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Abstract
Maintenance strategies are crucial to public and private organizations and increasing
competition and high tied up capital in equipment and resources have spurred decision
makers to seek for more efficient and robust strategies to gain competitive advantage
in the market. This has drawn attention to mathematical modeling and furthermore
how it can be used in decision making.

This thesis uses the Decision Programming framework in influence diagrams
to determine optimal maintenance strategies in terms of costs and performance.
Determining the optimal maintenance strategies, the implemented three periodic
model takes uncertainties such as condition of the asset and disruptions into consid-
eration. Decisions to conduct planned maintenance and reactive maintenance are
made based on these uncertainties. Once the optimal set of maintenance strategies
were identified, robustness was studied by perturbing the initial parameters with
Monte Carlo simulation.

Using this model the optimal maintenance strategies stayed optimal after the
Monte Carlo simulation, indicating studying just the optimal strategies is sufficient
when choosing the final strategy. However, when choosing a strategy from the
optimal strategies, depending on the preferences of the decision maker, robustness is
something that should be taken into consideration as it varied significantly between
different optimal strategies. The Decision Programming framework was suitable to
model this problem by reason of supporting easy modeling of uncertainties, multiple
periods and multiple optimization objectives.
Keywords Decision programming, robustness, maintenance strategy, influence

diagrams, uncertainty, decision model
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Tiivistelmä
Ylläpitostrategiat ovat olennaisia sekä julkisella että yksityisellä sektorilla. Jatkuva
kilpailu, sekä resursseihin ja laitteistoon sitoutunut korkea pääoma on saanut päätök-
sentekijät etsimään tehokkaampia ja robustimpia strategioita turvatakseen paikkansa
markkinoilla. Tämä on herättänyt kiinnostuksen matemaattiseen mallinnukseen ja
siihen, miten sitä voidaan käyttää hyödyksi päätöksenteossa.

Tämä tutkimus käyttää ”Decision Programming” viitekehystä ja vaikutuskaa-
vioita määrittääkseen optimaaliset ylläpitostrategiat kustannuksen ja suoritusky-
vyn näkökulmasta, ottaen huomioon epävarmuudet kuten kohteen tilan ja siihen
kohdistuvat häiriöt. Optimaalisten ylläpitostrategioiden määrittämiseksi toteutet-
tu kolmijaksoinen malli tekee päätökset suunnitellusta ja reaktiivisesta huollosta
näiden epävarmuuksien perusteella. Optimaalisen ylläpitostrategioiden löydyttyä
robustisuutta tutkittiin muuttamalla alkuoletuksia Monte Carlo -simulaation avulla.

Optimaaliset ylläpitostrategiat pysyivät optimaalisina Monte Carlo -simulaation
jälkeen, mikä osoittaa pelkästään optimaalisten strategioiden tutkimisen riittoisaksi
valittaessa lopullista strategiaa. Kuitenkin riippuen päätöksentekijän preferensseistä,
yhtä strategiaa valittaessa optimaalisten strategioiden joukosta, robustisuus tulee ot-
taa huomioon sen vaihdellessa paljon eri optimaalisten strategioiden välillä. ”Decision
Programming” rakenne osoittautui ongelmaan sopivaksi mallinnustyökaluksi, sillä se
sopeutuu hyvin epävarmuuksien, useiden jaksojen ja useiden optimointitavoitteiden
mallintamiseen.
Avainsanat Decision Programming, robustisuus, ylläpitostrategia, vaikutuskaavio,

epävarmuus
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1 Introduction
The continuous economic growth and resulting infrastructural and technological
development have drawn attention to asset management. The tied up high capital
in equipment and resources has driven organizations to seek for more effective
maintenance strategies to asset management problems.

Effectiveness is often measured by objectives such as costs and performance. To
achieve maximum effectiveness, the asset management problem should be optimized
in terms of these two objectives. This can be done in the case of a single objective
or multiple objectives. Whereas single-objective problems are quite straightforward,
dealing with multiple objectives, for example minimizing costs and maximizing
performance, can be challenging as the comparison between different objectives is
not always straightforward (Tian et al., 2012).

