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Abstract
Commonly the price of a purchase item depends on the purchase quantity. This is
especially the case when the purchase items are manufactured to order, in which case
fixed manufacturing costs are shared by a bigger quantity. On the other hand, as the
order quantity increases, so does the warehouse cost. Optimizing order quantities is
therefore an important part of the purchasing process. In the purchasing process, it
is beneficial to consider multiple alternatives for the possible amount to be ordered.

The objective of this thesis is to find the minimum annual total cost function and
the corresponding optimal order quantity for every purchase item under investigation.
Towards this end, a mixed-integer linear programming model was formulated to find
the optimal order quantities for each purchase item. A Python program was used to
implement the optimization model and calculate the optimal order quantities.

The case company of this thesis is Normet, a Finnish company that specialises
in products for tunnel construction and mining. All data used in this thesis was
acquired from Normet’s ERP-system.

The results of the model were consistent and the general recommendation for
the purchase items was to order in larger quantities. This is because the benefit of
lower prices usually outweigh the drawbacks of warehouse costs and capital costs.
By increasing the order quantities of purchase items with price breaks, we can make
optimal procurement decisions. Therefore, the model can help the company achieve
significant savings. Inclusion of risk analysis and the removal of several assumptions
are identified as topics for future research.
Keywords Quantity Optimization, All-Units Quantity Discount, Mixed-Integer

Linear Programming, Multi-Product, Inventory Management
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Tiivistelmä
Tuotteen hinta riippuu tilauserien koosta. Tämä pätee erityisesti, kun ostonimikkeet
valmistetaan tilausta varten, jolloin valmistuskustannukset jakautuvat suuremmalle
määrälle. Toisaalta kun tilausmäärä kasvaa, niin varastointikustannukset kasvavat.
Tilausmäärien optimointi on siis tärkeä osa hankintaprosessia. Hankintaprosessin
aikana on hyödyllistä pohtia useita eri vaihtoehtoja lopulliselle tilausmäärälle. Tä-
män kandidaatintyön tavoite on minimoida vuotuinen kokonaiskustannusfunktio ja
määrittää sitä vastaava optimaalinen tilausmäärä jokaiselle ostonimikkeelle.

Ensimmäinen tehtävä oli muodostaa sekakokonaislukuoptimointimalli, jota käyte-
tään jokaisen ostonimikkeen optimaalisen tilausmäärän löytämiseen. Tämän jälkeen
työssä kehitettiin Python-ohjelma, jolle optimointimalli implementoitiin.

Tämän kandidaatintyön esimerkkitapaus on Normet, joka on suomalainen louhinta-
ja kaivoskoneiden valmistukseen erikoistunut yritys. Kaikki aineisto, jota kandidaa-
tintyössä käytetään, on saatu Normetin ERP-järjestelmästä.

Optimointimallin ja sen pohjalta kehitetyn Python -ohjelman tulokset olivat
johdonmukaisia. Yleinen trendi tuotteiden optimaaliselle tilausmäärälle oli, että
optimointimalli suosii suuria tilausmääriä. Tämä johtuu siitä, että hyöty suurten
tilausmäärien halvemmista yksikkökustannuksista on usein mittava. Hintaportaita
sisältävien ostonimikkeiden tilausmäärää kasvattamalla saadaan tehtyä optimaalisia
hankintapäätöksiä. Tämän vuoksi työssä kehitetty optimointimalli pystyy auttamaan
yrityksiä saavuttamaan merkittäviä säästöjä. Työssä ehdotetaan lisätutkimusta, joka
tarkastelee riskejä ja mahdollisuuksia rajaavien oletusten poistamiseen.
Avainsanat Tilauserän koon optimointi, paljousalennus, useat tuotteet,

varastohallinta
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1 Introduction
Usually the price of a purchase item depends, among other things, on the amount
ordered. When a buyer purchases a greater number of items at once, the cost per unit
for these items decreases, as can be seen from Figure 1. The discounts for different
order quantities are called price breaks, and they are defined in price negotiations
between the buyer and the supplier (seller). A price break schedule defines the unit
price of a purchase item for every possible order quantity. If an order quantity falls
into a certain price break interval, the corresponding unit price is chosen. Price break
intervals are the order quantities that define the lower and upper boundaries where
you can buy a purchase item for a specific unit price.

Figure 1: An example of price breaks for a purchase item.

