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Abstract
As the transportation sector attempts to decrease its emissions, the demand for
renewable fuel is expected to increase. The growing demand for biofuel feedstock and
end products and the global nature of the feedstock and end product markets result
in increasingly complex supply chains. Renewable fuel companies aim to address
the complexity by implementing mathematical models to execute their operations
in the most profitable manner. Some of these models include components designed
to mitigate uncertainties in the supply chains arising from several factors such as
production and shipment issues or changes in forecasts.

This thesis further develops the uncertainty mitigation approach of a mid-term
bi-objective optimization model of a renewable fuel manufacturing network. The two
objectives of the model are maximizing gross margin and minimizing plan changes,
measured in tons, with respect to a reference plan. The change minimization objective
was designed to find a profitable solution that minimizes deviation from that reference
plan, as changing a plan induces hidden costs not captured by the model. In this
thesis, a new formulation of the change minimization objective is presented. The
original model minimizes the total volume of change but does not capture the number
of individual changes, each of which has some cost. Thus, this thesis presents an
alternative objective function corresponding to the number of plan changes into the
original model.

To minimize the number of optimization runs, the change count minimization
objective was incorporated into the existing volume change minimization objective.
As the volume change is often significantly larger than the change count, the combined
change minimization objective consists of a normalized sum of the two objectives.

This novel model was tested using two different data sets and compared to the
original model. The novel approach was successful in producing a close-to-ideal gross
margin while increasing the volume change and reducing the number of plan changes
in comparison to the original approach. This suggests that the novel approach offers
benefits in mitigating hidden costs. However, the prolonged solving time of the
novel model limits its practical use for decision makers. Reducing the computational
complexity of the model offers potential for future research.
Keywords multi-objective optimization, supply chain optimization, manufacturing

network



Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Tekniikan kandidaatintyön tiivistelmä

Tekijä Tuomas Ojavuo
Työn nimi Vaihtoehtoiset etäisyysfunktiot muutoksen minimointiin tuotantoverkon

optimoinnissa
Koulutusohjelma Teknistieteellinen
Pääaine Matematiikka ja systeemitieteet Pääaineen koodi SCI3029
Vastuuopettaja Prof. Fabricio Oliveira
Työn ohjaaja DI Tuomas Suominen
Päivämäärä 14.9.2023 Sivumäärä 23 Kieli Englanti
Tiivistelmä
Uusiutuvien polttoaineiden kysynnän odotetaan kasvavan liikennealan pyrkiessä
vähentämään päästöjään. Uusiutuvien polttoaineiden ja niiden raaka-aineiden kas-
vava kysyntä sekä globaalit markkinat johtavat yhä monimutkaisempiin toimitus-
ketjuihin. Jalostajat pyrkivät vastaamaan monimutkaisuuteen ottamalla käyttöön
matemaattisia malleja, joiden avulla jalostustoimintaa voi toteuttaa mahdollisimman
kannattavasti. Osa näistä malleista on suunniteltu lieventämään toimitusketjujen
epävarmuustekijöitä, jotka johtuvat esimerkiksi tuotanto- ja kuljetusongelmista tai
ennusteiden muutoksista.

Tässä tutkielmassa jatkokehitettiin uusiutuvan polttoaineen tuotantoketjun op-
timointiin kehitettyä kaksitavoitteista optimointimallia. Alkuperäisen mallin kaksi
tavoitetta olivat käyttökatteen maksimointi ja tonneissa mitattu suunnitelmamuu-
toksien minimointi. Muutosten minimointitavoitteen tarkoitus on löytää kannattava
suunnitelma, joka eroaa mahdollisimman vähän aiemmasta suunnitelmasta, sillä
suunnitelman muuttaminen aiheuttaa piilokustannuksia. Tässä tutkielmassa esitel-
lään vaihtoehtoinen tapa muotoilla muutosten minimointitavoite. Alkuperäinen malli
minimoi muutosten voluumia, mutta ei ota huomioon muutosten lukumäärää, vaikka
piilokustannuksia syntyy jokaisesta yksittäisestä muutoksesta. Täten alkuperäiseen
malliin lisättiin vaihtoehtoinen kohdefunktio, joka vastaa suunnitelmamuutosten
lukumäärää.

Optimointikierrosten määrän minimoimiseksi muutosten lukumäärän minimoin-
titavoite sisällytettiin aiempaan muutosten voluumia minimoivaan tavoitteeseen.
Koska voluumin muutos on tyypillisesti huomattavasti suurempi kuin muutosten
määrä, yhdistetty muutosten minimointitavoite koostuu näiden kahden tavoitteen
normalisoidusta summasta.

