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Abstract

Sales modelling is commonplace in modern retail business. The modelling process
however is not reliable if model validation and selection is not done properly. Typically,
cross validation (CV) is considered a robust validation method, but in practice it
can not always be done. Lack of data can prevent splitting it to training and testing
sets of sufficient sizes. The speed of cross validation can become a problem if the
initial model fitting is slow.

In this thesis we studied known model validation and selection metrics. The chosen
metrics were Akaike information criterion (AIC), deviance information criterion
(DIC), Watanabe-Akaike information criterion (WAIC), mean absolute percentage
error (MAPE), and 10-fold-CV. We modelled weekly retail sales with Bayesian
models. The models were ranked in order of their relative goodness of fit using the
selected metrics. The purpose of this thesis is to find the metrics most useful in a
business setting.

The thesis showed that information criteria and 10-fold-CV, the metrics based
on expected log pointwise predictive density, ranked the models similarly. MAPE
is based on a different loss function and thus it sometimes did not agree with the
ordering by other metrics. Even though the information criteria did not use out-of-
sample data, they did end up with similar ordering of the models as computationally
more complex metrics. Information criteria thus offer an attractive alternative for
out-of-sample data based metrics.
Keywords Bayesian models, model validation, information criterion, Facebook
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Myynnin mallinnus on arkipäivää moderneissa vähittäismyymäläketjuissa. Mallien
valinta ja validointi ovat kuitenkin tärkeä osa mallinnusprosessia, sillä mallinnuksen
tulokset eivät ole uskottavia ilman niitä. Ristiinvalidointia pidetään yleisesti hyvänä
validointitapana, mutta käytännössä ristiinvalidointia (engl. cross-validation, CV) ei
aina voida tehdä. Datan vähyys voi estää datan jakamisen testi- ja opetusjoukkoon.
Mallin sovittaminen voi olla hidasta, jolloin ristiinvalidoinnin nopeus muodostuu
käytännön ongelmaksi.

Tässä kandidaatintyössä tutkittiin tunnettuja mallin valinta- ja validointimetrii-
koita. Tutkitut metriikat olivat Akaiken-, devianssi- ja Watanabe-Akaike -informaatio-
kriteeri (AIC, DIC ja WAIC), keskimääräinen absoluuttinen virheprosentti (engl.
mean absolute percentage error, MAPE) sekä 10-kertainen ristiinvalidointi (10-fold-
CV). Työssä mallinnettiin päivittäistavaraketjun myyntiä Bayesilaisilla malleilla,
joiden paremmuutta vertailtiin keskenään edellä mainituilla metriikoilla. Työn tar-
koituksena on löytää kaupallisessa viitekehyksessä käyttökelpoisimmat metriikat.

Työ osoitti, että odotettuun logistiseen piste-ennusteen uskottavuuteen (engl. ex-
pected log pointwise predictive density) perustuvat menetelmät, eli informaatiokritee-
rit ja 10-fold-CV, yleisesti ottaen järjestävät mallit samaan paremmuusjärjestykseen.
MAPE perustuu erilaiseen sakkofunktioon ja näin ollen se myös toisinaan päätyy
erilaiseen paremmuusjärjestykseen kuin muut metriikat. Vaikka informaatiokriteerit
eivät käytäkään opetusjoukon ulkopuolista dataa, päätyivät ne samoihin tuloksiin
laskennallisesti raskaampien menetelmien kanssa. Informaatiokriteerit siis tarjoavat
käytännöllisiä vaihtoehtoja testijoukkoon perustuville metriikoille.
Avainsanat Bayesilaiset mallit, mallin validointi, informaatiokriteeri, Facebook

