
Impact of model size on tree
ensemble prediction accuracy and
optimization time

Eetu Reijonen

School of Science

Bachelor’s thesis
Espoo 1.11.2023

Supervisor

Prof. Fabricio Oliveira

Advisor

DSc (Tech.) Nikita Belyak

Copyright © 2023 Eetu Reijonen

The document can be stored and made available to the public on the open in-
ternet pages of Aalto University.
All other rights are reserved.

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the bachelor’s thesis

Author Eetu Reijonen
Title Impact of model size on tree ensemble prediction accuracy and optimization

time
Degree programme Bachelor’s Programme in Science and Technology
Major Mathematics and Systems Sciences Code of major SCI3029
Teacher in charge Prof. Fabricio Oliveira
Advisor DSc (Tech.) Nikita Belyak
Date 1.11.2023 Number of pages 25 Language English
Abstract
Tree ensembles are a type of machine-learning model used for regression and classifica-
tion tasks. The best-known types include random forests and gradient-boosted trees.
These models are used in numerous fields and can have distinct advantages such as
interpretability when compared to other machine-learning models. In this thesis,
tree ensemble optimization is addressed, i.e., the problem of choosing an input such
that the prediction of the tree ensemble is maximized or minimized. For practical
applications where some of the input variables are controllable, this allows for optimal
decision-making. A previously developed mixed-integer optimization formulation is
used to solve the optimization problem. The focus of our research is determining the
tradeoff between the predictive accuracy of the ensemble and the optimization time of
the corresponding mixed-integer optimization problem when choosing the parameters
for the tree ensemble, namely tree count and maximum depth of trees. This is
achieved with computational experiments, which consist of training tree ensembles
with different parameters on different datasets, determining the predictive accuracies
of those models, and finally solving the corresponding mixed-integer problems. The
testing is conducted on real-world datasets and standard hardware. Our results
indicate that tree ensemble models with a maximum depth of 5 or 7 and a tree
count of 200 achieve good predictive accuracies and that the optimization of the
corresponding mixed-integer problems is feasible with optimization times of only
around ten seconds.
Keywords mixed-integer optimization, tree ensemble models, decision trees

Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Tekniikan kandidaatintyön tiivistelmä

Tekijä Eetu Reijonen
Työn nimi Impact of model size on tree ensemble prediction accuracy and

optimization time
Koulutusohjelma Teknistieteellinen kandidaattiohjelma
Pääaine Matematiikka ja systeemitieteet Pääaineen koodi SCI3029
Vastuuopettaja Prof. Fabricio Oliveira
Työn ohjaaja TkT Nikita Belyak
Päivämäärä 1.11.2023 Sivumäärä 25 Kieli Englanti
Tiivistelmä
Puumallit ovat koneoppimismallityyppi, jota käytetään regressio- ja luokittelutehtä-
viin. Tunnetuimpia puumalleja ovat satunnaismetsät ja gradienttivahvistetut puut.
Puumalleja hyödynnetään monilla aloilla, ja muihin koneoppimismalleihin verrattuna
niiden selkeä etu on tulkittavuus.

Tässä kandidaatintyössä keskitytään puumallin optimointiongelmaan, eli siihen,
kuinka syöte tulisi valita, jotta mallin ennuste olisi maksimaalinen tai minimaalinen.
Käytännön sovelluksissa, joissa syötemuuttujat ovat hallittavissa, optimointiongel-
man ratkaiseminen mahdollistaa optimaalisen päätöksenteon. Optimointiongelman
ratkaisemiseen käytetään aiemmin kehiteltyä kokonaislukuoptimointimallia.

Tutkimuksen tavoitteena on selvittää suhde puumallin ennustustarkkuuden ja
vastaavan kokonaislukuoptimointiongelman ratkaisuajan välillä valittaessa puumallin
parametrejä, tarkemmin puiden lukumäärää ja maksimisyvyyttä. Tutkimus toteutet-
tiin laskennallisina kokeina, joissa ensiksi koulutettiin puumalleja eri parametreillä
ja tietoaineistoilla, minkä jälkeen määritettiin näiden mallien ennustustarkkuudet ja
lopulta vastaavien optimointiongelmien ratkaisuajat. Kokeet suoritettiin todellisilla
tietoaineistoilla ja tavallisella tietokoneella.

Tulokset osoittavat, että puumalleilla, joissa puiden maksimisyvyys on 5 tai 7 ja
lukumäärä on 200, saavutetaan hyvä ennustustarkkuus, ja että vastaavien kokonais-
lukuoptimointiongelmien ratkaiseminen on mahdollista nopeasti noin kymmenessä
sekunnissa.
Avainsanat kokonaislukuoptimointi, puumallit, päätöspuut

5

Contents
Abstract 3

Abstract (in Finnish) 4

Contents 5

1 Introduction 6

2 Related work 7

3 Models used 8
3.1 Decision trees and tree ensembles . 8
3.2 Gradient-boosted trees . 9
3.3 MIO formulation . 9

3.3.1 Split constraint generation algorithm 11

4 Computational experiments 12
4.1 Setup of the experiments . 12
4.2 Methodology . 13

5 Results 14
5.1 Predictive accuracy . 14
5.2 Training time . 17
5.3 Optimization time . 17

5.3.1 Split constraint generation algorithm 19
5.4 Conclusions . 21
5.5 Limitations . 22

6 Summary 23

6

1 Introduction
Tree ensembles are a class of machine-learning models commonly used for regression
and classification tasks. Some of the most widely used tree ensemble models are
random forests (Breiman, 2001) and gradient-boosted trees (Friedman, 2001). These
have been used successfully in numerous applications across various fields from
particle physics (Lalchand, 2020) to website ranking in search engines (Cossock and
Zhang, 2008).

