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Abstract
Financial institutions contribute to significant indirect environmental effects through
their outstanding loans and investments, which has led to a globally standardized
methodology to calculate the financed emissions of investment portfolios. As global
warming calls for societal decarbonization and companies around the world are
required to measure and report an increasing amount of data of their environmental
performance, financial institutions are faced with incentives to reduce their financed
emissions.

We study how constraining the financed emissions of a stock portfolio affects its
performance and industry composition. The stock returns and their dependencies are
modelled with Student’s t-distributions and a t-copula, which are fitted to realized
market price data. Monte Carlo simulation is used to draw return scenarios that are
used for calculating the expected portfolio return and risk (Conditional Value-at-
Risk). The optimal portfolio is obtained by maximizing the expected return while
constraining the maximum allowed risk and the financed emissions of the portfolio.

We find that the financed emissions constraints lead to a systematic decrease in
portfolio return, but note that all optimized portfolios perform better than most
benchmarks used.
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Tiivistelmä
Rahoitusalalla toimivien instituutioiden lainat ja sijoitukset pitävät sisällään mer-
kittäviä epäsuoria ympäristövaikutuksia, mikä on johtanut standardisoituun tapaan
mitata sijoitusportfolioiden kautta rahoitettuja kasvihuonekaasupäästöjä (engl. fi-
nanced emissions). Ilmaston lämpenemisen hillitsemiseksi asetettuja hiilineutraalius-
tavoitteita pyritään edistämään kansallisin ja kansainvälisin laein, jotka velvoittavat
yrityksiä mittaamaan ja raportoimaan ympäristövaikutuksiaan entistä tarkemmin.
Tämä luo rahoitusalan instituutioille kannustimia vähentää portfolioidensa päästöjä.

Tässä työssä tutkitaan, miten osakeportfolion tuotto ja toimialajakauma muuttuvat,
kun portfolion päästöjä rajoitetaan. Osaketuottoja ja niiden välisiä riippuvuuksia
mallinnetaan toteutuneisiin hintatietoihin sovitetuilla t-jakaumilla ja t-kopulalla.
Sovitetuista jakaumista luodaan Monte Carlo -simuloinnilla tuottoskenaarioita, joi-
den perusteella lasketaan portfolion tuotto-odotus ja Conditional Value-at-Risk
-riskitunnusluku. Optimaalinen portfolio muodostetaan maksimoimalla tuotto-odotus
niin, että riskitunnusluku ja portfolion päästöt pidetään tiettyjen enimmäisarvojen
alapuolella.

Eri rajoite-ehdoilla optimoitujen portfolioiden vertailu osoittaa, että päästöjen ra-
joittaminen vähentää systemaattisesti portfolion tuottoa, mutta lähes riippumatta
käytetyistä rajoite-ehdoista optimoidut portfoliot suoriutuvat verrokkeja paremmin.
Avainsanat Päästörajoitteet, CSRD, Conditional Value-at-Risk, kopula, Monte

Carlo -simulointi



5

Contents
Abstract 3

Abstract (in Finnish) 4

Contents 5

1 Introduction 6

2 Literature review 7

3 Methodology 9
3.1 Asset selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Modelling returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Univariate distributions of the return series . . . . . . . . . . . . . . . 12
3.4 Modelling dependency with a t-copula . . . . . . . . . . . . . . . . . 15
3.5 Scenario creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Constructing the optimization problem . . . . . . . . . . . . . . . . . 17

3.6.1 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6.2 Conditional Value-at-Risk constraint . . . . . . . . . . . . . . 18
3.6.3 Financed emissions and diversification constraints . . . . . . . 19
3.6.4 Solving the problem . . . . . . . . . . . . . . . . . . . . . . . 20

4 Results 21
4.1 Optimization results . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Out-of-sample portfolio performance . . . . . . . . . . . . . . . . . . 22

5 Summary 25

A Correlation coefficients by industry 30

B Industry distribution 31



6

1 Introduction
Excessive greenhouse gas (GHG) emissions are the root cause of global warming,
which poses the threat of serious global socioeconomic impacts (Woetzel et al.,
2020). Limiting the warming to 1.5 °C above preindustrial levels is considered
crucial to prevent multiple climate tipping points (McKay et al., 2022), but requires
accelerating decarbonization of the society (PCAF, 2022; Woetzel et al., 2020).
Companies are among the largest GHG emitters globally, and thus play a vital role
in mitigating the effects of climate change (Siddique et al., 2021), starting with
the task of measuring and reporting carbon emissions. While ever more companies
partake in public carbon disclosure voluntarily, in many countries, including the
majority of EU countries, the UK and the USA, the reporting of GHG emissions is
today mandatory for companies meeting certain criteria (European Parliament, 2014;
Shanahan, 2020; EPA, 2009). To support and encourage environmental disclosure,
the Carbon Disclosure Project (later renamed to CDP) was established in 2000
as a collective platform for reporting companies’ GHG emissions, and has since
broadened the scope to various other environmental disclosure measures. CDP
may be considered a default carbon reporting medium for companies, as in 2022,
companies that disclosed through CDP comprised over half of the global market
capitalization (CDP, 2023).

GHG emissions are categorized by the GHG Protocol (WRI and WBCSD, 2004)
into scope 1 (direct emissions), scope 2 (emissions from purchased or acquired elec-
tricity, steam, heat and cooling) and scope 3 (all other indirect emissions in the
corporate value chain). One of the scope 3 categories includes financed emissions, the
emissions that an institution finances through its loans and investments, and which
typically comprise the largest portion of emissions in the financial sector (PCAF,
2022). While the disclosure of scope 3 emissions has previously not been covered
by most carbon regulations, reporting them will be mandatory in the EU starting
from 2024, following the introduction of the Corporate Sustainability Reporting
Directive (CSRD) (European Commission, 2023). This has in recent years incen-
tivized financial institutions to make efforts to reduce the financed emissions of their
investment portfolios and to direct capital to support companies that work towards
decarbonization. The question is whether one can reduce financed emissions without
a deterioration in the financial performance of the portfolios.

