows less variation. All
types of models win at least one comparison. However, the ARMA(0,0) or trendline
performs the best on seven occasions out of ten.

Table 5: Table containing the mean squared errors for all predictions for S&P 500
index from 1.3.2016 to 31.12.2017.

models 1 step 2 step 3 step 4 step 5 step
SARIMA (0,1,0)(1,0,1)3 102,38 185,26 261,28 323,55 366,91

ARMA(0, 0) 103,67 185,90 264,40 325,47 369,61
RNN 3-layers 110,40 185,08 243,96 310,56 374,62
RNN 2-layers 109,48 192,72 265,39 337,28 400,89

Tables 5 and 6 contain the mean squared errors for the time series of S&P 500 and
OMXH25 indices from 1.3.2016 to 31.12.2017. These errors are smaller than with
previous predictions (Tables 3 and 4) as the time series are more stable. In Table

21

Table 6: Table containing the mean squared errors for all predictions OMXH25 index
from 1.3.2016 to 31.12.2017.

models 1 step 2 step 3 step 4 step 5 step
SARIMA (0,1,0)(1,0,1)5 688,74 1341,74 1911,97 2514,91 2976,72

ARMA(0, 0) 663,85 1290,58 1848,58 2440,88 2929,24
RNN 3-layers 678,81 1329,41 1892,12 2502,50 2972,88
RNN 2-layers 678,33 1383,60 1829,09 2451,42 2880,24

5 when predicting S&P 500, the one step prediction with SARIMA-model has the
smallest prediction error of all predictions made and the largest relative difference
of 9,3 % between the predictions is with five step predictions. All models are quite
evenly matched as ARMA(0,0) and RNN 3-layers have best predictions in three sets
and SARIMA and RNN 2-layers in two sets.

Table 7: Table containing the mean squared errors for all predictions for S&P 500
index from 1.1.2015 to 31.12.2019.

models 1 step 2 step 3 step 4 step 5 step
SARIMA (0,1,0)(1,0,1)6 664,69 1347,57 1921,41 2592,77 3281,06

ARMA(0, 0) 658,94 1333,97 1899,50 2557,96 3227,18
RNN 3-layers 661,42 1327,94 1895,60 2567,06 3224,11
RNN 2-layers 661,96 1337,69 1907,36 2562,89 3238,95

Table 8: Table containing the mean squared errors for all predictions OMXH25 index
from 1.1.2015 to 31.12.2019.

models 1 step 2 step 3 step 4 step 5 step
SARIMA (0,1,0)(1,0,1)5 1369,17 2722,44 4104,36 5535,02 6818,85

ARMA(0, 0) 1356,66 2740,18 4139,46 5577,27 6899,29
RNN 3-layers 1358,08 2748,78 4136,44 5565,92 6875,51
RNN 2-layers 1355,98 2742,90 4143,52 5566,18 6878,56

Tables 7 and 8 contain the mean squared errors for the time series of S&P 500 and
OMXH25 indices from 1.1.2015 to 31.12.2019. These longer time series are unstable
when compared to the shorter ones and this results in larger errors. Again all types
of models win at least one comparison, SARIMA model winning the most times.
Again all types of models win at least one comparison, SARIMA model winning the
most times. The average errors for 5 step prediction in Table 8 correspond to 1,9 -
2,9 % change in index values, when compared to index value range in Table 9.

In all predictions it is evident that the longer to the future the predictions are made,
the less accurate they become. This is intuitive since new information becomes
available after each time step. Predictions of OMXH25 have greater errors than
those of S&P 500 as OMX25 has greater average daily changes and overall values
shown in Table 9.

22

Table 9: Table containing the smallest mean squared errors, the average squared
daily changes and value ranges of all time series. These give some reference to the
errors of the predictive models.