Uutta mallia testattiin kahdella eri aineistolla ja verrattiin alkuperäiseen malliin.
Uuden mallin avulla löydettiin ratkaisuja, joiden käyttökate oli samalla tasolla kuin
verrokkiratkaisuilla, mutta muutosten lukumäärä oli pienempi. Tulosten perusteella
uusi malli voi lieventää muutoksista aiheutuvia piilokustannuksia alkuperäistä mallia
paremmin. Päätöksentekijöiden näkökulmasta uuden mallin käytännöllisyyttä rajoit-
taa kuitenkin sen pitkä ratkaisuaika. Potentiaalinen jatkotutkimuskohde on, miten
mallin laskennallista vaativuutta voisi vähentää.
Avainsanat monitavoiteoptimointi, tuotantoketjun optimointi, tuotantoverkko
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1 Introduction
As incentives and mandates for greenhouse gas emission reduction are imposed on
the transportation sector, renewable fuel demand is expected to soar [1]. To address
the growing demand, an increase in biofuel raw material supply is required, which
results in more complex supply chains.

In order to address the complexity of supply chains, organizations implement
network optimization models which allow them to gain decision support for ensuring
profitability. In fast-paced industries, basic profit-maximizing optimization models
have a clear deficiency: as uncertainties arise from several factors such as changes in
prices and forecasted demand, production issues and shipment delays, the optimality
of the obtained result can be susceptible to change.

Uncertainty mitigation is essential for maintaining competitiveness of the com-
panies in the complex and fast-paced biofuel refining industry [2]. One approach
for mitigating uncertainty in the supply chain of a biofuel refining company is the
bi-objective model for scenario optimization of a manufacturing network proposed by
Vuola [3]. The model is used in the mid-term sales and operations execution process
(S&OE) of the case company. In S&OE, the planning work and the execution of
the plan overlap. Due to this, each change in the S&OE plan gives rise to a hidden
cost. For example, conducting a change may require both transportation of physical
material and effort from the supply chain planners or logistics operatives.

To create a profitable plan while mitigating the hidden costs, the model pro-
posed by Vuola [3] involves two objectives: profit maximization and minimization
of deviation from the reference plan. The change minimization objective considers
the total volume change between the reference plan and the optimized plan. The
total volume change is the sum of the volume changes on each arc and each period
of the multi-period manufacturing network model. The bi-objective approach aims
to ensure that the newly optimized plan is profitable while remaining close to the
previous plan, which is already being executed. However, it has been noticed that
the change minimization objective is not ideal for the business case. As the current
change minimization objective only considers the total volume change, it does not
take into account the number of changes. For instance, it gives equal weight for ten
changes of magnitude one and one change of magnitude ten. However, performing
one large change is likely to induce less effort and therefore smaller costs than several
small changes. Thus, minimizing the overall number of deviations from the reference
plan is also in the interests of the decision maker (DM).

The aim of this thesis is to further develop the bi-objective model for scenario
optimization proposed by Vuola [3], by adding a third objective function corresponding
to the number of deviations from the reference plan. Section 2 outlines the background
of the thesis, which includes the supply chain network and the existing biobjective
optimization model. Section 3 formulates the novel change count minimization
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objective. The new model formulation was tested and its ability to reduce the
number of changes was shown. However, the solving times of the model were
significantly increased with the new formulation. Testing results are presented in
section 4. Finally, section 5 summarises the findings of this thesis.
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2 Background
This section introduces the supply chain network structure and the existing bi-
objective network optimization model of the case company. Subsection 2.1 presents
the network structure. Subsection 2.2 discusses multi-objective optimization generally
before presenting the existing bi-objective model and its challenges this thesis intends
to address. Lastly, subsection 2.3 defines the multi-objective optimization method
which the current bi-objective method utilizes.

2.1 Supply chain network
A network is a system of connected entities. The entities can be represented with
a set of nodes, while their connections can be represented with a set of arcs. This
thesis considers the manufacturing network model suggested by Vuola [3], in which
the nodes represent either supply or demand markets or one of two types of internal
nodes: inventory and refinery nodes. Supply market nodes function as sources of
feedstock for the supply chain, while demand market nodes receive the end products.
Inventory nodes are used for storing feedstock or end products. The refining process
takes place in refinery nodes, which can also function as storage for feedstock and
end products. The arcs represent the opportunity to move physical material or
criteria from one node to another. Criteria refer to the sustainability certificates
used by the case company. As the flow of goods on a given arc happens only in one
direction, the manufacturing network discussed in this thesis is a directed network.
Furthermore, the directed network contains no cycles, which means it is a directed
acyclic network. Other constraints related to the flow of material in the model include
inventory, transportation and production capacities and a yield percentage in the
refining process.