Tree ensemble models consist of decision trees, which can be used to model complex
nonlinear functions. The easy-to-understand structure of decision trees makes them
interpretable and explicable, and thus suitable for areas where explicability is required
of decisions, e.g., insurance and medicine. Although tree ensemble models sacrifice
some of the interpretability of decision trees, their predictive accuracy is better.
Nevertheless, there exist methods for converting an ensemble model into a single
decision tree aiming to amend the aforementioned interpretability issue. (Sagi and
Rokach, 2021; Vidal and Schiffer, 2020).

This thesis focuses on the problem of tree ensemble optimization: how to find an
input that maximizes (or minimizes) the tree ensemble model output? In applications
where some variables are in our control, this optimization problem becomes of great
practical interest and use, since obtaining solutions can aid us in decision-making.
For example, such problems appear in the context of predicting concrete quality
based on the ratios of its constituents (Ni and Wang, 2000). By first training a tree
model to predict the strength of concrete, we can then solve the optimization problem
and discover how to make the strongest concrete by knowing the optimal values for
its constituents. This technique can be utilized in an even wider context by training
a tree ensemble model to approximate any nonlinear function and then optimizing
the tree ensemble model, thus finding an approximation of the arguments of the
maxima (or minima) of the original function that otherwise might be impossible to
find analytically or heuristically.

The purpose of our research is to investigate the relationship between the tree
ensemble model size (namely the number of decision trees and their maximum depth)
that directly impacts the tree ensemble prediction accuracy and the computational
feasibility of optimizing this tree ensemble model. We analyze the tradeoff between
the prediction accuracy of the tree ensemble and the computational time required
for its optimization. This investigation is motivated by the fact that for some
applications one would prefer a tree ensemble with poorer prediction accuracy but
faster optimization time.

In this thesis, we first give a brief review of the research combining machine
learning models and mathematical optimization in the second chapter, as well as a
summary of the paper by Mišić (2020) that introduced the mixed-integer optimization
(MIO) formulation of a decision tree ensemble used in our experiments. Then, the
third chapter details the MIO formulation and the tree ensemble model used. In the
fourth chapter, the design of our experiments is described, and the MIO formulation is
applied to tree ensembles trained with publicly available real-world datasets. Finally,
in the fifth and sixth chapters, the results are analyzed and summarized.

7

2 Related work
With the increasing amount of data and the demand for its analysis, the intersection of
mathematical optimization and machine learning has been actively explored over the
past years. For instance, the area of mixed-integer optimization has been efficiently
explored in the context of training and optimizing machine-learning models, leading
to improvements in model prediction accuracy and training time. As an example,
the technique of reformulation as a mixed-integer problem has been used for both
training (Dua, 2010) and optimizing (Fischetti and Jo, 2018) neural networks.

Training a single decision tree using mixed-integer optimization was originally
explored by Bertsimas and Dunn (2017). By converting the training procedure into
solving a mixed-integer optimization problem, one can construct a globally optimal
decision tree - the decision tree with the highest predictive accuracy possible given
the maximum tree depth. Compared to heuristic training methods improvements up
to multiple percentage points in predictive accuracy were observed.

The problem of finding an input that maximizes or minimizes the output of a
trained tree ensemble model posed as an optimization problem has also been the focus
of a number of studies. Early papers used heuristic search methods for finding locally
optimal solutions (Martelli and Montanari, 1978), but following the development
of mathematical optimization software, more efficient methods for finding globally
optimal solutions have been developed. For example, Ferreira et al. (2016) developed
a mixed-integer optimization approach for optimizing decision trees as a part of their
work related to marketing.

Recently, Mišić (2020) introduced a different MIO formulation of the tree ensem-
ble optimization problem which was demonstrated to perform significantly better in
terms of the computational time than the one developed by Ferreira et al. (2016)
making it suitable to be applied to tree ensembles trained with high-dimensional
datasets. Furthermore, Mišić (2020) provided an algorithm for generating some of
the constraints during the solution process, which decreases solution time consid-
erably. The authors used publicly available datasets to analyze the performance,
provide a realistic case study, and demonstrate the computational tractability of the
formulation.

This formulation developed by Mišić (2020) has also been utilized in recent
studies. For example, it is an integral part of a comprehensive framework developed
for optimizing decision trees called ENTMOOT which includes uncertainty estimates
and domain-specific knowledge built around the MIO formulation (Thebelt et al.,
2021). ENTMOOT has been used at least in the context of optimizing energy systems
(Thebelt et al., 2022). To the best of our knowledge, no MIO problem formulation
for optimizing tree ensembles exists as of today that can be solved faster than the
formulation proposed by Mišić (2020).

8

3 Models used

3.1 Decision trees and tree ensembles
A decision tree consists of nodes, which map the observation (independent variables)
to one of the leaves. With each leaf, there is an associated prediction value, and that
gives the prediction of the tree (dependent variable). Each node has two children
and imposes a condition on the observation. If the condition is met, the observation
is mapped to the left child, and if it is not met, the right child is chosen. This
querying and mapping process on the observation starts from the root of the tree
and continues until a terminal node, i.e., a leaf, is reached, ultimately providing the
tree prediction. The prediction of a tree ensemble model is given as a weighted sum
of the predictions of the individual decision trees.

Figure 1: An example of a decision tree predicting the strength of concrete from its
setting time and the amount of cement and water.

An illustrative example of a decision tree is presented in Figure 1. This tree
is a part of an ensemble, and thus the seen predictions are only used to slightly
change the full model prediction. Low setting time and low amount of cement seem
to weaken the concrete, whereas long setting time and a moderate water amount
strengthen it.

