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Abstract
Maintenance is essential to ensure the reliable and safe operation of technical sys-
tems. For such systems, mathematical modeling enables optimal maintenance policy
development, aiming to reduce long-term costs while still maintaining reliability. Tra-
ditionally, maintenance scheduling relies on predefined time-based intervals. However,
due to advancements in sensor technology and data analysis, condition monitor-
ing has become more effective approach. In condition-based maintenance, better
maintenance decisions are made based on observations of the system state.

This thesis compares condition monitoring strategies for a multi-component
system with economic and structural dependencies. The proposed condition-based
maintenance model uses discrete deterioration levels to model the deterioration of
components. Condition monitoring is helpful when a non-deterministic component
deterioration is applied. Transition probabilities between the states are uniquely
defined, and thus, the process can be modeled as a discrete-time Markov decision
process. The true deterioration levels of the components are revealed only on periodic
inspections. The optimal maintenance policy was determined using a modified policy
iteration algorithm, and the performance of the model was evaluated using Monte
Carlo simulation.

In this thesis, a three-component example system was used to test the updated
deterioration behavior, and various inspection intervals and target components were
compared. The additional information provided by condition monitoring was found
to reduce long-term costs in most scenarios. The results indicate that inspections on
the component that is the most likely to break down first are the most efficient in
terms of maintenance cost reduction.
Keywords maintenance scheduling, condition-based maintenance, Markov decision

process, multi-component system
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Tiivistelmä
Tekniset järjestelmät tarvitsevat kunnossapitoa luetettavan ja turvallisen käytön ta-
kaamiseksi. Matemaattisella mallintamisella pystytään muodostamaan optimaalinen
huoltopolitiikka, joka pienentää pitkän aikavälin kustannuksia samalla huolehtien
myös järjestelmän luotettavuudesta. Perinteisesti huollon aikataulutus perustuu etu-
käteen määrättyihin aikaväleihin. Mittajärjestelmien ja tiedonkäsittelyn kehittyessä
kunnon valvonnasta on tullut kuitenkin tehokkaampi työkalu. Kuntoperusteisessa
huollossa havaintoja järjestelmän tilasta hyödynnetään parempien huoltopäätösten
tekemisessä.

Tämä kandidaatintyö vertailee erilaisia kunnonvalvontastrategioita monikompo-
nenttijärjestelmälle, jossa on taloudellisia ja rakenteellisia riippuvuuksia. Esitetty
kuntoon perustuva huoltomalli käyttää diskreettejä kuntoluokkia mallintamaan
komponenttien kulumista. Jotta kunnonvalvonnalla saavutettaisiin etua, kaikkien
järjestelmän komponenttien kulumiseen lisättiin epävarmuutta. Komponenttien todel-
linen kulumistaso paljastetaan ainoastaan jaksollisissa tarkastuksissa. Tilojen väliset
siirtymätodennäköisyydet pystytään määrittämään yksiselitteisesti, joten prosessia
voidaan mallintaa diskreettiaikaisella Markovin päätösprosessilla. Optimaalinen huol-
topolitiikka laskettiin hyödyntäen muokattua ohjauksen iteraatio -algoritmia (engl.
modified policy Iteration algorithm), ja mallin suoriutumista arvioitiin Monte Carlo
-simulaation avulla.

Tässä työssä kunnonvalvontastrategioiden vertailu toteutettiin vaihtelemalla tar-
kastusvälejä ja tarkastettavia komponentteja. Järjestelmän kuntoa kuvaavan lisätie-
don havaittiin pienentävän pitkäaikaisia kustannuksia lähes kaikissa testitilanteissa.
Tulokset osoittavat, että tarkastukset kohdistettuina komponenttiin, joka todennä-
köisesti hajoaa ensimmäisenä, johtavat suurimpiin kustannussäästöihin.
Avainsanat huollon aikataulutus, kuntoon perustuva huolto, Markov päätösprosessi,

monikomponenttijärjestelmä
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1 Introduction
Most technical systems undergo degradation over time and require maintenance to
ensure their continuous functioning. Typically, these systems consist of multiple
components with different features, dependencies, and failure probabilities. Failures
are challenging to predict due to the stochasticity in system degradation. Owners and
operators want to minimize operating costs and thus avoid unnecessary maintenance
and waste of resources. On the other hand, they need their machinery to be as
reliable as possible, as unexpected failures can result in substantial financial losses,
safety risks, and production disruptions. Therefore, proper maintenance scheduling
is crucial to numerous industries, such as manufacturing, transportation, and energy.

Traditionally, maintenance scheduling is handled time-based, which means in-
spection and maintenance actions for the machinery in question are carried out at
predetermined time windows. These maintenance windows are usually based on
recommendations from the original equipment manufacturer. However, advancements
in sensor technology and data analysis have enabled more accurate and cost-effective
ways to monitor the condition of technical systems. Ahmad and Kamaruddin (2012)
compares time-based (TBM) and condition-based maintenance (CBM) strategies in
an industrial setting. They state that almost all system or component failures can
be accurately predicted using measures and observations of the system state, such as
vibration analysis, sound monitoring, or oil-analysis. In their paper, CBM is found
to be more efficient compared to TBM in industrial applications.