Maintenance strategies can be classified into two broad categories, preventive
maintenance and condition-based maintenance. Preventive maintenance calls for
regularly scheduled maintenance to preemptively counteract future failures, whereas
condition-based maintenance relies on observing the condition of the asset to decide
whether maintenance activities are necessary. (Tsang, 1995)

Maintenance is often done to prevent failure, but regardless of the maintenance
strategy, failures may still occur. An asset failure can be caused by the condition of
the asset, but also by an unexpected external load factor. External load represents
uncertainties of external conditions affecting the asset. These uncertainties could
be environmental concerns such as extreme weather or natural disasters, political
conflicts or regulatory matters. For an example, extremely cold weather can cause
a car’s battery to die, causing failure, after which the car needs repair activity to
keep performing as desired. With multiple periods, external loads can be correlated.
In the car example, for instance, considering a period of one day it is likely that
subsequent periods have similar weather conditions contributing to similar levels of
external load.

Analyzing external loads is important as above mentioned risks can otherwise be
neglected. However, estimating the levels of external load is not always trivial. Many
of the factors that contribute to external load levels cannot be predicted. For example
earthquake prediction turns out to be extremely uncertain due to the complex nature
of earthquakes (Kanamori, 2003). This, in addition to the risk-averse management
of organizations (Lovallo et al., 2020), makes it of interest to study the robustness of
maintenance strategies.

Robustness is a key concept in decision making, as it helps explore the effects
that assumptions about uncertainty have on the resulting recommended strategies,
especially when dealing with high profile system risks that can potentially cause un-
acceptable consequences (Baker et al., 2008). For example, failure in a nuclear power
plant could cause consequences such as loss of life and unacceptable environmental
contamination.

The goal of this thesis is to assess how the relationship between repair and
maintenance activities affects the robustness of maintenance strategies. This will
be done by first determining the optimal maintenance strategies using the Decision
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Programming framework (Salo et al., 2022), after which robustness is studied by
sampling a uniform distribution to alter the initial distribution for the external load.
This thesis focuses strictly on condition-based strategies on a three period model
with known initial asset condition and uncertain external load.

2 Literature review
Maintenance decision problems are not unambiguous. Consequently, there are many
different frameworks and models built for solving them (Ruschel et al., 2017). When-
ever building a decision model, aspects such as time horizon, risks and optimization
objectives have to be determined. For example, if there is a system that has to be
running continuously with no down time and the performance of the system does
not vary, it may be adequate to just optimize in terms of costs. However, in almost
all cases, it is desirable to have a decision strategy rather than just a decision. A
decision strategy gives the contingency plan that leads to the final decision, which
could give insight to why alternative decisions are not sufficient enough. Also, a
decision strategy usually gains more confidence than just a plain decision, as the
decision maker gets a broader general view of the solution as well as information
about the affecting factors.

2.1 Multi-period approach
A Multi-period approach is convenient as it offers an option to choose the time scale
of the model. Single-period models are usually not suitable for long term investors
(Mulvey et al., 2003). Additionally, multi-periodic approach allows correlation
and communication of information between time periods. For example, instead of
evaluating weather forecasts every day, a multi-periodic model allows the forecasts
for consecutive days to be correlated. As an example, if the temperature is 0°C today,
it will likely be close to 0°C tomorrow as well.

Modeling often relies on discounting to determine the present value of future
costs and benefits. While discounting costs is often manageable, benefit discounting
may be problematic (Torgerson and Raftery, 1999). Dasgupta (2008) discounted
the time value of climate change, finding irreversible events such as climate change
are scarcely discountable if at all. In addition to irreversible benefits, benefits that
cannot be reinvested, such as health benefits, are hardly discountable (Torgerson
and Raftery, 1999). This is why some models do not take time value of resources
into account. This can lead to misleading results especially when dealing with long
time horizons.

The advantages of multi-periodic models come with a cost, as they often involve
more variables and constraints than single-period approaches, thus requiring more
computational effort to optimize (Marler and Arora, 2004).
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2.2 External load and disruptions
With physical assets, it can be beneficial take into account disruption risks. These
disruptions can be caused by external loads, which can be, for example, environmental,
political or social in nature(Tsang, 1995), leading to disruptions such as earthquakes,
wars or labour strikes, respectively.

A paper analysing disruptions in Asian ports (Lam and Su, 2015) revealed a
rising trend among disruptive events associated with external loads. In addition to
being difficult to predict, disruption risks are often greater than operational risks
(Sawik, 2011). Therefore, while addressing decision problems it is often desirable to
also take into account external load that can cause these expensive disruptions.

