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1 Introduction
This thesis introduces the BB-MAB-TS algorithm for dynamic budget allocation in
the context of creator marketing campaigns. Thompson Sampling (Thompson, 1933)
is used as the underlying mathematical heuristic behind the algorithm. It is used
for creating an active learning system that optimizes the budget allocation. The
term budget allocation refers to the action of allocating the finite campaign budget
into multiple deals between the advertiser and different creators participating in the
campaign. Each participant is offered a deal to participate in the campaign and the
deals have monetary value. With appropriate modifications, the algorithm can also
be used for finding optimal allocation for budget or other resources in other contexts.

Creator marketing campaigns are run through an online platform. It connects the
advertiser and a group of Youtube creators who agree to take part in the campaign.
The creators are offered a deal to do a short advertisement about the advertiser’s
product in their own Youtube video. The objective of the advertiser is to maximize
the value gained from the marketing campaign. This value is measured as the
amount of views that the advertisements get collectively. Therefore, the objective is
to minimize the price per view. The lowest price per view will also minimize the deal
price. Consecutively, the budget allocation of the entire campaign will be optimized
as the deals are made with the lowest price point.

Hypothesis is that the acceptance rate of the deals as a function of price is a
S-shaped curve. Concretely, this means that the higher price the creator is offered,
the more likely they are to accept the deal. Therefore, finding the optimal budget
allocation is achieved by finding the smallest price point for which the acceptance
rate is high enough to use the entire given budget. During the active learning process,
one needs to learn about the deal acceptance behavior of the creators and find the
optimal price point with high enough acceptance rate.

The budget allocation optimization problem can be described as a sequential
resource allocation problem in an uncertain environment. These types of optimization
problems have previously been studied as multi-armed bandit (MAB) problems
(Mahajan and Teneketzis, 2007). In this problem setting, an agent needs to maximize
the value from the finite or infinite amount of resources by finding the optimal way
to deploy them to different competing alternatives. The problem is related to the
exploration-exploitation dilemma which is well-known in the context of reinforcement
learning (Auer and Cesa-Bianchi, 2002).

The exploration-exploitation dilemma arises from the phenomenon that the known
optimal alternative could be exploited to maximize the rewards gained from the
resources. Still, by exploring the different alternatives, a more optimal alternative
could be found and used for accumulating more rewards. Therefore, the agent needs
to learn about the optimality of the different alternatives through a learning process
(Lai and Robbins, 1985).

Previous research by Scott (2010), Auer and Cesa-Bianchi (2002), and Ding et al.
(2013) has suggested different algorithms for solving the multi-armed bandit problem
in similar contexts. These algorithms include Thompson sampling (Thompson, 1933),
upper-confidence bound (UCB) (Auer and Cesa-Bianchi, 2002), and ϵ-greedy (Auer



8

and Cesa-Bianchi, 2002) algorithms. Especially, the Bayesian Thompson Sampling
method introduced by Scott (2010) has a wide applicability and has gained a lot of
popularity in the machine learning community during the past years due to the need
in online decision making and recommendation systems which require active learning.
Companies such as Google, Amazon, Facebook, Salesforce, and Netflix utilize the
algorithms in their products (Scott, 2015) for learning about the click-behavior of
the users through the active learning systems ingrained within the products.

In this thesis, the budget allocation problem in creator marketing context is
converted into a batched (Kalkanli and Ozgur, 2021) and budgeted (Ding et al., 2013)
multi-armed bandit (BB-MAB) problem. Then, Thompson Sampling is suggested as
a solution algorithm for solving the formulated BB-MAB problem and optimizing
the budget allocation. The suggested BB-MAB-TS algorithm is used for creating
an active learning process (Russo et al., 2018). During the process, the budget is
allocated over multiple decision rounds which are called batches. Throughout the
process, the optimal price point is learned while staying within the budget limitations.
Therefore, the main result of this thesis is the BB-MAB-TS algorithm for adaptive
and dynamic budget allocation. Furthermore, this thesis expands the use cases of
Thompson Sampling by showing that it is applicable solution to budget allocation
problems.

Section 2 gives an overview of MAB problems both in the classical, batched, and
budgeted settings. Additionally, the Section 2 introduces some well-known decision
policies used for solving the problem. In Section 3, the budget allocation problem is
formalized as a BB-MAB problem in the context of creator marketing campaigns.
The problem is then solved by applying Thompson Sampling in the problem context.
Moreover, Section 3 describes the constraints for the active learning system and
outlines the proposed algorithm as pseudo code. Finally, the Section 4 considers the
future research topics arising from this thesis.