Prophet
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1 Introduction
Modern businesses collect data and use it in analytics and predictions. Statistical
modelling can be applied in multiple retail business areas, such as supply chain
planning (appropriate amount of goods on the shelves), assortment (what to have
on the shelves), pricing, media planning, promotions etc. Davenport et al. (2006);
Chan and Perry (2017); Kök and Fisher (2007). Correctly forecasting demand for
goods is important for any retail business, as shortages can cause loss of sales. As
companies collect increasingly more data, the possibilities of forecastable subjects
and possible features increase dramatically. However, one cannot just include more
features in the model and expect it to perform well. Furthermore, not all models
are suitable for all forecasting tasks. Virtually unlimited amount of models can be
formulated, but most of them will perform poorly. To find the useful ones, we must
be able to compare the goodness of a model. It is typically defined as expected
predictive accuracy, accodring to Gelman et al. (2014). Being able to objectively
compare models allows for systematic approaches of model selection to be adopted.

According to Landry et al. (1983), model validation can not be separated from
the modelling process. Gelman et al. (2013) describe model validation as an integral
part of a robust modelling framework. Bayesian models are a relatively novel model
type, which has gained considerable popularity in recent years, as computational
power of modern computers has kept rising. As a relatively new method, not too
many validation metrics have been proposed with these kinds of models in mind.

Gelman et al. (2014) describe the current state of model validation for Bayesian
models to be unsatisfying. Information criteria that try to predict out-of-sample
fitness can have strong biases, and some may not take into consideration the nature of
Bayesian models and distributions of parameters. Cross validation can be extremely
computationally intensive. Additionally, most information criteria are based on a
loss function proportional to the root mean square of errors, but that may not always
be the most useful function to optimise for. In some businesses, the consequences of
errors in forecasts can be described better with the mean absolute percentage error.
All in all, there does not exist a universally optimal method for solving all Bayesian
model validation problems.

This thesis attempts to study the usefulness of popular model selection metrics
applied in business setting with retail data. How can the metrics be applied when
the number of past observations is very limited? Does it significantly affect the
performance or applicability of some metrics? Retail data can also be very detailed
by having a separate time series for each product. Low-level modelling can lead to a
very high count of fitted models or exceedingly complex ones. How computationally
complex are the evaluation methods? This can significantly impact the usefulness
of the metric. As the metrics are applied to Bayesian models, there is always some
randomness involved as the sampling process is not deterministic. Will this play a
significant role in the stability of the metrics or will the results be always consistent?
By answering these questions, we try to conclude which metrics are useful in which
circumstances in business applications.

In this thesis, we will use the dataset by Singh (2017) to model sales time series of
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Walmart stores in the United States. We will use the Facebook’s Prophet modelling
framework as described by Taylor and Letham (2018). It consists of a flexible
Bayesian model which can be customised to fit a wide range of possible time series
modelling tasks. We will implement few popular information criteria metrics for the
model and compare them to other methods of model validation.

Writing this thesis was part of a summer internship at Sellfote Solutions Ltd.
The company uses Bayesian models in marketing mix modelling.

2 Background
Models can be viewed as simplifications of reality. This means that no model never
really matches the true data generating processes, but if one can formulate a model
that works sufficiently well, it might be possible to draw some conclusions from them.
Most of the models we are concerned with link together some explanatory variables
to the measured data. The parameters of the model are learned by fitting the data
to the model. The fitted model can then be used to predict future observations,
assuming that the explanatory variable values are known for the future data points.
The sampled model parameters can likewise give insight on the behaviour of the
physical world, assuming that said parameters have a sensible interpretation.

As described by, e.g., Bayarri and Berger (2004), Bayesian models differ from
frequentist models in two major ways. Firstly, in Bayesian thinking, parameters
are not expressed as point values, but as distributions. Secondly, the posterior
distributions are affected also by the prior beliefs of the distribution. This means
that the data is not the only source of information affecting the results, as the
posterior beliefs are actually prior beliefs updated by Bayesian inference on the new
data. These qualities allow for embedding uncertainty and business knowledge in the
models. Highly informative priors can, in addition, make the models behave more
robustly in case the data has some outliers.