2.3 Multi-objective optimization
Multi-objective optimization differs from single-objective optimization as there are
more than one criteria. In multi-objective optimization, the optimization criteria
are often conflicting, meaning that a single optimal solution cannot be determined
without some preference from a decision maker (Deb, 2014). This often leads to
a set of optimal solutions that are called the Pareto optimal front. In general,
multi-objective optimization has greater practical importance than single-objective
optimization because almost all real-world optimization problems have multiple
conflicting criteria (Deb, 2014).

Lu et al. (2015) discuss the differences between multi- and single-objective opti-
mization methods. In the paper, they optimized renewable energy systems of zero/low
energy buildings in terms of CO2 emissions, total costs and grid interaction index.
Combining the multiple optimization criteria into one, single-objective optimization
was able to find the "best" single solution directly. However, when optimized in terms
of multiple objectives, the decision makers could identify the relationship between
the different criteria. This additional information allowed decision makers to make
more appropriate decisions.

Multi-objective optimization methods can be categorized into three major cate-
gories: a priori methods, a posteriori methods, and methods with no articulation
preferences. A priori and a posteriori methods require the decision maker to represent
preferences on the relative importance of different criteria. Difference between the
two methods depends whether the decisions preferences are taken into account before
optimization or after. Methods with no articulation preference do not have the
decision maker involved in finding the solution. This usually means determining the
whole Pareto optimal front as the optimal solution. In the context of research this is
convenient, since the results should be neutral. (Marler and Arora, 2004)

2.4 Robustness
We call a solution robust if it has the ability to tolerate perturbations when numerical
parameters are perturbed. Robustness is especially desirable in maintenance decision
problems with risks of high profile system failures where consequences overweigh the
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cost of robustness (Baker et al., 2008). As an example, consider a nuclear power
plant. Failure could in this case cause unacceptable consequences such as loss of life
and major environmental contamination.

Robustness in maintenance problems has been studied by Zitrou et al. (2013) in
the context of single-objective maintenance optimization problems. For sensitivity
analysis, they used a concept called expected value of perfect information (EVPI). In
addition to the optimal solutions, the study identified the most ’important’ parameters
in terms of benefit, meaning the parameters that after perturbation most affected
the solution.

3 Methodology and results

3.1 Influence diagrams and Decision Programming
Multi-periodic Decision Programming problems can be modeled with an optimization
framework called decision programming, developed by Salo et al. (2022).

To utilize Decision Programming, the problem is represented as an influence
diagram. Influence diagrams are acyclic graphs G = (N, A) with nodes N = C∪D∪V .
These nodes are chance nodes C which represent uncertainties associated with random
events, decision nodes D which represent decision among discrete variables, and value
nodes V which represent consequences determined by the realizations of chance nodes
and decision made at decision nodes. Let us denote the number of chance nodes as
nC = |C| and decision nodes nD = |D|. The sum of these nodes is n = nC + nD

Arcs A = {(i, j) | i, j ∈ N} represent dependencies between nodes. With arcs we
can define the information set of a node j ∈ N as

I(j) = {i ∈ N | (i, j) ∈ A}, (1)

This means that information sets are sets consisting of all predecessors of a given node.
The acyclic nature of influence diagrams allows the nodes to be indexed consecutively
as 1, 2, ..., |N |, following that for each node j ∈ N has an information set I(j)
consisting of only nodes where index i ∈ I(j) is smaller than j, i.e., i < I(j), ∀i ∈ I(j)

Each node j ∈ C ∪ D has a finite set Sj of discrete states. A sequence of the
realized states of decision and chance nodes sj ∈ Sj, j ∈ C ∪ D is called a path.
We denote S as the set of all paths. The occurrence of states depends on their
information states sI(j) ∈ SI(j) = Πi∈I(j)Si. For chance nodes j ∈ C, this means
that each state corresponds to the realization of the random variable Xj. Xj itself
depends probabilistically on the states si of the nodes i ∈ I(j) as follows

P (Xj = sj | XI(j) = sI(j)), ∀sj ∈ Sj, sI(j) ∈ SI(j), j ∈ C. (2)

Equation (2) helps determine the probability of a specific state for each chance node
j ∈ C. For decision nodes j ∈ D the probability of observing a specific state depends
on the decisions that are made at each state sI(j) ∈ SI(j).