In this thesis, we focus on regression trees, i.e., decision trees that assign only
numerical predictions to the leaves. A regression tree can be seen as a function
f : X→ Y mapping a set of independent variables (X1, X2, ...), which can be noted
with a vector X, to the dependent variable Y . At each split node, a condition of the
form Xn ≤ S, where S is the numerical value associated with the split, is imposed on
X. Split nodes can also be associated with a categorical variable, in which case the
condition is of the form Xn ∈ C, where C is a subset of possible values for Xn. The
prediction of an ensemble is given as ∑︁T

t=1 wi · ft(X), where T is the number of trees,
wt the weight of tree number t in the ensemble and ft the prediction of the tree.

9

3.2 Gradient-boosted trees
We chose gradient-boosted trees due to their usually superior prediction accuracy
over random forests, another tree ensemble model utilizing a different training
process. A gradient-boosted tree model is based on two machine-learning principles:
boosting and gradient descent. In general, boosting involves iteratively creating weak
learners (predictors that might perform only slightly better than random chance)
and combining them to create a strong learner - the final machine-learning model.
Gradient descent is used to minimize the residual error, the difference between the
observed value from data and the value predicted by the model, at each step. In
gradient-boosted tree models, decision trees are the weak learners that are iteratively
created, each minimizing the remaining prediction error of the tree ensemble.

Gradient-boosted trees were explicitly introduced by Friedman et al. (2000) and
Friedman (2001), although boosting and gradient descent had been previously ex-
plored together (Breiman, 1999). Despite their early introduction, gradient-boosted
trees are still commonly used in machine learning. XGBoost is a well-known imple-
mentation of gradient-boosted trees, introduced by Chen and Guestrin (2016).

Here we describe a simplified version of the training process of a gradient-boosted
regression tree model. The objective of the training is to minimize the so-called
regularized objective, which consists of the loss caused by the prediction error, as
well as a penalty induced by the model complexity. Regression trees are added to
the model one at a time, each constructed in a way to minimize the regularized
objective. This iterative training process continues until a desired prediction accuracy
or a certain number of trees is reached. A more detailed description of the training
process can be found in Chen and Guestrin (2016), which also details how to prevent
overfitting, find the optimal trees, and implement the algorithm efficiently in practice.

3.3 MIO formulation
The mixed-integer optimization formulation developed by Mišić (2020) gives a system-
atic way to solve the tree ensemble optimization problem. In the MIO formulation,
the dependent variable Y is represented in terms of the leaves on which the solution
falls, and the independent variables X in terms of the bins the inputs fall in. We
state the MIO formulation (1) as it was introduced by the authors.

The objective of the optimization (1a) is to maximize (or minimize) the tree
ensemble model prediction, which is a weighted sum of the predictions of the individual
trees. The sum is calculated from the values associated with the leaves of the tree,
denoted leaves(t). The variable yt,l represents whether the observation is mapped
to leaf l of tree t. Constraint (1h) ensures the nonnegativity of yt,l, and with all the
other constraints, it is enforced to be a binary variable. The parameter wt states the
weight of the given tree and the parameter pt,l states the prediction of leaf l in tree t.
In each tree, the observation can only be mapped to one leaf. This is guaranteed by
constraint (1b).

Let us denote the set of numerical variables with N and the set of categorical
variables with C. In this thesis, we only consider numerical variables but the MIO

10

formulation supports categorical variables as well. Then the number of variables n is
given by n = |N |+ |C|. Associated with each numerical variable, there are multiple
so-called split points, each indicating a condition value in a split node. For example,
if a node has a condition X1 ≤ 6, then the number 6 would be a split point of X1.
All condition values of the split nodes, i.e., split points, are grouped in ascending
order by numeric variables. Thus each numerical variable has a group of ordered
split points associated with it. Only unique values are considered; two split nodes
with the same condition value count as one split point. For convenience, the number
of split points associated with input variable Xi is denoted by Ki.

For numerical input variables, let xi,j be a binary variable (guaranteed by (1g))
being 1 if numerical input variable Xi should be less than or equal to its j:th split
point and 0 otherwise. Note the difference between uppercase Xi which represents an
input variable and lowercase xi,j which is part of the MIO formulation. Constraint
(1f) enforces the numerical ascending order of split points; if an input variable should
be smaller than or equal to some split point, it should also be smaller than or equal
to any split point greater than the aforementioned split point.

For categorical input variables, let xi,j be 1 if categorical input variable Xi should
take a certain value indexed by j from the set of its possible values and 0 otherwise.
The number of possible values for categorical variable i is denoted by Ki. Thus
j ∈ {1, . . . , Ki}. Each categorical variable assumes exactly one value, which is
ensured by constraint (1e).

In a decision tree, each split node corresponds to a query on the observation. If
the answer to the query is affirmative, the left path is chosen, and the query of the
left child node is considered next. Thus all nodes to the right are inaccessible. Let
right(s) be the set of leaves following the right branch of split s, and correspondingly,
left(s) is the set of leaves following the left branch. The index of the input variable
participating in split s is indicated by V(s). The set of values participating in
the split query is denoted by A(s). For numerical variables, A(s) = {j} (index
of the split point associated with the split node), and for categorical variables,
A(s) ⊆ {1, . . . , KV(s)}.

The left and right split constraints, (1c) and (1d), ensure the structure of the
decision tree. If a node query, i.e., a split condition, is true (∑︁

j∈A(s) xV(s),j = 1),
constraint (1d) ensures that the values associated with all leaves to the right of the
node must be zero. Comparably, constraint (1c) ensures that the left leaves are
not active, i.e. the values associated with them are zero when the condition is not
satisfied.