This thesis aims to find an optimal solution to a CBM problem for a multi-
component system with economic and structural dependencies. The work builds
upon models developed by Leppinen et al. (2023), Torpo (2019), Kokkonen (2021),
and Lähteenmäki (2022). Torpo (2019) presents a way to model a multi-component
system using directed graphs. With suitable assumptions, the evolution of this kind
of system can be modeled as a Markov decision process (MDP), and the maintenance
scheduling optimization problem can be solved using a policy iteration algorithm
(Leppinen et al., 2023). Kokkonen (2021) extends the model by enabling component
inspections. Inspections give the system operator more accurate information on com-
ponent deterioration by updating the failure distribution of the inspected component.
Lähteenmäki (2022) introduces uncertainty to the deterioration of one component at
a time, increasing the number of state transitions. Continuous monitoring is used to
reveal the actual system state.

The model presented in this thesis applies non-deterministic deterioration to
all components in the system. Different monitoring strategies are considered, and
comparisons between different inspection frequencies and settings are made. The
subsequent sections of this thesis are organized as follows: Section 2 gives a brief
literature review and technical background. Section 3 presents the CBM model in
more detail, starting with the deterioration behavior in a single-component case, then
extending it to multiple components, and finally, introducing methods for solving
the optimization problem using an iteration algorithm and simulations. Section
4 compares the long-term costs and number of failures associated with different
monitoring strategies in a three-component example system. Finally, Section 5
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concludes the thesis with a summary of the results and their limitations.

2 Background and literature review
Maintenance scheduling is a well-known optimization problem that has developed
rapidly in recent years. In the past decade, the most relevant topics have included
multi-component models, inspection maintenance, and prognostics and diagnostics,
as concluded by Quatrini et al. (2020) in their extensive literature review on condition-
based maintenance. In this thesis, the background section covers the following topics:
First, Subsection 3.1 covers literature on different maintenance strategies for multi-
component systems. Subsection 3.2 presents a few other CBM models, followed by
the theoretical background for Markov decision processes in Subsection 3.3.

2.1 Maintenance strategies
Multi-component systems are more difficult to model than single-component systems
because of different deterioration behavior and dependencies between the compo-
nents. The dependencies in a multi-component system can be divided into three
categories: economic, structural, and stochastic dependencies (Laggoune et al., 2010).
In maintenance scheduling, an economic dependence between components means
that the costs to repair, replace, or inspect components simultaneously differ from
operations executed separately. Economic dependence is positive when simultaneous
maintenance is more effective. However, it can also be negative if components are
more expensive to maintain collectively. For example, shared costs in labor and
equipment set economic dependencies. Structural dependency occurs when compo-
nents are structurally connected, resulting in a situation requiring, for example, the
disassembly of both structurally dependent components to reach one of them. If
the deterioration or the failure of one component affects the deterioration of other
components, components are said to share a stochastic dependency.

A maintenance strategy specifies whether components are maintained separately
or simultaneously and before or after a failure. Bevilacqua and Braglia (2000) outline
five different maintenance strategies:

1. Corrective maintenance is applied only after a system failure.

2. Preventive maintenance tries to schedule maintenance actions before failures
to prevent breakdowns.

3. Opportunistic maintenance strategy utilizes maintenance opportunities, for
example, by executing multiple maintenance actions simultaneously.

4. Condition-based maintenance uses observations from the system to better
schedule maintenance actions. Maintenance actions are performed when there
is evidence of a potential failure rather than following a fixed schedule.

5. Predictive maintenance uses condition data and modeling to predict future
machine deterioration. Maintenance decisions are based on these predictions.
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2.2 Condition-based maintenance
Condition-based maintenance has proven efficient in many industrial applications (e.g.
Ahmad and Kamaruddin, 2012). In the literature, deterioration is often modeled as
a stochastic process, and the true state of the system is revealed through inspections
(e.g. Castanier et al., 2005) or by continuous monitoring (e.g. Oakley et al., 2022).
Le and Tan (2013) implement both continuous monitoring and periodic inspections.
They model continuous monitoring as a less precise way of observing the system
state compared to inspections.

To study the relation between stochastic and economic dependencies in the context
of CBM, multi-component systems with parallel components and load-sharing can be
modeled following Oakley et al. (2022) and Keizer et al. (2018). Both of these studies
consider systems under stochastic deterioration and perfect continuous monitoring.
Andersen et al. (2022) compare the use of TBM and CBM under perfect inspections on
predetermined intervals. They find that the deterioration process of the components
can be discretized without a significant loss in policy performance. Castanier et al.
(2005) present a CBM model where the system state can only be revealed through
inspections or preventive maintenance actions. Optimal thresholds are calculated for
maintenance actions in a two-component case.