To formulate the network more precisely in terms of sets, let G denote a multi-
period manufacturing network consisting of a set N of nodes, a set A of lanes (denoted
(i, j) ∈ A where i is the starting node and j is the end node) and a set T of periods.
The lanes represent the possibility to move any physical materials (denoted by a
set PM) and any criteria combinations (denoted by a set CC) from one node to
another.

Given the case company objective to maximize gross margin (GM), the relevant
network optimization problem type is minimum cost flow. The goal in minimum cost
flow problems is to minimize overall cost subject to supply, demand and capacity
constraints. Naturally, this corresponds to maximizing overall profit subject to the
constraints. Furthermore, as the case company refines several products from a variety
of feedstocks, the network model is a multi-commodity network model. Moreover,
the model requires the capability to transfer goods across multiple periods.
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2.2 Multi-objective optimization
Multi-objective optimization (MOO) is an area of decision-making which involves
finding the best solution for problems with several, sometimes conflicting, objective
functions. That is, given a set of k objective functions fi(x), i = 1, . . . , k, the goal of
MOO is to find a set of solutions X∗ ⊆ X, where X represents the feasible solution
space, such that the solutions in X∗ represent the best possible trade-offs between
the competing objectives [4].

In multi-objective optimization, the notion of optimality is replaced by Pareto
optimality. A solution x to a MOO problem is Pareto-optimal if it cannot be improved
within the feasible space in any objective function without worsening at least one
other objective function. That is, if there does not exist another solution x′ such
that:

• For all fi, i = 1, . . . , k, where fi represents the ith objective function to be
minimized, fi(x′) ≤ fi(x), and for all fi, i = k + 1, . . . , n, where fi represents
the ith objective function to be maximized, fi(x′) ≥ fi(x).

• There exists at least one j ∈ 1, . . . , n such that fj(x′) < fj(x) for minimization
objectives or fj(x′) > fj(x) for maximization objectives.

The set of all Pareto optimal solutions is referred to as the Pareto front. Essentially,
solving a multiobjective optimization problem usually corresponds to generating
points belonging to the Pareto front or finding the entire set of such points [4].

The network optimization model suggested by Vuola [3] solves a biobjective opti-
mization problem with GM and the total magnitude of deviation from the reference
plan as its objectives to be maximized and minimized, respectively. These objectives
are often conflicting: for example, a new sales opportunity can on the one hand
increase GM and on the other hand increase deviation from the reference plan. The
problem is solved using the ε-constraint method (defined in subsection 2.3), which
generates a subset of the Pareto front. This thesis aims to include a third objective,
minimization of the number of deviations from the reference plan, to the model. This
renders the model tri-objective.

2.3 The ε-constraint method
The ε-constraint method is a well-known technique for solving multi-objective opti-
mization problems. Like many other multi-objective methods, it converts the initial
multi-objective problem into a single-objective problem which can be solved with
regular single-objective optimization techniques. In the ε-constraint method, one
of the objective functions is chosen as the primary function to be optimized. The
values of the other objective functions are bounded by additional constraints [5]. By
changing the bounds on the other objectives, one can obtain new points of the Pareto
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front. Assuming an original problem of the form

max (f1(x), f2(x), . . . , fk(x))
s.t. x ∈ S,

where x is the decision variable vector, f1(x), . . . , fk(x) are the k objective functions
and S is the feasible region, the ε-constraint method converts the problem into the
following form:

max f1(x)
st f2(x) ≥ ε2,

f3(x) ≥ ε3,

...
fk(x) ≥ εk,

x ∈ S.

By variation of the parameters ε2, . . . , εk new Pareto-optimal solutions can be ob-
tained. Each εi, i ∈ 2, . . . , k, can vary within the interval [znad

i , z∗
i ], where znad

i is
the worst value of fi(x) over the Pareto front (referred to as the nadir values) and
z∗

i is the best value of fi(x) over the Pareto front (referred to as the ideal values).
z∗

i , i ∈ 2, . . . , k can be found by maximizing the corresponding objective functions
individually. znad

i , i ∈ 1, . . . , k are generally difficult to obtain in problems with more
than two objective functions, but are possible to estimate using a so-called payoff
table. It is constructed the following way: first, we obtain k solutions, corresponding
to optimizing each objective function independently. For each solution, we also
calculate the values of other objective functions and create a table containing these
values. The worst value in the table for objective function i is then an estimate of
znad

i [4].