Time series Best average
prediction error

Average squared
daily change Index value range

S&P 500 2015 346,52 372,60 1867,61 - 2130,82
OMXH25 2015 1410,75 1782,10 2899,11 - 3647,13
S&P 500 2016-2017 102,38 150,17 1978,35 - 2690,16
OMH25 2016-2017 663,85 969,89 2997,29 - 4139,81
S&P 500 2015-2019 658,94 405,07 1829,08 - 3240,02
OMXH25 2015-2019 1355,98 1343,61 2858,41 - 4387,70

When comparing the average one step prediction errors to squared average daily
changes of index values in Table 9, the average errors are smaller than average
changes with shorter time series. This is explained by the fact that the models take
the trend into account. When the trend has multiple changes in direction as with
the longer time series, the models perform worse results than just predicting the
next value to be the same as the last value in the current time series. Predicting the
next value to be the same as last would give the same average errors as with daily
changes.

Figure 8: True values, 1 step and 5 step predictions for S&P 500 index with
SARIMA(0,1,0)(1,0,1)3. Predicitions follow the true values with a lag correspoding
to how many steps to the future is being predicted.

Visual inspection of the predictions illustrate that the predictive models are not
able to capture the behavior of the time series. Figure 8 shows one example of
such a situation. Predictions of SARIMA(0,1,0)(1,0,1)3 model follow the observed
movements of S&P 500 index with a lag and are not able to predict what is about to
happen. The lag is evident from the similar spikes at 1.3.2017, 2.3.2017 and 8.3.2017.

23

First being the true value, second 1 step prediction and the last 5 step prediction.
This also means that when predicting longer in the future, as with 5 step predictions,
the movements of the index are followed with lag corresponding to how many steps
to the future is being predicted. This results in deteriorating predictions. Same
behavior is present with all predictive models and time series.

Figure 9: One step predictions with SARIMA(0,1,0)(1,0,1)3 and RNN 2-layer models
and true values when forecasting S&P 500 index. Predictions are similar but delayed.

Further analysis reveals that predictions made with all models are similar. It cannot
be said that there is a difference between ARIMA or RNN models or models that have
more or less parameters. Figure 9 contains one step predictions of S&P 500 during
2016-2017 time series from SARIMA(0,1,0)(1,0,1)3 and RNN 2-layer models. It shows
that predictions are similar and delayed. This can be seen from the spikes at 1.3.2017
for true index value and 2.3.2017 for predictions made with SARIMA(0,1,0)(1,0,1)3
and RNN 2-layer models. Again this behavior is present with all predictive models
and time series.

24

5 Summary and future prospects

In this thesis two autoregressive integrated moving average or ARIMA models and
two recurrent neural network or RNN models were compared when predicting stock
indices. The S&P 500 index, which consists of the 500 largest companies in the
United States, and the OMXH25 index, which consists of the 25 largest companies on
the Helsinki Stock Exchange were chosen as indices to forecast and only their close
values were used for prediction. Three time series from both indices were analyzed:
1.1.2015 - 31.12.2015, 1.3.2016 - 31.12.2017 and 1.1.2015 - 31.12.2019. First two time
spans contained no changes in trend, while the last longer time series had multiple.
One to five step predictions were made for each time series with each predictive
model and the goodness of predictions was evaluated with mean squared errors.

Results indicate that the ARIMA and RNN models produce similar predictions. This
is intuitive as models use the same information for building the predictive models.
Furthermore, any clear rankings between the four models cannot be formulated as
all models give best predictions in some comparisons. None of the predictive models
are able to capture the behavior of the predictive time series as they are not able
to predict any rapid changes. The trendline predictions were hard to beat, but
differences were small. However, the largest average errors of five step predictions
corresponded to 1,9 % - 2,9 % of the index values. Models with errors of this
magnitude are not ideal, if used as tools when making investment decisions.

In future it would be beneficial trying to add some external explanatory variables
into the predictive models. If chosen wisely they could help bring the prediction
errors down. Also the long short-term memory RNN architecture could be used for
trying to capture patterns of time series better. Grid search could be implemented
for tuning the hyperparameters of both ARIMA and RNN models as it would be a
more systematic approach and it would give assurance about used hyperparameters.
Finally, models could be used for predicting values of individual stocks as their time
series might contain underlying patterns to discover.

25

References
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. Available
from: https://www.tensorflow.org/.

A. Ariyo, A. Adewumi, and C. Ayo. Stock price prediction using the arima model.
In 2014 UKSim-AMSS 16th International Conference on Computer Modelling and
Simulation, pages 106–112. IEEE, 2014.