In Decision Programming, a global decision strategy Z = (Z1, Z2, ...ZnD
) is a

collection of local decision strategies. We denote the set of all decision strategies as
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Z. Compatibility between local decision strategy Zj and path s is determined by

z(sj | sI(j)) =

⎧⎨⎩1, if Zj(sI(j)) = sj

0, otherwise
, (3)

where a local decision strategy Zj is compatible with path s if and only if z(sj |
sI(j)) = 1 for all j ∈ D. This implies that a non-compatible path s with strategy Z
occurs with probability 0, whereas if the path is compatible, the probability can be
greater than zero.

Using the definitions of paths, states and decision strategies, we formulate a
decision problem to a mixed linear programming (MILP) problem as follows

max
Z∈Z

∑︂
s∈S

π(s)U(s) (4)

s.t.
∑︂

sj∈Sj

z(sj | sI(j)) = 1, ∀j ∈ D, sI(j) ∈ SI(j) (5)

0 ≤ π(s) ≤ p(s), ∀s ∈ S (6)
π(s) ≤ z(sj | sI(j)), ∀s ∈ S, j ∈ D (7)
π(s) ≥ p(s) +

∑︂
j∈D

z(sj | sI(j)) − |D|, ∀s ∈ S (8)

z(sj | sI(j)) ∈ {0, 1}, ∀j ∈ D, sj ∈ Sj, sI(j) ∈ SI(j) (9)

The objective function (4) represents the expected utility of the problem, where
π(s) is the probability of path s for the decision strategy Z and U(s) is the utility
of path s given by the decision variable z(sj | sI(j)). Constraint (5) ensures that a
decision is made at each decision node for all possible information states. Constraint
(6) bounds the probability of occurrence of paths s ∈ S. Constraint (7) ensures that
only paths compatible with the strategy can have positive probabilities. Constraint
(8) ensures that paths with negative utility are fixed to their upper bound p(s). This
constraint is not needed if the utility of all active paths is greater than zero. The
final constraint (8) limits the decisions to binary variables.

3.2 Constructing and solving the model
The goal of asset management in this thesis is to maximize the performance of the
asset with respect to costs. This model considers performance as the operational
availability of an asset, which depends on the condition, failure, and repair and
maintenance actions of a given period. The performance is portrayed as a percentage
of the assets maximum operational availability, meaning that a performance of 50%
refers to an asset performing at half of its maximum operational availability.

The initial condition of the asset at the start of period one is known, and the
condition can change during each period. After each period the asset manager has
an option to maintain the asset for a fixed amount of 50000€ to potentially improve
its condition and consequently the performance.

The asset is also affected by external load that contributes to the probability
of failure. The level of external load of a given period is always dependent on the
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external load of the previous period. The asset manager can choose to repair the asset
for a fixed amount of 25000€ to counteract the failure and improve the condition of
the asset as well as the performance. An asset that has failed and is not repaired
will have performance of 0 for that period.

Taking external load into account in the above described setting is desirable
because the asset condition alone is often not enough to determine the probability of
failure. As an example of unforeseen external load, the recent Russian invasion of
Ukraine has caused disruptions (failure) world wide in the forms of increasing energy
prices, broken supply chains and overall market depreciation.

Figure 1: The influence diagram of the problem setting

Table 1: Statespaces Sj for each node j ∈ C ∪ D ∪ V in Figure 1 for time t
Node States

Ct {very poor, poor, good, very good}
F t {failure, no failure}
Lt {none, minor, moderate, major}
Ot {very poor, poor, good, very good}
M t {maintain, do not maintain}
Rt {repair, do not repair}
Ct

M {0, 50000}
Ct

R {0, 25000}
P t [0,1]

Figure 1 represents the influence diagram of the problem discussed in this thesis.
Chance nodes are drawn as red circles, decision nodes as blue squares and value nodes
as yellow diamond-like shapes. Similar influence diagram was used by Olander (2022)
without the addition that the external loads are correlated. Nodes Ct represent
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the condition of the asset, F t the failure state of the asset, Lt the level of external
load and Ot the operational availability of the asset. M t and Rt represent the
maintenance- and repair decisions made. Value nodes Ct

M and Ct
R represent the

cost for maintenance and repair, and P t the performance of the asset. The possible
realised states of corresponding nodes are represented in table 1.