In the bi-objective network optimization model suggested by Vuola [3], GM is
chosen as the primary objective function. The secondary objective function used as
a constraint is the change minimization objective. This thesis attempts to include a
third objective function corresponding to the number of changes with respect to the
reference plan, to address the business use case of the model more accurately. The
change induces two issues: firstly, the ε-constraint method requires more optimization
runs to generate an adequate representative set of the Pareto front with three objective
functions instead of two. Secondly, nadir values are difficult to obtain in problems
with more than two objective functions [4]. These concerns are addressed in section
3 of this thesis.
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3 Mathematical formulation
This section examines the mathematical formulation of the new objective functions.
Subsection 3.1 presents the formulation of the current volume change objective and
the new change count objective. Subsection 3.2 discusses the alternative techniques
for modeling the binary variables in the change count objective. In subsection 3.3,
we present a method for combining the volume change and change count objectives.
Finally, section 3.4 addresses the normalization needed to give equal weight for both
terms of the combined change minimization objective.

3.1 The new objective function
The current volume change minimization objective is of the form

min
µ,ν

(
∑︂
t∈T

twt(
∑︂

k∈P M

∑︂
i,j∈A

µk
ijt +

∑︂
m∈CC

∑︂
i,j∈A

νm
ijt))

s.t. − µk
ijt ≤ xk

ijt − yk
ijt ≤ µk

ijt

− νm
ijt ≤ um

ijt − wm
ijt ≤ νm

ijt

µk
ijt ≥ 0

νm
ijt ≥ 0,

(1)

where xk
ijt is the volume of physical material k on lane (i, j) at time t and yk

ijt is its
reference solution, and um

ijt is the volume of criteria m on lane (i, j) at time t and
wm

ijt is its reference solution. twt is the weight given to period t.

Applying the same weights twt for each period t, the novel change count mini-
mization objective is of the form

min
α,β

(
∑︂
t∈T

twt(
∑︂

k∈P M

∑︂
i,j∈A

αk
ijt +

∑︂
m∈CC

∑︂
i,j∈A

βm
ijt))

s.t. − µk
ijt ≤ xk

ijt − yk
ijt ≤ µk

ijt

− νm
ijt ≤ um

ijt − wm
ijt ≤ νm

ijt

µk
ijt ≥ 0

νm
ijt ≥ 0

µk
ijt ≤ Mk

ijtα
k
ijt

νm
ijt ≤ Nm

ijtβ
m
ijt

αk
ijt, βm

ijt ∈ {0, 1}

(2)

where xk
ijt is the volume of physical material k on lane (i, j) at time t and yk

ijt is its
reference solution, and um

ijt is the volume of criteria m on lane (i, j) at time t and wm
ijt

is its reference solution. twt is the weight given to period t. αk
ijt and βm

ijt are binary
variables representing whether a change occurs on lane (i, j) at time t for physical
material k and criteria m, respectively. Mk

ijt and Nm
ijt are chosen to be larger than
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any conceivable magnitude of change, thus restricting αk
ijt and βm

ijt to be equal to 1
if a change occurs. If no change occurs on lane (i, j) at time t for physical material
k or criteria m, the variables αk

ijt and βm
ijt are allowed to be 0. These so-called big-M

constraints are a typical method for coupling the values of continuous variables to
the values of binary variables [6].

3.2 Modeling techniques for binary variables
The standard technique for coupling the value of a continuous variable x to the value
of a binary variable z is a "big-M" constraint of the form −Mz ≤ x ≤ Mz for a
constant M > 0 which is an upper bound of x [6]. The big-M method has been
used for a similar plan change count function in supply chain optimization by Jatty
et al. [7]. For a nonnegative x the constraint simplifies to x ≤ Mz. The resulting
constraint enforces the implication x > 0 =⇒ z = 1. Considering our model, the
technique is suitable for coupling the values of αk

ijt and βm
ijt to those of µk

ijt and
νm

ijt, respectively. This is achieved via constraints of the form µk
ijt ≤ Mk

ijtα
k
ijt and

νm
ijt ≤ Nm

ijtβ
m
ijt for physical material k and criteria combination m on lane (i, j) and

period t. Using this technique, the variable αk
ijt would assume value 1 if a change

occurs in the volume of physical material k on lane (i, j) and period t, which is
equivalent to the event that µk

ijt > 0. Note that these constraints do not enforce that
µk

ijt = 0 =⇒ αk
ijt = 0 or that νm

ijt = 0 =⇒ βm
ijt = 0. Nevertheless, the only objective

function containing the variables αk
ijt and βm

ijt is the new change count minimization
function, which only contains positive multiples of the binary variables. It is thus
reasonable to assume that the solver "prefers" to set the binary variables equal to
0 whenever possible (that is, whenever the corresponding continuous variables are
equal to 0).