Figure 1 is an example of how price breaks can behave for purchase items. The
decline of the relative unit price is steep, the unit price for ten items per order is
approximately 20% of the unit price for one item per order.

Price break opportunities are available to consumers as well. An example of a
price break in business-to-consumer (B2C) transactions is the purchase of a cell phone
plan for a fixed term. This means that the price per month (unit price) decreases
when the fixed term is longer. The benefits of price breaks in business-to-business
(B2B) transactions are magnified since companies require the same raw materials
continuously and in greater quantities (Munson and Jackson, 2015).

Inventory management, when done properly, can lower the costs and increase
the profits of a company significantly. The main challenge in this thesis is that each
purchase item has unique price break intervals and because prices correspond to the
intervals, it is necessary to find the optimal order quantity for each of the purchase
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items separately. In larger order quantities, fixed manufacturing costs are shared by
a bigger quantity. However, as order quantity increases, so do warehouse costs.

The objective of this thesis is to find the minimum annual total cost function and
the corresponding optimal order quantity for every purchase item under investigation.
The proposed model is used on data provided by Normet, a Finnish company that
specialises in making products for tunnel construction and mining. The paper
presents computational results from 11 test instances with up to 100 purchase items
and possible order quantities ranging from three to ten. The results were evaluated
by comparing the total purchasing costs for the newly optimized order quantities
with the reference total purchasing costs calculated from historical data. Lastly,
conclusions are made and avenues for potential future research are outlined.

2 Literature review
The question "How much to order?" has been studied widely. Benton and Park (1996)
review the literature on determining the lot size under price breaks and classifies the
literature to a subcategory. The literature is first categorized to non time-phased
demand and time-phased demand and then into all-units discounts and incremental
discounts. Lastly, all papers are categorized to inspect either the buyer’s perspective
or buyer-supplier perspective. In this thesis, focus is on the literature that deals with
non-time phased demand and all-units discounts from the buyer’s perspective.

Rubin and Benton (1993) investigate a situation where the buyer is offered
discounted price schedules from multiple suppliers, and the buyer has to make the
decision under numerous constraints, such as limited storage space and restricted
inventory budgets. The model in Rubin and Benton (1993) consists of primal and
dual problems and solves these problems with the relaxation and Branch-and-Bound
algorithms. The primal problem minimizes the sum of all annual total cost functions
for all items. The total annual cost function is the sum of purchase, order placement
and warehouse costs. The dual problem is formulated on a Lagrangian function
that assigned a Lagrange multiplier to each constraint for each item, so that the
augmented cost function is the total annual cost function from the primal problem
and the Lagrange multipliers for each constraint. The model was estimated with data
on 10 items with three price break intervals. This model deals with constraints and
multiple possible suppliers for each item efficiently. It incorporates limited storage
capacity and annual budgetary constraint and finds the optimal solution for every
instance.

Moussourakis and Haksever (2008) present a zero-one mixed integer programming
model to minimize the total cost function in multi-product multi-constraint inventory
systems subject to the assumption of all-units price breaks. The model included a
piecewise linearization of the number of orders function for each quantity interval and
binary variable implementation that makes it possible to choose either an independent
or a common cycle approach. The author computationally tested the model and
formulated randomly generated data for the performance tests. They conclude that
the model provides accurate optimal solutions and better results (up to 3%) than
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previous models. They found neither the independent nor the common cycle approach
to be the optimal approach.

Goossens et al. (2007) give a mathematical formulation for the cost-minimization
problem as the total price break problem. This formulation is a zero-one mixed
integer programming model that minimizes the total costs for each purchase item.
Each purchase item can be purchased from a number of suppliers that offer an
arbitrary amount of quantity intervals. In addition, they present four variants of the
basic form, each addressing different settings for an optimization problem. In the
first variant, the market share for suppliers is constrained. In the second variant,
the buyer is allowed to purchase larger quantities of purchase items than what is
indicated by the demand, while in the third variant the number of suppliers to buy
from is constrained. The fourth variant presents a multi-period model to answer
the question: "When to order what goods?". The models were tested on randomly
generated data. The author also describe three exact algorithms and conclude that
each of these algorithms finds an exact solution in a reasonable amount of time. Each
algorithm is best in different instances. For example, a linear programming based
branch-and-bound algorithm works best in instances where the buyer is allowed to
purchase more than is needed according to the demand and when the randomly
generated dataset is large.

