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Abstract

Expert judgements are used to understand uncertain events of the present and
future when data is not available. The purpose of this bachelor’s thesis was to
develop a process for eliciting expert judgements that can be used for risk assessment
purposes. The efficiency and accuracy of the process was tested in an experimental
case study conducted with a small panel of five experts.

We are interested in evaluating expected risks of systems using scenarios. Scenarios
are combinations of outcomes that come from uncertainty factors. Complex systems
usually have many uncertainty factors with various outcomes, and this can lead
to a massive number of scenarios. Therefore, trying to estimate scenario specific
probabilities one by one is just not practical. Instead, in order to reduce workload,
we use probabilistic cross-impact analysis, which requires eliciting expert judge-
ments on the marginal probabilities and pairwise relationships of the outcomes.
Obtaining and analyzing data is done by using methods from the Cooke’s Classical
Model, which aims in evaluating the judgements of the experts according to their
calibration scores and informativeness. The judgement elicitation process is based
on the Delphi method.

The results in the case study showed that the process worked efficiently and in a
correct way, although, the process was performed with remote connections. Giving
judgements for the marginal probabilities was considered to be easy among the
experts, and the judgements yielded in reliable probabilistic data. Judging the
relationships of the pairwise outcomes was considered to be also fairly effortless, but
the mathematical analysis faced some challenges as the judgements were initially
non-feasible. However, the method used in the thesis helped to obtain a feasible
solution by slightly correcting the judgements of the experts. The calibration
results for the pairwise relationship judgements were not the best, and therefore
the judgements were not considered to be reliable, which also affects the reliability
of the risk assessment.

We also discuss how the process could be improved. In larger scale studies, the
process is likely to take much more time and effort, and performing the process
remotely becomes challenging.
Keywords eliciting expert judgements, probabilistic cross-impact analysis, risk

analysis
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Asiantuntija-arvioita käytetään nykyhetken ja tulevaisuuden epävarmojen tapahtu-
mien ymmärtämisessä, kun muuta tietoa ei ole saatavilla. Tämän kandidaatin tut-
kielman tarkoituksena oli kehittää prosessi, jolla määritetään asiantuntija-arvioita
riskiarviointeja varten. Prosessin tehokkuutta ja tarkkuutta testattiin kokeellisessa
tutkimuksessa, joka toteutettiin viiden asiantuntijan kanssa.

Riskejä voidaan arvioida skenaarioiden avulla. Skenaariot määritetään epävarmuus-
tekijöiden toteumien yhdistelminä, jolloin monimutkaisissa systeemeissä skenaarioi-
den määrä saattaa olla valtava. Tällöin skenaariokohtaisten todennäköisyyksien
arvioiminen yksitellen ei ole käytännöllistä. Sen sijaan työmäärän vähentämisek-
si käytämme todennäköisyyspohjaista ristivaikutusanalyysiä, johon määritämme
asiantuntijoiden arvioiden avulla epävarmuustekijöiden toteumien reunatodennäköi-
syydet sekä toteumaparien suhteet toisiinsa nähden. Arvioiden määrittäminen ja
analysointi suoritetaan käyttämällä menetelmiä Cooken klassisesta mallista, jonka
tavoitteena on painottaa asiantuntijoiden arvioita heidän kalibrointitulosten ja
informatiivisuuden perusteella. Prosessin toiminta perustuu Delfoi-menetelmään.

Kokeellisen tutkimuksen tulokset osoittivat, että prosessi toimi tehokkaasti ja oikein,
vaikka tutkimus suoritettiin etäyhteyksillä. Reunatodennäköisyyksien arvioimisen
katsottiin olevan helppoa asiantuntijoiden keskuudessa, ja ne tuottivat luotettavaa
dataa. Asiantuntijoille toteumaparien suhteiden arviointi oli myös melko vaivatonta,
mutta niiden matemaattisessa analyysissä kohdattiin haasteita, koska arviot eivät
olleet aluksi matemaattisesti loogisia. Työssä käytetty menetelmä kuitenkin auttoi
toteuttamiskelpoisen ratkaisun löytämisessä korjaamalla hieman asiantuntijoiden
arvioita. Kalibrointitulokset toteumaparien suhteiden arvioinnissa eivät kuitenkaan
olleet parhaita, joten arvioita ei pidetty kovin luotettavina, mikä vaikuttaa myös
riskinarvioinnin luotettavuuteen.