Naturally, implementing such "big-M" constraints necessitates selecting appropri-
ate values for the constants Mk

ijt and Nm
ijt for k ∈ PM , m ∈ CC, (i, j) ∈ A, t ∈ T .

For a constraint of the form µk
ijt ≤ Mk

ijtα
k
ijt, the value of Mk

ijt must be an upper
bound of µk

ijt. If not, some otherwise feasible solutions would be cut off because of
the constraint. In some cases, this could even lead to the model being infeasible.

Fattahi et al. [8] discuss other challenges related to the "big-M" approach. Firstly,
common mixed-integer linear program (MILP) solving methods, including cutting-
plane and branch-and-bound algorithms, operate through iterative relaxations of
the constraints. To some extent, the performance of the methods is dependent on
the strength of these relaxations. Small values for the "big-M" constants may result
in stronger relaxations whose feasible sets are smaller. Secondly, large values for
the "big-M" constants could lead to numerical issues. This suggests that choosing as
small big-M values as possible can improve model performance.

Khoshniyat and Törnquist Krasemann [9] studied the effect of the big-M values
on model computation time. They suggest that the computation time of a MILP
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can substantially decrease with an appropriate choice of big-M. They note, however,
that it may not be easy to significantly bound the big-M constants, as too small
values might change the solution space.

In our case, bounding the big-M is difficult. Finding the maximum flow of a
physical material k or criteria combination m on lane (i, j) on period t is an opti-
mization problem in itself. Finding that quantity is obviously required to calculate
the corresponding maximum deviation from the reference plan, that is, the maximum
of µk

ijt for physical material k and νm
ijt for criteria combination m. Thus, there is no

immediate method for bounding the big-M constants. However, the maximum flow
of a physical material k or criteria combination m on lane (i, j) on period t may be
possible to calculate using a recursive algorithm. This is because the parameters
of the model include upper bounds for the amount of supply from any supply mar-
ket on any period. The recursive graph traversal approach is possible due to the
fact that the supply chain network is a directed acyclic graph. Developing such an
algorithm is not part of the scope of this thesis, but offers potential for future research.

As an alternative to the big-M approach, we present a similar modeling technique
for coupling binary variables to continuous variables. The validity of the approach
must be assessed in the testing phase. The supposed advantage of the approach is
that it does not require estimating or implementing any additional constants. It relies
on a simple notion: a constraint of the form x ≤ xz, where x ∈ R+

0 and z ∈ {0, 1},
enforces the implication x > 0 =⇒ z = 1. In our case, the constraints are of
the form µk

ijt ≤ µk
ijtα

k
ijt and νm

ijt ≤ νm
ijtβ

m
ijt. Similarly to the big-M approach, the

constraint does not enforce µk
ijt = 0 =⇒ αk

ijt = 0. Nevertheless, it is reasonable
to assume the solver "prefers" to set the binary variables to 0 whenever possible, as
their sum is a minimizable objective.

3.3 Combining the change minimization objectives
As the original model uses the ε-constraint method, it is preferable to combine the two
change minimization objectives into one function before the solution process. This is
due to the larger number of optimization runs and model adjustments that would
have to be made if the same ε-constraint method were used for a tri-objective problem.

For reducing the number of objective functions before the optimization procedure,
Koski and Silvennoinen [10] suggest dividing the objective functions into groups.
Within each group, a weighted sum of the objective functions in that group forms a
new objective function. This new objective function replaces the functions that con-
stitute it. Koski and Silvennoinen [10] also state that every Pareto-optimal solution
of the novel problem is a Pareto-optimal solution of the initial problem. However, the
reverse result generally does not hold. This means that in practice the method may be
unable to discover some Pareto-optimal solutions of the original problem. In our case,
using a weighted sum f ′

2 = w2f2 + w3f3 of the volume change minimization objective
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f2 and the change count minimization objective f3 is sufficient, since generating only
a subset of the original three-dimensional Pareto front adequately serves the business
purpose.