Jackson and Munson (2016) investigate the possibility of storage capacity ex-
pansion to fully utilize price breaks for multiple purchase items. If companies order
multiple products that have price breaks, increasing storage capacity can help them
take full advantage of price breaks and achieve savings. The author develop a model
that minimizes the sum of total cost functions for all items simultaneously. This
allows the model to include resource constraints. The model solves the capacity level
and order quantity for each item. The model finds efficient solutions for multi-product
lot-sizing problems that incorporate all-units and/or incremental price breaks and
consider resource capacity as a decision variable. This study is the first to introduce
resource capacity as a decision variable. The proposed algorithms can also solve
resource capacity levels and order quantities for thousands of items in real time.
Furthermore, the authors find that storage capacity expansion can lead to significant
potential savings and that the expansion is usually profitable when suppliers offer
all-units price breaks.

Lee et al. (2013) introduce a mixed integer programming model (MIP) to solve
a lot-sizing problem with multiple suppliers, multiple periods and price breaks.
The objective is to minimize the total cost function that is constructed of ordering
costs, warehouse costs, purchase costs and transportation costs. The model takes
the demand for each planning period as an input and finds the optimal lot-sizing
quantities to fulfil the demand for each period.A genetic Algorithm is also introduced
to solve the problem more efficiently. The results show that both the MIP and the
Genetic Algorithm can find optimal or near optimal solutions to the problem in a
relatively short amount of time but when the problem becomes NP-hard, only the
Genetic Algorithm can solve the problem in a reasonable amount of time.

Zhang and Chen (2013) study a single period, single item procurement problem
with stochastic demand and multiple suppliers. They present a nonlinear mixed integer



9

programming model to minimize the total cost function consisting of purchase costs,
supplier selection costs and holding-shortage costs. Stochastic demand is tackled by
creating different test instances with different means, variances, probability density
functions and cumulative functions. The results show that a larger variance in
demand increases procurement costs. Additionally, the efficiency of the algorithm is
tested on 100 randomly generated problems with a demand that follows a normal
distribution. The algorithm solves these problems efficiently.

The minimization of a total cost function for purchase items, mixed-integer linear
programming, all-units price breaks and the utilization of piecewise linear functions
were relevant for the research of this thesis. Stochastic demand was not relevant
because the demands for all purchase items have been received from Normet’s demand
forecasts. Also, incorporating multiple demand periods for the proposed model was
unnecessary because the demand for each purchase item is given as an annual forecast.

3 Research data and model formulation

3.1 Research data
The research material for this thesis consisted of data from Normet’s ERP system.
The data consisted of four separate data files.

1. The price break intervals for all purchase items.

2. The annual demand of every purchase item.

3. The weight of every purchase item.

4. Historical purchase order data from the last 12 months.

The purchase order data was used to assess the performance of the proposed
model by comparing the optimized annual total cost function value of each purchase
item with the historical average annual total cost function value.

Preprocessing every data file was necessary, since each data file included relevant
information for all purchase items, not just the purchase items with price breaks.
Here the challenge was to find the purchase items with significant price breaks.
Together, all data files consisted of 598 850 rows.

All data was originally received in Excel format and the data files were imported
for data analysis and manipulation. Data analysis and manipulation were done with
Python and run on Visual Studio Code integrated development environment.
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3.2 Assumptions
The proposed model in this thesis is subject to the following assumptions:

1. Demand for all purchase items was taken from demand forecast provided by
Normet, making it deterministic.

2. Purchase items have independent price breaks.

3. Suppliers confirm orders with any quantity in the given price break range.

4. The demand for each purchase item is an independent variable.

5. The time horizon is 12 months.

6. Warehouse costs are directly proportional to the volume of the purchase item.

7. There are no constraints in warehouse capacity.

8. Each purchase item has an independent cycle length. In an independent cycle,
the order cycle for each item is different.

9. All purchase items have all-units price breaks. This means that the price break
is applied for every purchase item purchased and all items are purchased for
the same unit price.

10. Ordering cost per order for all purchase items is a fixed amount and it is
independent of order size.

11. For a time horizon, there exists only one optimal order quantity and a corre-
sponding unit price for each purchase item.

The assumptions of the proposed model are consistent with prior literature. Most
assumptions are the same as in the models of Lee et al. (2013) and Jackson and
Munson (2016) with modifications to fit the model of the thesis. All assumptions
were made in cooperation with Normet.