Työssä pohditaan myös miten prosessia voisi parantaa. Laajemmissa tutkimuksissa
prosessiin kuluu todennäköisesti paljon enemmän aikaa sekä vaivaa, ja prosessin
suorittaminen etäyhteyksillä muuttuu haastavaksi.
Avainsanat asiantuntija-arviot, todennäköisyyspohjainen ristivaikutusanalyysi,

riskiarviointi
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1 Introduction

Predicting scenario based risks of the present moment and future is an important
part of operational research in making better decisions, and these are applied in
various fields, such as military planning, nuclear waste reposition and natural
hazard management. However, predicting scenarios is very difficult, because
the future events in the society, nature, and companies are often uncertain
(Seeve, 2018). Furthermore, data is not always available to forecast events,
and therefore judgements provided by experts to quantify uncertainty of the
future are crucial. Expert opinions and judgements help in decision making
and clarifying results (Keeney and von Winterfeldt, 1989), and acquiring these
judgements is what we call elicitations.

Eliciting expert judgements is not trivial. Elicitation requires subject knowledge,
both from the expert and the analyst conducting the elicitation. Judgements
themselves are not sufficient enough for forecasting the future, and therefore
we use the Cooke’s Classical Model presented in Dias et al. (2018) in order
to mathematically interpret and validate the judgements. In addition, Oakley
(2010) brought up that psychological aspects play an important role in elici-
tation. Furthermore, even if the expert judgements are mathematically valid,
they still need to be interpreted critically, because there are always possibili-
ties that the judgements are biased on some level (Dias et al., 2018; Kynn, 2008).

The objective of this thesis is to develop an efficient and accurate process
for eliciting expert judgements. The judgements are intended to be used for
risk assessment purposes using the probabilistic cross-impact analysis (PCIA)
presented in Salo et al. (2020). Specifically, this thesis seeks to combine the
methodologies from previous elicitation models in Dias et al. (2018) and the
new PCIA approach, and assemble them into a single process. The elicita-
tion process is tested in an experimental case study with a small panel of experts.

This thesis contains the following sections. Section 2 explores previous studies
related to the subject of the thesis. Section 3 is an introduction to scenario
analysis and PCIA. In section 4 we introduce the developed elicitation process
and the methodology behind it. The problem formulation and the results for
the experimental case study are presented in section 5, where we also analyze
the elicitation process. Finally, section 6 concludes the thesis.

2 Background

Expert information is defined in Martin et al. (2012) as information of a topic
that is not widely known by others. Furthermore, the experts can give judge-
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ments based on their information, which can be simple yes/no answers, thorough
descriptions for events or probabilistic data. Expert judgements have been used
widely in decision making and operations research, for example, in forecasting
weather (Doswell III, 2004), estimating risks of earthquakes (Dias et al., 2018),
assigning agents on tasks in order to optimize operative results (Kangaspunta
and Salo, 2014) and to obtain qualitative knowledge on relationships of events
(Jeong and Kim, 1997). Recent studies have been focused on risk management
for safety-critical systems, for example, estimating effects of nuclear waste
repositories (Tosoni et al., 2019). Judgements acquired from experts are still
used even when data of various phenomena is available, because experts can
give opinions that support the mathematical aspects of an analysis and give
the results a human-factor interpretation.

A process to acquire valid expert judgements is called an elicitation. Dalkey
and Helmer (1963) introduced and developed one of the most commonly used
elicitation method, the Delphi method, which aims in quantifying group opin-
ions of a panel of experts by eliciting judgements individually from experts
through questionnaires and enhance the experts ability to forecast future events
by giving controlled feedback from each round of the process. Avella (2016)
summarised that the main advantages of the Delphi method lie in minimizing
group bias, i.e. every expert can express their own judgements without being
suppressed by others. He also states, the method is flexible, cost efficient and
can be performed remotely. However, disadvantages for the Delphi method
are also present, as he summed up that the main flaws are caused by the
researchers conducting the elicitation. For example, how the questionnaires
are made and the conditions on how the experts are chosen can cause bias
in the whole process. Helmer (1977) brought up that the Delphi method
has also been criticised for the way it fails to observe properly randomized
polling procedures, this is, however, a controversial criticism, because the Delphi
method is not an opinion poll, which relies on random samples of the population.