Model selection methods can be categorised by the view they take on whether the
considered models contain the actual data generating model. This data generating
model would represent the actual real-world process by which some events result in
the observed data. As proposed by Vehtari and Ojanen (2012), the M-closed view
assumes that the data generating model is present in the considered models. M-open
view instead attempts to model the data with minimal assumptions and is thus more
applicable with real-world data.

Vehtari and Ojanen (2012) describe multiple approaches for model selection. The
most often used methods are information criteria, hold-out predictive, and cross
validation. None of the most popular methods make explicit assumptions of the
"true" model and are thus rather simple to implement. The methods differ on how
they reuse data when evaluating model performance. Information criteria are based
on calculating the training utility of the model and adding a bias term that attempts
to correct for the reuse of training data in model evaluation to prevent overfitting to
the available data. Hold-out predictive methods separate the data to a training and
testing set. The testing set is used to evaluate the utility function for the model that
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has been trained using the training data. The method is considered to be robust if
enough training and testing data is available. Cross validation takes this hold-out
approach a step further by splitting the dataset and training the model multiple
times. This allows for all of the data to be used in testing once. If the amount of
available past observations is limited this can help with robustness of evaluation.

3 Datasets and methods

3.1 Original data and feature engineering
The original retail dataset by Singh (2017) consists of department-level weekly sales
data of 45 stores. The data spans a little over two years, from 20 February 2010 to
26 October 2012. Each store location is associated with features that may help with
sales prediction. The features are temperature, unemployment, price of gas, and
consumer price index CPI. Furthermore, the store size and type of store is known.

The data contains information about markdowns, but this feature is available
only from 11 November 2011 onwards. This renders the feature useless, as the effect
of the missing markdowns will not be attributed correctly, skewing the results. For
example, a spike in sales could be due to markdown campaign or seasonality. If
the markdown data would be complete for the whole dataset the effect could be
separated from seasonality. However, as there is markdown data for less than two
years, some spikes will not have data about possible markdowns. This leads to the
uplift to be attributed to seasonality, which may not be correct. Leaving markdowns
out of the features will effectively cause the uplift from markdowns to be attributed
to noise if the markdown campaigns are not seasonal.

The original dataset contains sales data on a department level. There are a total
of 81 departments, but not all are present in every store. We are still left with 3331
sales time series. Aggregated data was used to reduce computational complexity.
The department-level sales are first aggregated to store-level sales by summing sales
in each department in each store. This still leaves us with 45 time series, which would
still require too much time to model each individually. To simplify this issue, the
stores are further aggregated based on store type (A, B or C) as classified in the data.
The aggregated sales are presented in Fig. 1. The features for these store groups are
obtained by calculating a size-weighted average. Store size is given in the dataset.
As the aggregation process of the features can render the features less meaningful, a
small subset of stores is also selected from each store group. Comparing these stores
to the store groups will reveal if the aggregation lessens the predictive performance
of the models using the provided features. The aggregated features can be found in
Fig. 2.

The sales data for store groups A and B demonstrate strong seasonality. Especially
during Decembers, the turnover spikes due to strong holiday effect. For store group
C the sales are more consistent throughout the year. Temperature is the only feature
that clearly behaves seasonally. Originally, unemployment was expressed to equal the
latest unemployment statistic. This made the feature behave rather discontinuously.
To get around the discontinuity affecting the results, the unemployment for each
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Figure 1: Aggregated weekly sales by store group. Groups A and B demonstrate
holiday effects while group C remains relatively stable through each year.

week was calculated by interpolating unemployment from last and next changepoint.
After the transformation, both unemployment and consumer price index (CPI) have
a clear trend as seen in Fig. 2.

This thesis does not study how the features should be constructed to obtain best
modelling accuracy. Feature engineering is thus left at minimum. We still acknowledge
that some relatively simple transformation steps could improve modelling results. For
example, temperature having strong yearly seasonality could be problematic. The
model could attribute sales seasonality to temperature, which is not likely correct.
Similarly, linear trends in sales can be misattributed to features with strong linear
trends.