2 Introduction to the multi-armed bandit problem
Multi-armed bandit problems (MAB problems) are a class of sequential resource
allocation problems where an agent faces a challenge to allocate some finite or infinite
amount of resources between different competing alternatives. The goal of the agent
is to maximize the received reward or realized value (Mahajan and Teneketzis, 2007).
The idea of MAB was first introduced by Robbins (1952), and further formulated by
Lai and Robbins (1985).

The name, multi-armed bandit, derives from an imaginary row of slot machines
(see Picture 1) that have a total of k ≥ 2 arms (Lai and Robbins, 1985). An agent
faces a challenge to maximize the accrued rewards by utilizing an optimal decision
policy for choosing which arm to pull at each time step. Every time an arm is pulled,
the agent receives a random reward from an unknown reward distribution that is
unique to each machine. The rewards are independent of the previous pulls. Thus,
the agent needs to learn about the reward distributions of the different arms through
exploration. In an optimal strategy, the agent needs to balance between exploiting
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the known optimal arm and explore to learn if there is more optimal arm.

Figure 1: Illustrative picture of the multi-armed bandit problem set up.

Mahajan and Teneketzis (2007) describe the classical MAB with four key features:
1. only one machine is operated at a time, 2. machines that are not operated remain
frozen, 3. machines are independent from each other, and 4. frozen machines do not
give rewards.

The MAB problem outlines the fundamental conflict between exploiting the
known optimal alternative and exploring for more optimal alternatives. This is also
known as the exploration-exploitation dilemma extensively discussed in reinforcement
learning (Auer and Cesa-Bianchi, 2002). In order to overcome the dilemma, a decision
policy π must be designed to decide which arm to pull at each time step. The policy
should enable finding the optimal arm and balance between exploring and exploiting
different arms. Thus, the policy enables the agent to find the optimal arm and
maximize the cumulative rewards.

The quality of the decision policy is assessed by its cumulative regret. Regret
refers to the loss due to not pulling the optimal arm every time instant (Auer and
Cesa-Bianchi, 2002). It is caused by either exploring other arms and not pulling the
optimal arm or due to a non-optimal decision policy that never finds the optimal arm.
The target is to minimize the cumulative regret accrued over the decision rounds. Lai
and Robbins (1985) showed that the regret has to grow at least logarithmically when
the number of pulls increases. Then, the decision policy would be asymptotically
efficient. Thus, the optimal arm is pulled exponentially more often compared to the
other arms (Auer and Cesa-Bianchi, 2002).

Multiple different problems in industry can be formulated as MAB problems.
These include problems in clinical trials, sensor management, and online advertising
(Xia et al., 2015; Mahajan and Teneketzis, 2007; Avadhanula et al., 2021). Thus,
there are a lot of real life practical implementations for the solution algorithms of
the MAB problem.
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2.1 Batched multi-armed bandits
Batched bandits are a subcategory of multi-armed bandits where there are time
restrictions that limit the number of decision rounds. Therefore, the agent must
explore the optimal arm quickly at the beginning of the exploration phase. In this
setting, the time horizon is divided into T decision rounds and at the end of each
round the rewards from multiple pulls of arms are observed (Kalkanli and Ozgur,
2021). The multiple pulls during one decision rounds create a batch.

The data is accumulated more quickly, and the exploration process can be directed
based on more data points within similar time horizon. Time restrictions can arise
in contexts such as clinical trials, marketing, and surveys where the experiments
are conducted in batches which creates limitations to the time steps between the
experiments. Thus, the round constraints make some decision policies more beneficial
to optimize the learning process.

The batches can be created either in a static or adaptive manner and they form
a grid. In the static grid’s case, the grid is fixed before starting to pull any arms
and in the adaptive grid’s case the consecutive batch is determined based on the
results from the previous batch and utilizing some external randomness in the batch
forming process (Gao et al., 2019). In the case of an adaptive grid, both the size of a
batch and total number of batches can be varied.

Using an adaptive grid should lead to more efficient convergence of the learning
process. By gathering more data and learning about the optimality of each arm, the
agent can drop some arms from the exploration process leading to quicker convergence.
The batched multi-armed bandit setting has previously been researched by, e.g.,
Kalkanli and Ozgur (2021) and Gao et al. (2019).