In this thesis, to improve understanding of how the increased emission legislation
affects the financial sector, we introduce financed emissions constraints to a stock
portfolio optimization model and study their impact on the optimized portfolios. Risk
management and stock portfolio optimization have seen major advances in the latest
decades, but while relationships between companies’ environmental and financial
performance have been studied using various methods, very limited research combines
environmental measures and modern portfolio optimization methods, creating a gap
we aim to fill. Our analysis is restricted to the European and U.S. stock markets as
the developed carbon reporting practices and legislation in these areas have been
shown to improve carbon data quality (see for example Cai, 2022). These are also
considered the most relevant areas from a Nordic investor’s point of view.
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The rest of the thesis is structured as follows: In Section 2, we discuss advances
in portfolio optimization methodology, along with relevant research, and introduce
results of previous studies addressing environmental and economic performance.
Section 3 first discusses the choice of the companies used in the thesis, and then
provides a detailed overview of the applied portfolio optimization model. In Section
4, we analyze the composition and performance of the optimized portfolios, while
Section 5 provides a summary of the results along with possible caveats, and discusses
future research opportunities.

2 Literature review
Central to the modern portfolio theory, initiated by Markowitz (1952), is finding a
balance between the expected return and allowed risk of the portfolio of risk-bearing
assets. According to McNeil et al. (2005), "most modern measures of the risk in a
portfolio are statistical quantities describing the conditional or unconditional loss
distribution of the portfolio over some predetermined horizon ∆". While Markowitz
(1952) used variance as the risk measure, a multitude of other, more sophisticated risk
measures based on loss distributions have been proposed since. Popular choices in
modern finance research include Value-at-Risk (VaR) and Conditional Value-at-Risk
(CVaR). With a fixed confidence level α, VaR is simply the α-quantile of the loss
distribution, while CVaR is the conditional expectation of the losses exceeding the
corresponding VaR.

VaR, even though a popular measure of risk, is known to have several undesirable
characteristics. Lack of subadditivity, leading to VaR behaving poorly with respect
to addition of risks, is perhaps the most notable of these (Artzner et al., 1999). Also,
while VaR controls the probability of losses, it by definition fails to take into account
the severity of them (Artzner et al., 1999). In addition, VaR is difficult to optimize
when calculated from scenarios (Rockafellar and Uryasev, 2000). CVaR solves many
of the problems associated with VaR and is thus often preferred over VaR in risk
modelling. In this thesis, a linearization of the CVaR risk constraint, as introduced
by Rockafellar and Uryasev (2000); Krokhmal et al. (2001), will be implemented.

The optimization problem may be defined in two ways: either maximize the
portfolio return while constraining the acceptable level of risk, or minimize the risk
while requiring a certain level of return. While we adopt the former approach, the
choice between the two does not affect the optimization results; the same risk-return
frontier is obtained both ways (Krokhmal et al., 2001).

To calculate the risk, three approaches to construct the loss distribution are
usually considered: historical simulation, variance-covariance method and Monte
Carlo simulation (Linsmeier and Pearson, 1996; McNeil et al., 2005). Historical
simulation means simulating future asset returns by generating them from realized
historical scenarios. It is straightforward to implement since one does not have to
consider the nature of the underlying return distribution nor the dependency structure
between risk factors: these will be assumed to exactly follow what has been observed
in the past. However, the reliability of the method is compromised if the amount of
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historical data is limited or does not contain enough extreme events. The variance-
covariance method offers a convenient analytical solution to risk measurement, with
the downside of requiring two crude simplifications that are often unjustifiable in risk
modelling: the assumption of normally distributed returns and a linear relationship
between the loss distribution and the risk-factor changes (McNeil et al., 2005).

In this thesis, Monte Carlo simulation is used to calculate the risk and expected
portfolio return. To this end, probability distributions are fitted to historical returns
and a large number of random samples from them is generated. The success of Monte
Carlo based methods depends largely on how well the chosen distributions describe
the underlying phenomena; our model should be able to accurately capture the return
distributions of the individual stocks, but also the dependency structure between
them, since stock prices have a tendency to move together following prevailing market
trends (Embrechts et al., 2003). For capturing the inter-asset dependency structure
in the model, copulas have shown promising results as they help model the marginal
return distributions separately from the dependency structure between assets, offering
more freedom compared to isolated simulation methods (Shekhar and Trede, 2017;
Kakouris and Rustem, 2014). A copula, in its simplest form, can be viewed as a
multivariate distribution with uniformly distributed margins, making it a probability
measure in the unit cube (Nelsen, 2005). The notion was first introduced by Sklar
(1959) but only later gained traction in risk modelling applications.

Two important copula families, offering frequently used alternatives for risk
modelling, are elliptical copulas and Archimedean copulas (Embrechts et al., 2003;
McNeil et al., 2005). Archimedean copulas are important for their ability to model
asymmetric tail dependence; as McNeil et al. (2005) point out, in finance it is often
reasonable to assume that the dependence between large losses is greater than the
dependence between large gains. Ang and Chen (2002) provide empirical support
for this by showing correlation asymmetries in U.S. stocks and aggregate market.
However, McNeil et al. (2005) show that extending Archimedean copulas to higher
dimensions may be problematic and Kakouris and Rustem (2014) point out that
simulation from them may be difficult.

Elliptical copulas, the copulas of elliptical distributions, have the benefit of being
simple to implement and simulate from (Embrechts et al., 2003). Two commonly
studied elliptical copulas include the Gaussian (normal) copula and t-copula, that
can be seen as a generalized Gaussian copula, since t-copula approaches the Gaussian
copula as its degrees of freedom parameter tends to infinity. While Gaussian copulas
have been criticized for their insufficient capability to capture joint extreme moves
of the risk factors (McNeil et al., 2005), t-copulas can be used to model stronger tail
dependence, making them the preferred copula choice in many existing studies (Kole
et al., 2007). For this reason, a t-copula will also be adopted in this thesis, leading
to a modelling and simulation methodology loosely inspired by the implementations
of Shekhar and Trede (2017); Vauhkonen (2022).

Anquetin et al. (2022) provide a prominent example of constructing carbon
sensitive stock portfolios by studying the performance of portfolios that are penalized
on all three emission scopes in a constrained mean-variance optimization framework.
They are able to cut the emission intensities in half without a significant effect on
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the portfolio Sharpe ratio. In addition, they find that penalizing scope 3 emissions
in addition to scope 1–2 leads to better performing portfolios than by only taking
scopes 1–2 into account.

The mean-variance framework is also used by Acerbi (2022) who compares
portfolios of S&P 500 stocks decarbonized with three different measures: carbon
emissions, carbon intensity and carbon beta (a measure of climate transition risk
exposure). The author finds that constraining the carbon intensity produces the
best performing portfolio. Chakrabarty and Nag (2023) conduct a literature review
of different mathematical models used to measure carbon risk. They note that
several studies find higher stock returns in companies with higher carbon emissions.
Both Tang and Luo (2014) and Siddique et al. (2021) suggest that high-quality
carbon disclosure and the actual carbon performance of a company have a positive
relationship, which may stem from impression management endeavors; good carbon
performers are likely willing to disclose more information to show sustainability to
stakeholders and the general public.

