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Abstract
Electricity distribution networks are a crucial part of critical infrastructure. Thus,
making them as reliable as possible is a priority for the distribution system operator
(DSO). External hazards, such as weather conditions and cyber-attacks, threaten
the reliability of distribution grids. The DSO can protect the distribution system
against these hazards by selecting combinations of reinforcement actions.

The portfolio of reinforcement actions, which maximizes system reliability on
a certain budget level, can be constructed by portfolio decision analysis (PDA)
techniques. Finding optimal portfolios of reinforcement actions requires precise
estimation of reinforcement actions’ effectiveness and hazards’ severity. Accurate
estimation is not always possible, e.g. due to a lack of information about certain
hazards. Performing robustness and sensitivity analysis helps understand how the
reinforcement actions’ and hazards’ uncertain parameters affect the reliability of
distribution grids.

In this thesis, the stability of the optimal portfolio of reinforcement actions is
examined by changing how much reinforcement actions improve the distribution
system’s reliability and how much hazards decrease it. By the stability of the
portfolio, we mean how the optimal actions change due to these modifications in
the effectiveness of actions or severity of hazards. Robust actions, which are used in
most reinforcement strategies, are identified. Studying the robustness of the selection
process helps the DSO to exclude redundant actions from the set of possible actions,
which makes the problem of choosing an optimal portfolio more efficient.

The sensitivity of the reliability is studied by making a first-stage decision to apply
reinforcement actions following changes in the effectiveness of actions or hazards.
The reliability of the system with original actions and hazards is then compared to its
reliability with the changed actions or hazards. Hazard and action parameters, which
affect the reliability most, can be identified. This can help the DSO to determine
which parameter accuracy improvements to prioritize.
Keywords Decision analysis, Distribution grids, Sensitivity analysis, Robustness

analysis, System reliability
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Tiivistelmä
Sähkönsiirtoverkot ovat tärkeä osa kriittistä infrastruktuuria. Sähköjärjestelmien
operaattorien tavoitteena on maksimoida sähköverkkojen luotettavuus. Ulkopuoliset
uhat, kuten sääilmiöt ja kyberhyökkäykset, voivat vaarantaa sähköverkkojen toi-
mintavarmuuden. Sähköjärjestelmän operaattori voi suojata sähköverkkoja näiltä
ulkoisilta uhilta valitsemalla erilaisia suojauskeinojen yhdistelmiä. Suojauskeinoja
ovat esimerkiksi kunnossapitoryhmä ja maakaapelointi.

Optimaalinen yhdistelmä suojauskeinoja, joka maksimoi sähköjärjestelmän luo-
tettavuuden tietyllä kustannustasolla, voidaan muodostaa käyttämällä portfoliopää-
tösanalyysiä (engl. Portfolio Decision Analysis, PDA). Suojauskeinojen yhdistelmän
muodostaminen vaatii tarkkaa sekä suojauskeinojen tehokkuuden että uhkien haital-
lisuuden arviointia. Tarkka arviointi ei aina ole mahdollista, koska joistain uhista ei
esimerkiksi ole aikaisempaa tietoa. Herkkyysanalyysi auttaa ymmärtämään epävar-
mojen suojauskeinojen ja uhkien vaikutusta sähköverkkojen luotettavuuteen.

Tässä kandidaatintyössä tutkitaan suojauskeinojen optimaalisen yhdistelmän
vakautta muuttamalla suojauskeinojen tehokkuutta ja uhkien haitallisuutta. Suojaus-
keinoyhdistelmän vakaus tarkoittaa optimaaliseen yhdistelmään sisältyvien suojaus-
keinojen vaihtumista mainittujen muutosten seurauksena. Tavoitteena on tunnistaa
suojauskeinot, joita käytetään suurimmassa osassa suojausstrategioista. Optimaalisen
suojauskeinoyhdistelmän vakauden tutkiminen auttaa sähköjärjestelmän operaatto-
ria hylkäämään tarpeettomia suojauskeinoja, mikä tekee optimaalisen yhdistelmän
ratkaisemisesta tehokkaampaa.