3.2 Selected models
The Prophet model by Taylor and Letham (2018) is a linear model that is used
to predict time series. The model consists of seasonality components, a piece-wise
linear trend, and possible explanatory variables such as holidays. An example of
a component-wise breakdown of a fitted model is visualised in Fig. 3. The season-
alities are modelled using a finite Fourier series approximation. Trend is modelled
linearly between several pre-determined changepoints. The Prophet model assumes
a Gaussian prior for other parameters than trend changes. Trend changes have a
double-exponential (or Laplacian) prior. This roughly equates to L1-regularisation
as described by Tibshirani (2011). This is done to ensure a strong signal of trend
change is needed for the corresponding parameter value to be non-zero. After the
last change point, the model assumes a linear trend. The Prophet model treats time
as a feature ranging from 0 to 1. Notably, the prediction does not directly depend on
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(c) Fuel price by store group.
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(d) Interpolated unemployment rate by store
group.

Figure 2: Additional features used in Model M2.

previous observations but seasonality and trend. They are calculated also using the
other observations, but that calculation does not require a constant time difference
between observations. As such, the model can handle inconsistent time intervals
between datapoints. This means that the training and testing set do not have to
consist of sequential observations.

We chose to study five different models. The models are based on the Prophet
framework. They differ from each other by the used settings and chosen features.
The differences between used models are displayed in Table 1. The models are
labelled from M1 to M5. The model M1 was chosen to act as a benchmark to be
compared against the other models. This should demonstrate if changes to the
base model yield any improved predictive performance. The M2 model adds on
the benchmark model by including the additional features present in the dataset.
These were temperature, CPI, unemployment rate and fuel price. The M4 model
does not utilise the extra features. It attempts to demonstrate the behaviour of the
metrics with overfitted models. The number of Fourier coefficients for seasonality
are doubled from the benchmark model. M3 and M5 differ fundamentally from the
other models as they are given noisy y-data, the sales time series, as a feature. As
such M3 and M5 are not reasonably possible to implement in a real-world prediction
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Table 1: Summary of the selected models. Extra features are fuel price, CPI,
unemployment and temperature.

M1 M2 M3 M4 M5
Yearly seasonality coefficients 10 10 10 20 None
Extra features No Yes No No No
Trend changepoints 25 25 25 25 1
Response variable as regressor No No Yes No Yes

scenario. This model formulation is done to study the behaviour of the metrics in
situations where the models actually represent the real-world data generating process.
In this case, the process is rather simple, as the best prediction should follow trivially
from the features. The small noise is added to the feature to see how the models
behave with non-perfect information. The hypothesis is that the model will try to fit
the rest of the parameters to said noise. A model with smaller number of tuneable
parameters should be more robust to overfitting to the noise. M3 is equal to the
benchmark model extended by this noisy y feature. M5 is similar except it has less
trend changepoints and disabled seasonality. M5 should be the superior model as it
has the same information but it is more resistant to overfitting to noise present in
the y feature. It should be capable of producing the same result as M3 but with less
parameters.

3.3 Model selection metrics
The models were compared using five different metrics. The selected metrics were
Akaike Information Criterion (AIC), Akaike (1974); Deviance Information criterion
(DIC), Spiegelhalter et al. (2002); Watanabe-Akaike Information Criterion (WAIC),
Watanabe and Opper (2010); Mean Absolute Percentage Error (MAPE), and 10-fold
cross validation, Vehtari and Lampinen (2002). All the above information criteria
are calculated using only in-sample fits. They aim to estimate the out-of-sample
predictive performance of the model using the likelihood of past observations. Notably,
only WAIC of the information criteria fully considers the Bayesian nature of the
model, since it utilises the whole posterior distribution instead of some aggregated
values.