Outside the portfolio optimization framework, the relationship between environ-
mental and financial performance has been analyzed by for example Siddique et al.
(2021). The authors show a positive relationship between carbon disclosure and
long-term financial performance, but a negative relationship in short-term. Delmas
et al. (2015) find that reductions in GHG emissions lead to increased long-term
market performance. Both findings are consistent with Horváthová (2010) who con-
ducts a meta-analysis on numerous empirical studies addressing the relationship and
concludes that "it takes time for environmental regulation to materialise in financial
performance".

3 Methodology

3.1 Asset selection
Assets for the portfolio optimization problem are selected amongst European and
U.S. companies that disclosed their GHG emissions through CDP in 2020. Historical
market prices of the companies and market indexes (see below) from January 2005
through May 2023 are obtained from Yahoo Finance. Adjusted closing price is
used instead of the raw closing price, as the former accounts for various corporate
actions affecting the stock price and is thus considered a more accurate measure
when comparing the performance of multiple assets (Ganti, 2020). Asset prices
are taken from the last available dates of each month. The GHG emissions of the
studied companies are provided by CDP (2020) and, in order to calculate an emission
intensity for each company, financial statements at fiscal year-end 2019 are obtained
from CreditEdge.

Only companies for which all mentioned data are available are considered. To
equalize the country distribution and to allow feasible computing times, the list of
U.S. companies is narrowed down to approximately a fifth of all possible companies
via random sampling. It is also noted that a significant portion of German com-
panies are eliminated due to gaps in market price data before 2010, leaving them
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underrepresented. Further, countries with less than 10 companies are left out of
the analysis. Ultimately, 724 companies are selected to be studied (see Table 1 for
their distribution by country). To assess the performance in contrast to the general
market, major market indexes from the four most represented countries are used as
a benchmark. These include S&P 500 (United States), CAC 40 (France), FTSE 100
(United Kingdom) and SMI (Switzerland).

Table 1: Details of the stock exchanges behind the market price data and the number
of companies from each

Country Stock exchange Original currency Companies
Austria Wiener Börse EUR 19
Belgium Brussels Stock Exchange EUR 28
Denmark Nasdaq Copenhagen DKK 22
Finland Nasdaq Helsinki EUR 25
France Euronext Paris EUR 109
Germany Börse Berlin EUR 12
Italy Borsa Italiana EUR 37
Netherlands Euronext Amsterdam EUR 28
Norway Oslo Stock Exchange NOK 20
Sweden Nasdaq Stockholm SEK 63
Switzerland SIX Swiss Exchange CHF 74
United Kingdom London Stock Exchange GBP 99
United States New York Stock Exchange USD 188

All data in a currency other than euro (see Table 1) are converted to euro,
by dividing by the historical currency exchange rate at the given date. For each
company, an emission intensity (in CO2 equivalent tonnes per a million euros) is
calculated following the convention for listed enterprises outlined by PCAF (2022)
as closely as possible: for each company, the sum of absolute scope 1 and scope
2 emissions is divided by the sum of total equity and debt. We note that several
papers, including (Anquetin et al., 2022; Acerbi, 2022), use the company’s revenue
as the emission intensity denominator rather than the standard set by PCAF (2022).
The standardized convention is a natural methodological choice as we calculate the
financed emissions of portfolios, but may provide slightly deviating figures compared
to the revenue-based approach.

The mean and median financed emission intensities are calculated separately for
each industry (see Table 2). For comparison, the mean and median of the revenue-
based emission intensity provided by CDP is also presented in Table 2. The results
may be considered as expected, with the highest emissions observed in sectors such
as fossil fuels and transportation, and the lower end being represented by services
and biotech, health care & pharma. The infrastructure sector demonstrates a large
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difference in the median and mean emission intensity, which may indicate that the
sector contains companies from a broad scale of activity groups.

Table 2: Mean and median financed emission intensity (FE) and the revenue-based
emission intensity (RI) by industry, ordered by the median of the former. The total
number of companies from each industry is in parenthesis, and all values are in
tCO2e/MEUR.

FE RI
Industry Mean Median Mean Median
Transportation services (19) 835.28 724.33 731.96 604.71
Power generation (12) 835.14 513.31 2524.4 1088.9
Fossil Fuels (15) 1246.1 367.58 1056.5 478.83
Apparel (2) 328.34 328.34 187.91 187.91
Materials (57) 686.74 323.97 682.58 275.51
Food, beverage & agriculture (37) 105.25 63.345 91.948 53.250
Hospitality (19) 136.80 44.797 84.846 29.077
Retail (47) 74.260 44.628 36.862 15.355
Manufacturing (137) 82.608 41.691 50.031 24.131
Biotech, health care & pharma (61) 31.319 21.701 34.017 34.333
Infrastructure (55) 194.99 20.139 324.25 36.175
Services (263) 41.046 7.0823 76.559 9.7339
All data (724) 179.21 31.473 237.42 27.345

3.2 Modelling returns
Log-returns will be used to measure changes in asset prices. This naturally follows
from using the logarithmic asset prices as risk factors, a standard practice in financial
risk management (McNeil et al., 2005; Manzanares and Schwartzlose, 2009). Let Ki,t

be the price of asset i at time t. Then, the (1-period) log-return of asset i at t is
given by

ri,t = ln
(︄

Ki,t

Ki,t−1

)︄
= ln Ki,t − ln Ki,t−1 (1)

In this thesis, one-month intervals are used to calculate the returns. This has two clear
advantages over daily returns, arguably the most common convention in stock return
modelling. As McNeil et al. (2005) point out, volatility clustering (i.e. the tendency
of extreme price changes appearing successively) of the returns is less apparent in
longer intervals. This makes it more reasonable to assume the independence and
homoscedasticity of monthly returns compared to daily returns so that one does not
have to account for conditional variance with methods such as GARCH filtering.
Furthermore, a longer interval makes missing data a lesser problem. We construct
an international portfolio, using price data from multiple stock exchanges that are
closed on different days in concordance to different national holidays; while it is
relatively straightforward to use the last available price value of each month, trying
to fill the gaps in daily data would be a much more tedious task and possibly affect
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the reliability of the results. The downside to using a longer interval is that there
are fewer data points, which can make it difficult to obtain a reliable fit, unless a
much longer training period is used. The number of data points can be preserved by
using overlapping periods, but as this leads to additional serial dependencies that
have to be factored in in order to stationarize the return series, it is generally not
recommended (McNeil et al., 2005).