Tässä opinnäytetyössä tarkastellaan myös sähköjärjestelmän luotettavuuden herk-
kyyttä. Ensin olemassa olevaan tietoon pohjautuen valittiin suojauskeinojen yhdis-
telmä, minkä jälkeen joko suojauskeinojen tehokkuus tai uhkien haitallisuus muuttui.
Alkuperäisen järjestelmän luotettavuutta verrattiin järjestelmän luotettavuuteen,
jossa joko suojauskeinojen tai uhkien vaikutukset ovat muuttuneet. Näin pystyttiin
tunnistamaan ne suojauskeinojen ja uhkien parametrit, joiden vaikutus järjestelmän
luotettavuuteen on suurin. Tämä auttaa sähköjärjestelmän operaattoria valitsemaan
ne parametrit, joiden tarkkuutta on hyödyllisintä parantaa.
Avainsanat Päätösanalyysi, sähköverkot, herkkyysanalyysi, sähköverkkojen

luotettavuus
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1 Introduction
Electricity, as a secondary energy source, is more critical than ever. Many companies
and countries are eager to achieve carbon neutrality, which requires reducing non-
renewable energy sources and increasing electricity use. Because electricity is used in
households and critical infrastructure like hospitals, the electrical distribution system
must be as reliable as possible.

Rough weather conditions, overloading and possible cyber-attacks, among many
others (Mahmoud et al., 2021) can threaten the system’s functionality, directly
affecting the end consumers. The distribution system operator (DSO) can overcome
these external hazards by applying different reinforcement actions to the distribution
grids. According to Wirtz (2007), improving the reliability of the distribution network
generally results in higher costs for the DSO when reinforcing a reliable grid compared
to an unreliable one. Adding new reinforcement actions does not improve reliability
significantly when the system is already relatively reliable.

The problem of choosing reinforcement actions to provide as reliable a distribution
grid as possible while minimizing the costs has been carried out by de la Barra and
Salo (2023). The problem is represented using influence diagrams, and the optimal
combination of reinforcement actions can be solved using Portfolio Decision Analysis
(PDA) techniques (Salo et al., 2022).

Expert judgments and historical information can be used to determine the impact
of different hazards and reinforcement actions on the reliability of the distribution
grids. However, these estimates are rarely complete because some hazards have
not occurred previously, and predictions and simulations might be inaccurate. For
example, it can be difficult to estimate the impact of cyber-attacks that have not
occurred before on the system’s reliability. In addition, it might be challenging to
predict how big a part of the distribution system they impact. Also, it is challenging
to determine the effectiveness of reinforcement actions against those hazards. This
can cause problems for the DSO as the reinforcement actions are chosen based on
uncertain estimates.

This thesis aims to understand how optimal reinforcement actions change when
reinforcement actions’ effects on the system’s reliability or hazards’ severity are
misestimated. We are also interested in how the system’s reliability changes when an
optimal portfolio of actions is first chosen following some changes in the effectiveness
of reinforcement actions or severity of hazards. Sensitivity analysis on a small
distribution system is used to achieve the aim of this thesis. The system consists of
two distribution grids, three different possible hazards and five different reinforcement
actions available.

Sensitivity analysis is conducted in two different ways. The stability of the
optimal portfolio of reinforcement actions is examined under the influence of the
changes in the effectiveness of reinforcement actions and hazards. In our context,
a portfolio is stable if the actions in the portfolio do not change due to parameter
fluctuations. Robust actions are identified, i.e., actions used in most reinforcement
strategies. The sensitivity of the reliability is studied by comparing the reliability
of the original system to the reliability of the system with the same reinforcement
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actions but modified effectiveness of actions or severity of hazards.

2 Literature review
There are multiple approaches to solving the problem of protecting distribution grids
against external hazards. Dehghanian et al. (2018) present a restoration strategy to
keep the distribution grids resilient in the case of facing high impact low probability
threats. Movahednia et al. (2022) consider one specific type of hazard proposing a
stochastic resource allocation approach against floods. Zhang et al. (2015) use multi-
objective approach. They aim to maximize independent power suppliers’ cost-benefit
ratio while maximizing distribution companies’ profits. de la Barra and Salo (2023)
utilize a single-objective approach, where reliability is maximized subject to budget
constraints. In this thesis, a single-objective approach will be used.