The solution of the optimization problem consists of the sparse matrices x and
y, which store every value of xi,j and yt,l, respectively. It does not contain explicit
numerical values for the optimum, but rather the indices of the split points which
border the optimal values for the variables. Since decision trees are piecewise
functions, there is a range for each input variable that produces equal output for the
tree ensemble. This range can be extracted after the optimization, when x is known
and the split points, i.e., the condition values, are known beforehand.

11

maxx, y
T∑︂

t=1

∑︂
l∈leaves(t)

wt · pt,l · yt,l (1a)

s.t.
∑︂

l∈leaves(t)
yt,l = 1, ∀t ∈ {1, . . . , T} (1b)

∑︂
l∈left(s)

yt,l ≤
∑︂

j∈A(s)
xV(s),j, ∀t ∈ {1, . . . , T}, s ∈ splits(t) (1c)

∑︂
l∈right(s)

yt,l ≤ 1−
∑︂

j∈A(s)
xV(s),j, ∀t ∈ {1, . . . , T}, s ∈ splits(t) (1d)

Ki∑︂
j=1

xi,j = 1, ∀i ∈ C (1e)

xi,j ≤ xi,j+1, ∀i ∈ N , j ∈ {1, . . . , Ki − 1} (1f)
xi,j ∈ {0, 1}, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , Ki} (1g)
yt,l ≥ 0, ∀t ∈ {1, . . . , T}, l ∈ leaves(t) (1h)

3.3.1 Split constraint generation algorithm

Instead of formulating the MIO problem with all of the split constraints ((1c) and
(1d)), they can be introduced during the optimization process. This can shorten
the solution time, since depending on what the optimization solver does, not all
constraints necessarily get added. For a candidate solution of the MIO problem, only
the split constraints associated with the active nodes (the nodes that lead to the
output leaf) are relevant. Instead of 2depth−1 − 1 constraints for all of the split nodes,
only depth− 1 split constraints are needed to completely determine the solution in a
single tree. The necessary constraints cannot be known beforehand, but it is likely
that during the optimization process, a solution is found before all of the possible
constraints are added. This is especially useful for deep trees, where the number of
split constraints is large.

The principle of the split constraint generation algorithm is to traverse the tree
from the root to the output leaf and check whether any split constraints are violated
along the path. A constraint is violated if the active output leaf for the solution is
on the wrong side of a given split, e.g., if the input variable Xi associated with the
condition of the root node is stated by xi,j to be smaller than the root node split value,
but the output falls to a leaf that is a right-hand-side child of the root node. The
algorithm is utilized as follows. First, the MIO problem is solved without any of the
split constraints, returning a candidate solution. Then violated split constraints are
searched from all trees and added to the formulation, and the optimization problem
is re-solved. This is repeated until no more violated constraints are found and the
solver terminates with the solution.

The pseudocode of the split constraint generation algorithm is presented in
Algorithm 1. This algorithm was also introduced in the paper by Mišić (2020). One
can efficiently implement it with lazy constraints, a technique designed for problems

12

where it is beneficial or imperative for the constraints to be added during the solution
process.

Algorithm 1 Split constraint generation algorithm
Require: Candidate solution (x, y) satifying constraints (1b), (1e), (1f), (1g), (1h)

for t← 1 to T do ▷ Check all trees
n← root(t) ▷ Start from the root node
while n /∈ leaves(t) do ▷ Traverse until reaching a leaf

if ∑︁
j∈A(n) xV(n),j = 1 then ▷ Split condition is true - left side chosen

if ∑︁
l∈right(n) yt,l > 0 then ▷ Solution found among right leaves

add (1d) associated with n to MIO formulation (1)
break ▷ Check the next tree

else
n← 2 · n ▷ Move to the left child

end if
else ▷ Split condition is false - right side chosen

if ∑︁
l∈left(n) yt,l > 0 then ▷ Solution found among left leaves

add (1c) associated with n to MIO formulation (1)
break ▷ Check next tree

else
n← 2 · n + 1 ▷ Move to right child

end if
end if

end while
end for

4 Computational experiments
For our set of experiments, the objective was to examine the tradeoff between
predictive accuracy (measured with the coefficient of determination R2) and the time
required to solve the optimization problem (referred to simply as the optimization
time from now on) when choosing the design (number of trees and maximum tree
depth) of the tree ensemble model. Thus, the task was twofold: 1) determining
the tree ensemble model design required to achieve desired predictive accuracy and
2) establishing how large tree ensembles can be while still having computationally
feasible MIO formulations in terms of optimization time.

4.1 Setup of the experiments
The MIO formulation was implemented using the Julia programming language
(Bezanson et al., 2012) because of its efficient and user-friendly mathematical op-
timization framework JuMP (Lubin et al., 2023). Versions used for testing were
Julia 1.9.2 and JuMP 1.12.0. Gradient-boosted tree package EvoTrees.jl (Evovest,

13

2023) (version 0.15.0) was used for training and creating the tree ensemble models.
It utilizes the same algorithm as XGBoost, for example, but is fully implemented in
Julia. For optimization of the MIO problem, Gurobi solver (Gurobi Optimization,
LLC, 2023) version 10.0.2 was used. It is a robust and widely used commercial solver
that provides free licenses for academic use. Gurobi.jl package (The JuMP Dev
Team, 2023) (version 1.0.1) was used as the interface between the solver and Julia.
The code developed for our testing is available on Github (gamma-opt, 2023).

All tests were performed on a 2016 HP laptop with a 2-core Intel Core i7 processor,
16 GB of RAM, an M.2 SSD, and Windows 10 as the operating system.