The choice of the training period (i.e. the data used to fit the distributions) can
significantly affect the return distribution and thus has to be considered carefully for
more reliable optimization results. Naturally, more recent market behaviour can be
assumed to be more indicative of future performance of an asset, so in choosing length
of the training period, the challenge lies in obtaining enough data, but simultaneously
avoiding data that can be considered outdated and thus misleading. One also has
to consider the frequency of extreme market events that have occurred during the
training period and keep in mind that using heavy-tailed distributions, especially
those with infinite variance, tend to exaggerate the frequency of extreme values.

We use monthly market prices from January 2005 until December 2019 for fitting
the distributions (referred to as the in-sample or the training period), and prices
from December 2019 until May 2023 for out-of-sample performance analysis of the
optimized portfolios. The length (in months) of the in-sample period is denoted by
t0 = 179 (note that t = 1 corresponds to February 2005, the first possible instance to
calculate the return). While the 2007-2008 financial crisis is included in the training
period, the effects of the COVID-19 pandemic starting early 2020, and the Russian
invasion of Ukraine in 2022, are deliberately excluded and instead used for testing.
As the latter two events have contributed to noticeable shifts in market trends, the
out-of-sample analysis is expected to provide an overview of the robustness of the
portfolios to crises.

3.3 Univariate distributions of the return series
We use Student’s t-distribution for modelling the log-returns of individual assets, as
it is widely used in existing research to capture the heavy tails that are often observed
in financial risk management settings (Officer, 1972; McNeil et al., 2005). Note that
in this thesis, t-distribution refers to the location-scale t-distribution lst(µ, τ 2, ν),
where µ is the location (expected value) of the distribution, τ is a scaling parameter
and ν is the degrees of freedom parameter. The link to the standard t-distribution
t(ν) with ν degrees of freedom is

Y = µ + τX, where Y ∼ lst(µ, τ 2, ν), X ∼ t(ν), (2)

which shows the convention of defining µ and τ as properties of the distribution itself.
The t-distribution approaches the normal distribution as the degrees of freedom
parameter tends to infinity, and can thus be seen as a generalization of the normal
distribution, providing more freedom in fitting.
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100 % 0.047727 0.41897 4.6612 136.67
75 % 0.011059 0.10777 −0.041060 3.8510
50 % 0.007705 0.086820 −0.33752 1.8987
25 % 0.003064 0.069161 −0.61810 0.90534
0 % −0.026869 0.029033 −11.083 −0.34813

mean 0.006936 0.092856 −0.40647 3.9023

Figure 1: Distribution of the mean, standard deviation, skewness and kurtosis of the
monthly log-return series

By visual inspection, the return series ri ∈ Rt0 of each individual asset are
fairly symmetrically distributed and follow a bell-like shape matching that of a
t-distribution (examples in Figure 3). To further assess their characteristics, the first
four moments are calculated for each series (see Figure 1, with standard deviation
instead of variance describing the second moment). The percentage values in the
table refer to the corresponding quantiles such that the 0 %-quantile is the minimum
value and the 100 %-quantile the maximum. The kurtosis values describe excess
kurtosis, where the normal distribution has 0 kurtosis. It is apparent that most of
the log-return series are leptokurtic, showing signs of heavier tails than a normal
distribution would be capable of modelling. Most series have a skewness close to
zero, but outliers exhibiting both positive and negative skewness are observed. Over
75 % of the assets exhibit a negative skewness, but as most of the values land very
close to 0, a symmetric t-distribution is assumed to provide a sufficient fit. The
distributional hypothesis can be expressed as

ri,t ∼ lst(µi, τ 2
i , νi). (3)

A t-distribution is fitted to each return series ri separately, using the t.fit() method
in the scipy.stats Python package, obtaining maximum likelihood estimators for
the distribution parameters. We denote by n the number of assets in the data;
µ ∈ Rn are the location parameters, τ ∈ Rn

+ the scale parameters and ν ∈ Rn
+

are the degrees of freedom of the fitted t-distributions. The Kolmogorov-Smirnov
(KS) test is performed for each of the fitted distributions to assess goodness of fit.
The distributions of the fitted parameter estimators and the p-values of the KS
tests are presented in Figure 2. Note that the boxplot of the degrees of freedom
parameters has been rescaled to allow viewing the majority of data in more detail.
Notably, the minimum p-value of the KS test among the assets is 0.64, which is well
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above any commonly used significance levels and thus does not justify rejecting the
distributional hypothesis for any of the assets.

100 % 8.9854 · 106 0.043198 0.17278 1.0000
75 % 7.8821 0.013370 0.080734 0.99921
50 % 5.1524 0.009707 0.065391 0.99446
25 % 3.7121 0.005870 0.53395 0.97625
0 % 1.6818 −0.030191 0.017979 0.63983

mean 56172 0.009217 0.068712 0.97321

Figure 2: Distribution of the parameter estimators in fitted t-distributions, and the
p-values of the Kolmogorov-Smirnov tests

As an example, Figure 3 provides visualizations of the return distributions of 4
companies in our data, along with the fitted t-distribution. Empirical CDF of the
returns and the CDF of the t-distribution are also shown; the KS test measures
goodness of fit based on the largest vertical distance between the two.

Figure 3: [Top] Distribution of log-returns of Elisa Oyj, Hennes & Mauritz AB,
Airbus SE and Marriott International, Inc. from Feb 2005 to Dec 2019, the empirical
mean (blue dashed), the fitted t-distribution (orange) and its location (red dashed).
[Bottom] ECDF of the returns (blue) and CDF of the fitted t-distributions (orange).
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3.4 Modelling dependency with a t-copula
The dependencies between the return series are modelled with a t-copula which is
here defined as in (Embrechts et al., 2003). Let tn

ν,R be the CDF of the standard
multivariate t-distribution in n dimensions with ν degrees of freedom and the linear
correlation matrix R ∈ Rn×n. The multivariate t-distribution itself is denoted by
t(ν, R). Also, let t−1

ν be the inverse CDF of the standard univariate t-distribution
with ν degrees of freedom. The standard n-dimensional t-copula couples together
a multivariate t-distribution and n standard t-distributions with equal degrees of
freedom. It is defined as

Ct
ν,R : [0, 1]n → [0, 1], Ct

ν,R(u) = tn
ν,R(t−1

ν (u1), ..., t−1
ν (un)), (4)

where u follows the standard uniform distribution. Now denote the cumulative
distribution function (CDF) of a certain return distribution lst(µi, τ 2

i , νi) by

Fi : R → [0, 1]. (5)

By the probability integral transform (PIT) theorem, Fi(ri,t) follows approximately
the standard uniform distribution. Thus, by performing a PIT to each of the
return series ri by applying Fi, we obtain a collection of n vectors ui ∈ Rt0 that
approximately follow the standard uniform distribution and can be used for fitting
the copula. This collection is denoted by u ∈ [0, 1]n×t0 .