Many different hazards affect the reliability of distribution grids. Mahmoud et al.
(2021) divide causes of faults in distribution grids into three categories: external
factors, natural factors and improper maintenance. Hazards of those categories
are further classified into subcategories. All subcategories combined, there are 14
different groups of threats.

The influence of different external threats on the reliability of distribution grids
has been widely studied. Ji et al. (2016) examined the effect of extreme weather
conditions. The study pointed out that extreme weather can exacerbate existing
vulnerabilities in distribution grids. Dvorkin and Garg (2017) and Ding et al. (2022)
review cyber threats on distribution grids and propose potential solutions. Bagheri
et al. (2015) and Pan et al. (2019) study the impact of uncertainties in the demand
for electricity on the grids’ reliability.

After identifying relevant hazards, it is of interest to select suitable reinforcement
actions and quantify risk mitigation of the actions. Ahmadi et al. (2019) propose
simultaneous reconfiguration and distributed energy resources sizing to improve the
functionality and reliability of the distribution grids. Similarly, Azizivahed et al.
(2020) present an optimal charging/discharging scheme of batteries and network
topology to improve the reliability of the grids. Also, the installation of protective
devices has been a popular topic in literature (López et al., 2016); (de la Barra et al.,
2021); (Falah et al., 2014). Osman et al. (2015) propose adaptive communication-
based protection.

It is also useful to estimate the probabilities and correlations of different hazards.
However, this is not always possible because of the lack of information about rare
hazards, the lack of time to elicitate experts or the unavailability of suitable experts.
The possible combinations of hazards are represented through scenarios. If there are
many different hazards, the number of scenarios may become excessively large to
perform calculations (Carlsen et al., 2016). de la Barra and Salo (2023) use only
three different kinds of hazards to avoid computational complexity. Hazards to be
considered are extreme weather conditions, overload and cyber-attacks. All possible
combinations of the hazards are captured in 12 different scenarios.

Uncertainty of the model parameters presents a significant challenge for optimizing
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the reliability of distribution grids. Xiu-Ren Lei et al. (2005) tackle this problem
using fuzzy numbers. These fuzzy numbers are similar to confidence intervals, and
they represent the uncertain input parameters and evaluate the system’s reliability.
The probability distribution of the system reliability can be presented, but more
demanding calculations are required compared to the regular methods. Another way
to take the uncertainty into account is to perform robustness and sensitivity analysis
for the model parameters, which is suggested by de la Barra and Salo (2023).

3 Methodology
Expert estimations and existing data are used to determine relevant hazards, re-
inforcement actions and interdependencies between different hazards and actions.
In our case study, these are not determined but taken as input. Then, scenarios
are developed. A scenario consists of different hazard types’ realizations. In this
thesis, scenarios cover all possible combinations of hazards. There are three severity
levels of weather conditions and two severity levels of overloading and cyber-attacks,
resulting in 12 scenarios. We sample the scenario probabilities. Then, the reliability
of the distribution grids in different scenarios is estimated using reliability models.
Reliability models aim to capture the effect of the hazards and reinforcement actions
as accurately as possible. Afterwards, the optimal portfolio of reinforcement actions
is provided, which maximizes the reliability. These results help the DSO select
portfolios of reinforcement actions that optimally contribute to achieving reliability
objectives while staying within a certain budget limit. (de la Barra and Salo, 2023)

Figure 1: Steps to find a portfolio of optimal actions for distribution grids

Figure 1 is a diagram which illustrates the process of solving an optimal portfolio
of reinforcement actions. At first, the distribution grids are generated. Scenarios are
then created based on the hazards. After that, reinforcement actions are generated.
Based on the reinforcement actions, the grid’s reliability is calculated for every
possible combination of grids, scenarios and portfolios of reinforcement actions.
Utility functions are employed to determine utilities for each of those combinations
based on the reliability values. Next, an optimization model is constructed and solved
with the Julia package DecisionProgramming.jl by Salo et al. (2022) and Gurobi
Optimizer.
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3.1 Influence diagram