The weights w2 and w3 must be chosen so that they give equal importance to
both the volume change f2 and the change count f3. The two functions generally do
not share the same order of magnitude, as the volume change f2 is likely to be larger
than the change count f3. On average, when a change occurs, the change in volume
is larger than 1. Due to this, a normalization scheme for both functions is beneficial.
The normalization essentially involves modifying weights w2 and w3 such that w2f2
and w3f3 operate on the same scale. It is possible to add constant terms c2 and c3
to keep the scale of w2f2 + c2 and w3f3 + c3 constant (for example, to ensure both
functions are within [0,1]).

3.4 Normalization
Miettinen [4] presents several methods for normalizing objective functions in multi-
objective problems. A method proposed by Osyczka [11] divides each objective
function fi by its ideal value z∗

i . However, this method does not utilize information
about the nadir value znad

i . A more exact normalization which takes the entire range
of the function into account uses the form

fnormalized
i = fi − z∗

i

znad
i − z∗

i

= 1
znad

i − z∗
i

fi − z∗
i

znad
i − z∗

i

(3)

This form guarantees that fnormalized
i ∈ [0, 1]. We can then construct the new

combined and normalized change minimization objective f ′
2 from the normalized

forms of f2 and f3:

f ′
2 = fnormalized

2 + fnormalized
3 = f2 − z∗

2
znad

2 − z∗
2

+ f3 − z∗
3

znad
3 − z∗

3
(4)

In this form, f ′
2 gives equal importance to both f2 and f3. Furthermore, f ′

2 ∈ [0, 2].

Implementing this normalization scheme requires estimating the nadir and ideal
values of both change minimization functions f2 and f3. As discussed in part 2.3,
a common method for estimating the nadir values is a so-called payoff table. Con-
structing the table requires optimizing each objective function individually. For the
current implementation, the respective maximization of GM and minimization of
volume change are performed. Thus, constructing a payoff table would require an
additional optimization run for minimizing the change count. As the change count
and volume change minimization objectives are closely related, it is reasonable to
assume that the solution obtained when solely maximizing GM decently estimates
both nadir values znad

2 and znad
3 . Note that in the bi-objective case, the payoff table

method yields the true nadir value of both objective functions. However, with more
than two objectives, it only yields an estimate of the nadir values [4]. Therefore, the
more convenient method of estimating both znad

2 and znad
3 from the GM-maximizing
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solution will be used. Similarly, we use the volume change-minimizing result to
estimate both ideal values z∗

2 and z∗
3 . By using these estimates, it is possible to avoid

individually minimizing the change count.
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4 Results
This section outlines the results obtained from the implementation of the tri-objective
model, which was developed to improve upon the bi-objective model proposed by
Vuola [3].

The novel tri-objective model was evaluated and compared to the original bi-
objective model using two data sets. Three optimization runs were conducted with
both data sets: run 1 and run 2 used the novel change minimization objective, while
run 3 used the original volume change minimization objective. Runs 1 and 2 differed
in the method that was used to model the binary variables representing changes
in the network plan. Run 1 modeled the binary variables with an approach that
does not require estimating a big-M (formulated in subsection 3.2). Run 2 used the
big-M method for modeling the binary variables. As discussed in section 3.2, the
big-M parameter must be set to some upper bound of the individual volume change
variable to prevent cutting off otherwise feasible solutions. The nadir value of the
second (minimizable) objective function corresponding to the sum of volume changes
is a logical upper bound for any individual volume change. Thus, the estimate of the
nadir value of the volume change minimization objective, znad

2 , was used as the big-M
parameter for run 2. Both binary variable approaches were included in the testing
to assess whether they produced similar results and whether they differed in solving
time. Similarly, the objective function values and the solving time from run 3 were
compared to those produced by runs 1 and 2 to assess differences in performance
between the original and the novel model.

Two solutions from the middle of the Pareto front per optimization run and per
data set were obtained. In accordance with the ε-constraint method, these middle
solutions were obtained by variation of the ε parameter which bounds the secondary
objective function. As the novel model uses f ′

2 ∈ [0, 2] as the secondary objective
function, 2

3 (for middle solution 1) and 4
3 (for middle solution 2) were used as ε values

during runs 1 and 2. For run 3, the ε values were obtained the following way: the
interval [z∗

2 , znad
2 ] was segmented into three equal portions, and ε was set to the first

endpoint and the second endpoint of the central segment for middle solution 1 and
middle solution 2, respectively.