3.3 Prerequisites
There was no precise data that contained the product volumes of all purchase items
investigated in this thesis. Nevertheless, Normet’s data management system, Sovelia
included the height, length and width for some purchase items but they had to be
investigated one by one manually making it virtually impossible to retrieve the exact
product volumes of each purchase item in question. The data for the weights of all
investigated purchase items was available. Plus, it was reasonable to assume that
the volumes and weights of all purchase items are directly proportional. Then, the
relation of the weight and volume of purchase item j is

Vj = mwj, (1)
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where Vj is the volume of item j, wj is the weight of item j and m is a positive
non-zero proportionality constant.

It was known that this assumption does not apply to purchase items such as fuel
tanks. Nevertheless, it was also known that these purchase items do not contain any
price breaks, making the assumption acceptable for the set of purchase items under
investigation.

Only one value can be chosen to be the optimal order quantity and there are
usually several price break intervals to choose from. That is why, in this thesis, we
introduce a binary decision variable that is defined for purchase item j from supplier
k in price break interval i by

yijk =

⎧⎨⎩1 lijk ≤ xj ≤ uijk

0 otherwise,

where yijk is a binary decision variable, lijk and uijk are the quantities that define the
lower and upper boundary of each price break interval and xj is the optimal order
quantity for purchase item j.

Figure 2: Price break schedule from two vendors for a purchase item j.

Figure 2 shows an example of the behavior of price breaks from two different
vendors for one purchase item. When a price break interval ends, a lower unit price is
chosen for the purchase item. For example, if we were to order two pieces of purchase
item j from vendor 1, the unit price would be three. The objective of this thesis is
to optimize order quantities. In Figure 2, it is possible to acquire purchase items
from two different vendors, however, it is not always feasible to consider all order
quantities from all vendors for the optimal order quantity xj. In the model of this
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thesis, we only consider the lowest unit price of every possible order quantity in the
given price break range for the optimal order quantity.

In previous literature, Moussourakis and Haksever (2008) use a piecewise-linear
function to approximate the nonlinear number of orders function. In their model, order
quantities can have integer and fractional values and the objective is to minimize the
error associated with the linear approximation. In our model, the linear approximation
can have integer values for order quantities of any quantity in the given price break
range.

Figure 3: An example of the piecewise linear function for the number of orders.

The piecewise linear function used to find out the correct number of orders for
each possible order quantity is plotted in Figure 3. The piecewise-linear function
is introduced in this thesis to ensure a correct relation between the optimal order
quantity and the number of orders for each purchase item j. The number of orders
for purchase item j is nj = Dj

xj
=> njxj = Dj. This means that the piecewise linear

function will, by definition, ensure that the demand Dj for each time horizon (12
months), will be fulfilled. Because both xj and Dj are always integers, the number
of orders for a purchase item j, nj can have fractional and integer values in a time
horizon.
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The slopes aijk and y-intercepts bijk for each piecewise linear function fijk are
calculated as

aijk =
Dj

uijk
− Dj

lijk

uijk − lijk

(2)

bijk = Dj

uijk

− uijk(
Dj

uijk
− Dj

lijk

uijk − lijk

) = Dj

uijk

− uijkaijk. (3)

3.4 Notation
The following notations are used in the proposed model.

Indices
i Index of each segment of the piecewise-linear approximation of the number

of orders function, i = 1, 2, ..., I
j Index of items, j = 1, 2, ..., J
k Index of suppliers, k = 1, 2, ..., K

Decision Variables
xj Order quantity for purchase item j
xijk Order quantity from supplier k for purchase item j in price break interval i
nj Number of orders for purchase item j
pj Price for purchase item j
pijk Price from supplier k for purchase item j in price break interval i
fijk Number of orders if the order size is in price break interval i from supplier k

for purchase item j
yijk A binary decision variable which is 1 if a price break interval i is selected

from supplier k for purchase item j and 0 otherwise

Parameters
co Ordering cost per order
ch Annual warehouse cost for one m3

Vj Volume of purchase item j
r Interest rate for capital costs
s Warehouse safety factor
Dj Annual demand for purchase item j
lijk Lower bound of price break interval i from supplier k for purchase item j
uijk Upper bound of price break interval i from supplier k for purchase item j
aijk Slope of the line in the price break interval i from supplier k for purchase

item j
bijk y-intercept of the line in the price break interval i from supplier k for purchase

item j



14

3.5 Optimization model
The proposed model of this thesis solves the optimal order quantity for each purchase
item when the price breaks are known. The objective is to minimize the annual total
cost function.