In addition to the Delphi method, many other methods for eliciting probabilistic
and quantitative judgements have been developed, and they can be combined
with the Delphi method. One of the most common models for eliciting prob-
abilistic data is the Cooke’s Classical Model, presented in Dias et al. (2018),
which focuses on quantifying uncertainty judgements from experts on already
occurred events and mirror the accuracy of these judgements into predicting
future uncertainty. Other models for eliciting probabilistic data are, for example,
the IDEA (Investigate Discuss Estimate Aggregate ) protocol in Hanea et al.
(2017) and the SHELF method developed by Oakley and O’Hagan (2019).

Cross-Impact Analysis (CIA) is a method that is designed to compare pairwise
relationships of multiple events and determine how they would impact the
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resulting events in the future. Thus, the method is used widely in scenario
analysis in order to forecast future (Bañuls and Turoff, 2011). Furthermore, CIA
can be performed in qualitative approaches, e.g. Jeong and Kim (1997), and
also quantitative approches, where the aim is to quantify scenario impacts on
political, social, technological and environmental events. For example, Weimer-
Jehle (2006) presented a theoretical cross-impact balance (CIB) approach, which
aims in identifying most consistent scenarios using pairwise comparisons of
consistencies. However, even when the responses are systematically recorded
using measurement scales, the cross-impact balance method fails to identify
consistent scenarios (Salo et al., 2020). A probabilistic approach to CIA,
introduced by Salo et al. (2020), quantifies scenario specific probabilities using
probability and consistency judgements on events, in a more strict manner.
This allows to evaluate expected risks of safety critical systems and identify
most probable scenarios. This methodology is discussed more in section 3.

3 Methodology

3.1 Scenarios

Scenarios are combinations of different uncertain future events called uncer-
tainty factors, which are the key components that drive the change in the
operational environment (Seeve, 2018). Each uncertainty factor has outcomes,
which can be modeled as discrete or continuous, and they must be defined
accurately in order to construct scenarios. This thesis uses the definitions of
uncertainty factors, outcomes and scenarios presented in Seeve (2018).

Let Yi be an uncertainty factor, where i = 1, 2, ..., n. An uncertainty factor is
defined as a set of outcomes, where the total number of outcomes is denoted
by Ki. Let Ai be an arbitrary outcome of Yi,

Ai ∈ Yi = {1, 2, ..., Ki}.

From this information it is possible to define a scenario s, which is a vector
containing n number of values, where each value is an outcome from every
uncertainty factor:

s =
[︂
A1 A2 · · · An

]︂
∈ S,

where S is the set of all possible scenarios, and it is defined as the cross product
of all uncertainty factors:

S = Y1 × Y2 × · · · × Yn.
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The total number of the scenarios N , is the product of the number of outcomes
of each uncertainty factor

N =
n∏︂

i=1
Ki.

Thus, the number of the scenarios increases exponentially, when the number of
uncertainty factors and their outcomes are increased. The number of scenarios
N is crucial in the context of analysing scenarios for risk assessment purposes,
because complex systems are formed from multiple uncertainty factors with
various outcomes. For example by having 9 uncertainty factors with 5 outcomes
each, the number of scenarios is N = 59 ≈ 1950000. Clearly, in this case,
estimating probabilities for each scenario one by one is impossible in terms of
resources and time if data is not available. Thus, cross-impact analysis is used
in order to solve the challenge of having many scenarios.

3.2 Probabilistic cross-impact analysis

Here, we cover the theory of the probabilistic cross-impact analysis (PCIA).
In PCIA the main target is to map a joint probability distribution across all
possible scenarios (Salo et al., 2020), which can be used in evaluating the
expected risk of a system. The idea in PCIA is to obtain information on
the marginal probabilities of the outcomes and cross-impact judgements that
quantify the relationships of the outcomes. These judgements are interpreted as
cross-impact multipliers, which are denoted by Ckl

ij , where i, j are the indices for
the uncertainty factors and k, l are the indices for their outcomes respectfully.
The cross-impact multipliers are defined as follows:

Ckl
ij =

P (Ak
i |Al

j)
P (Ak

i ) , (1)

where P (Ak
i |Al

j) is the probability of outcome Ak
i given that outcome Al

j occurs,
and P (Ak

i ) is the marginal probability of outcome Ak
i . Basically, Ckl

ij describes
how much more likely we are going to observe outcome Ak

i if we assume that
Al

j occurs with certainty.