In order to discuss the performance of the alternatives in maximizing GM without
disclosing the actual GM numbers, the GM values were scaled. For both data sets,
GM was maximized and given a scaled value of 1. Other GM values were scaled by
dividing them by the maximized GM value. As the model included soft constraints
and corresponding penalty terms in the GM maximization objective, the true GM
value was extracted from the objective value by adding the values of the penalty
terms to the initial objective value. Due to the effect of the penalty terms, the true
GM value extracted from the solely GM-maximizing solution was lower than the
true GM value of some middle solutions. Nevertheless, scaling was conducted by
dividing the middle solution GM values by the GM value from the GM-maximizing
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solution in all cases.

4.1 Data set 1
Table 1 presents the nadir and ideal values of the volume change and change count
objectives for each optimization run with data set 1. The similarity of the nadir and
ideal values for each optimization run suggests that the approximation approach
used for znad

2 , znad
3 and z∗

3 is justified.

Run znad
2 znad

3 z∗
2 z∗

3

Run 1 25533.99987 3017 13924.04469 1862
Run 2 (big-M) 25717.08738 3008 13924.04469 1857
Run 3 (control) 25603.58072 3030 13924.04469 1898

Table 1: Ideal and nadir values for data set 1.

Table 2 presents the objective values of the first middle solutions obtained using
data set 1. The GM value of each middle solution from runs 1 and 2 was compared
to the GM value of the corresponding middle solution from run 3. This percentage
difference in GM is shown in the ’% improved’ columns of tables 2, 3, 6 and 7.
Table 3 presents the objective values of the second middle solutions obtained with
data set 1. The big-M method (run 2) and the alternative binary variable modeling
method (run 1) performed equally well. Based on the objective values, the methods
successfully reduced the number of changes at the expense of the volume change
objective. The results demonstrate that the new model is able to significantly reduce
the number of plan changes while retaining a close-to-ideal GM.

Run Scaled GM % improved Volume change Change count

Run 1 0.9871885143 -1.462% 20065.76124 1998
Run 2 (big-M) 0.9998685762 -0.196% 19716.39928 2057
Run 3 (control) 1.001831908 0% 17817.22336 2304

Table 2: Objective function values for data set 1, middle solution 1.

Run Scaled GM % improved Volume change Change count

Run 1 1.000018277 0.001% 22850.1401 2493
Run 2 (big-M) 0.9999894573 -0.002% 22824.32539 2510
Run 3 (control) 1.000004776 0% 21710.40204 2705

Table 3: Objective function values for data set 1, middle solution 2.
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Table 4 presents the optimization completion times for the first data set. They
represent the time taken to complete the entire optimization procedure, with two
middle solutions. While the obtained results are promising in terms of objective
values, a caveat exists: the computational effort required by the new model is high.
While testing the new model, it was noticed that in some cases the optimization
failed to complete even after 15 minutes. Therefore, a time limit of 15 minutes was
applied to each middle solution run. Nevertheless, in all test cases 15 minutes per
middle solution was enough to yield sensible results. Reducing the computation time
of the new model offers potential for future research, as it is a major factor in the
usability of the model from the perspective of the decision maker.

Run Time to complete optimization

Run 1 30 minutes and 22.8 seconds
Run 2 (big-M) 31 minutes and 15.33 seconds
Run 3 (control) 9 minutes and 18.91 seconds

Table 4: Optimization completion times for data set 1.

To demonstrate the differences between the old and the new model, the distri-
bution of the plan changes was analyzed further. Figure 1 shows histograms of the
plan changes for runs 1 and 3. The histograms demonstrate that the new model
significantly reduces the number of the smallest changes.
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Figure 1: Distribution of the volume changes of middle solutions 1 and 2 for runs 1
and 3, using data set 1.

4.2 Data set 2
Table 5 presents the nadir and ideal values of the volume change and change count
objectives for data set 2. As was the case for data set 1, the similarity of the ideal
and nadir values for each run suggests that the approximation approach for znad

2 ,
znad

3 and z∗
3 is justified.

Run znad
2 znad

3 z∗
2 z∗

3

Run 1 25150.33988 2788 11173.52346 1387
Run 2 (big-M) 24905.44682 2781 11173.52346 1380
Run 3 (control) 25078.64381 2783 11173.52346 1394

Table 5: Ideal and nadir values for data set 1.
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Table 6 presents the objective values for the first middle solution with the second
data set, while table 7 shows the objective values for the second middle solution
with the second data set. The novel model (runs 1 and 2) was able to achieve a
comparable GM with a significant reduction in the change count.