The final mixed-integer linear programming model from supplier k = 1, 2, ..., K
for product j = 1, 2, ..., J is

min
xj ,nj ,pj

conj + pjDj + r

2pjxj + sVjxjch (4)

subject to xj =
I∑︂

i=1

K∑︂
k=1

xijk (5)

pj =
I∑︂

i=1

K∑︂
k=1

pijkyijk (6)

nj =
I∑︂

i=1

K∑︂
k=1

fijk (7)

xijk − lijkyijk ≥ 0, i = 1, 2, ..., I, k = 1, 2, ..., K (8)
xijk − uijkyijk ≤ 0, i = 1, 2, ..., I, k = 1, 2, ..., K (9)

I∑︂
i=1

K∑︂
k=1

yijk ≤ 1 (10)

fijk = aijkxijk + bijkyijk, i = 1, 2, ..., I, k = 1, 2, ..., K (11)
lim

l(i+1)jk→uijk

fl(i+1)jkjk = fuijkjk, i = 1, 2, ..., I, k = 1, 2, ..., K (12)

xj, pj, xijk, nj, fijk ≥ 0, i = 1, 2, ..., I, k = 1, 2, ..., K (13)
yijk ∈ 0, 1, i = 1, 2, ..., I, k = 1, 2, ..., K. (14)

The objective function (4) states that the annual total costs for item j from
supplier k must be minimal. It consists of four components: annual ordering costs,
annual purchasing costs, annual cost of capital and annual warehouse costs. Constraint
(5) ensures that the order quantity xj is the sum of all xijk’s of which only one is
nonzero and constraint (6) does the same for the price pj as only one interval of
yijk is nonzero. Constraint (7) determines the number of orders for each product j.
Constraints (8) and (9) determine the price break intervals for xijk and ensure that
only one price break is chosen for product j from supplier k, because only one value
of yijk is nonzero. If an interval is not selected, the constraints (8) and (9) ensure
that the optimal order quantity does not belong to that interval. Constraint (10)
makes sure that at most one price break interval in yijk can be nonzero. Constraint
(11) chooses the correct piecewise-linear function that determines the number of
orders. Constraint (12) defines the continuity of the piecewise linear function at
every breakpoint of every price break interval. Constraint (13) defines that every
decision variable can only be a nonnegative amount while constraint (14) defines yijk

as a boolean variable.
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The constraints in this proposed model are consistent with prior literature. Most
constraints in the model are defined in the mathematical formulation of Goossens
et al. (2007) and then modified to be suitable for the mathematical model of this
thesis.

Lemma 3.1. There exists a unique optimal solution for purchase item j from
vendor k such that
i) if xj > lijk, then xj = uijk for all xj > 0;
ii) if xj < uijk, then xj = lijk for all xj > 0.
Proof. A similar proof using an interchange argument is found in Zhang and Chen
(2013). Suppose that there is a function gjk(xj) for purchase item j which is a
piecewise-linear function that has mjk breakpoints such that 0 < l1jk < ... <
lIjk < uIjk and uIjk is the maximum quantity of the given price break range. Also,
gjk(xjk) = ptjkxjk if ltjk ≤ xjk ≤ l(t+1)jk with ptjk > p(t+1)jk for t = 0, ..., mjk. Suppose
that an optimal solution exists for a purchase item j for two different suppliers k and
u with optimal solutions ltjk ≤ xjk ≤ l(t+1)jk and lhju ≤ xju ≤ l(h+1)ju, respectively.
We increase xjk by an arbitrarily small ϵ > 0 while decreasing xju by ϵ. These
changes to xjk and xju are feasible and the change in the piecewise-linear function
is (ptjk − phju)ϵ. If (ptjk − phju)ϵ is negative, it contradicts the original optimal
solution. If (ptjk − phju)ϵ is positive, a solution in which xju is increased by ϵ and xjk

is decreased by ϵ, again contradicts the original optimal solution, since (ptjk − phju)ϵ
would again be negative. If (ptjk − phju)ϵ is zero, then ptjk = phju and the optimal
solution is either xjk’s or xju’s nearest breakpoint. This argument can be applied
repeatedly until an optimal solution at the breakpoints is reached.