2.2 Multi-armed bandits with budget constraint and variable
costs

Ding et al. (2013) were the first ones to introduce a subcategory of MABs with
budget constraints and variable costs (MAB-BV). Whenever an arm is pulled, the
agent needs to pay a random cost and the costs are further constrained by a limited
budget. The objectiveu is to maximize the total rewards given the limited budget.
Ding et al. (2013) researched the problem in the context of real-time bidding in an
advertisement exchange where the costs are affected by the click behavior of the users
and bidding behavior of the other advertisers. These types of application contexts
are by nature more complex and have variable costs. Ingraining variable costs into
the model makes it superior to using fixed costs although the model becomes more
complex.

Ding et al. (2013) introduced two different upper confidence bound (UCB) al-
gorithms as solutions for this specific type of MAB-BV problem in the context of
online advertisement exchange. For the first UCB algorithm, the learning process
is separated into clear exploration and exploitation phases. The budget constraint
is only imposed on the exploration phase. The objective is to efficiently find the
best performing arm during the exploration phase with the limited budget before
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exploiting it throughout the exploitation phase while using the rest of the budget.
For the second algorithm, the costs are constrained by the limited budget regardless
of the process being in the exploration or exploitation phase.

2.3 Decision policies as solutions for the MAB problem
The challenge for maximizing the rewards and minimizing the regret is to determine
an optimal decision policy. The goal is to find the decision policy that can be
implemented to the context and will converge to the optimal arm as fast as possible
while minimizing the regret. There are multiple existing and well researched decision
policies that can be implemented in different contexts. Three different widely used
strategies will be introduced in the following subsections.

2.3.1 ϵ-greedy strategy

A well-known and widely used decision policy is the ϵ-greedy decision policy (Auer
and Cesa-Bianchi, 2002). It is a simple decision policy and can be generalized for
many sequential decision problems (Kuleshov and Precup, 2014). The policy allocates
pulls for the arm with the highest average reward with the probability 1 − ϵ and
explores randomly chosen arm with the probability ϵ. Nevertheless, the regret of
this decision policy will grow linearly instead of logarithmically due to the constant
probability of exploration.

The decision policy can be made more efficient and achieves logarithmically
growing regret if the ϵ is allowed to decrease to zero with the rate 1

n
, where n is

the current time step (Auer and Cesa-Bianchi, 2002). With this modification, the
decision policy will prioritize exploration at the beginning of the learning process
while decreasing the amount of exploration over time. As a result, the process will
converge towards the optimal arm while minimizing the regret by decreasing the
amount of exploration at the end of the process.

With the value ϵ = 1, the allocation strategy becomes an equal allocation strategy
where the probability of pulling each arm is equal. According to Scott (2010), this
is a poor allocation strategy because the algorithm continues to explore even when
the optimal solution has come apparent. Therefore, the equal allocation strategy
will never converge towards the optimal arm if there are not any context specific
modifications.

2.3.2 Upper confidence bound

Kuleshov and Precup (2014) describe the upper confidence bound (UCB) decision
policy as an "elegant implementation of the idea of optimism in the face of uncertainty".
Auer and Cesa-Bianchi (2002) showed that the proposed decision policy, UCB1,
achieves logarithmic cumulative regret meaning the regret does not increase linearly
or exponentially. According to the UCB1 policy, every arm is played once at the
beginning of the process. Thereafter, the arm that maximizes µk +

√︃
2ln(n)

nk
is played,
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where µk is the average reward from arm k, nk is the number arm k has been played
and n is the overall number of plays done so far.

2.3.3 Thompson Sampling

During the recent years, Thompson Sampling has become rapidly more used heuristic
for creating a decision policy for different contexts. It has applications in various areas,
e.g., website optimization, internet advertising, and revenue management (Russo
et al., 2018). The idea behind the heuristic was initially suggested by Thompson in
1933 as a solution in the context of clinical trials.

The idea of Thompson sampling, also referred as random probability matching,
is to allocate pulls for different arms according to the current belief of the optimality
of each arm. The optimality of arms is quantified by the posterior distribution of the
reward function which is then used as the pull weights for the different arms. The
weights are defined with the equation

πat = P (a is optimal | yt), (1)

where a refers to the index of the arm, and yt is the data gathered up to time t.
Scott (2010) describes broad applicability to different contexts and easy implemen-

tation as the advantages of Thompson Sampling. When compared to the efficiency
of the ϵ-greedy strategy on general level, Thompson sampling algorithm gathers
sufficient amount of information about a sub-optimal arm and after determining that
the arm is sub-optimal allocates the pulls for other arms. Thus, Thompson sampling
balances exploration and exploitation in a natural way, and it is compatible with
batch updates.