3.3.1 Metric calculation

MAPE is calculated in the spirit of backtesting. First, a fifteen week test period is
selected from the tail of the dataset. The model is then fitted on the preceding data.
Prediction is calculated on the test period. This procedure is repeated three times,
each time starting the test period seven weeks earlier. After the last predictions have
been made, the absolute percentage errors are calculated. MAPE is the mean of
those errors. 10-fold cross validation is calculated by assigning randomly 1/10 of the
datapoints as test set and then calculating the likelihood of the prediction for the
test set. This is performed ten times so that each datapoint belongs to the test set
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once. 10-fold CV is the average of the results. Another method typically used is to
select the splits in continuous chunks. Assuming non-correlated residuals allows for
selecting random splits. One of the 10-fold CV splits can be found in Fig. 4 and test
set selection of MAPE is demonstrated in Fig. 5.
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Figure 3: Trend and yearly seasonality components of the fitted model used in Fig.
5.

3.4 Bayesian model fitting
Bayesian models rely on inferring the posterior probability densities of the parameters
from data and prior probabilities. For complex models, this cannot be done analyti-
cally but by using for instance Markov chain Monte Carlo sampling (MCMC). Stan
(Carpenter et al. (2017)) is a Bayesian data modelling platform. In this thesis, Stan
is used to mathematically model the Prophet model and fit it using MCMC sampling.
To be more specific, the adaptation of MCMC used in Stan is the No-U-Turn sampler
(NUTS), as described in Hoffman and Gelman (2014). This sampling process explores
the possible parameter space of the model, searching for likely parameter values, and
yields a large collection of point value combinations for the parameters. Usually,
the sampling process utilises multiple chains to ensure proper convergence of the
sampling process. Stan automatically tests model convergence by calculating multiple
convergence test metrics, such as Bayesian factor of missing information, number of
efficient samples per parameter, divergent transitions etc., as describe by Betancourt
(2016).
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Figure 4: Demonstrating the 10-fold CV. Red dots represent the 10% of the datapoints
that were selected for testing set. Model is fitted using training data represented
by the black dots. This data splitting and evaluation is repeated ten times until all
datapoints have belonged to the test set exactly once.

3.5 Workflow
This thesis focuses on the metrics used in model selection, not necessarily the model
selection process itself. The workflow of metric evaluation was as follows: first, the
data was analysed to check for which features to use or if some data processing had
to be done. After this the data was aggregated to different datasets: three by store
group level and nine store level datasets. The compared models were constructed from
the available data. Each of the models were fitted for each of the available datasets.
Each of the five metrics were then computed for all the model-data combinations. All
the fitted models and metrics were saved using python’s Pickle module (Van Rossum
(2020)) to be analysed later. Ordering of the models by metrics results were then
compared against each other within each dataset.

4 Results
The models were fitted using Stan for MCMC sampling with four chains and sampling
parameters target metropolis acceptance rate δ = 0.9 and maximum tree depth of 11.
Each chain was sampled for a total of 1 000 times of which 500 were discarded as
warmup samples. The other sampling parameters were left to their default values as
suggested by Stan Development Team (2018). The obtained results for the store group
level metrics are presented in Table 2. Results for store level data are presented in
the Appendix A. The columns of the tables represent the evaluated metrics. Metrics
other than MAPE are presented in deviance scale, i.e. as −2lppd. In deviance
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Figure 5: Hold-out prediction 30 weeks in the future. Training data in black, test
data in red. This train / test split is used in MAPE metric.

scale, lower is better. The metric results can be used to rank the models by their
performance. This is visualised in Fig. 6. From the figure, it can be seen that the
results are somewhat consistent between the models and metrics.

The visual representation highlights the order different metrics rank the models.
AIC and DIC ranked all the models similarly for all the datasets, but differences in
deviance scores were not equal between the models. WAIC seemed to mostly agree
with AIC and DIC, but in datasets B and C the order of models M1 and M4 was
reversed.