2.3 Markov decision process
The deterioration of multi-component systems can be assumed to follow the Markov
property, where the probability for each state transition depends solely on the current
state. Discrete deterioration levels and failure states make it possible to represent
the system state in a finite state space (Leppinen et al., 2023). Furthermore, the
transition probabilities between these states can be uniquely defined. A process
fulfilling the Markov property is called a Markov chain.

In maintenance scheduling, however, the transition process is only partially
random. Maintenance decisions impact the system state and entail associated costs.
This process is described as a Markov decision process (MDP) (Howard, 1960). MDP
differs from a standard Markov process in that the state of the system depends on
decisions made from a finite set of feasible decisions. Each decision is associated with
a reward or a cost. The objective is usually to maximize the long-term reward or to
minimize costs.

Partially observable Markov decision process (POMDP) models the underlying
core process as a MDP but updates the true state of the system only through
observations (Corotis et al., 2005). In other words, the underlying process and
transition probabilities are known, but there is no certainty of the actual state at
each moment. Observations can be either partial with some residual uncertainty
about the system state or perfect, meaning that the actual state of the system is
revealed with certainty. Corotis et al. (2005) use of POMDP to find the optimal
inspection and maintenance policy for a high-way bridge.

An optimal solution to a MDP optimization problem can be found, for example,
using policy iteration or value iteration algorithms. Leppinen et al. (2023) use
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policy iteration to find the optimal maintenance policy by minimizing long-term
maintenance costs for a multi-component system with economic and structural
dependencies. Puterman (2014) presents a modified policy iteration algorithm that
is implemented in the model of Leppinen et al. (2023) by Parkkali (2021). The policy
iteration is proven to lead to better results than traditional threshold policies in
MDP-based maintenance scheduling problems (e.g. Keizer et al., 2018; Leppinen
et al., 2023).

3 Model and methodology
This section presents a condition-based maintenance model incorporating non-
deterministic component deterioration and inspections at periodic intervals. The
system structure, component-specific deterioration and failure probabilities are con-
sidered in a general setting and can be adjusted to correspond to a real-world technical
system. First, in Subsection 3.1, the deterioration process is considered in a single-
component case. The multi-component system structure and failure behavior of
components, as discussed in Subsections 3.2 and 3.3, are based on the model proposed
by Leppinen et al. (2023). Subsection 3.4 discusses the deterioration behavior of a
multi-component system and presents an approach to reveal the actual system state
in periodic inspections. In Subsection 3.5, an iteration algorithm by Parkkali (2021)
is used to solve the optimal maintenance policy, which is then utilized in a Monte
Carlo simulation.

3.1 Component deterioration
Deterioration is first considered in a single-component case. A component can be
either operative or failed. A component can be maintained in predefined and discrete
maintenance windows tk at constant intervals ∆t, meaning tk+1 = tk+∆t where k ∈ N
is the index of the maintenance window. If a component fails during a maintenance
interval (tk, tk+1), it is replaced and restored to a “good-as-new” state in the next
maintenance window tk+1. Condition monitoring actions become meaningful when
a non-deterministic measure of wear is introduced following Lähteenmäki (2022).
Before discussing the wear measure, the failure probabilities are presented in an
age-dependent case based on the model of Leppinen et al. (2023).

The last replacement time of a component is denoted as τ , allowing us to calculate
the age of a component ak at a maintenance window tk as ak = tk − τ . The failure
probability of a component is assumed to be a function of component age f(ak). From
the probability density function (PDF), we derive the probability of a component
failing before age ak as F (ak) =

∫︁ ak

−∞ f(t) dt. The maximum age α of a component is
the minimum value, which satisfies ∀x > α : F (x) = 1. For simplicity, we assume
that f(ak) is a linearly increasing function, and thus α can be defined.

We introduce tf to be the failure time of a component and R(ak) the reliability
of a component as the probability that the component does not fail during the next
maintenance interval. The reliability can be calculated using conditional probability:
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R(ak) := P (tf > tk+1|tf > tk) = P (tf > tk+1)
P (tf > tk) = 1 − F (ak + ∆t)

1 − F (ak) .

The failure state of a component at a maintenance window tk is expressed as a
binary value:

fk =

⎧⎨⎩0, if the component is operative
1, if the component is failed.

Now, the state of a component can be explicitly defined with the component age
and failure state:

sk(ak, fk) :=
[︄
ak

fk

]︄
, where ak, fk ∈ R.

In some cases, time and age are not the only nor the best way to model changes
in the failure probabilities. For instance, in the case of trains, the distance traveled
can also be utilized to model the use of the machinery (Leppinen et al., 2023). In
this thesis, we adopt a measure of wear wk, referenced as the deterioration level, as
the functional age of a component. This replaces the linearly time-dependent age ak

presented above. Using suitable instruments and monitoring, better estimates for
wk can be derived, surpassing those solely based on time or distance. In instances
where no better information is available, wk increases linearly with time, leading to
a conservative prediction of deterioration.

The non-linear component deterioration in our case is modeled by allowing a
component to either stay at the same deterioration level or to deteriorate by one time
step ∆t during a maintenance interval. To describe the probability of component
deterioration staying the same, we employ a component-specific wear-dependent
probability g(wk). We assume that the likelihood of the component remaining at the
same deterioration level decreases when it becomes more deteriorated.