2.3.4 Choosing the most applicable decision policy

As the cumulative regret needs to be minimized over the learning process, the chosen
decision policy should explore the different arms efficiently while being applicable to
the specific problem context. Additionally, this should reflect on the computational
efficiency of the entire process. We can conclude from the previous sections that
ϵ-greedy decision policy is a relatively naive approach though easy to apply to the
context. UCB would likely be less efficient compared to Thompson Sampling due to
exploring the different arms with the same amount of pulls. Thompson Sampling
balances the exploration and exploitation more effectively compared to ϵ-greedy and
UCB decision policies. Additionally, it is also applicable with batch updating which
makes it great candidate as an optimal decision policy for the creator marketing
context.
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3 Formulation of the BB-MAB-TS budget alloca-
tion algorithm

To formulate the BB-MAB-TS budget allocation algorithm, the budget allocation
problem in the creator marketing context is at first converted into a BB-MAB problem
(Section 3.1). Then, to determine the budget allocation weights πkt, at first the
contextual reward function is formulated (Section 3.2) and Thompson Sampling
is introduced as the sampling method for sampling the budget allocation weights
(Section 3.3). Lastly, Poisson distribution based posterior distribution updating
(Section 3.4), constraints for the active learning system (Section 3.5), and the BB-
MAB-TS budget allocation algorithm as pseudocode (Section 3.6) are introduced.

3.1 Converting the budget allocation problem into the BB-
MAB problem

In the problem context under consideration, an agent is playing a slot machine with
k ∈ {1, ..., K} ∈ Z+ arms over t ∈ {1, ..., T} ∈ Z+ decision rounds. Due to the
batched setting, the agent makes a decision which arms to pull and how many times
one arm will be pulled during one decision round. The decisions are made based on
a decision policy π. The consecutive pulls of an individual arm during a decision
round are indexed with j ∈ {1, ..., J} ∈ Z+. Therefore, k, t, and j create the basis
for the active learning system. Furthermore, the total number of pulls is limited by
a finite budget B ∈ R, and each pull of an arm results with a reward and cost. The
total costs are limited by the budget B.

As the process is limited by the budget B, the agent needs to allocate the budget
over the decision rounds t between the different arms k. Therefore, it needs to
make a decision on how to allocate the budget B into T parts on batch level, i.e.,∑︁T

t=1 bt = B. Within one batch, the agent allocates bt part of the budget on an arm
level, i.e., ∑︁K

k=1 bkt = bt. The arm level budget bkt is used for pulling the arm as long
as there is budget left. An individual pull is allocated with bktj part of the budget,
i.e., ∑︁J

j=1 bktj = bkt. Therefore, the allocation process is constrained by

K∑︂
k=1

T∑︂
t=1

J∑︂
j=1

bktj = B. (2)

During each decision round t, the agent samples arms from the population k ∈ C
of all the available arms based on the decision policy π⃗ = [π1t, ..., πKt]T . The decision
policy determines the weights on which the different arms will be sampled and
how many times each arm can be pulled with the budget allocated for the specific
arm during the decision round. The weights πkt are sampled from the posterior
distribution of the reward function. The sampling method is based on a heuristic
called Thompson Sampling. Therefore, the budget allocation will be determined
based on the current understanding of the optimality of each arm as described in
Section 2.3.3.
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After sampling and pulling the arms, the agent receives a reward fk(bkt) from an
unknown reward distribution for each pull of an arm. Over the decision rounds T ,
the agent must learn about the optimality of the different arms with the objective to
maximize the cumulative rewards and minimizing the cumulative regret. The agent
achieves the objective by updating the decision policy π after observing the rewards
after each decision round. Consecutively, the decision policy π⃗ is updated based on
the rewards fkt observed after the pulls of arms.