Ranking by MAPE has many similarities with the information criterion rankings.
However, Model M5 performed worse with all datasets, dropping behind M3 in A
and C, but also behind M1 and M4 in B. In dataset B, MAPE ranked M1 better
than M4. This agrees with the WAIC ranking, but it is the other way around with
AIC and DIC. The other notable difference in MAPE scores is that in datasets A
and B the Model M2 seems to perform much worse than the other models. However,
this phenomenon is not present in C.

The 10-fold cross validation ranks the models M5 and M3 the best in all datasets,
just like the information criteria do. However, the ranking of the rest varies. In
dataset C, models M1, M2 and M4 are ranked similarly as by AIC and DIC. In both
A and B, Model M4 takes the last place, while M2 and M1 get a score similar to
each other. M2 was ranked better than M1 for dataset A and vice versa for B, but
the margin was rather slim.

Overall, it seems that the metrics correctly recognise the "data generating models"
from other models. Additionally, M5 mostly ranks better than M3, as it has less
non-informative regressors. When it comes to the ranking of models M1, M2 and
M4, the results are not as clear. In store groups A and B, M2 performs much worse
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than the other models when evaluating with MAPE. This likely indicates that the
model overestimates the importance of the external regressors. As the regressors
have trends, the prediction drifts off the actual sales. In the 10-fold CV this is not
observed, as the datapoints in test set are picked randomly. The test points have
similar-valued training points next to them, thus the trend does not have time to
cause the predictions to drift off.

4.1 Metric evaluation times
Model fitting and metric evaluation times can be found in Table 3. Fitting and
evaluation was performed using two cores on a 2017 MacBook Pro with an 2.3GHz
Intel Core i5-7360U CPU and 8GB of RAM. For AIC and WAIC the times are
averages of hundred evaluations, for DIC average of three evaluations, and rest are
single runs. Fitting time depended heavily on the complexity of the model. The
metrics can be categorised by their evaluation time. Both AIC and WAIC took
under 10ms for all models. DIC evaluation took between six to nine seconds for all
models, but this does not seem to depend on model complexity or initial fitting time.
Lastly, there are both MAPE and 10-fold CV evaluation. Their evaluation times
did indirectly depend on model complexity, as both metrics require the model to be
refit with different splits of data. Their evaluation took between 2 to 4.5 and 7 to 11
times their respective model fitting time. The fastest category of AIC and WAIC are
calculated by using only matrix operations on the sampled parameters. This makes
their evaluation extremely rapid. DIC also relies only on the fitted parameters, but
first maximum likelihood estimates are calculated using the prediction method of the
model. This involves non-matrix operations that are considerably slower to execute.

One may wonder if it is fair to present MAPE evaluation times as including the
fitting time. This choice is deliberate, as the underlying assumption is that the model
needs to be fitted for the whole data for it to be useful. If using only out-of-sample
MAPE for model selection, a model needs to be fitted at least once more that when
using in-sample metrics. As the in-sample metrics are practically instantaneous to
calculate when compared to fitting a model, it is justifiable to present information
criteria based model selection as being faster.

4.2 Convergence of the metric values
The metrics were tested for stability and consistency by plotting the metric value as
a function of used samples. First model M5 was fitted with 500 warmup iterations
and 4000 samples per chain. The metrics were calculated by giving the evaluation
function slices of the sampled parameters corresponding to the evaluated sample
count. For AIC, WAIC and 10-fold CV metrics were evaluated every 10th sample,
for DIC and MAPE every 100 samples. These resolutions were chosen to better
manage the computation time, as both DIC and MAPE relied on predictions using
sampled parameters. The results for metrics in deviance scale are presented in Fig.
7 and for MAPE in Fig. 8. Notably, for metric in deviance scale the level of noise
after 500 samples is low, only under one unit of deviance. MAPE also behaves well
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with changes in metric value of under 0.01% after 500 samples. For all metrics the
observed differences in model performances from Fig. 6 greatly exceed the level of
noise in metric values.