Maximum likelihood estimation (MLE) is used to find the optimal degrees of
freedom ν̂ and the corresponding correlation matrix R(ν̂) = R̂ of the t-copula Ct

ν̂,R̂
(u).

The likelihood function, subject to maximization, is (McNeil et al., 2005)

L(ν|u) =
t0∑︂

t=1
ln fν,R(t−1

ν (ui,t), ..., t−1
ν (un,t)) −

t0∑︂
t=1

n∑︂
i=1

ln fν(t−1
ν (ui,t)), (6)

The maximum likelihood estimator for the degrees of freedom is

ν̂ = argmax
ν

L(ν|u). (7)

The high dimensionality in our setting makes (6) relatively expensive computationally;
note that also the correlation matrix has to be separately computed for each value
of ν. However, we assume that integer degrees of freedom provide sufficient accuracy,
and maximize L(ν|u) via numerical testing over integer solutions ν only. As Figure
4 shows, the likelihood function attains its maximum at ν = 11 and as such, ν̂ = 11
is selected as the degrees of freedom of the t-copula.
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Figure 4: Value of the likelihood function for ν ∈ [8, 9, ..., 13].

3.5 Scenario creation
Future returns are simulated by generating random samples from the fitted copula,
equivalent to generating samples from the multivariate t-distribution t(ν̂, R̂) and
performing a PIT to these samples (see Equation 4). Implementing the latter
approach, we generate N random samples from t(ν̂, R̂) and transform each element
q̃j,i in this collection with tν̂(q̃j,i). This gives a collection ũ ∈ RN×n of uniformly
distributed samples, which are further transformed into log-return scenarios using
the inverse CDF of the corresponding univariate marginal distributions:

r̃j,i = F −1
i (ũj,i). (8)

Each row r̃j ∈ Rn represents an individual scenario of monthly log-returns of each
asset. At this point we note that due to randomness of the data, and especially the
infinite variance property of the marginal distributions with νi ∈ (1, 2], the simulated
data may contain extreme outliers that are not truly representative of the underlying
market behaviour. As an example, note that since e4 ≈ 55, a value r̃j,i = 4 would
correspond to a 55-fold increase in the asset price during one month, which is deemed
nearly impossible under normal circumstances. We opt for a simple approach to
mitigate the undesired effects of the outliers in optimization; any simulated scenarios
containing values above 4 or below -4 are removed.

For the optimization problem, the portfolio risk and expected return are inferred
for a 1-year period. From (1) we get

ln Ki,t = ln Ki,t−1 + ri,t, (9)

and then the 12-month cumulative return of asset i is given by

ln Ki,12 − ln Ki,0 =
12∑︂

t=1
ri,t, (10)

where ln Ki,0 is the initial value of the asset. The individual returns of asset i
are assumed to be independent and identically distributed as characterized by the
marginal distributions lst(µi, τ 2

i , νi). Furthermore, the scenarios r̃j are assumed
to be independent, which allows us to create 12-month return scenarios by simply
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adding together 12 monthly scenarios at a time; the resulting collection of 12-month
log-return scenarios will be denoted by s̃. The number of scenarios s̃j is J ≤ N

12 , where
the inequality is caused by the removal of outliers. We generate N = 120000 monthly
scenarios, and after the aggregation, 58 outlying scenarios are removed to obtain
J = 9942 yearly scenarios. Figure 5 shows the distribution of the simulated scenarios
of 4 companies, demonstrating that the scenario count is sufficient to provide fair
convergence of the distribution of yearly scenarios.

Figure 5: Distribution of the the simulated 1-month log-return scenarios (blue) and
the 12-month log-return scenarios aggregated from the 1-month scenarios (orange)
of Elisa Oyj, Hennes & Mauritz AB, Airbus SE and Marriott International, Inc.

3.6 Constructing the optimization problem
3.6.1 Loss function

The relative change in asset value – rate of return – forms the basis for the portfolio
loss function. The expected rate of return of asset i during the optimization period is
approximated from the simulated scenarios as the average of exponentiated log-returns

ỹi =
∑︁J

j=1 es̃j,i

J
≈ E

[︄
Ki,t

Ki,t−12

]︄
, (11)

which gives a vector ỹ ∈ Rn of expected 12-month return rates. Let x ∈ Rn be the
decision variable in the optimization model, describing the amount invested in each
asset. The total initial value of the portfolio is V = ∑︁n

i=1 xi. As it is assumed that
a continuous amount can be invested to each asset, and transaction costs are not
accounted for in the model, the choice of V does not affect the optimal portfolio
composition. We will use the value V = 1 which allows interpreting the losses and
investments proportionally. The loss function of the portfolio, describing the negative
change of the portfolio value during the optimization period, will now take the form

L(x|ỹ) = −xT ỹ + V. (12)

Since V defined as a constant, it may be omitted from the objective function and
the term to be minimized will be −xT ỹ, the negative expected portfolio value at the
end of the investment horizon.
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3.6.2 Conditional Value-at-Risk constraint

In our scenario-based approach, the CVaR risk constraint is easily linearized along
the lines proposed by Rockafellar and Uryasev (2000) and Krokhmal et al. (2001).
We first consider the function

Fα(x, ζ) = ζ + 1
1 − α

∫︂
y∈Rn

[L(x|y) − ζ]+p(y)dy, (13)

where ζ can be seen as a threshold parameter for the loss, and [t]+ = max{t, 0}.
Random sampling of return scenarios makes it possible to approximate Fα(x, ζ) via
the discretization

F̃ α(x, ζ) = ζ + 1
J(1 − α)

J∑︂
j=1

[L(x|s̃j) − ζ]+, (14)

where, as a result of the applied sampling method, it is assumed that each scenario
s̃j has equal probability. Note that the interpretation for 1