To conclude, the objective is to maximize the sum of all rewards accumulated
over the decision rounds T . This is achieved by finding the optimal arm over the
decision rounds through the active learning process. The objective function of the
process is defined as

max
K∑︂

k=1

T∑︂
t=1

J∑︂
j=1

fkt(bktj). (3)

The performance of a decision policy is measured through the regret r which is
the difference between the expected reward of the optimal arm and the observed
reward. The index of the optimal arm is denoted by k = ∗. Thus, the regret for one
pull is

rktj = f∗(bktj)− fkt(bktj)). (4)
The objective is to minimize the cumulative regret R of all the pulls done over

the rounds T

R =
K∑︂

k=1

T∑︂
t=1

J∑︂
j=1

(f∗(bktj)− fk(bktj)). (5)

The budget allocation is optimized on three different levels: 1) on a system level
as B is allocated between the decision rounds t into bt parts, 2) on a decision round
level as bt is allocated between the arms k sampled during the decision round t, and
3) on an arm level as every time an arm is pulled it is defined how much budget is
allocated for that specific pull.

It can be concluded that the budget allocation problem in the creator marketing
context can be formulated as a batched and budgeted multi-armed bandit (BB-
MAB) problem. To further adapt the BB-MAB problem into the creator marketing
campaign context, the arms k denote to price points that the deals are sent with,
and the individual pulls of arms denote individual deals that are sent to the creators.

3.2 Formulation the reward function
There are multiple factors affecting whether or not an individual creator accepts the
deal they are offered. One of the main factors is the price of the sent deal. Other
factors are the busyness of the creator, appeal of the brand of the advertiser, and
other random factors caused by the everyday life of the creator. The variance in the
acceptance of the deals is referred as deal acceptance behavior. Due to the varying
deal acceptance behavior of the different creators, there is uncertainty related to the
acceptance rate α. Therefore, the mean acceptance rate µαkt

for each price ρk needs
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to be learned during the exploration part of the learning process. The optimal price
point is hypothetically the lowest price ρk for which the acceptance rate αkt would
be high enough to use the rest of the available budget Bt.

The reward function fkt is used for describing the rewards from the observations
of the sent deals and estimating their optimality. The main variables for deriving the
reward function are: the set of creators, c ∈ C; the average views the creators’ videos
are expected to have with some price ρk, µvktj

∈ R; the price per view of the sent
deal, ρk ∈ R; the number of accepted deals with a specific price during one decision
round, akt ∈ Z; and the total number of sent deals with a specific price during one
decision round, dkt ∈ Z.

The acceptance data akt of all the deals for each price ρk is gathered during each
decision round for all the sent deals. Based on the number of accepted deals and total
number of sent deals, the acceptance rate for one price ρk during a decision round
t is calculated as αkt = akt

dkt
. The average deal value νkt for some price ρk during a

decision round t is µνkt
= νkt

akt
= ρkµv

kt
. Thus, the value of the deals sent with some

price ρk is νkt = dktµν
kt

and the value of accepted offers is νakt
= αktµν

kt
.

The overall goal of the optimization is to maximize the number of expected views
v for one price group. This can be calculated as following

E[v] = aktµνkt
= αρktdktµv

kt
= αktνkt

1
µνkt

µvkt
.

It is known that νkt = bkt which can be considered as a given constant. The ratio
between the expected view count and value of the deals µvkt

µνkt
can be described as 1

ρk

which is the inverse of the cost per view, i.e., the inverse of the the price. Therefore,
the reward function simplifies to the form of

fk(αkt, ρk) = αkt

ρk

. (6)

3.3 Determining the budget allocation weight matrix with
Thompson Sampling

The underlying sampling method for determining the budget allocation weights is
based on a heuristic called Thompson Sampling. The suggested decision policy is
based on the idea from paper of Scott published in 2010. In the paper, he describes
the Bayesian solution for the MAB problem. Scott solves the MAB problem by using
Thompson Sampling as the heuristic for creating the decision policy for allocating
pulls for different arms.

The budget allocation weights are sampled from the posterior distribution of the
reward function using Thompson Sampling during each decision round. The weights
πkt = P (k is optimal | yt) reflect the optimality of each price given the observed
historical data yt. Therefore, the weights are used to determine how much each price
ρk is to be allocated with the budget based on the current belief of the optimality of
the price. The weights also determine how many deals will be sent with each price
which is limited by the allocated budget.
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Assume a sequence of rewards observed up to time t. The rewards are saved in a
matrix M = [y⃗1, ..., y⃗T ] as they are observed over the decision rounds t. During one
decision round, the rewards are saved as a vector yt⃗ = [f1t, ..., fKt]T . Therefore, the
Matrix M is the form of

M =

⎡⎢⎢⎢⎢⎣
f11 f12 ... f1T

f21 f22 ... f2T
... ... . . . ...

fK1 fK2 ... fKT

⎤⎥⎥⎥⎥⎦ . (7)

When a deal is sent with the price ρk at time t, the agent receives reward from
the reward distribution fkt that is generated independently of the historical and other
simultaneously sent deals. As the optimality of each price ρk is not known, the agent
needs to do exploration during the active learning phase to find the optimal price.