When examining the results, it is important to keep in mind the different utility
functions used in the metrics. Other metrics than MAPE are based on estimating
the log-likelihood of out-of-sample predictions, while MAPE evaluates the mean
absolute percentage error. Log-likelihood is proportional to MSE as the model consist
of a normally distributed error term with a constant variance. In a perfect world,
the utility function would represent the actual losses due to errors in predictions.
However, it is difficult to estimate those accurately.

From a business application point of view, it can be concluded that the 10-fold
CV is not a feasible model selection metric. In practice, the used models are very
complex and may take hours to fit. This renders cross validation-based methods
useless as the results are often needed rapidly. If the dataset has enough datapoints,
hold-out based metrics like MAPE and others with possibly different utility functions
may be used. In a scenario with limited data availability the information criteria
may suffice.

Table 2: Numerical representation of the validation metric results applied by store
group.

(a) Store group A

Model AIC DIC WAIC MAPE 10-fold CV
M1 -394.4 -438.8 -15.9 0.0336 -410.8
M2 -384.6 -431.5 136.5 0.0445 -416.4
M3 -654.5 -702.1 -669.3 0.0219 -699.2
M4 -457.4 -512.4 -41.6 0.0275 -328.2
M5 -703.9 -703.2 -707.8 0.0253 -702.6

(b) Store group B

Model AIC DIC WAIC MAPE 10-fold CV
M1 -374.3 -419.1 19.3 0.0279 -408.4
M2 -365.5 -412.2 315.9 0.0494 -393.8
M3 -647.8 -695.3 -663.2 0.0255 -694.6
M4 -446.9 -501.4 152.2 0.0286 -324.2
M5 -699.4 -698.3 -701.5 0.0297 -697.8

(c) Store group C

Model AIC DIC WAIC MAPE 10-fold CV
M1 -454.0 -501.2 -397.1 0.0339 -494.8
M2 -447.1 -496.6 -186.4 0.0349 -488.4
M3 -668.9 -715.6 -668.1 0.0136 -714.0
M4 -549.1 -605.1 -214.3 0.0253 -582.8
M5 -741.9 -740.6 -743.7 0.0140 -740.4
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Table 3: Model fitting and metric evaluation times in seconds.

Initial fitting time AIC DIC WAIC MAPE 10-fold-CV
M1 32.27 0.00207 8.31 0.00420 108.39 358.46
M2 59.47 0.00326 7.88 0.00412 163.33 491.66
M3 105.55 0.00740 8.06 0.00453 203.68 763.72
M4 65.30 0.00312 7.48 0.00426 151.36 490.07
M5 7.68 0.00376 6.69 0.00453 34.79 83.10

5 Summary
In this thesis, we studied the applicability of multiple model selection metrics using
datasets and Bayesian models typical to business settings. The studied metrics
demonstrated consistent results in ranking model performance, making them useful
for model selection. However, cross validation may be too computationally intensive
to apply in practice, but other studied methods can be used instead as their accuracy
in ranking the models is adequate. Having only 140 weeks was not an issue for all
metrics, as the in-sample-metrics were not suffering from the lack of data.

To study further the applicability of common model selection metrics one could
experiment with a retail dataset with better data quality. The effect of marketing
and discounts could greatly affect sales and thus make for an interesting modelling
problem. Longer time series would be desirable, as it would help with separating
seasonality from the effect of explanatory variables.
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Figure 6: Visualisation of model validation metric results by store group. Arranged
such that visually lower is better. Each axis is scaled so that extreme values are at
the ends. For precise values please refer to Table 2.
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Figure 7: Metric values by sample count. Lower noise indicates more stable results.
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A Results for store-level data
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Figure A1: Visualisation of model validation metric results for single stores.
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B Source code
This thesis and the used source code can be found online in Github. https://
github.com/leevironty/BSC_thesis

https://github.com/leevironty/BSC_thesis
https://github.com/leevironty/BSC_thesis
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