Figure 2: The problem of reinforcing distribution grids is represented using influence
diagrams. (de la Barra and Salo, 2023)

The problem of choosing cost-efficient portfolios of reinforcement actions is repre-
sented as an influence diagram. Figure 2 is the influence diagram of our case study
on two distribution grids. The diagram is a directed acyclic graph containing three
different types of nodes. In influence diagrams, circles are chance nodes, C, which
indicate random events. Squares are decision nodes, D, where the decision maker
needs to make decisions. Each change and decision node j ∈ C ∪ D is associated
with a set Sj of possible states. All states are discrete, and there is a finite number of
states. Diamond-shaped nodes are value nodes, V . The directed arrows on the graph
demonstrate the dependencies between nodes. The state of each change and decision
node j is dependent on the information states sI(j) ∈ SI(j) of the node, where the
information state means the states of the direct predecessors of node j. The set of
all information states SI(j) contains the possible combinations of states of the nodes
in the information set I(j) of node j. (Salo et al., 2022)

In our model, the node HL represents the possible realizations of the hazards.
Decision nodes DA and DB represent the decision to apply reinforcement actions
locally in grids A and B, respectively. Global reinforcement action is decided at node
DG. Choosing the reinforcement action depends on the possible realizations of the
hazards in HL. The reliabilities of grids A and B are determined in GA and GB,
respectively. The states of nodes GA and GB depend on the realization of hazards
and chosen reinforcement actions. A utility function maps the reliability states in
nodes GA and GB into a single value in the interval [0,1]. In the value node V , one
of these values is attained: 0.0, 0.25, 0.5, 0.75 or 1.0, where the most reliable system
has a value of 1.0. The value in node V is the mean of the reliabilities of grids A
and B, which are 0.0, 0.5 or 1.0.
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3.2 Reliability
Reliability indices are used to quantify the reliability of distribution grids (IEEE-
Std-1366, 2012). There are multiple reliability indices, but in this thesis, only
SAIDI is considered to prevent the problem from becoming too broad. SAIDI is an
abbreviation for the System Average Interruption Duration Index. SAIDI =

∑︁
DiNi

N
,

where Ni is the number of customers exposed to power outage i of duration Di in
hours. N is the total number of customers, and the sum includes all power cuts
within a year. SAIDI is a continuous index discretized into reliability states.

Reliability models use reliability parameters to compute the reliability indices.
We consider two reliability parameters that characterize the fault events of every
line in a distribution grid. The expected failure rate λ of a line indicates the number
of failures per year, and expected restoration time τ indicates the average time in
hours per failure required to repair the line. (de la Barra and Salo, 2023)

3.3 Hazards and reinforcement actions
Different types of hazards, denoted by h, affect the reliability of the grids differently.
This thesis has three types of hazards: extreme weather conditions, cyber-attacks
and overloading. H denotes the set of all types of hazards. Hazards can affect the
expected failure rate, the expected restoration time of the lines, or both. Depending
on the type of hazard, they can affect only some or all of the lines in the grid. For
example, the factors associated with the base state of weather conditions are (1.0,
1.0, all). This implies that all the lines in the grid would be affected. However, the λ
and τ factors are equal to one, which means that they would not affect the reliability
of the lines. Weather2 state of weather conditions has factors (1.4, 1.4, all), which
indicates that it affects both the failure rate and restoration time of the target lines.

The total failure rate of a line is λ = ∑︁
h∈H λh, where λh is the failure rate of the

line associated with a hazard of type h ∈ H. The expected restoration time of a line
is not dependent on the type of hazard but rather on the specific hazards affecting it.
The total restoration time of a line is calculated by multiplying the line’s failure rate
with the restoration time.