Three different datasets were used. One dataset reports on the compressive
strength of concrete when the amounts of its constituents and the hardening time are
known (Yeh, 2007). The two other datasets are from Ma et al. (2015). They were
created for a machine learning competition held by Merck and hosted by Kaggle,
where the task was to model quantitative structure–activity relationships (QSAR)
for candidate drug molecules. The chosen drug design datasets are named 3A4 and
OX2. They contain information on the activity caused by a molecule with certain
structure groups (Ma et al., 2015). The number of variables and the number of
observations of the datasets are presented in Table 1. For the concrete dataset, 75%
of the observations were randomly selected for training and the rest were reserved
for testing. With the molecule datasets, separate files for training and testing were
provided by the authors.

Table 1: Summary of the datasets used

Dataset No. variables No. observations (train) No. observations (test)
Concrete 9 772 258

OX2 5790 11151 3704
3A4 9491 37241 12338

4.2 Methodology
First, EvoTrees models were trained with each dataset and saved to a file to be able
to be reused. Maximum tree depths of 3, 5, 7, 9, and 12 were tested, resulting in five
EvoTrees models for each dataset. Note that in the rest of the thesis, we sometimes
refer to the maximum tree depth as simply "tree depth" or "depth". Number of trees
used in each model was set to 1000. The training time of every model was measured.

Because of the iterative nature of gradient-boosted trees, with a model containing
1000 trees, the behavior of a model with any lower number of trees can be matched by
limiting the number of trees used in the prediction. Using this method, models with
forest sizes of 50, 100, 200, 350, 500, 750, and 1000 trees could be used. Except for the
tree depth and the forest size, default EvoTrees parameters were used (Evovest, 2023).
The predictive qualities of the resulting 35 different models for each dataset were
evaluated using the testing part of each dataset and the coefficient of determination
(R2) as a metric.

14

In the second part of our experiments, corresponding MIO problems were for-
mulated from the EvoTrees models, and then solved using Gurobi. Each of the
EvoTrees models was first loaded from a file, then the information of the trees was
extracted, and the variables, constraints, and the objective of the MIO problem were
formulated with JuMP. Then, each MIO problem was solved both with and without
the split constraint generation algorithm (Algorithm 1). The split constraint genera-
tion algorithm was implemented using Gurobi callbacks through MathOptInterface
(Legat et al., 2021). A time limit of two hours was imposed on the solving of each
MIO problem. If completed, the optimal objective value was saved, and in case of a
termination due to time-out, the optimality gap was saved. Gurobi was used with
default parameters, except for the presolve that was set to 0. For more information
about the Gurobi parameters see Gurobi documentation (Gurobi Optimization, LLC,
2023). The time taken by solving each MIO problem was measured using Julia’s
@elapsed-macro. Additionally, the number of split points, the number of leaves, and
the number of split constraints were recorded.

Due to the nature of Julia’s compiler, the very first compilation adds additional
time to the execution, which might skew time comparison results, especially for scripts
or programs where the execution takes less than a second. For this reason, when the
EvoTrees training was conducted, a starting model of depth 2 was trained before the
actual tree ensembles used in our experiments. Similarly, during optimization, an
MIO problem formulated for a tree ensemble model with ten trees was optimized
first.

5 Results
In this section, both the tree ensemble models’ predictive accuracy and their corre-
sponding MIO problem optimization time are presented. First, the numerical results
are discussed, and in section 5.4 they are analyzed and the research questions are
answered. All tests were executed as described in section 4.2 except that an EvoTrees
model for the 3A4 dataset could not be trained at a depth of 12 because this caused
Julia to crash for an unknown reason each time despite multiple attempts. Also, if
an MIO problem solution time reached the limit of 2 hours, no further tests were
conducted for MIO problems of tree ensembles with the same depth but a larger
number of trees since they would also time out as the optimization problem only
becomes more difficult. The full test results are available on Github (gamma-opt,
2023).

5.1 Predictive accuracy
To illustrate the predictive accuracies of the different EvoTrees models, we plotted
the accuracies on graphs where the horizontal axis represents the number of trees
and the vertical axis represents the coefficient of determination. We use different
colors to indicate EvoTrees models with different depths. Individual data points are
marked with a cross symbol.

15

The results for the concrete dataset are presented in Figure 2. It can be seen
from the graph that the best-performing model was clearly the one with maximum
depth set to 5. The model with depth 3 shows clear under-fitting at least for low
numbers of trees and models with greater depth than 5 overfit the data. EvoTrees
models with a high number of trees also overfit which is manifested in the test data
prediction accuracy not improving with models having more than 200 trees. For this
dataset, a very high coefficient of determination of around 0.93 was achieved with an
EvoTrees model having 200 trees and a maximum depth of 5.

Figure 2: The predictive accuracies of the EvoTrees models for the concrete dataset

The R2 scores of the EvoTrees models trained with the OX2 dataset are presented
in Figure 3. Being considerably higher-dimensional and having a higher number of
observations, the OX2 dataset required an EvoTrees model with a maximum depth
of 7 for the best predictive accuracy. Still, tree ensembles with a higher maximum
depth than that overfit and produced increasingly worse R2 scores. The highest R2

achieved was considerably lower than that of the concrete dataset at around 0.58.
Even with the OX2 dataset, the improvements in R2 scores plateaued at 200 trees
for depth 7 which was the maximum depth value in the model producing the best
R2 scores.

Figure 4 shows the coefficients of determination of the EvoTrees models trained
with the 3A4 dataset which is the dataset with the largest number of observations.
Thus, to achieve the best predictive accuracy, the largest EvoTrees models in our
experiments in terms of the maximum tree depth and the forest size were beneficial.
When looking at the data of the EvoTrees models with a certain maximum depth,
improvements in R2 were observed by increasing the number of trees up to 350 trees.
Models with a maximum depth of 3 or 5 showed improvements by increasing the
number of trees even further. However, EvoTrees models with a maximum depth
of 7 were able to produce the highest R2 scores. With 350 trees a model of this

16

Figure 3: The predictive accuracies of the EvoTrees models for the OX2 dataset

depth produced an R2 of 0.49 and by increasing the number of trees no signicant
improvements (more than 0.01) could be gained. For reasons mentioned previously,
we were not able to train an EvoTrees model with a depth of 12, but based on the
results we have obtained for the other datasets it likely would have produced worse
R2 scores than the model with a depth of 9.