The high level computational steps of the BB-MAB-TS budget allocation algo-
rithm are outlined in the following list and in the Picture 2.
1. Sampling budget allocation weights πkt from the posterior distribution of the
reward function,
2. Allocating budget bt between prices ρk according to the weights πkt,
3. Sending deals according to the allocation and observing rewards,
4. Updating the posterior distribution of the reward function fkt according to the
observed data,
5. Repeating the steps 1-4 until all of the budget B is used.

The algorithmic steps are also outlined as a flowchart in the Picture 2 below.

Figure 2: Flowchart of the algorithmic steps of the BB-MAB-TS dynamic budget
allocation algorithm.
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The following allocation vector b⃗ determines the budget allocation between the
decision rounds

b⃗ =
[︂
b1 b2 . . . bT

]︂
. (8)

The arm level allocation defined in Matrix 9 is achieved through weighing the
budget determined by the vector b⃗ through utilizing the decision policy π that
determines the weights. Therefore, π⃗t = [π1t, ..., πKt]T and the budget allocation
weight matrix is Π = [π1, π2, ..., πT ] . Thus, the budget allocation matrix is in the
form of

A = (b⃗ΠT )T =

⎡⎢⎢⎢⎢⎣
b1π11 b2π12 ... bT π1T

b1π21 b2π22 ... bT π2T
... ... . . . ...

b1πK1 b2πK2 ... bT πKT

⎤⎥⎥⎥⎥⎦ . (9)

The budget allocation matrix is used to determine how many deals are sent with
every price. Conversely, referring back to the MAB problem, the allocation matrix
denotes how much budget will be allocated to each pull. It also determines the
magnitude of the reward received from the pull as the reward is directly proportional
to the size of the budget allocated for the arm.

3.4 Posterior updating
Thompson Sampling is based on sampling the allocation weights from the posterior
distribution of the reward function which reflects the current belief of the optimality
of each price. As there is uncertainty related to the acceptance rate of the deals,
a sent deal results as an accepted deal on average µαkt

. Thus, as the posterior
distribution is updated based on the observed deal acceptance data, the ability of
different prices to delivered value is learned about.

To model the posterior distribution, a starting prior distribution is needed. As
shown by Agrawal and Goyal (2013), the prior can be any distribution, such as
uniform, binomial or Bernoulli distribution. Nevertheless, Poisson distribution is
better for modeling the deal acceptance as it describes the probability of getting
some number of events happening given λ that represents the expected number of
events. Additionally, the deal acceptance behavior during each decision round is
independent of the previous rounds which Poisson distribution is well suited for.
Therefore, assume that deal acceptances follow Poisson distribution

akt ∼ Pois(λkt) (10)
Also, assume that λkt is not a fixed number but it is distributed according to

Gamma conjugate prior with parameters αkt and βkt

λkt ∼ Gamma(αkt, βkt). (11)
As deal acceptances are observed over the decision rounds, the posterior distribu-

tion is updated based on the observed data. At the beginning of each decision round,
the budget allocation weights πkt are sampled from the posterior distribution.
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Historical deal sending and acceptance data can be directly used to model αkt

and βkt for the gamma conjugate. To model them, the entire historical data can be
used up to the current decision round. Therefore, the parameters are

αkt =
t∑︂

n=1
akn

1
ρk

,

βkt =
t∑︂

n=1
dkn

1
ρk

.

3.5 Constraints for the active learning system
The aim of the BB-MAB-TS algorithm is to find the smallest price for which the
acceptance rate is high enough to use the rest of the budget the available after the
decision round. Therefore, the learning process is constrained by the equation 12

T∑︂
t=t+1

µαkt
ρkE[vC ]−Bt+1 ≥ 0, (12)

where µαkt
is the mean acceptance rate for one price ρk during some decision round

t, E[vC ] is the combined amount of views for the videos in the available creator pool
c ∈ C, and Bt+1 is the available budget after the decision round t. The first term
in the Equation 12 quantifies how much budget the price ρk would be able to burn
with the current belief of the mean acceptance rate for that specific price if all the
creators c ∈ C would be sent a deal with that price.