Depending on their type, reinforcement actions can modify either the failure
parameters λ or τ or protective devices of the target lines. They affect either some
or all lines in the grid. Depending on the type of reinforcement action, specific λh of
the target line associated with the target hazard h ∈ H is decreased. (de la Barra
and Salo, 2023)

3.4 Evaluating robustness of the selection process
Figure 3 presents the steps to evaluate the robustness of the selection process. Due to
small fluctuations in model parameters, the optimal actions may change. Thus, it is
useful to determine the robust actions that are in every or almost every non-dominant
portfolio of actions. The more robust the selection process, the less the optimal
portfolio of actions changes due to changes in model parameters.
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Figure 3: Steps to evaluate the robustness of the selection process

In step 1, either the reinforcement action’s effectiveness or the hazard’s severity
is modified. Depending on the target hazard or action, either the factor λ, which
affects the failure rate, or the factor τ , which affects the reparation time of the target
lines, can be modified. The original grids, scenarios and scenario probabilities remain
unaltered to guarantee the comparability of the results. In step 2, the optimal actions
are solved for the changed parameters of step 1.

Steps 1 and 2 are repeated until all the desired parameter modifications are done
and the corresponding optimal actions are solved. In step 3, the robustness of each
action is determined using a core index. A core index of action is the proportion of
non-dominated portfolios, which include the specific action (Liesiö et al., 2007). A
portfolio is non-dominated if no other portfolio improves the reliability of the system
more. Core indices are calculated separately for each budget.

3.5 Evaluating sensitivity of the reliability

Figure 4: Steps to evaluate the sensitivity of the reliability

Figure 4 presents the steps to evaluate the sensitivity of the reliability. The
benefit of performing the reliability sensitivity analysis is that the parameters that
affect the reliability most can be identified. The optimal portfolio of actions is solved
for certain budget levels in step 1. In step 2, the system’s reliability is determined
with the original model parameters and with either changes in the factors of actions
or hazards. In step 3, the reliability with original parameters is compared to that with
changed parameters. Steps 2 and 3 can be repeated in order to evaluate the effect of
different parameter changes on the reliability. Cumulative distribution functions of
the SAIDIs are used to compare system reliabilities in step 3.
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3.6 Formulation of the optimization problem
The formulation of this optimization problem is based on the MILP (mixed-integer
linear programming) formulation by Salo et al. (2022). This formulation was applied
to the problem of selecting an optimal portfolio of reinforcement actions by de la Barra
and Salo (2023). We define a path s = (s1, s2, ..., sn) as a sequence of states si ∈ Si

of all chance and decision nodes in an influence diagram. p(s) is the probability of a
path s. π(s) represents the probability of scenario path s, and compared to p(s), it
ensures that the path s is compatible with the global decision strategy Z.

U g(s) is the utility of path s in grid g ∈ G, where G is the set of all grids
in the system. Generally, U g(s) can be composed by taking a weighted sum of
utilities calculated using different reliability indices. However, in this thesis, U g(s) =
U g

SAIDI(s) because SAIDI is the only reliability index we are using. The overall
utility of the system is U(s) = ∑︁

g∈G wgU g(s). In this case study, the two grids are
equally weighted. A binary variable z(sj | sI(j)) ∈ {0, 1} equals one if decision sj is
made based on the information set sI(j) at decision node j. Otherwise, it equals zero.
The formulation can now be presented as follows

max
z∈Z

∑︂
s∈S

π(s)U(s) (1)

s.t.
∑︂

sj∈Sj

z(sj | sI(j)) = 1, ∀j ∈ D, sI(j) ∈ SI(j) (2)

0 ≤ π(s) ≤ p(s), ∀s ∈ S (3)
π(s) ≥ p(s) +

∑︂
j∈D

z(sj | sI(j)) − |D|, ∀s ∈ S (4)

π(s) ≤ z(sj | sI(j)), ∀s ∈ S, j ∈ D (5)
z(sj | sI(j)) ∈ {0, 1}, ∀j ∈ D, sj ∈ Sj, sI(j) ∈ SI(j) (6)∑︂

j∈D

∑︂
sj∈Sj

z(sj | sI(j))csj ≤ B̂ (7)

Equation (1) is the objective function. The optimal strategy z ∈ Z maximizes the
expected utility. Equation (2) ensures that for each decision node, one decision is
made. Equations (3) and (4) define boundaries for path probability. Equation (5)
assures that the path probability of a path is zero if the path is incompatible with
the decision strategy. Equation (7) ensures that the sum of the chosen reinforcement
actions sj is at most the budget limit B̂.