Due to the non-deterministic deterioration, the deterioration level wk of a com-
ponent can either stay the same or increase, or the component can fail during a
maintenance interval (tk, tk+1). Probabilities for these three outcomes, denoted by
ps(wk), pg(wk) and pf(wk), are calculated in Equations 1, 2, and 3 respectively
(Lähteenmäki, 2022).

ps(wk) = g(wk)(1 − pf (wk)) (1)
pg(wk) = (1 − g(wk))(1 − pf (wk)) (2)

pf (wk) = 1 − R(wk). (3)
In our model, the failure probabilities are assumed to follow the Weibull distri-

bution with component-specific shape and scale parameters. Table 1 provides an
example of probabilities for a component to remain at the same deterioration level
and the calculated reliability of the component. Weibull shape parameter k = 5 and
scale parameter λ = 11 are used, with a maintenance interval ∆t set to 1. Table 2
summarizes the state transition probabilities presented in Equations 1, 2 and 3.
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wk 0 1 2 3 4 5 6 7 8 9 10
g(wk) 0 0.4 0.3 0.2 0.15 0.125 0.1 0.1 0.1 0.1 0.1
R(wk) 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.95 0.91 0.85 0.78

Table 1: Probabilities for staying at the same deterioration level and reliability for
an example component

wk 0 1 2 3 4 5 6 7 8 9 10
pf 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.05 0.09 0.15 0.22
ps 0.00 0.40 0.30 0.20 0.15 0.12 0.10 0.09 0.09 0.08 0.08
pg 1.00 0.60 0.70 0.80 0.85 0.86 0.87 0.85 0.82 0.76 0.70

Table 2: State transition probabilities for an example component

Without any inspections, faster deterioration is presumed due to the conservative
assumption of deterioration. However, by using condition monitoring, the assumed
deterioration level of the monitored component can be updated between the mainte-
nance intervals. Inspections or other condition monitoring actions are assumed to be
perfect, meaning that the actual state of the component can always be determined.

To conclude, the assumptions for the deterioration process of a component are:
• For each component, there are three possible transitions between two mainte-

nance windows.
– The component can stay at the same deterioration level: wk+1 = wk

– The component can deteriorate: wk+1 = wk + ∆t

– The component can fail: fk+1 = 1
• The failure probability pf depends only on the wear wk of the component.
• Components deteriorate during the first maintenance interval after their re-

placement.

3.2 System structure
Most technical systems consist of more than one component that can deteriorate, fail,
and be maintained separately. However, the mathematical modeling of such systems
is complicated due to e.g. dependencies between the components. We consider a
system of n ∈ N components whose state can be expressed as the matrix

sk(wk, fk) :=
[︄
(wk)T

(fk)T

]︄
, where wk, fk ∈ Rn×1.

The vector wk consists of the deterioration levels wk
i and the vector fk of the failure

states fk
i of each component i ∈ {1, 2, ..., n}.

The dependencies between the components are modeled using a directed graph
consisting of a root node 0 and n nodes that present the maintenance actions for a
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component replacement. Each arc (i, j) connecting nodes has a weight cij representing
the component-specific maintenance costs. The weight of an arc going from node
i to j indicates the maintenance cost of j when i is also maintained at the same
maintenance window. Costs for every maintenance action are calculated starting from
the root node. A fixed set-up cost c0 represents the cost of initiating a maintenance
action, such as downtime costs and getting the required personnel and equipment in
place.

The model incorporates a positive economic dependency between the components.
How strong the dependency is can be influenced by adjusting the set-up cost and
the weights of the arcs between nodes. A structural dependency in the model occurs
when a node representing the replacement of a component is not directly connected
to the root node. Nevertheless, as no node can be entirely isolated from the root
node, the structurally dependent components can still be maintained simultaneously
with some other component. The system has no stochastic dependencies, as all
components are assumed to deteriorate and fail independently.

Figure 1: System of four components presented as a directed graph

Figure 1 shows an example system with four components. In this example,
components 1, 2, and 3 can be replaced independently with maintenance costs
of 50, 60, and 70, respectively, added to the set-up cost c0. However, there is a
structural dependency between components 3 and 4, meaning component 4 can be
maintained only at the same maintenance window as component 3 with an added
cost of 30. Additionally, component 2 is more cost-efficient to replace simultaneously
with component 1 than independently as c12 = 45 < 60 = c02.
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3.3 Maintenance actions
In the model, all components in the system are considered critical, meaning that
the failure of any component results in the failure of the entire system. Component
failures are assumed to be independent of each other. As a result, the reliability
of the system is defined as the probability that no component fails during the next
maintenance interval (tk, tk+1):

Rsys :=
n∏︂

i=1
R(wk

i )i, (4)

where R(wk
i )i is the reliability of component i at a maintenance window tk.