To reduce the size of the problem, the operational availability chance node and
performance value node can be merged into a single value node. As the performance
only depends on a single chance node, the simplification is justified without affecting
the solutions too much (Herrala, 2020). Figure 2 shows the simplified influence
diagram.

Figure 2: Simplified influence diagram

For this problem setting the total performance and total costs for the path s ∈ S
equal

P tot(s) = p1 + p2 + p3 + p4

4 , (10)

Ctot(s) = c1
M + c2

M + c3
M + c1

R + c2
R + c3

R, (11)

where pt is the realized state of node P t and ct
M , ct

R the realized states of nodes Ct
M

and Ct
R.

Using equations (10) and (11) and the formulation in Figure 2, the optimization
formulation can be written as:

max
Z∈Z

{︃ ∑︂
s∈S

π(s)P tot(s), −
∑︂
s∈S

π(s)Ctot(s)
}︃

(12)

s.t.
∑︂

mt∈M

z(mt | ct) = 1, ∀t ∈ T, ct ∈ Ct (13)
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∑︂
rt∈R

z(rt | f t) = 1, ∀t ∈ T, f t ∈ F t (14)

0 ≤ π(s) ≤ p(s), ∀s ∈ S (15)
π(s) ≤ z(mt | ct), ∀s ∈ S, ∀t ∈ T, ct ∈ Ct (16)
π(s) ≤ z(rt | f t), ∀s ∈ S, ∀t ∈ T, f t ∈ F t (17)
π(s) ≥ p(s) +

∑︂
t∈T

z(mt | ct)+∑︂
t∈T

z(rt | f t) − |D|
, ∀s ∈ S (18)

s = (c1, ..., cT , l1, ..., lT −1, f 1, ..., fT −1

r1, ..., rT −1, m1, ..., mT −1)
, (19)

z(mt | ct) ∈ {0, 1}, ∀t ∈ T, ct ∈ Ct (20)
z(rt | f t) ∈ {0, 1}, ∀t ∈ T, f t ∈ F t (21)

where Z is a single decision strategy from the set of all possible decision strategies Z,
s is a single path from the set of all possible paths S and π(s) is the probability of
path s occurring. M is the set of maintenance actions maintain, do not maintain
and mt the realised state for period t. R is the set of repair actions repair, do not
repair and rt the realised state for period t. The variables ct and f t represent the
realised states of asset condition and failure. The objective function (12) maximizes
expected performance and minimizes expected costs, while constraints (13) - (14)
ensure only one maintenance and repair action is taken for a given information state
and constraints (20)-(21) ensure maintenance- and repair actions are binary variables.
Constraint (19) defines the path. Constraints (15)-(18) bound the path probabilities.
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Figure 3: All efficient decision strategies and a random sample of inefficient decision
strategies

Figure 3 shows the expected performance with respect to the expected total costs
for all efficient decision strategies and for a random sample of decision strategies.
The Pareto-optimal frontier of efficient decision strategies was solved successfully
and can be seen in the figure. The error bars represent the standard deviation and
are scaled to 10% of the actual value for visual purposes. The solutions were found
using the Decision Programming framework.

3.3 Robustness evaluation
In this thesis, robustness is studied by examining alternative assumptions to the
initial probability distribution of external load. For simplicity, the assumptions
considering dependencies between nodes are expected to hold. For example, if the
condition of the asset is very good and level of external load is minor, the probability
distribution of asset failure can be determined unambiguously and assumed to hold.
In addition, at the start of period 1 the initial condition C1 of the asset is known
without error. Considering the asset is available for inspection this assumption is
justified.
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Figure 4: Robustness analysis of all efficient decision strategies

Figure 4 shows the original efficient decision strategies with initial load prob-
abilities of [0.25, 0.25, 0.25, 0.25]. The error bars represent the standard deviation
scaled to 10% when assumptions on initial external load hold. The 95% confidence
ellipses are drawn to visualize the 2D confidence interval on the expected value of
both objectives after assumptions on initial external load are perturbed. To find the
ellipses, the benefits and costs of all efficient decision strategies were re-evaluated
50 times with first perturbing the initial load probabilities by a random variable
following the uniform distribution U[−0.1,0.1], next normalizing the probabilities to
sum up to one.