The cross-impact multipliers are non-negative real numbers Ckl
ij ∈ R≥0 =

{x ∈ R|x ≥ 0}, and are defined if and only if both marginal probabilities
P (Ak

i ), P (Al
j) ∈ (0, 1]. The cross-impact multipliers can be assigned with the

value zero if and only if the joint probability of outcomes Ak
i and Al

j is zero,
i.e Ckl

ij = 0 ⇐⇒ P (Ak
i ∩ Al

j) = 0. In this situation the interpretation of the
value Ckl

ij = 0 is that the outcomes Ak
i and Al

j are mutually exclusive, and
therefore cannot occur at the same time. Assigning Ckl

ij = 1, indicates that
the two outcomes Ak

i and Al
j are independent. This is due to the property

that the conditional probability P (Ak
i |Al

j) = P (Ak
i ) if and only Ak

i and Al
j
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are independent, resulting in Ckl
ij = P (Ak

i |Al
j)/P (Ak

i ) = P (Ak
i )/P (Ak

i ) = 1.
Assigning cross-impact multipliers values in the range 0 < Ckl

ij < 1, indicates
that the occurrence of the outcome Al

j reduces the probability of outcome Ak
i to

occur. On the other hand, when cross-impact multipliers have values Ckl
ij > 1,

the occurrence of outcome Al
j increases the probability of outcome Ak

i to occur.

Only one cross-impact multiplier is required for each pair of outcomes, because
cross-impact multipliers are symmetric. This can be proven using the Bayes’
theorem:

P (Ak
i ∩ Al

j) = P (Ak
i |Al

j)P (Al
j)

Ckl
ij =

P (Ak
i ∩ Al

j)
P (Ak

i )P (Al
j)

= C lk
ji .

The cross-impact multipliers are stored in a symmetric cross-impact matrix
(CIM). Another property of the CIM is that cross-impacts of an event with
respect to the event itself are not defined, and therefore can be left out. In
Figure 1 is shown a cross-impact matrix, where the black cells indicate cross-
impacts with the same uncertainty factor and the grey cells are not needed to
be calculated, because they are symmetric with respect to the blue cells.

Figure 1: The cross-impact matrix of four uncertainty factors with three
outcomes each.

The total number of outcomes NA, which also translates into the number of
marginal probabilities to be elicited, is defined as the sum of the number of
outcomes associated with each uncertainty factor: NA = ∑︁n

i=1 Ki. By knowing
the CIM is symmetric and the diagonal cross-impacts are not defined, we can
calculate the number of important cross-impacts NI of the CIM (blue cells in
Figure 1) NI = ∑︁n−1

i=1
∑︁n

j=i+1 KiKj.
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Clearly, is simplistic cases, where the number of uncertainty factors and out-
comes are small, we need to estimate more values compared to just estimating
the scenario probabilities one by one. For example, having three uncertainty
factors with two outcomes each, we end up with N = 8 scenarios, but we need
to estimate NA = 6 marginal probabilities and NI = 12 cross-impacts. However,
as mentioned before, by having 9 uncertainty factors with 5 outcomes each, we
end up with N ≈ 1950000 scenarios. Using cross-impact analysis, we need to es-
timate only NA = 45 marginal probabilities and NI = 900 cross-impacts, which
is significantly more efficient. One thing to keep in mind is that the marginal
probabilities and cross-impact multipliers do not map the joint distribution of
the system accurately. Obtaining precise probabilities for the scenarios one by
one will yield to an accurate joint distribution.

3.3 Risk analysis

In the context of probabilistic risk analysis, we are interested in evaluating
expected risk of a system containing multiple scenarios. These scenarios can
induce various consequences, which can be interpreted as financial losses,
casualties or disutilities. The expected risk is measured in terms of exceeding
a specific regulatory threshold level ζ ∈ R. Salo et al. (2020) covered the
methodology of this following concept. The idea is to denote consequences as
a random variable Z, which indicates the consequence of the system. Thus,
we can condition the consequence Z on scenarios and obtain a probability of
exceeding the regulatory threshold

P (Z > ζ) =
∑︂
s∈S

P (Z > ζ|s)P (s), (2)

where P (Z > ζ|s) is the probability of exceeding the regulatory threshold in
the scenario s and P (s) is the probability of the scenario s.