Figure 4: The predictive accuracies of the EvoTrees models for the 3A4 dataset

17

5.2 Training time
By observing the logarithmic scale plot in Figure 5, it can be seen that the increase
in the training time for the EvoTrees models was exponential with increasing depth.
The training time of the EvoTrees models with the larger datasets 3A4 and OX2 was
considerably higher ranging from multiple minutes to multiple hours compared to the
training time of the models with the concrete dataset. For every model trained with
the concrete dataset, the training finished in under ten seconds. It should be noted
that each EvoTrees model contained 1000 trees - a number demonstrated excessive
by the predictive accuracy testing. Due to the nature of the iterative training process
of gradient-boosted trees, a reduction in the number of trees should yield linear
improvements in training time, e.g., the training of a 200-tree model taking only a
fifth of the time.

Figure 5: Training time for the EvoTrees models on a logarithmic-scale plot

5.3 Optimization time
In this section, Figures 6, 7, and 8 are discussed. They present only the optimization
time (time taken by the solver). The numbers do not include the MIO problem
formulation time and the time needed to extract the EvoTrees model information
such as the split points and the leaf prediction values. However, the experiments
indicated that the time required to extract the information and to formulate the
MIO problem is insignificant compared to the optimization time. Hereinafter, when
referring to optimizing an MIO problem corresponding to an EvoTrees model, we
simply state we are optimizing a model. This simplification is used to make the text
more concise.

For the concrete dataset, the increase in optimization time along with the increase
in the number of trees both with and without the split constraint generation algorithm

18

is presented in Figure 6. In the bottom graph, the split constraint generation
algorithm is used, and in the top graph, it is not. The corresponding MIO problem
(1) of every EvoTrees model trained with the concrete dataset was solved to optimality
within 2 hours. An exponential increase in optimization time with the number of
trees can be observed. The EvoTrees models producing the best R2 scores (models
with depth 5) could be optimized in under 20 seconds for every number of trees using
the split constraint generation algorithm (1) and in under 3 minutes without it. In
the previous section, a depth beyond 5 and a tree number above 200 were seen to
provide no improvements in R2. The model with these parameters (depth 5 and 200
trees) was optimized in under a second.

Figure 6: Optimization time for the concrete dataset

19

The optimization task was considerably more difficult for the drug design datasets
since they contain thousands of variables compared to less than ten variables in the
concrete dataset. This means that the optimization time was a lot longer for the
drug models. The optimization results for the OX2 dataset are presented in Figure 7.
Optimization time both with and without the split constraint generation algorithm
is presented. The algorithm time is marked with a lighter color and can be seen
mostly below the normal time. With the OX2 dataset, models with depth 5 could
not be optimized within the two-hour time limit if they had over 500 trees. For the
model with depth 7, this tree number was 200, and models with depths 9 and 12
could have 100 trees before timing out. Still, the model with a depth of 7 and 200
trees could be optimized in only 11 seconds. There were no EvoTrees models that
had a meaningfully better prediction accuracy than this model as seen in section 5.1.

Figure 7: Optimization time for the OX2 dataset.

Finally, Figure 8 shows the optimization time of the models trained with the 3A4
dataset. Similar markings to the previous Figure 7 are used here. Compared to the
OX2 models, models with more trees could be optimized within the two-hour-time
limit. Again, the model with parameters demonstrated to produce the best predictive
accuracy in the previous section 5.1 was optimized successfully. The optimization
time for this model of depth 7 and 350 trees was under 20 minutes. Considerable
time reductions can be gained by limiting the EvoTrees model complexity: a model
with depth 7 and 200 trees could be optimized in about 10 seconds.

5.3.1 Split constraint generation algorithm

Figure 6 shows the optimization time with and without the split constraint generation
algorithm (1) of the models trained with the concrete dataset. There are five different
depths and seven different tree counts, resulting in 35 models. In optimizing 32 out

20

Figure 8: Optimization time for the 3A4 dataset.

of these 35 models, using the split constraint generation algorithm shortened the
time compared to solving the MIO problem without the algorithm. The average
reduction in optimization time was 173 seconds. Using the algorithm was slower
only for models for which optimization required less than a second, and the time
difference between optimization with and without the algoritm in these cases was
never more than a second.

In Figure 7, the corresponding time differences are depicted for models trained
with the OX2 dataset. Here only 19 different models could be optimized within
the two-hour time limit. When using the split constraint generation algorithm in
optimizing these models, 12 out of 19 times a reduction in optimization time was
observed with an average of 72 seconds. Again, the optimization time with the
algorithm never exceeded the optimization time without the algorithm by more than
two seconds.

It can be seen from Figure 8 that when optimizing the models trained with
the largest dataset 3A4, using the split constraint generation algorithm created on
average a 97-second time reduction and was faster with 18 out of the 20 models
that could be optimized within two hours. In one of the two cases where using the
split constraint generation algorithm was slower than not using it, the difference was
insignificant (less than three seconds), but the optimization of the model with a depth
of 9 and a tree count of 200 took about 41 minutes longer using the algorithm. This
is the only instance in our experiments where the optimization time was significantly
increased by using the algorithm.