B. Bosworth, S. Hymans, and F. Modigliani. The stock market and the economy.
Brookings Papers on Economic Activity, 1975(2):257–300, 1975.

G. Box, G. Jenkins, G. Reinsel, and G. Ljung. Time series analysis: forecasting and
control. John Wiley & Sons, 2015.

P. Brockwell and R. Davis. Time series: theory and methods. Springer Science &
Business Media, 2009.

F. Chollet et al. Keras, 2015. Available from: https://github.com/fchollet/
keras.

C. Fulton. Estimating time series models by state space methods in python:
Statsmodels, 2015. Available from: http://www.chadfulton.com/files/
fulton_statsmodels_2017_v1.pdf.

A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

A. Jung. Machine learning: Basic principles. arXiv preprint arXiv:1805.05052, 2018.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

P. Mondal, L. Shit, and S. Goswami. Study of effectiveness of time series modeling
(arima) in forecasting stock prices. International Journal of Computer Science,
Engineering and Applications, 4(2):13, 2014.

https://www.tensorflow.org/
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://www.chadfulton.com/files/fulton_statsmodels_2017_v1.pdf
http://www.chadfulton.com/files/fulton_statsmodels_2017_v1.pdf

26

Nasdaq, Inc. Nasdaq index methodology: Omx helsinki 25 index, 2020. Available
from: https://indexes.nasdaqomx.com/docs/Methodology_OMXH25.pdf Last
accessed 12.8.2021.

Nasdaq, Inc. Omx helsinki 25 index, 2021. Available from: https://indexes.
nasdaqomx.com/Index/History/OMXH25 Retrieved 9.7.2021.

D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536, 1986.

S. Seabold and J. Perktold. statsmodels: Econometric and statistical modeling with
python. In 9th Python in Science Conference, 2010.

S. Selvin, R. Vinayakumar, E. Gopalakrishnan, V. Menon, and K. Soman. Stock price
prediction using lstm, rnn and cnn-sliding window model. In 2017 international
conference on advances in computing, communications and informatics (icacci),
pages 1643–1647. IEEE, 2017.

S&P Global. S&p 500 index, 2021a. Available from: https://www.nasdaq.com/
market-activity/index/spx/historical, Retrieved 9.7.2021.

S&P Global. S&p u.s. indices methodology, 2021b. Avail-
able from: https://www.spglobal.com/spdji/en/documents/methodologies/
methodology-sp-us-indices.pdf, Last accessed 12.8.2021.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

A. Thomas, M. Petridis, S. Walters, S. Gheytassi, and R. Morgan. Two hidden
layers are usually better than one. In International conference on engineering
applications of neural networks, pages 279–290. Springer, 2017.

B. Widrow and M. Hoff. Adaptive switching circuits. Technical report, Stanford
Univ Ca Stanford Electronics Labs, 1960.

G. Yule. Vii. on a method of investigating periodicities disturbed series, with special
reference to wolfer’s sunspot numbers. Philosophical Transactions of the Royal
Society of London. Series A, Containing Papers of a Mathematical or Physical
Character, 226(636-646):267–298, 1927.

https://indexes.nasdaqomx.com/docs/Methodology_OMXH25.pdf
https://indexes.nasdaqomx.com/Index/History/OMXH25
https://indexes.nasdaqomx.com/Index/History/OMXH25
https://www.nasdaq.com/market-activity/index/spx/historical
https://www.nasdaq.com/market-activity/index/spx/historical
https://www.spglobal.com/spdji/en/documents/methodologies/methodology-sp-us-indices.pdf
https://www.spglobal.com/spdji/en/documents/methodologies/methodology-sp-us-indices.pdf

	Abstract
	Abstract (in Finnish)
	Contents
	1 Introduction
	2 Background
	3 Datasets and methods
	3.1 Standard and Poor's 500 index
	3.2 OMX Helsinki 25 index
	3.3 Datasets
	3.4 Seasonal autoregressive integrated moving average models
	3.5 Analysis setting for predictions using ARIMA
	3.6 Recurrent Neural Networks
	3.7 Analysis setting for predictions using RNN

	4 Results
	5 Summary and future prospects