To prevent system failures, a reliability threshold ρ ∈ (0, 1) is introduced, ensuring
that the reliability of the system must remain above a certain level: Rsys ≥ ρ. This
constraint restricts the number of feasible system states when assuming increasing
failure rates for components.

The event of component i failing during a maintenance interval (tk, tk+1) is
denoted by Ek

i . Since only one component can fail at a time, the probability P (Ek
i )

is calculated as a conditional probability

P (Ek
i (wk)) =

∫︁ ∆t
0

∏︁n
j ̸=i[1 − Fj(wk

j + t)]fi(wk
i + t)dt∏︁n

i=1[1 − Fi(wk
i )] . (5)

To ensure that failed components are replaced and the reliability threshold is
consistently met, replacement actions can be performed to restore one or more
components to a “good-as-new” state. These maintenance actions are represented by
a binary vector xk, termed the maintenance portfolio. Whether or not component
i is replaced in the maintenance window tk, is represented by the binary decision
variable

xk
i =

⎧⎨⎩0, if the component is not replaced
1, if the component is replaced.

Maintenance actions are perfect in that replacements restore the maintained
components back to a “good-as-new” state. If conservative deterioration is presumed,
the deterioration level of each component grows each maintenance interval by ∆t.
Therefore, the conservative prediction of the system state in the following maintenance
window is

wk+1
i =

⎧⎨⎩wk
i + ∆t, if xk

i = 0
∆t, if xk

i = 1.

Conservative deterioration in the following maintenance interval (tk, tk+1) is always
presumed when determining reliability or failure probabilities in Equations 4 and 5.
Thus, even the components which do not deteriorate can fail.

In order for a maintenance portfolio xk to be feasible for a state sk, it must satisfy
three properties:
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1. It fulfills the reliability threshold ρ with updated state sk+1 assuming deter-
ministic deterioration.

2. It replaces failed components.

3. It satisfies structural dependencies, meaning that there is a path from the root
node to all nodes for the selected actions.

The cost of a maintenance portfolio xk, noted by c(xk), can be calculated from
the directed graph using Edmond’s algorithm (see Torpo, 2019). The cost includes
a constant set-up cost c0, which is added every time at least one component is
replaced. If a component fails, additional costs arise due to, for example, unexpected
system shutdown. Thus, a component-specific corrective surplus ri is added to the
maintenance cost of a failed component. Consequently, the incurred total costs for
a maintenance window tk, noted ck, can be expressed with the component-specific
corrective surpluses collected in vector r as ck = c(xk) + fkrT .

3.4 Monitoring in the model
Each component can either stay at the same deterioration level, deteriorate, or fail
during a maintenance interval ∆t, as described in Section 3.1. Therefore, when
considering a multi-component system, the number of possible state transitions
increases exponentially with the number of components in the system. Despite each
component having three possible state transitions, only one component can fail at a
time, limiting the number of possible state transitions from state sk to sk+1 to be
2n(n + 1) where n denotes the number of components in the system.

Whether the components in the system will deteriorate or not in the maintenance
interval (tk, tk+1) is given as a binary vector qk ∈ {0, 1}n, where qk

i = 1 if and only if
wk+1

i = wk
i . Since each component deteriorates independently, the probabilities for

each possible value y of qk can be calculated as a joint probability

P (qk = y) = Πn
i=1[yig(wk)i + (1 − yi)(1 − g(wk)i)] (6)

The joint probability for each state transition can be calculated by multiplying
Equation 6 with the probability for the corresponding failure state z, P (fk = z),
given by either Equation 4 or 5.

We demonstrate this with an example on a three-component system. For this
system, the probabilities of the deterioration level staying the same during a mainte-
nance interval are in Table 3, and the parameters for the distributions of the failure
times are in Table 4. The Weibull distributions are visualized in Figure 2.

wk 1 2 3 4 5 6 7 8 9 10
g(wk)1 0.4 0.3 0.2 0.15 0.125 0.1 0.1 0.1 0.1 0.1
g(wk)2 0.3 0.25 0.25 0.2 0.175 0.175 0.15 0.15 0.125 0.1
g(wk)3 0.5 0.25 0.125 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 3: Staying probabilities for the example system
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Component k λ
Component 1 5 11
Component 2 2 20
Component 3 15 10

Table 4: Weibull parameters for failure PDFs

Figure 2: Distributions of failure times in an example system

A system of three components has 21 possible state transitions. The probabili-
ties for the component deterioration can be calculated using Equation 6, and the
probabilities for the possible failure states can be attained with Equations 4 and
5. To demonstrate, five of these joint probabilities are calculated in Table 5 for the
example system presented above and an initial state of

sk =
[︄
4 3 2
0 0 0

]︄

where the deterioration levels of the components are wk = (4, 3, 2)T and the failure
states are fk = (0, 0, 0)T .
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sk+1 P (sk+1|sk)⎡⎣4 3 2
0 0 0