The sooner the optimal price point is found during the exploration process, the
sooner the total campaign performance is maximized which is measured with the
sum of all the views acquired with the given fixed budget B

max. V =
K∑︂

k=1

T∑︂
t=1

J∑︂
j=1

bktjρkaktjE[vktj], (13)

where b is the allocated budget, ρk price, aktj the acceptance of deals, and E[vktj]
the estimated views for the advertisement done with the sampled creator with the
given index ktj.

Therefore, it can be concluded that the main constraints are the available budget
B, the creator set C, the amount of decision rounds K, and the accessible price range
K.

3.6 BB-MAB-TS algorithm as a solution for the budget
allocation problem

This section outlines the algorithmic logic of the BB-MAB-TS dynamic budget
allocation algorithm. The high level computational steps are:
1. Sampling budget allocation weights πkt from the posterior distribution of the
reward function,
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2. Allocating budget bt between prices ρk according to the weights πkt,
3. Sending deals according to the allocation & observing rewards,
4. Updating the posterior distribution of the reward function fkt according to the
observed data,
5. Repeating the steps 1-4 until all of the budget B is used.

The logic of the BB-MAB-TS algorithm is given as pseudocode in Algorithm 1:

Algorithm 1: BB-MAB-TS algorithm
Init:
k ← 1 ; // price indices
t← 1 ; // time horizon indices
j ← 1 ; // deal indices
B ← B ; // budget
C ← C ; // creator set
E[ν]← [E[ν1], . . . ,E[νT ]] ; // estimated views
ρ← [ρ1, ρ2, ..., ρK ]T ; // prices
Π← [π1, π2, ..., πT ] ; // allocation weights
a← [a1, a2, ..., aK ]T ; // acceptance data
α← [α1, α2, ..., αT ] ; // α for Gamma conjugate
β ← [β1, β2, ..., βT ] ; // β for Gamma conjugate
while t ≤ T do

bt ← Bt

T −t+1 ; // Allocates budget bt for the decision round
for k ≤ K do

Sample πkt for each price ;
bkt = btπkt ; // weigh the budget for each price
while j ≤ J do

J = bkt

ρkE(vkt) ; // quantifies how many deals are sent
Select J creators from the creator pool C Send each creator a deal
with the value bktj = ρkE(vkt) ;

Observe the acceptance data aktj for all the sent deals ;
fkt = αkt

ρk
; // computes rewards

Update the posterior distribution of the reward function ;
end

end
end

4 Discussion
In the current form, the BB-MAB-TS algorithm is focused on optimizing the budget
allocation between the different prices within one decision round but is not fine-
tuned to optimize the allocation between different decision rounds or on a deal level.
Therefore, multiple future research topics arising from this thesis. These topics are
optimizing the convergence time to the optimal price, computational efficiency of the
BB-MAB-TS algorithm, optimizing budget allocation between the decision rounds
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and on a deal level, applying the BB-MAB-TS algorithm to other resource and
budget allocation problems, and statistical analysis of the performance of the deals.
These aforementioned topics can be researched through, e.g., simulation, practical
implementations, and developing the mathematical optimization model forward.

4.1 Optimizing convergence time to the optimal price and
budget allocation on all levels

Minimizing the convergence time towards the optimal price could be achieved by
fine-tuning the exploration phase of the learning process. One approach to achieve
this is to allocate the budget to some limited number of prices during a decision
round, e.g., sending deals with only five different prices during each decision round
at the beginning of the exploration phase. These prices would be called active prices
and the amount of active prices could be decreased over time as the confidence level
about the optimality of the most optimal prices would increase. Thus, the budget
would not be wasted on the non-optimal prices, and the process converges more
quickly to the optimal price.

The risk is that the initially chosen price range would be far from the global
optimal price which would as a consequence result in longer exploration phase
and larger cumulative regret. To diminish this risk, historical data from previous
campaigns should be used to determine the initial price range if it is available.

Alternatively, to optimize the budget allocation between the decision rounds, the
budget bt allocated to each batch could be determined according to some exponential
function. This way less budget would be used at the beginning of the exploration
phase. While the learning process advances and the confidence level about the
optimality of the different prices increases, the budget usage increases. This should
also decrease the cumulative regret. The exponential nature of allocation could
be achieved, e.g., by introducing some tuning parameter γ that Scott (2010) also
suggested in his paper.