21

5.4 Conclusions
For datasets with ten or fewer variables, such as the concrete dataset, our results
indicate that a gradient-boosted tree model with a maximum depth of 5 and a tree
count of 200 achieves practically the highest predictive accuracy attainable with a
model of any depth and number of trees. For datasets with thousands of variables,
such as the drug design datasets, a model with a depth of 7 and a tree count between
200 and 350 is required to achieve the best attainable accuracy. Thus, it can be
concluded that relatively small gradient-boosted tree models, compared to all sizes
we tested, are adequate for achieving good predictive accuracy. Furthermore, models
with a higher maximum depth and more trees predicted less accurately at worst or
the improvements in accuracy were marginal at best.

With the gradient-boosted tree model for the concrete dataset, a very high
coefficient of determination (R2) of 0.93 could be achieved. This score indicates that
the model explained the variance in the data to a high degree and could be used
relatively confidently to predict the strength of concrete from unobserved data. For
the tree models trained with the 3A4 and OX2 datasets, their R2 scores were much
worse at 0.49 and 0.58, respectively. These numbers seem low but one can compare
them to the results of the machine learning competition where the OX2 and 3A4
datasets were used in addition to 13 similar datasets. The competitors were tasked
with developing a model to achieve the highest predictive accuracy. The result for
each of the teams was the average testing R2 for the 15 datasets. In the competition,
the winning team achieved an R2 of 0.49 (Kaggle, 2012). If one assumes that our
EvoTrees models would perform similarily as with the OX2 and 3A4 datasets accross
the 15 datasets, our R2 scores of 0.49 and 0.58 are comparable to the best achieved
in the competition.

The optimization of the aforementioned tree ensemble models with depths of 5
or 7 and 200 to 350 trees was computationally feasible using the MIO formulation
and the split constraint generation algorithm. For each of the datasets, a model
with the best or near-best predictive accuracy could be optimized in seconds. The
optimization of larger tree models does not seem as feasible, however. Although
all of the models for the concrete dataset could be optimized within half an hour,
the models trained with the drug design datasets which had more variables and
observations could not be optimized within two hours. Since the corresponding MIO
problem solution time seems to grow exponentially with the number of variables in
the dataset used to train the tree model, the optimization of the model trained with
the OX2 dataset with a depth of 12 and 1000 trees could take much longer than two
hours. However, as the predictive accuracy experiments demonstrated, a model of
this size is not necessary to achieve the highest maximum attainable accuracy even
for a dataset with thousands of variables.

The split constraint generation algorithm reduced optimization time in almost
every case. For the models trained with the concrete dataset, the reductions in
optimization time were multiple and in some cases even tenfold. Smaller time
reductions were seen with the models trained with the drug datasets but many of
them still significant. Despite the single observation where the optimization time

22

was significantly increased, the use of the split constraint generation algorithm is
demonstrated to be an efficient technique with this MIO formulation.

As mentioned previously, the practically highest predictive accuracy attainable
with tree models of any depth and number of trees could be achieved with a model of
depth of 5 or 7 and 200 trees in our experiments. Choosing a model with fewer trees
or not as much depth than this is not beneficial since the optimization time of the
aforementioned models is already tens of seconds at most and the prediction accuracy
of a model smaller than this rapidly decreases as the number of trees and the depth
are decreased. Choosing larger models is not beneficial either since they predict only
marginally more accurately at best and the tradeoff in increasing optimization time
is very costly based on our numerical results.

5.5 Limitations
Despite the insights provided by our study, there are still some limitations in the
numerical experiments that one should take into account. The most significant of
them is the limited variation in the datasets used. The concrete dataset had less
than ten variables while the drug design datasets had thousands and therefore our
results cannot necessarily be extrapolated for datasets that have tens or hundreds of
variables. Furthermore, using data from other fields would provide more variability.
As an example for why variation is needed, a conclusion that tree ensembles are
almost fully accurate predictors, drawn from the concrete dataset results, would fail
with the drug design datasets.

In addition to real-world datasets, datasets generated with optimization testing
functions, i.e., functions with known properties such as the shape and the extrema,
could have been used in the experiments. As these functions can be non-continuous
and have multiple extrema, both modelling them with tree ensembles and optimizing
the resulting tree ensemble models could prove difficult and provide more insight
into the limitations of this optimization method.

Another limitation of our study was using only gradient-boosted trees. We did
not consider random forests, for example, which is another type of tree ensemble
model. A comparison could have been useful in determining with which type of tree
ensemble one can produce models with fewer trees and a shallower depth while having
the same predictive accuracy. The tree ensemble type with which smaller models
suffice would be more suitable for the optimization method and the MIO formulation
discussed in this paper since the MIO formulations of smaller tree ensembles contain
fewer parameters and thus are faster to solve.

Lastly, the optimization of each of the models was performed only once. Conduct-
ing the experiment multiple times and taking the time average would have added
more certainty to the results since in a standard computer, the number of processes
and their resource use is constantly changing, so the amount of resources allocated
to the optimization task by the operating system could be slightly different each
time. Also, with more powerful hardware, we might have been able to optimize
some of the larger models within two hours. Because in many commercial and
academic applications computational power is not a significant limitation, having

23

more information about the optimization time of larger tree ensembles would be
useful.

6 Summary
This thesis verified the work of Mišić (2020) and contributed to the field of machine
learning and mathematical optimization. We were able to repeat the results of the
authors in demonstrating the computational feasibility of tree ensemble optimization.
In addition, we expanded on the experiments of the original authors by analyzing
the tradeoff between prediction accuracy and optimization time when choosing the
tree ensemble model size, i.e., the number of trees and the maximum tree depth.
Also, we used gradient-boosted trees whereas Mišić (2020) used random forests.

With gradient-boosted tree models having depths of 5 or 7 and a forest size of 200,
high predictive accuracies relative to the datasets were achieved and the optimization
of these models could be completed in ten seconds or less even without powerful
hardware. We found that models with a higher depth or more trees did not have
a significantly better predictive accuracy and required exponentially more time to
optimize as the size increased.