⎤⎦ Rsys((4, 3, 2)T )P (qk = (1, 1, 1)T ) ≈ 0, 9%⎡⎣5 4 3
0 0 0

⎤⎦ Rsys((4, 3, 2)T )P (qk = (0, 0, 0)T ) ≈ 46, 4%⎡⎣5 3 3
0 0 0

⎤⎦ Rsys((4, 3, 2)T )P (qk = (0, 1, 0)T )) ≈ 15, 5%⎡⎣4 4 3
0 1 0

⎤⎦ P (E2((4, 3, 2)T ))P (qk = (1, 0, 0)T ) ≈ 0, 4%⎡⎣5 4 2
1 0 0

⎤⎦ P (E1((4, 3, 2)T ))P (qk = (0, 0, 1)T ) ≈ 0.1%

Table 5: Transition probabilities for an example system

While having uncertainty in the model, the actual state of the system at a time
tk remains unknown. However, certain situations provide clarity: when a component
is replaced, it is restored to a “good-as-new” condition, and its deterioration level in
the next maintenance window is set to ∆t. In addition, component failures cannot
go unnoticed. Apart from these situations, the maintenance decisions are based on
a prediction of the deterioration of the components. This model uses conservative
predictions, meaning that each component is presumed to deteriorate during each
maintenance interval unless proven otherwise.

To acquire more information on the state of the system, the condition of selected
components can be monitored. Monitoring can be carried out using various means,
such as electronic sensors or physical inspections. The actual state of the selected
components is revealed through perfect periodic inspections. The inspection intervals
are predetermined, and if inspections occur in every maintenance window, the
component is considered to be continuously monitored. With the updated information
provided by inspections, better maintenance decisions can be made.

3.5 Optimal maintenance policy and simulation
The optimal maintenance policy U(s) is calculated using a modified policy iteration
algorithm with Gauss-Seidel method, as presented by Parkkali (2021). For each
feasible state s, the algorithm chooses a maintenance portfolio that minimizes the
long-term maintenance costs. The underlying deterioration process is known when
calculating the optimal policy using the principles of a partially observable Markov
decision process. This means the algorithm assumes non-deterministic deterioration
behavior, as presented in Section 3.4. As a result, the number of state transitions in
the algorithm is increased.

The evolution of the system and the performance of different monitoring strategies
can be assessed using Monte Carlo simulation. The simulation maintains two separate
versions of the system state: sk

real, which keeps a record of the real deterioration
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of the system following the non-deterministic deterioration behavior, and sk
assumed,

which stores the assumed deterioration levels and is updated according to the chosen
inspection interval and target components. The simulation runs for kend time steps,
starting from initial state of wk

assumed = wk
real = (0, 0, 0)T for a three-component

system. The Monte Carlo sample size of M is used, and each simulation run is
labeled as m = 1, 2, 3, ..., M . From each simulation, the total costs and number
of failures are collected. Other information, such as average age when maintained,
failure distributions, or frequency of maintenance portfolios, can be attained similarly.

Simulate 𝑓𝑘

Form 𝑠𝑎𝑠𝑠𝑢𝑚𝑒𝑑
𝑘 and 𝑠𝑟𝑒𝑎𝑙

𝑘

Initialization of 

𝑤𝑎𝑠𝑠𝑢𝑚𝑒𝑑
0 , 𝑤𝑟𝑒𝑎𝑙

0 , 𝑐𝑡𝑜𝑡, 𝑓𝑡𝑜𝑡

Optimal portfolio 

𝑥𝑘 = 𝑈(𝑠𝑎𝑠𝑠𝑢𝑚𝑒𝑑
𝑘 )

If 𝑥𝑘𝑖 = 1,

𝑤𝑘
𝑖 = 0

Update the total cost 

𝑐𝑡𝑜𝑡 = 𝑐𝑡𝑜𝑡 + 𝛽𝑘𝑐(𝑥𝑘)

Update the number of 

failures 

𝑓𝑡𝑜𝑡 = 𝑓𝑡𝑜𝑡 + 𝑓𝑘

Simulate 𝑞𝑘

𝑤𝑟𝑒𝑎𝑙
𝑘+1 = 𝑤𝑟𝑒𝑎𝑙

𝑘 + 𝑞𝑘∆𝑡
For every 𝑖 ∈ 𝑁,

(𝑤𝑎𝑠𝑠𝑢𝑚𝑒𝑑
𝑘+1 )𝑖 = (𝑤𝑎𝑠𝑠𝑢𝑚𝑒𝑑

𝑘 )𝑖 + ∆𝑡

For every 𝑖 in inspected 

components,

If 𝑘 ≡ 0 (𝑚𝑜𝑑 (𝑖𝑛𝑠𝑝. 𝑖𝑛𝑡𝑒𝑟𝑣. )),

(𝑤𝑎𝑠𝑠𝑢𝑚𝑒𝑑
𝑘+1 )𝑖 = (𝑤𝑟𝑒𝑎𝑙

𝑘+1)𝑖

𝑘 =
𝑘𝑒𝑛𝑑?

𝑘 = 𝑘 + 1

Save 𝑐𝑡𝑜𝑡, 𝑓𝑡𝑜𝑡
𝑚 =
𝑀?