Run Scaled GM % improved Volume change Change count

Run 1 0.9988476067 -0.076% 17209.19365 1706
Run 2 (big-M) 0.9994112497 -0.020% 17034.82979 1705
Run 3 (control) 0.9996087231 0% 15808.56358 2070

Table 6: Objective function values for data set 2, middle solution 1.

Run Scaled GM % improved Volume change Change count

Run 1 1.00356319 0.360% 21668.60617 2193
Run 2 (big-M) 0.9990158299 -0.094% 21171.06938 2186
Run 3 (control) 0.9999595394 0% 20443.6037 2479

Table 7: Objective function values for data set 2, middle solution 2.

Table 8 presents the optimization completion times for the second data set.
Similarly to data set 1, runs 1 and 2 which used the novel model were significantly
slower than the control run.

Run Time to complete optimization

Run 1 40 minutes and 18.55 seconds
Run 2 (big-M) 39 minutes and 29.09 seconds
Run 3 (control) 9 minutes and 25.85 seconds

Table 8: Optimization completion times for data set 2.

To demonstrate the differences between the old and the new model, the distri-
bution of the plan changes was analyzed further. Figure 2 shows histograms of the
plan changes for runs 1 and 3. The histograms demonstrate that the new model
significantly reduces the number of the smallest changes.
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Figure 2: Distribution of the volume changes of middle solutions 1 and 2 for runs 1
and 3, using data set 2.

4.3 Conclusions
The results from the tests in subsections 4.1 and 4.2 seem promising as the novel
model significantly reduced the number of the smallest changes. The novel model
was able to find solutions with a close-to-ideal GM while significantly reducing the
number of changes and slightly increasing the volume change. This is relevant consider-
ing the business use case of the model, as each individual change induces hidden costs.

However, the prolonged solving time of the model is a major caveat. In the
test cases, the solving time of the novel model was approximately 20–30 minutes
longer than when using the original model. As the model is intended for daily use
and analysis of different scenarios, the solving time is a significant factor from the
perspective of the decision maker.

Altogether, the model has potential for future development. Reducing the solving
time of the model is crucial in order to increase usability for the decision maker. For
example, an algorithm for obtaining tighter bounds for the big-M values (discussed
in subsection 3.2) may be a viable method for reducing the computation time of the
model. Furthermore, examining the asymptotic computational complexity of both
the original and the novel model is of interest, as the complexity of the supply chains
may increase in the future.
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5 Summary
As a result of the transportation sector’s attempts to decrease its emissions, the de-
mand for renewable fuel is estimated to increase. The growing demand for renewable
fuels and their feedstocks increases the complexity of the supply chains of the industry.
This is exacerbated by the global nature of their markets. Thus, companies develop
mathematical models to execute operations profitably and mitigate uncertainties in
their global supply chains.

The current bi-objective model used for S&OE optimization of a biofuel refining
company was further developed in this thesis. The current model involves two
objectives: GM maximization and minimization of deviation from a reference plan.
The latter is measured in tons. However, as each plan change induces a hidden cost,
it is in the interest of the case company to not only minimize the volume change
in tons, but to also minimize the overall number of deviations from the reference
plan. The primary goal of this thesis was to examine the possibility to enhance the
existing model by integrating a third objective function that accounts for the number
of deviations.

The third objective function accounting for the number of deviations was for-
mulated as a sum of binary variables. For each continuous decision variable, a
corresponding binary variable was added to the model. Each binary variable was
designed to assume value 0 when the corresponding continuous variable is equal
to 0, and value 1 otherwise. Essentially, the third objective function counts the
number of changes between the optimizable plan and a reference plan. The binary
variables indicating changes were implemented with two alternative methods: a
standard big-M method and an alternative method. The former used the nadir
value of the volume change minimization objective as the big-M parameter which is
chosen to be an upper bound of any individual volume change in the multi-period,
multi-commodity network. The latter method did not require estimating any upper
bound for the volume changes. Both binary variable approaches performed equally
well.

To minimize the number of model adjustments and required optimization runs,
the third objective function was incorporated into the existing change minimization
function. To accurately capture the trade-offs of the two change minimization objec-
tives, their normalized sum was chosen as the new change minimization objective.
The normalization was conducted using approximated ideal and nadir values of both
change minimization objectives.

The novel model was able to find solutions with close-to-ideal GM and significantly
fewer plan changes compared to the old model. However, the practicality of the
novel model as decision support for the supply chain planners is severely limited by
the prolonged solving time. Reducing the solving time offers potential for future
research.
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