Figure 4 suggests strategies with lower total costs are highly robust in terms of
costs. Thus a strategy with no maintenance or repair actions has zero total costs and
is therefore is perfectly robust in terms of costs. Consequently, following a lower total
costs maintenance and repair action policy leads to highly unstable performance.
When considering high-performing strategies with more aggressive maintenance and
repair action policies one should expect more variation in terms of costs, and less
within performance. It should be noted that no efficient maintenance strategy uses a
policy that maintains and repairs the asset no matter the condition. This kind of
policy would be perfectly robust in terms of costs, but as for the problem setting the
same or better performance can be achieved without performing both maintenance-
and repair actions every period.

Observing the efficient strategies in the middle range with costs ranging from
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25k€ to 50k€ and performance ranging from 0.5 to 0.6 reveal the most irregularities
in terms of robustness. In general these strategies have broader confidence ellipses
indicating greater instabilities. Unlike the low-cost or high-performing strategies,
the strategies in the middle range do not have uniformly shaped confidence ellipses,
indicating that some strategies with similar costs and performance have differences in
terms of robustness. Thus, robustness should be considered when choosing between
efficient maintenance decision strategies.

Figure 5: All efficient decision strategies and a random sample of inefficient decision
strategies

Figure 5 shows the efficient decision strategies as well as a random sample of
inefficient decision strategies. The efficient decision strategies are the same as in
Figure 4. The error bars and confidence ellipses were calculated for all the strategies
using the same principles as earlier.

It is clearly observed that the confidence ellipses of the inefficient decision strategies
are more irregularly shaped. Consequently, when perturbing the original probability
distribution of the external load it is harder to predict the behaviour of inefficient
strategies without individually analysing the robustness. Furthermore, the confidence
ellipses of inefficient decision strategies are noticeably larger, meaning they are
generally less robust when compared to the efficient decision strategies. These
undesirable properties could be a consequence of the inefficient strategies being less
logical and consistent with their decision making, e.g. repairing when there is no
failure or not maintaining an asset with bad condition.
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Based on this sample, the efficient decision strategies appear to stay efficient
after perturbing the probability distribution of the initial external load. The result
indicates that it is sufficient to study only the efficient decision strategies when looking
for the most desirable decision strategy. Not considering the inefficient strategies
when studying robustness turns out to be computationally desirable, because the
number of inefficient strategies is substantially larger than efficient decision strategies,
e.g. with this model having 21 efficient decision strategies and 262 123 inefficient
strategies.

4 Conclusions
This thesis studies the robustness of maintenance decision strategies through a simple
multi-periodic approach. Robustness was studied through external load, which was
used to model the uncertainties associated with the asset. Perturbing the initial
probability distribution of the levels of external load gave instructive results to study
the robustness.

According to the results, studying robustness proved worthwhile. Efficient decision
strategies with low total costs came across similarly robust in terms of costs and
unstable in terms of performance. Furthermore, higher performing efficient decision
strategies were robust in terms of performance, but unstable in terms of costs. Most
variation in terms of robustness between efficient decision strategies was apparent
in strategies that balanced costs and performance. Therefore, it is in the decision
makers interest to study robustness especially when adopting a decision strategy
that balances between costs and performance.

Another major finding is the persistence of the efficient decision strategies. Ac-
cording to the results, after perturbing the initial assumptions the efficient decision
strategies stay efficient. This finding is especially significant as the number of efficient
decision strategies is often substantially lower than the number inefficient decision
strategies. This result can make further robustness analysis of maintenance decision
strategies computationally lighter as the inefficient strategies can be neglected.

The methodology in this thesis is only tested on a simple, illustrative model that
makes strong assumptions such as the discretization of all decision- and chance nodes.
The model also assumes the cost of maintenance to always be double the costs of a
repair action, which may not hold in reality. Due to these assumptions, the results of
this thesis should be interpreted with caution. In addition, the robustness analysis
conducted is quite brief and leaves room for further research. One objective would be
to study robustness between reactive- and preventive-heavy strategies, and examine
how the ratio of repair- and maintenance actions affects the final results.
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