Simulation starts 

𝑚 = 1

Maintenance 

period starts  

𝑘 = 1

Simulation ends

No

Yes

Yes

No

𝑚 = 𝑚 + 1

Figure 3: A flow chart of the simulation

A flow chart of the process is presented in Figure 3. First, the values of ctot and
ftot are set to zero, and values of wk are initialized. The failure state fk is simulated
using probabilities from Equations 4 and 5 and the optimal portfolio corresponding
to the new states sk

assumed and sk
real is chosen. A discount factor β is used to reduce
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future maintenance costs. The discounted cost βkc(xk) of the maintenance portfolio
xk is added to the total cost. The value of qk is simulated using probabilities presented
in Equation 6, and wk

real is updated accordingly. The assumed deterioration level
wk

assumed is updated deterministically with a conservative assumption of deterioration.
Components are inspected when the remainder of k and the inspection interval is
zero. The simulation runs until k reaches kend, and then the total costs and number
of failures from the run are stored. A large enough M is used to ensure accurate
results.

4 Results
The model in Section 3 was tested using a three-component example system. The
example system represents a vehicle with three replaceable components: brakes (B),
wheels (W), and engine (E). The directed graph of the system with maintenance
costs is visualized in Figure 4. The simultaneous replacement of brakes and wheels
is cost-effective due to shared dismantling, while engine replacements are the most
expensive.

Figure 4: Three-component system used in the study

Values for the function g(wt) and failure distributions for the vehicle parts are
the same as used in Section 3.4 and are found in Tables 3 and 4, respectively. Brakes
correspond to component 1, wheels to component 2, and engine to component 3. In
this scenario, the components can be replaced and inspected during scheduled visits
once a year at a repair shop, giving us the maintenance interval of ∆t = 1. Set-up
cost of c0 = 60 and corrective surpluses r = (100, 120, 150)T were used, along with a
reliability threshold ρ = 0.95 and a discount factor of β = 0.99.
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All components in the model deteriorate non-deterministically according to the
probabilities in Equation 6. The real deterioration state of a component is revealed
only during perfect inspections at predetermined intervals. In this section, the set of
components subject to these inspections and the inspection interval are varied, and
long-term costs and the number of failures are compared between the scenarios.

The computations were carried out using Matlab R2023a software on a Dell
Latitude 7490 laptop with Quad 1.70 GHz Intel Core i5-8350U CPU and 16 GB of
RAM. When allowing non-deterministic deterioration, the computations become
more computationally intensive due to the increased number of state transitions in the
partially observable Markov decision process. Particularly, the constant computing
of the deterioration probabilities in Equation 6 significantly extends the computing
times of the policy iteration algorithm. While the deterministic model by Leppinen
et al. (2023) takes only 0.3929 seconds, it takes 60.9856 seconds for the updated
model to find the optimal policy.

4.1 Average cost
Table 6 presents the average costs of all eight combinations of components monitored,
using an inspection interval of two. This means that the actual state of the inspected
components is revealed every second maintenance interval. The third column presents
the percentage change in costs compared to the scenario where no component
is monitored. From the data, it can be observed that increasing the number of
components monitored decreases the long-term average costs. This is because
inspections update the assumed condition of the component and prevent premature
maintenance actions, resulting in fewer maintenance costs.

Monitored components Average costs Compared to no monitoring
- 33.99 -

W 31.83 -6.35 %
E 30.77 -9.48 %

W, E 29.34 -13.68 %
B 29.09 -14,41 %

B, W 28.37 -16.54 %
B, E 27.59 -18.81 %

B, W, E 26.76 -21.26 %

Table 6: Average cost of different scenarios

Furthermore, the monitoring of brakes leads to the most substantial decrease in
long-term costs. This is because the brakes are the most likely to break down first
due to their failure probability distribution. Simultaneous replacements are more
desirable due to the economic dependence in the system. If the component most
likely to fail first can be maintained later, it also enables more efficient maintenance
of the other components.
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4.2 Number of failures
Another interesting change when moving to a condition-based model is the number
of failures. Table 7 presents the long-term average component failures per 100
maintenance intervals for the eight scenarios with different components monitored,
using an inspection interval of two. From the table, it is evident that the number
of failures increases as more components are inspected. When a component is
not monitored, it is assumed to be more deteriorated than in reality, leading to
earlier and potentially unnecessary maintenance actions. Inspecting components
reduces redundant replacements and thus increases the number of failures. Moreover,
the number of failures when using a deterministic model is 2.31 failures per 100
maintenance interval, which is higher than the failure rates in any scenario using
non-deterministic deterioration. Inspecting brakes seems to have the most significant
effect again.

Monitored components Failures Compared to no monitoring
- 1.14 -

W 1.28 + 12.26 %
E 1.31 + 14.72 %
B 1.35 + 18.36 %

B, E 1.42 + 24.61 %
B, W 1.46 + 28.15 %
W, E 1.53 + 34.14 %

B, W, E 1.61 + 41.86 %

Table 7: Average number of failures in 100 maintenance intervals

To conclude, our conservative assumption of deterioration leads to earlier mainte-
nance of components when the components are not inspected. Therefore, component
inspections lead to fewer required maintenance actions. This helps lower average
costs, but also more failures occur.