J

∑︁J
j=1[L(x|s̃j) − ζ]+ is

the empirical mean of the losses exceeding ζ. For a fixed x, the empirical CVaR ϕ̂α

corresponding to the threshold α is then found by minimizing F̃ α

ϕ̂α(x) = min
ζ∈R

F̃ α(x, ζ). (15)

Frequently used values of the confidence level α include 0.90, 0.95 and 0.99 (Rockafellar
and Uryasev, 2000) and with a higher confidence level, only more extreme losses are
taken into account. We use a confidence level α = 0.99 to obtain a sufficient safety
margin. As an additional remark, the corresponding Value-at-Risk (VaR) is defined
to be the left endpoint of the set

Zα = argmin
ζ∈R

F̃ α(x, ζ). (16)

It is noted that Zα may reduce to a single point, but in general is a nonempty, closed
and bounded interval (Rockafellar and Uryasev, 2000). Now, let ω describe the
maximum tolerated CVaR of the loss distribution so that

ϕ̂α(x) ≤ ω. (17)

We refer to (15) and note that by definition ϕ̂α(x) ≤ F̃ α(x, ζ) for all values of ζ. Thus,
by introducing ζ as a variable in the optimization problem, the CVaR constraint can
be expressed as

F̃ α(x, ζ) ≤ ω (18)
and linearized by introducing dummy variables zj as the summands:

ζ + 1
J(1 − α)

J∑︂
j=1

zj ≤ ω (19)

zj ≥ L(x|s̃j) − ζ, zj ≥ 0, j = 1, ..., J, ζ ∈ R. (20)
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3.6.3 Financed emissions and diversification constraints

Let E ∈ Rn be the vector of calculated emission intensities (in tCO2e/MEUR) of
each individual company (see Section 3.1). We can express the financed emissions
of the portfolio as the simple product ET x. Let the maximum allowed financed
emissions be γ, giving the financed emissions constraint

ET x ≤ γ (21)

In addition, to even out the composition of the portfolio, we implement the following
diversification constraints:

1. A single asset may constitute at most 2.5 % of the portfolio value (β = 0.025)

2. A single industry may constitute at most 20 % of the portfolio value (βA = 0.20)

3. A single country may constitute at most 20 % of the portfolio value (βB = 0.20)

Let I be the identity matrix in n dimensions, A ∈ RU×n be the industry indicator
matrix, and B ∈ RW ×n be the country indicator matrix, where U = 12 is the number
of different industries and W = 13 is the number of different countries in the data.
The industry indicator matrix is defined by

Au,i =

⎧⎨⎩1, if company i belongs to industry u

0, otherwise
, u = 1, ..., U, i = 1, ..., n,

and the country indicator matrix follows a similar definition. This leads to the
diversification constraints

Ix ≤ β

Ax ≤ βA

Bx ≤ βB,

(22)

where the right sides correspond to constant vectors in n dimensions.
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3.6.4 Solving the problem

In order to make the optimization problem feasible for all ω ≥ 0, γ ≥ 0, we incorporate
into the model a constant asset, which describes the cash amount not exposed to
risk. The corresponding return scenarios are described with a vector consisting of
1s only, which is added as a column in s̃j. The amount invested in the constant
asset is not constrained; the corresponding values in I, A B and E are set to 0. The
optimization problem takes the following form:

min
x,ζ,z

−xT ỹ

s. t. ζ + 1
J(1 − α)

J∑︂
j=1

zj ≤ ω

zj ≥ −xT s̃j + V − ζ
n∑︂

i=1
xi = V

ET x ≤ γ

Ix ≤ β

Ax ≤ βA

Bx ≤ βB

xi ≥ 0, i = 1, ..., n, zj ≥ 0, j = 1, ..., J, ζ ∈ R,

where ζ and z are obtained as byproducts of the optimization. To implement and
solve this optimization problem, the modeling module from the CVXOPT Python
package is used for its capability of interpreting individually defined constraints that
are not necessarily in standard form. Seven risk levels and three emission constraint
levels are used for optimization:

ω ∈ {0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.30}
γ ∈ {∞, 30, 15}

The emission constraint level 30 tCO2e/MEUR is selected as it is roughly equal to
the median emission intensity (see Table 2), and the level 15 tCO2e/MEUR is chosen
to halve the threshold. Note that when V and x are defined to describe proportional
(unitless) values, γ should be interpreted as an emission intensity (tCO2e/MEUR),
whereas by associating a unit of 1 million euros to the values of V and x, γ can be
interpreted as the absolute financed emissions (tCO2e) of the portfolio. The latter
interpretation will be adopted in the next section when applicable.
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4 Results

4.1 Optimization results

Figure 6: Expected risk-return frontiers of the optimized portfolios with three
different maximum emission intensity levels. Above the portfolios with unconstrained
emissions is the calculated emission intensity of the portfolio.

Solving the optimization problem with these 3 emission constraints and 7 risk con-
straints gives the efficient risk-return frontiers presented in Figure 6. The horizontal
axis corresponds to the calculated portfolio risk (0.99-CVaR), obtained as the mean
of the losses in the worst 1 % scenarios. It is noted that the highest risk tolerance
constraint ω = 0.3 is not active for any value of γ. With the lowest values of ω, all
of the portfolio share is not exposed to risk, meaning that in the optimal portfolio
composition, some of value is designated to the constant asset. The emission con-
tribution of the constant asset is also assumed to be zero. This should be taken
into account when comparing the performance of different portfolios. All parameter
combinations resulting in constant asset investments are in Table 3.

Table 3: Parameter combinations resulting in some of the portfolio value not being
exposed to risk, and the amount not exposed to risk in these portfolios

γ ω = 0.01 ω = 0.03 ω = 0.05
∞ 0.144 0 0
30 0.245 0.079 0
15 0.361 0.205 0.135

Unconstrained, the financed emissions of most portfolios settle to around 65
tCO2e (see Figure 6). Thus, with most risk thresholds, the constraints restrict
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financed emissions to slightly less than a half (with γ = 30) and a quarter (with
γ = 15), compared to the portfolio with unconstrained emissions. The portfolios
with lower risk thresholds have higher financed emissions, which may happen by
chance, or indicate that on average, companies with lower emissions exhibit a higher
volatility. As an example, large fossil fuel companies often have very robust and well
defined business models with a fairly predictable operating income.