4 Case study
We illustrate the robustness and the sensitivity analysis with a case in which the
DSO seeks to find robust actions to protect the distribution system and identify
the parameters that affect reliability the most. The distribution system consists of
two distribution grids. Hazards in this thesis are weather conditions, cyber-attacks
and overloading. Reinforcement actions are spare transformer, maintenance crew,
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protective devices, underground line and communication system update. We also
provide details of the iterations made in the robustness analysis and analyze results.
Possible parameter modifications of the reliability sensitivity analysis are proposed,
and the results of two of those cases are discussed.

4.1 Hazards and reinforcement actions

Table 1: Characteristics of the hazards.
Hazard Type Factors

Weather1 Weather conditions 1.0, 1.0, all
Weather2 Weather conditions 1.4, 1.4, all
Weather5 Weather conditions 3.0, 2.0, all

CA1 Cyber-attack 2.0, 1.0, 0
CA5 Cyber-attack 3.0, 1.0, 4
OL1 Overload 1.5, 1.0, 0
OL5 Overload 2.0, 1.0, 4

Hazards used in our case study are in Table 1. Each hazard type has different
severity levels, e.g., weather conditions have three levels. Hazards are characterized
by factors which indicate the severity of the hazard. From left to right, as in Table
1, factors are λ factor, τ factor and number of affected lines. The λ factor multiplies
the failure rate, and the τ factor multiplies the restoration time of the affected lines.
For example, the hazard OL5 increases the failure rates of four lines by a factor of
two. The higher the reliability parameters of the line are, the less reliable the line
is. Weather conditions affect all of the lines in the grid, while cyber-attacks and
overloading affect only some of them. Weather1, CA1 and OL1 are the base states,
which do not affect any reliability parameters of the lines.

Table 2: Characteristics of the global actions: Spare transformer (ST) and Mainte-
nance crew (MC).

Action Target Hazard Factors Cost
ST0 Weather, Overload 1.0, 1.0, 0 0
STA Weather, Overload 0.5, 1.0, 1 200
MC0 All 1.0, 1.0, all 0
MCA All 1.0, 0.8, all 200

Tables 2 and 3 contain lists of global and local actions used in this case study.
For each reinforcement action, the type of the action, its target hazard, factors and
cost are specified. Reinforcement actions are characterized similarly by factors as
hazards are. The factors of the reinforcement actions are smaller or equal to one.
The actions decrease their target lines’ failure rate and/or restoration time. For
example, the maintenance crew (MCA) does not affect the failure rate but decreases
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Table 3: Characteristics of the local actions: Protective devices (PROT), Underground
line (UL) and Communication system update (CS).

Action Target Hazard Factors Cost
PROT0 All -, -, 0 0
PROTA All -, -, 3 20
PROTB All -, -, all 120

UL0 Weather 1.0, 1.0, 0 0
ULA Weather 0.0, 1.0, 1 50
ULB Weather 0.0, 1.0, 2 100
CS0 Cyber-Attacks 1.0, 1.0, 0 0
CSA Cyber-Attacks 0.5, 1.0, 1 30
CSB Cyber-Attacks 0.5, 1.0, 5 150

the restoration time of all lines in all distribution grids. Protective devices have
no factors associated because they do not directly affect the lines’ failure rate or
restoration time. Reinforcement actions affect the failure rates associated with one
or more specific hazards, e.g., the underground line only protects against extreme
weather conditions.

Labels 0, A and B represent different levels of investment. More expensive actions
provide more effective protection. Reinforcement actions with label 0 represent the
base state that does not affect the system’s reliability. A portfolio of reinforcement
actions consists of one global action of each type and one local action of each type
for both of the grids. The overall cost of the portfolio is the sum of the individual
actions. The overall cost cannot exceed the budget limit of the DSO.