4.3 Effect of inspection interval
The model enables the adjustment of the inspection interval relative to the mainte-
nance interval. The simulation was run with all eight scenarios and with inspection
intervals from 1 to 6. The long-term average costs and the number of failures are
visualized in Figures 5 and 6.

The figures show that costs do not decrease as much, nor does the number of
failures grow significantly for longer inspection intervals. It seems that increased
inspection interval decreases the effect of condition monitoring as inspections are
performed less frequently, causing increased uncertainty in the deterioration of the
components. Another interesting observation from the data is that with an inspection
interval of 5, condition monitoring appears to have no effect. The optimal policy
and conservative presumption of deterioration lead to all components being replaced
simultaneously at the age of 5. Consequently, after all the components have been
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Figure 5: Average costs per maintenance interval with different inspection intervals

Figure 6: Number of failures per 100 maintenance intervals with different inspection
intervals

replaced, inspections do not affect the results. When the inspection interval exceeds
5, there is again a notable impact on both the cost and failure data.
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4.4 Effect of staying probabilities
The staying probabilities g(wk) describe how fast the components are deteriorating.
The system can be under different conditions and loads and as a result, the staying
probabilities can vary. The values of g(wk) presented in Table 3 were multiplied
with a coefficient of 1.5 and 0.5. For instance, staying probabilities corresponding
to state wk = (1, 1, 1)T become g(wk) = (0.6, 0.45, 0.75)T when using coefficient 1.5
and g(wk) = (0.2, 0.15, 0.25)T with coefficient 0.5. The change in long-term costs is
visualized in Figure 7. In the figure, the change is compared to the deterministic
result where the uncertainty in the deterioration behavior is not considered, and the
staying probabilities are set to zero.

Figure 7: Average costs with different staying probabilities compared to a determin-
istic result

From Figure 7, it is obvious that the benefit of condition monitoring is more
significant when the staying probabilities g(wk) are increased. When the staying
probabilities are higher, the uncertainty in the system deterioration grows. Due
to this uncertainty, also components in relatively good condition are replaced, and
unnecessary costs arise. However, when no components are inspected, the values of
g(wk) do not have an effect on the long-term costs. If no condition monitoring is
in use, the maintenance actions usually follow a predetermined schedule, and the
actual deterioration rate does not affect incurred costs.

5 Conclusion
This thesis presents a multi-component condition-based maintenance model with
economic and structural dependencies. The system structure and maintenance
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actions are based on the model developed by Leppinen et al. (2023). The comparison
between different condition monitoring strategies is meaningful only when non-
deterministic deterioration with uncertainty is applied to all components in the
system. In this work, a model with the updated deterioration behavior was tested
by varying inspection intervals, target components, and deterioration probabilities.
The additional information provided by condition monitoring was found to reduce
long-term costs in most scenarios.

First, we considered the non-deterministic deterioration in a single-component
case, and three possible state transitions were presented similarly as in the work
of Lähteenmäki (2022). The multi-component system structure follows the work of
Leppinen et al. (2023) where the system state is discretized, and the evolution of the
system is modeled as a Markov decision process. However, the number of possible
state transitions in a multi-component system grows exponentially with the new
deterioration behavior. The optimal maintenance policy for the extended MDP was
calculated using a modified policy iteration algorithm following the work of Parkkali
(2021). A Monte Carlo simulation of the system evolution with partial observability
through periodic inspections was implemented on Matlab.

The model was tested using an example system with three differently behaving
components. Monitoring was found to reduce long-term maintenance costs by
up to over 30 percent in some cases where the system deterioration was set slow.
Generally, costs can be reduced by increasing the number of components inspected
and the inspection frequency. This, however, also increased the number of component
failures. Most effective was the monitoring of the component with the poorest failure
distribution, meaning the component was the most probable to fail first.

To conclude, introducing frequent monitoring to the system, with, for example,
electronic sensors can make a significant impact by reducing long-term costs. On
the other hand, when reliability is prioritized, more conservative predictions of wear
effectively reduce system failures. The results depend on the chosen system and
policy. Therefore, these findings cannot be generalized unequivocally, and more
comprehensive testing is needed.

The model is adaptive as both inspected components and inspection interval
can be changed easily, as well as the system structure, together with failure and
deterioration parameters. On the other hand, the challenges of the model include
necessary assumptions related to deterioration and maintenance and inspection
actions. Additionally, computations may become intractable with the added state
transitions.

The model could be generalized even further in future research by relaxing the
needed assumptions. For example, systems with a stochastic dependency could be
modeled if the assumption of the criticality of each component could be relaxed or
the possibility for parallel components or load sharing would be enabled (see e.g.
Oakley et al., 2022). More uncertainty could be added to the model by enabling
imperfect inspections or maintenance actions (see e.g. Le and Tan, 2013). Testing
the theoretical model with real-life data from the industry would also be essential.
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