Additionally, the budget allocation process could be clearly separated into ex-
ploratory and exploitation phase. This could be achieved by clearly allocating, e.g.,
20% of the total budget for exploration and 80% for exploitation. Moreover, different
prices could be attached with a confidence level indicating the minimum confidence
level of the belief that some price is optimal. Prices with low confidence level would
not be allocated budget and this budget could be allocated to the most optimal prices.
Therefore, the more optimal prices would be explored increasingly more which would
lead to increase of the confidence level of their optimality.

Currently, the BB-MAB-TS algorithm does not determine how the creators are
chosen to one batch after the budget has been allocated to the different prices. In
practice, the estimated view counts for the videos of the creators varies for which
reason the value of the sent deals also varies. Therefore, some kind of mechanism
that enables choosing creators within the budget limit should be built into the
algorithm. The mechanism should select creators who are sent the deals within the
budget limitation. Additionally, creators with smaller estimated view count could be
preferred at the beginning of the learning process to gather more deal acceptance
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data and understanding of the acceptance behavior of the creators.
Testing the convergence and performance of the BB-MAB-TS algorithm could be

achieved through simulations conducted, e.g., in simulation environments created
with R or Python. Hypothetically, the most challenging part of the simulation is
creating the pseudo data for simulating the uncertainty connected to the acceptance
rate of the deals. The acceptance rate data could be created by disturbing sine
function data with some noise that models the uncertainty to the data.

4.2 Applying the BB-MAB-TS algorithm to different re-
source and budget allocation problems

The BB-MAB-TS algorithm could be applied to different contexts where one needs to
allocate some finite amount of resources between competing alternatives while getting
binary reward data from the allocation process. To apply the algorithm, a contextual
reward function needs to be formulated and the data saving and handling should be
done with the context in mind. Additionally, to model the posterior distribution of
the rewards function, one needs to decide a distribution that is applicable for that
specific context.

The kind of contexts that the BB-MAB-TS algorithm could be applied to could
be, e.g., other types of online marketplaces or platforms, conversion testing, and
determining prices for consumer goods. Other online marketplaces where either
budget needs to be dynamically allocated or a price determined, usually gather
similar data and the dynamics are similar. For determining the prices of consumer
goods, one would need to create a setting where we would test out different prices
with a large number of customers that are offered the product with different prices.
The dynamic for consumer good price optimization would be similar to the online
one but the data should be gathered manually by an observer.

4.3 Statistical analysis of the performance of the deals
Through gathering data from the acceptance behavior of the creators and the perfor-
mance of their video, the selection process of which creators are sent deals could be
optimized. Thus, based on the historical data, the ability to deliver value measured
by the ratio between deal price and realized value for creator could be learned. In
the future campaigns, creators that have historically performed better, could be
preferred as campaign participants.

Additionally, the variance of performance of the advertisements of some creator
between different types of products or advertisers could be learned by analyzing the
conversions of the advertisements and the total view amounts. Thus, the deals could
be sent to such creators that have been historically performing well with the types
of customer and type of advertisement than in previous campaigns.

Lastly, the acceptance behavior of the individuals creators could be learned. The
different aspects to learn would be the probability of accepting some specific type of
deal and the price point that they are most probable to accept a deal while optimizing
the value per price ratio. Therefore, an individual price optimization model for each
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creator could be created if the system would learn about the acceptance behavior of
the creators deeply enough.

5 Conclusion
This thesis introduces the BB-MAB-TS algorithm as a solution to the dynamic
budget allocation problem in the context of creator marketing campaigns. The
system allocates the budget over multiple decision rounds while simultaneously
learning which price point is optimal for sending the campaign deals. The budget
allocation problem is at first converted into a BB-MAB problem. Then, the contextual
Thompson Sampling based sampling method is introduced for determining the budget
allocation weights.

The first contribution of the thesis is that the given contextual problem can be
converted into BB-MAB problem. Achieving this requires introducing the batched
structure and budget constraints for the exploration-exploitation process. Secondly,
introducing Thompson Sampling as the underlying heuristic for allocating the budget.

Lastly, multiple different research topics arose from this thesis. These topics aim
at further developing the BB-MAB-TS algorithm to optimize the budget allocation
more holistically both between batches and on a deal level. These modifications
would also result at optimizing the convergence time towards the optimal price.
Additionally, the BB-MAB-TS could be applied to other resource allocation problems
with the required modifications.
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