Further research is needed comparing the optimization performance of different
types of tree ensembles as well as using more datasets from different fields. Experi-
ments with testing functions for optimizations could also be conducted. The use of
more powerful hardware is also worth exploring.

References
Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning,

106:1039–1082, 2017.

Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Julia: A fast
dynamic language for technical computing. arXiv preprint arXiv:1209.5145, 2012.

Leo Breiman. Prediction games and arcing algorithms. Neural computation, 11(7):
1493–1517, 1999.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pages 785–794, 2016.

David Cossock and Tong Zhang. Statistical analysis of bayes optimal subset ranking.
IEEE Transactions on Information Theory, 54(11):5140–5154, 2008.

Vivek Dua. A mixed-integer programming approach for optimal configuration of
artificial neural networks. Chemical Engineering Research and Design, 88(1):55–60,
2010.

24

Evovest. Models EvoTreeRegressor. https://evovest.github.io/EvoTrees.jl/
stable/models/, 2023. Accessed: 2023-09-18.

Kris Johnson Ferreira, Bin Hong Alex Lee, and David Simchi-Levi. Analytics for
an online retailer: Demand forecasting and price optimization. Manufacturing &
service operations management, 18(1):69–88, 2016.

Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear
optimization. Constraints, 23(3):296–309, 2018.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression:
a statistical view of boosting (with discussion and a rejoinder by the authors).
The annals of statistics, 28(2):337–407, 2000.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232, 2001.

gamma-opt. ML_as_MO: Machine Learning as an Optimization Problem. GitHub
repository, 2023. URL https://github.com/gamma-opt/ML_as_MO/.

Gurobi Optimization, LLC. Gurobi Optimizer. https://www.gurobi.com/
documentation/, 2023. Accessed: 2023-09-18.

Kaggle. Merck Molecular Activity Challenge. https://www.kaggle.com/
competitions/MerckActivity/leaderboard, 2012. Accessed: 2023-09-18.

Vidhi Lalchand. Extracting more from boosted decision trees: A high energy physics
case study. arXiv preprint arXiv:2001.06033, 2020.

Benoît Legat, Oscar Dowson, Joaquim Dias Garcia, and Miles Lubin. MathOptIn-
terface: a data structure for mathematical optimization problems. INFORMS
Journal on Computing, 34(2):672–689, 2021. doi: 10.1287/ijoc.2021.1067.

Miles Lubin, Oscar Dowson, Joaquim Dias Garcia, Joey Huchette, Benoît Legat, and
Juan Pablo Vielma. Jump 1.0: Recent improvements to a modeling language for
mathematical optimization. Mathematical Programming Computation, 2023. In
press.

Junshui Ma, Robert P Sheridan, Andy Liaw, George E Dahl, and Vladimir Svetnik.
Deep neural nets as a method for quantitative structure–activity relationships.
Journal of chemical information and modeling, 55(2):263–274, 2015.

Alberto Martelli and Ugo Montanari. Optimizing decision trees through heuristically
guided search. Communications of the ACM, 21(12):1025–1039, 1978.

Velibor V Mišić. Optimization of tree ensembles. Operations Research, 68(5):
1605–1624, 2020.

Hong-Guang Ni and Ji-Zong Wang. Prediction of compressive strength of concrete
by neural networks. Cement and Concrete Research, 30(8):1245–1250, 2000.

https://evovest.github.io/EvoTrees.jl/stable/models/
https://evovest.github.io/EvoTrees.jl/stable/models/
https://github.com/gamma-opt/ML_as_MO/
https://www.gurobi.com/documentation/
https://www.gurobi.com/documentation/
https://www.kaggle.com/competitions/MerckActivity/leaderboard
https://www.kaggle.com/competitions/MerckActivity/leaderboard

25

Omer Sagi and Lior Rokach. Approximating xgboost with an interpretable decision
tree. Information Sciences, 572:522–542, 2021.

The JuMP Dev Team. Gurobi.jl: Julia interface to gurobi, 2023. URL https:
//github.com/jump-dev/Gurobi.jl.

Alexander Thebelt, Jan Kronqvist, Miten Mistry, Robert M Lee, Nathan Sudermann-
Merx, and Ruth Misener. Entmoot: a framework for optimization over ensemble
tree models. Computers & Chemical Engineering, 151:107343, 2021.

Alexander Thebelt, Calvin Tsay, Robert M Lee, Nathan Sudermann-Merx, David
Walz, Tom Tranter, and Ruth Misener. Multi-objective constrained optimization
for energy applications via tree ensembles. Applied Energy, 306:118061, 2022.

Thibaut Vidal and Maximilian Schiffer. Born-again tree ensembles. In International
conference on machine learning, pages 9743–9753. PMLR, 2020.

I-Cheng Yeh. Concrete Compressive Strength. UCI Machine Learning Repository,
2007. DOI: https://doi.org/10.24432/C5PK67.

https://github.com/jump-dev/Gurobi.jl
https://github.com/jump-dev/Gurobi.jl

	Abstract
	Abstract (in Finnish)
	Contents
	1 Introduction
	2 Related work
	3 Models used
	3.1 Decision trees and tree ensembles
	3.2 Gradient-boosted trees
	3.3 MIO formulation
	3.3.1 Split constraint generation algorithm

	4 Computational experiments
	4.1 Setup of the experiments
	4.2 Methodology

	5 Results
	5.1 Predictive accuracy
	5.2 Training time
	5.3 Optimization time
	5.3.1 Split constraint generation algorithm

	5.4 Conclusions
	5.5 Limitations

	6 Summary