4 Implementation
Moussourakis and Haksever (2008) state that obtaining solutions to zero-one mixed-
integer programming models can be time consuming. In this thesis, an exact algorithm
was developed to minimize the annual total cost function and its corresponding
optimal order quantity for each purchase item. This means that the algorithm finds
an optimal solution, unlike approximate algorithms which usually find near optimal
solutions to problems that cannot be solved easily (Kokash, 2005).

For the computational experiments, we developed a computer program using
Python’s MIP package (Santos and Toffolo, 2020). A user of the developed software
implementation must provide the item number, annual demand (Dj), weight (wj),
the ordering cost for one order (co), the annual warehouse cost for one m3 (ch), the
prices of each price break interval (pijk) and the lower and upper points of each price
break (lijk and uijk) for each purchase item j. After this, the program returns the
optimal annual total cost function and its corresponding optimal order quantity, the
annual number of orders and the unit price of the chosen order quantity.

The average computation times for all test instances in this thesis are reasonable
when using the Python’s MIP library. This is supported by the computational results
of this thesis (see Table 2). Reasonable computation times are important for the
usability of the model. The software must be able to solve large test instances in a
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short amount of time to be useful in practice.

5 Computational experiments

5.1 Test instances

Item number 1 2 3 4 5
Annual demand (Dj) 4 142 5 12 17
Cost per order (co) 50 50 50 50 50
Annual warehouse cost (ch) 4.6 4.6 4.6 4.6 4.6
Weight (wj) 23.15 0.132 57.4 20.1 17.31
Price break intervals (lijk, uijk) 0 - 1 0 - 9 0 - 1 0 - 1 0 - 1

2 - 3 10 - 49 2 - 3 2 - 3 2 - 5
4 - 50 - 4 - 4 - 6 -

Price for each interval (pijk) 419.97 7.2 1 298.5 427.0 299.0
335.98 6.0 1 038.5 366.5 196.0
251.98 5.45 919.5 312.0 122.64

Table 1: Example of parameters for 5 purchase items with 3 price break intervals for
each purchase item.

Table 1 shows the parameters for test instances. The test instance in Table 1 is
the first test instance in Table 2. The test instances are all formed from historical
data provided by Normet.

Test instance Nr. of purchase items Nr. of price break
intervals

Average CPU time
(secs.)

1 5 3 0.030
2 5 5 0.036
3 5 10 0.046
4 10 3 0.059
5 10 5 0.069
6 10 10 0.091
7 20 5 0.10
8 20 10 0.18
9 50 5 0.24
10 50 10 0.40
11 100 5 0.84

Table 2: Computational results of different problem sets containing different number
of purchase items and different number of price break intervals.

Table 2 lists the properties for each test instance. Including the number of
purchase items, the number of price break intervals and the average computational
run time for each test instance. All test instances were solved using a Lenovo
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ThinkPad laptop with an Intel i5 2.40GHz processor with 8GB RAM and Windows
10 operating system. The order quantities for all purchase items in each test instance
were calculated exactly to optimality. A larger test instance takes, on average, more
computation time to solve. The CPU times of all test instances were very reasonable
thus enabling inventory managers to run optimization on their laptop in a short
amount of time.

The computer implementation works up to par or even better than previous
implementations for small test instances (Jackson and Munson, 2016) (Moussourakis
and Haksever, 2008). However, for the largest test instance in Table 2, the average
computation time is longer than the computation time for similar test instances in
prior literature (Jackson and Munson, 2016).

5.2 Results
The proposed model of this thesis optimizes each purchase item individually. Hence,
there are no resource constraints, such as budgetary or warehouse capacity in the
model. The lack of resource constraints usually leads to larger order quantities to the
higher end of the price break range (Table 3). For example, in the second last test
instance in Table 2 with 50 purchase items, the largest possible order quantity per
order is chosen for 24 purchase items. This means that the benefits of price breaks
often outweigh the drawbacks of warehousing and capital costs.

Figure 4: An example of the calculated objective function values for each possible
order quantity for a purchase item.

Figure 4 gives an example of all possible quantities in the price break range and
their annual total cost functions for a purchase item. The price break range here
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goes from one to 11. The optimal annual total cost function value for this purchase
item is 7145 with an order quantity of seven.