4.2 Robustness of the selection process
Tables 1, 2, and 3 contain parameters for the original actions and hazards. To perform
robustness analysis, we modify the original factors of each action and hazard type
separately. After every modification, the model is solved to determine the optimal
actions based on the changes in factors, as in Figure 3.

Table 4: Part 1 modifications
Action/hazard target parameter iterations factors

ST λ 20 0.1,0.2,...,2.0
MC τ 20 0.1,0.2,...,2.0
CS λ 20 0.1,0.2,...,2.0

Weather λ 10 1.1,1.2,...,2.0
OL λ 10 1.1,1.2,...,2.0
CA λ 10 1.1,1.2,...,2.0

For each type of action, we perform 20 iterations, and for each type of hazard, we
perform 10 iterations. Modifications are shown in Table 4. The original target factor
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of the target hazard or action is multiplied by the factors in the table. Compared
to the base case, weaker and more powerful actions and more powerful hazards are
considered.

For example, the maintenance crew only affects the reparation time, so the τ
factor is modified, and the λ factor is not. Factors of protective devices are not
changed because they do not directly affect τ or λ factors. Also, underground lines’
factors are not modified because they directly decrease the failure rate of the target
lines to zero with respect to weather conditions. Thus, it is not likely that there
would be any fluctuations in the accuracy of the parameters of underground lines.
Only changes in λ factors were taken into account for hazards.

4.3 Sensitivity of the reliability
When estimating the sensitivity of the reliability, we make a first-stage decision
to apply reinforcement actions based on known information. Then, the model
parameters change, and we are interested in how much the system’s reliability can
change (Figure 4). A range of parameter changes could be studied. Each global
and local variable’s effectiveness on reliability can be tested by making them either
more or less powerful. Similarly, hazards’ severity could be modified. Also, different
combinations of previously mentioned changes could be applied. For example, all
global actions, local actions or all hazards could be modified simultaneously. In
Section 4.4.2, we provide two cases: 20% more effective global actions and 20% more
severe weather conditions where the latter is more harmful to the DSO.

4.4 Results
4.4.1 Robustness of the selection process

The robustness analysis results of 90 different cases in Table 4 are summarized using
core indices of the global and local actions in Figures 5 and 6.

From Figure 5, we conclude that none of the portfolios uses a spare transformer
when the budget is below 560 because the core index of ST0 is one. For budgets
above 560, STA is used in over 80% of the non-dominated portfolios. The core index
of MCA is over 0.1 for budget 290, and the index starts increasing when moving
to larger budgets. From budget 470 onwards, the maintenance crew is included in
every non-dominated portfolio, making it clear a robust action. The maintenance
crew increases the reliability of the system more than the spare transformer even
though they are similarly priced, as seen in Table 2.

It can be concluded from Figure 6 that there are no clear core local actions with
a core index of one. Especially for budgets 30, 200, 290 and 380, it is not clear which
actions might be the most reasonable choice in the sense that they would be in the
non-dominated portfolio of actions with high probability. For every budget, the core
index of PROT0 is over 0.6. This means that protective devices are not widely used.
Also, the more expensive underground line ULB and communication system CSB
are preferred over ULA and CSA for budgets over 200.
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Figure 5: Recommendations for choosing global reinforcement actions.

Figure 6: Recommendations for choosing local reinforcement actions.
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4.4.2 Sensitivity of the reliability

Figure 7: 20% smaller λ-factor of the STA and τ -factor of the MCA

Figure 7 illustrates the change in reliability after a 20% decrease in the STA and
MCA factors. The actual shape of the plot depends on the scenario probabilities,
which are random in our case study. Thus, we are interested primarily in the
horizontal shift of the curves. These more effective global actions result in a significant
improvement in the reliability of the grid, which is approximately 20%. With the
lowest budget, global actions cannot be utilized. Thus, the change in parameters
does not affect that budget.