With unconstrained emissions and CVaR, the expected 12-month return is around
45 %. Constraining the financed emissions to 30 tCO2e reduces the expected return
by 3–5 % (in relative terms) with ω ≥ 0.05, and by around 8 % with ω ∈ {0.01, 0.03}.
Constraining the emissions to 15 tCO2e reduces the expected return by 12–15 %
with ω ≥ 0.1 and by 21–24 % with ω ≤ 0.05. Taking into account the constant
asset investments (Table 3), the reduction in expected performance is fairly constant
across different values of ω.

We find that the industry composition of the portfolios changes relatively little
from restricting the financed emissions, which may be partly caused by the industry
diversification constraints already in place. With lower risk thresholds, the industry
composition is observed to be more diverse, while more diversification constraints
are active with higher allowed risk. For the detailed industry composition of 12
optimized portfolios, see Appendix B.

4.2 Out-of-sample portfolio performance

Figure 7: Realized risk-return frontiers of the optimized portfolios in 3 separate
time horizons: 12 months (densely dashed), 24 months (solid line) and 41 months
(sparsely dashed)

All optimized portfolios are exposed to the realized market prices of the out-of-
sample period. Their performance is compared in 3 time horizons: 12 months, 24
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months and 41 months (the whole out-of-sample period). This results in the realized
risk-return frontiers depicted in Figure 7.

The 12-month and 24-month return frontiers exhibit a positive risk-return rela-
tionship with risk constraints up to ω = 0.15, with the 24-month return showing
a visibly stronger correlation. Increasing the CVaR threshold above 0.15 causes a
decline in the 12-month and 24-month return of most portfolios. In the 41-month
period, portfolios with ω = 0.05 show on average the highest returns, with mostly
a negative risk-return relationship on risk thresholds higher than that. We may
conclude that in the 2020–2023 sample, long-term performance favors lower risk
thresholds than the performance in a shorter period.

Figure 8: Out-of-sample performance of 6 optimized portfolios in comparison to an
equally weighted portfolio and 4 market indexes

Figure 8 shows the change in the monthly value of the optimized portfolios with
ω ∈ {0.05, 0.2}, a portfolio with equal weights, and the market indexes. By visual
inspection, the portfolios with lower risk constraints seem more robust to large
market shifts, generally exhibiting smaller losses during market downswings and
smaller returns during upswings. The observations indicate moderate predictability
of portfolio volatility. All optimized portfolios in Figure 8 outperform the equally
weighted portfolio and three out of the four market indexes during the out-of-sample
period. In addition, three of the six portfolios outperform S&P 500, the best
performing market index. The best performing portfolio during the out-of-sample
period (unconstrained emissions, ω = 0.05) exhibits a return of 40.3 %, while the
S&P 500 return is 35.2 % and the equally weighted portfolio return is 22.1 %.

With lower risk thresholds, the relative order of different emission constraints is
observed to largely match the expectation, so that portfolios with γ = 30 outperform
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those with γ = 15, but the opposite is observed with some of the higher risk thresholds.
The portfolios with unconstrained emissions perform best in all considered time
horizons, except for two occasions where a portfolio with constrained emissions
exhibits the largest return. Any discrepancies only become apparent in longer periods
and with higher allowed risk, which conforms to expectations and indicates they are
random by nature.

During the 41-month period and the risk level ω = 0.05, constraining the financed
emissions to 30 tCO2e leads to 12.2 % reduction, and the constraint 15 tCO2e in a
20.6 % reduction in portfolio return. With the risk level ω = 0.2, the corresponding
reductions are 23.8 % and 10.5 %. While the exact performance reduction varies,
its magnitude is similar across the risk levels. With most risk levels, the relative
performance reduction is slightly larger than the corresponding reduction in expected
return (see Figure 6).

Figure 9: 2000 41-month scenarios of the optimal portfolio with γ = ∞ and ω = 0.1,
the 99 % confidence intervals and the median calculated from the scenarios, and the
realized performance of the portfolio in out-of-sample testing

To compare the expected and realized portfolio performance in more detail, Figure
9 shows 2000 individual 41-month performance scenarios of the optimal portfolio
with unconstrained emissions and risk constraint ω = 0.1. This portfolio performed
consistently well in all previously compared time horizons (see Figure 7). Note that
the performance of individual scenarios depends on how the monthly scenarios are
aggregated, and the scenarios presented here do not correspond to the 12-month
scenarios used for optimization, but should provide a fairly accurate display of the
distribution of scenarios and the expected return over a longer period. Figure 9 also
shows the 99 % confidence interval and median calculated from the scenarios, along
with the realized performance of the portfolio during the out-of-sample period.

In all simulated scenarios, a positive 41-month return is observed, with the
maximum corresponding to a ten-fold increase in portfolio value. It is apparent
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that the realized performance is significantly weaker than the expected performance,
which is largely a result of the unusual market events caused by the COVID-19
pandemic and the Russian invasion of Ukraine during the period. This acts as a
reminder that the past performance of financial instruments should not be seen as a
reliable indicator of future performance.

5 Summary
In this thesis, we studied how constraining the financed emissions of a stock portfolio
affects the performance and industry composition of the portfolio. Unlike in earlier
research on carbon sensitive mean-variance portfolios, we used a CVaR risk constraint
and a Monte Carlo simulation framework where Student’s t-distributions were used
for modelling stock returns and a t-copula for modelling their dependencies. The
optimization proved effective as the optimized portfolios clearly demonstrated an
improved out-of-sample performance compared to an equally weighted portfolio of
the same companies and the general market, represented by major market indexes.

Financed emissions of the portfolios with different risk levels were constrained to
approximately match the median and the lower quartile emission intensity of the
studied companies. This systematically reduced the portfolio return, which is in
contrast with the results of Anquetin et al. (2022). Besides a different optimization
and emission calculation methodology, Anquetin et al. (2022) consider a significantly
larger amount of companies, which may be a significant factor allowing one to find
better performing companies. Our results could also be seen as a loose indicator of
a correlation between high emissions and high returns, which, as Chakrabarty and
Nag (2023) point out, may be caused by various types of indirect causality.

Possible self-selection bias caused by studying only companies that reported to
CDP is addressed by for example Siddique et al. (2021); Luo (2019). They find no
significant self-selection bias in the CDP data, which means that the results are likely
to be fairly representative of the broader market. Furthermore, the reliability of the
GHG figures can be considered sufficient, as scope 1 and 2 emissions are subject to
large-scale regulations, and because CDP extensively reviews the quality of reported
data. CDP also provides estimates to replace missing or fallacious emission figures,
which led to us using the estimated information whenever possible.