Item number Optimized order
quantity

Reference order
quantity

Savings
percentage

1 4 2 24.4 %
2 50 20 23.5 %
3 4 1 28.5 %
4 4 4 0 %
5 7 2 40.1 %
Average 23.3 %

Table 3: The optimized order quantities, current order quantities and the savings
percentages for each purchase item in test instance 1 of Table 2.

Table 3, lists the optimized order quantity, the reference order quantity from
historical data and the savings percentage for each purchase item in test instance 1 of
Table 2. In order to estimate whether the results are reasonable and/or statistically
significant, we assess how the optimized objective function values compare with
actual historical data of Normet’s purchase order data where we find the average
order quantity and the reference annual total cost function value for each purchase
item under investigation. In this test instance, the model finds optimal solutions for
four out of five purchase items.

The lack of resource constraints makes it possible for the proposed model to
utilize larger order quantities to achieve savings. However, in reality, one has to
verify that the implied warehousing and capital costs are acceptable for the optimized
order quantities.

The savings percentage for almost all purchase items in Table 3 is significant.
For the five inventory items in Table 3, the savings percentage for four purchase
items is over 20%, the average savings percentage is 23.3 % and the highest savings
percentage is 40.1%. On the scale of businesses, with possibly thousands of purchase
items with price breaks, total savings can be substantial.
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Test instance Average savings percentage
1 23.3 %
2 4.2 %
3 14.1 %
4 14.0 %
5 34.1 %
6 13.2 %
7 19.7 %
8 9.1 %
9 26.8 %
10 9.9 %
11 14.2 %

Table 4: The average savings percentage for each test instance.

Table 4 lists the average savings percentage for each test instance. Each test
instance results in positive average savings percentages and some test instances have
significant average savings percentages. In all test instances, the model finds optimal
solutions consistently, which leads to savings.

The assumptions made in this thesis affect the results significantly. If we were to
remove assumptions, such as the lack of resource constraints, the proposed model
would not favor larger order quantities as much as it currently does. Depending on
the resource constraints, every purchase item could not freely take any quantity in
the given price break range.

The results of this thesis appear reasonable and reliable. The trend of preferring
higher quantities is consistent with all test instances. The proposed model leads to
higher order quantities than their historical values have been. This is in line with
previous intuitive expectations of Normet. The results show that the proposed model
can result in significant savings and optimal purchase decisions in practice.

6 Conclusions
In this thesis, we first used findings from prior literature to formulate a mixed-integer
linear programming model for optimizing a multi-product inventory system with
all-units price breaks offered by suppliers. Then, the model finds the optimal order
quantity from the objective function which is the annual total cost function defined
in this thesis, for each purchase item individually. Next, we compare the objective
function values and optimized order quantities with the function values and reference
order quantities from reference data provided by Normet. The model was tested on
a Lenovo ThinkPad laptop by solving 11 different test instances, each containing
a number of purchase items ranging from five to 100 and a number of price break
intervals ranging from three to ten.

This thesis indicates that the proposed model can be expected to help Normet
achieve significant savings. The difference of the current and optimized annual total
costs for all purchase items can be as high as 25% (Table 4). The results of the
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model were consistent, every purchase item that had not been optimized resulted in
savings after optimizing their order quantities. Since the model is unconstrained, it
often favors larger order quantities.

The computational results of the implemented model in Python suggest that the
model can be solved in a reasonable amount of time on almost any modern PC or
laptop. The model can solve practical problems with thousands of purchase items
and several price break intervals if needed, which makes it a viable potential tool for
inventory managers. However, considering the assumptions of the model, it is not
suitable for general use without modification. The model has several assumptions
that make it usable for specific situations only. Several assumptions of the model
make it usable for specific situations only. It can, however, be used in instances
where every purchase item has all-units price breaks, demand is known and there
are no resource constraints.

Future research can extend the thesis by removing assumptions such as determin-
istic demand and independent cycle length. A future study could address topics such
as variable lead time, stochastic demand and safety stock. The addition of incre-
mental price breaks and resource constraints and the possibility to choose between
independent and fixed cycle lengths could be topics for future research, as could be
the question of expanding capacity size to utilize the price breaks for all purchase
items (see Jackson and Munson, 2016). Moreover, it would be fascinating to see
which purchase items have such drastic price breaks that inventory capacity should
be expanded to incorporate them.
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