In Figure 8, weather conditions are 20% more severe. That results in a 5% to 12%
change in reliability. The relative change in reliability is almost identical for each
budget, which indicates that more expensive actions do not provide better protection
against uncertain severity of hazards. However, the larger the budget, the smaller
the absolute change in reliability. The most severe scenarios expose the system to a
bigger relative change in reliability compared to the more favourable scenarios.
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Figure 8: 20% bigger λ-factor of weather conditions

4.5 Discussion
The sensitivity and robustness analyses provide useful information to the DSO in
protecting distribution grids against external hazards. There are more possible
hazards in the real world, and the number of possible reinforcement actions may be
greater than in our case study. Thus, computational efficiency becomes an important
factor. Robustness analysis of the selection process can be used to exclude some of
the reinforcement actions to limit the model size. For example, Figure 5 indicates
that the spare transformer (STA) can be excluded from the possible set of global
reinforcement actions for budgets below 560. Similarly, it can be assumed that ULB
and CSB will be chosen for budgets over 380 in every portfolio. There is a small
probability that other communication system updates or underground lines could
be at least as effective. However, this assumption may be reasonable since it would
significantly reduce the number of options, making the analysis more efficient. In
general, the DSO can be confident that robust actions with a core index of one will be
optimal even when the parameters vary. However, this will not always hold because
some hazards may be excluded, and the estimation of the scenario probabilities might
not be sufficiently accurate.

Some budgets have clear core actions, while others have borderline actions
belonging only to some non-dominated portfolios. When the DSO’s budget is 470,
from the different types of actions, only protections lack a clear core choice that
would be included in all non-dominated portfolios. Therefore, choosing actions for
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that budget should be a straightforward process. When the budget is 380, there are
only two core actions, while the optimal investment level of the other three types of
actions changes based on the fluctuations in model parameters. That implies certain
budgets require more careful consideration than others.

It should be pointed out that the magnitude of the used factors in Table 4 is
not carefully considered. For example, it may not be reasonable to assume that the
mere existence of the maintenance crew makes the system less reliable. Parameter
modifications should reasonably reflect real-world possibilities when performing a
robustness analysis of the selection process with real data.

Studying the sensitivity of the reliability helps to identify the parameters that
affect the reliability most. If these parameters can be identified, their accuracy could
be improved to mitigate the system reliability fluctuations. When conducting the
sensitivity analysis of the reliability, it was found that the impact of local actions’
parameters on the system’s reliability is small. On the contrary, as seen in Figure
7, changes in the parameters of global actions are reflected directly in the system’s
reliability. Even though it was clear which parameter’s accuracy should be improved,
it may still be challenging to improve parameter accuracy in practice. Some hazards
have not occurred before, and consequently, determining the interaction between
those hazards and reinforcement actions might be demanding. In addition, if the
confidence intervals for the parameters are known, sensitivity analysis can be used
to determine confidence intervals for the system’s reliability. This can help the DSO
identify worst-case scenarios of the reliability.

The model used in this case study has many limitations. It considers only two
distribution grids and the number of hazards and reinforcement actions is small.
Figures 7 and 8 indicate that budgets over 470 are redundant because they provide
only marginal improvements in the reliability of the grids. Thus, in the future, the
sensitivity and robustness analysis can be performed with real data. With real data,
scenario probabilities should be carefully determined. Also, other reliability indices
could be employed.

5 Conclusions
Distribution grids are an essential part of critical infrastructure. Thus, ensuring
their reliability is important. In this thesis, we were interested in the impacts the
uncertainties in the model parameters have on the portfolio of optimal reinforcement
actions. Also, it sought to find out how the grid’s reliability depends on the parameters
of the chosen reinforcement actions.

When studying the robustness of the selection process, the parameters for the
harmfulness of hazards and effectiveness of actions were modified, and the optimiza-
tion model was solved to identify the optimal portfolio of reinforcement actions.
Then, core indices for the actions were determined. Such analyses help the DSO
identify robust actions and abandon exterior actions that are not part of any of the
optimal portfolios.

When examining the sensitivity of the reliability, a first-stage decision based on
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the original information was made. After changes in the model parameters, the model
performance was evaluated. Based on this analysis, the DSO can target attempts to
improve the accuracy of the model parameters.
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