The data for studying the out-of-sample performance of the portfolios was im-
pacted by the COVID-19 pandemic. This creates an additional model variate as
one has to consider the differences in how well companies and industries coped with
the pandemic. Consequently, the results presented do not necessarily translate to
regular market performance, and a different time period could be considered for
comparison. Additionally, out-of-sample performance was studied over a fairly short
41-month period, which does not suffice for drawing conclusions about long-term
asset performance. Thus, the results do not directly contradict the hypothesis that
environmental regulation has positive financial impact in long-term, as induced by
earlier research.

We notice that our model tends to predict very high long-term returns of the
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optimal portfolios. This is likely the result of outlying scenarios drawn from return
distributions with heavy right tails. While we expect scenarios drawn from symmetric
distributions to contain equally many outliers in the upper and lower tails, it is
possible to obtain series that contain only very few immensely large outliers in the
right tail, which increases the expected return with no effect on the expected risk, as
CVaR only takes into account the heaviness of the lower tail. We note that using
hundreds of assets makes it difficult to assess the accuracy of every fitted distribution,
but using left-skewed marginal distributions could provide an improvement to the
model by mitigating the effects of outliers.

Our results can be used as an indicator of the impact of extending mandatory
GHG reporting, but caution needs to be applied if drawing conclusions related
to environmental performance, as GHG emissions alone should not be seen as a
comprehensive indicator of a company’s climate risk. However, along with the
increasing legislation of environmental disclosure in the EU and worldwide, one may
expect a growing amount of standardized environmental data to be available in the
near future, which will make it possible to consider more accurate environmental
measures, creating several new research opportunities on the relationship between
financial and environmental performance.
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A Correlation coefficients by industry
For each industry pair, the mean of the correlation coefficients in the copula correla-
tion matrix R̂ are presented in Table A1. The coefficients are calculated between
the PIT-transformed log-return series (see Section 3.4). The industries are Ap-
parel (App.), Biotech, health care & pharma (Bio.), Food, beverage & agriculture
(Foo.), Fossil Fuels (Fos.), Hospitality (Hos.), Infrastructure (Inf.), Manufacturing
(Man.), Materials (Mat.), Power generation (Pow.), Retail (Ret.), Services (Ser.) and
Transportation services (Tra.).

Table A1: Mean of correlation coefficients between industry pairs in the copula
correlation matrix.

App. Bio. Foo. Fos. Hos. Inf. Man. Mat. Pow. Ret. Ser. Tra.
App. 0.681 0.190 0.199 0.220 0.244 0.249 0.297 0.305 0.170 0.216 0.261 0.219
Bio. 0.190 0.187 0.163 0.145 0.184 0.187 0.210 0.203 0.149 0.169 0.187 0.168
Foo. 0.199 0.163 0.212 0.159 0.184 0.190 0.207 0.204 0.173 0.179 0.187 0.160
Fos. 0.220 0.145 0.159 0.360 0.161 0.183 0.226 0.231 0.171 0.168 0.194 0.190
Hos. 0.244 0.184 0.184 0.161 0.281 0.219 0.259 0.253 0.141 0.221 0.228 0.207
Inf. 0.249 0.187 0.190 0.183 0.219 0.268 0.256 0.252 0.188 0.212 0.235 0.206
Man. 0.297 0.210 0.207 0.226 0.259 0.256 0.328 0.312 0.168 0.243 0.270 0.257
Mat. 0.305 0.203 0.204 0.231 0.253 0.252 0.312 0.323 0.171 0.234 0.265 0.250
Pow. 0.170 0.149 0.173 0.171 0.141 0.188 0.168 0.171 0.302 0.158 0.171 0.143
Ret. 0.216 0.169 0.179 0.168 0.221 0.212 0.243 0.234 0.158 0.239 0.217 0.201
Ser. 0.261 0.187 0.187 0.194 0.228 0.235 0.270 0.265 0.171 0.217 0.251 0.222
Tra. 0.219 0.168 0.160 0.190 0.207 0.206 0.257 0.250 0.143 0.201 0.222 0.269
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B Industry distribution
The portion of the portfolio value constituted by each industry in the optimized
portfolios with different emission constraints γ is presented in Table B1 for four risk
constraints ω. Note that with ω = 0.05, γ = 15, the industries do not comprise all
of the portfolio value (see Table 3).

Table B1: Contribution of each industry (ordered by their median emission intensity
in descending order) to the portfolio value with different constraint parameters (total
number of companies from each industry in parenthesis).

ω 0.3 0.2
Industry γ ∞ 30 15 ∞ 30 15
Transportation services
(19)

0 0 0 0 0 0

Power generation (12) 0 0 0 0 0 0
Fossil Fuels (15) 0 0 0 0.022 0 0
Apparel (2) 0 0 0 0 0 0
Materials (57) 0.025 0 0 0.073 0.017 0
Food, beverage & agricul-
ture (37)

0.075 0.075 0.075 0.075 0.075 0.092

Hospitality (19) 0 0 0.025 0 0 0.011
Retail (47) 0.175 0.125 0.1 0.152 0.108 0.097
Manufacturing (137) 0.2 0.2 0.2 0.2 0.2 0.2
Biotech, health care &
pharma (61)

0.2 0.2 0.2 0.2 0.2 0.2

Infrastructure (55) 0.125 0.2 0.2 0.1 0.2 0.2
Services (263) 0.2 0.2 0.2 0.2 0.2 0.2

ω 0.1 0.05
Industry γ ∞ 30 15 ∞ 30 15
Transportation services
(19)

0 0 0 0 0 0

Power generation (12) 0 0 0 0 0 0
Fossil Fuels (15) 0.004 0 0 0.022 0 0
Apparel (2) 0 0 0 0 0 0
Materials (57) 0.05 0.018 0.033 0.05 0.035 0.030
Food, beverage & agricul-
ture (37)

0.125 0.099 0.075 0.127 0.075 0.046

Hospitality (19) 0.023 0.027 0.016 0.075 0.072 0.025
Retail (47) 0.1 0.117 0.076 0.112 0.092 0.062
Manufacturing (137) 0.179 0.2 0.2 0.138 0.2 0.194
Biotech, health care &
pharma (61)

0.2 0.183 0.2 0.186 0.2 0.2

Infrastructure (55) 0.119 0.155 0.2 0.090 0.127 0.108
Services (263) 0.2 0.2 0.2 0.2 0.2 0.2
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