Furthermore, we can generalize the expression (2) by denoting Zr as unac-
ceptable consequences that belong to a set of unacceptable consequences Cfail.
These consequences are not real valued. The following disutility function

U(Zr) =

⎧⎨⎩1, Z ∈ Cfail

0, Z /∈ Cfail

determines if the consequences belongs to the set Cfail. Using this disutility
function we can calculate the probability with which the consequences will be
unacceptable

E[U(Zr)] =
∑︂
s∈S

E[U(Zr)|s]P (s). (3)
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Calculating real valued expected consequences E[Z] is done by estimating
the scenario specific expected consequences E[Z|s]. Additionally, expected
utilities/disutilities E[U(Z)] are calculated by estimating the scenario specific ex-
pected utilities/disutilities E[U(Z)|s] with a proper von Neumann-Morgenstern
utility function (von Neumann and Morgenstern, 1953). We can apply the
information in the following equations

E[Z] =
∑︂
s∈S

E[Z|s]P (s) (4)

E[U(Z)] =
∑︂
s∈S

E[U(Z)|s]P (s). (5)

In the probabilistic risk assessment, we can use one of the equations (2), (4) or
(5) as an objective function, which is minimized or maximized, subject to the
available information on marginal probabilities and cross-impact multipliers.
The proper objective function is selected depending on the target of the risk
analysis, and what we are interested in knowing.

By minimizing the selected objective function, we obtain a lower limit of the
expected risk, and by maximizing, we obtain the upper limit. According to
Salo et al. (2020)

• If the lower limit exceeds the tolerable risk level, the system is deemed
unsafe.

• If the upper limit is below the tolerable risk level, the system is deemed
safe.

• Otherwise, the safety of the system is uncertain. Revisiting the conse-
quences, estimated probabilities and cross-impacts is justified.

In this thesis, we use a ready-made optimization algorithm used in Salo et al.
(2020).

4 Expert elicitation

The elicitation process here follows the Delphi method in Dalkey and Helmer
(1963) and Cooke’s Classical Model from Dias et al. (2018). Moreover, it
contains marginal probability estimation with two different methods, confidence
interval calculations, cross-impact multiplier elicitation and feasibility testing.
The target of the process is to obtain judgements for the decision maker (DM).
The facilitator is in charge of eliciting the judgements from the experts and the
analyst uses the elicited data to construct the models for the DM.
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Figure 2: The diagram of the elicitation process.

4.1 Elicitation process

The elicitation process is illustrated in Figure 2, and it begins by defining
the problem and identifying uncertainty factors and their possible outcomes.
The basic concept in the Classical Model is that it considers two types of
questions, regarding target variables and seed variables. The target variables
are the variables of interest in the study, i.e. the marginal probabilities of the
outcomes and cross-impact multipliers. The seed variables are carefully chosen
variables that are closely related to the target variables, where the analyst
knows the true value, but the experts do not. The experts are not expected to
know the precise true values, however, they are expected to give accurate and
informative judgements. Usually, the number of seed variables is 8-20 (Dias
et al., 2018). It is important that the questions regarding the seed variables
are not something the expert can easily recall from memory, therefore, seed
variables can be related to something that has occurred presently or will occur
within a short period of time. Moreover, the research on the seed variables and
question formulation must be done correctly, because Avella (2016) points out
that this phase can cause bias in the process and in the worst case it may affect
the overall results.

The next phase is selecting experts. They must be selected by taking into
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account their background and reputation on the specific field. An expert does
not have to be an expert by job title, but can be a person who is knowledgeable
about a specific field. The experts are called together for a starting discussion,
where they are briefed on the layout of the problem and the methodology.
Furthermore, a lecture in probability theory and critical thinking is provided if
needed (Kynn, 2008). Before the calibration phase, the experts are separated
from each other to minimize group bias and to allow them to give their own
judgements.

Expert calibration quantifies the uncertainty judgements, and it measures the
accuracy of their judgements about the seed variables (Dias et al., 2018). If an
expert is not well calibrated, then their judgements weigh less on the overall
analysis, because the Cooke’s Classical Model assumes that the experts perform
equally well on the target variables as they performed on the seed variables.
Depending on the type of target variables, calibrations are performed with
different methods. However, if the number of target variables of one type is
small compared to the rest, for example, 10 continuous target variables and 1
discrete, it may not be prudent to perform a calibration for just one discrete
target variable. The DM will make a decision on how to proceed with the
calibration. In addition, the experts are not specifically told that they are
answering calibration questions, because the experts should be unbiased and
give judgements purely on knowledge without the pressure of giving good
calibrations.

The next phase is the elicitation process is eliciting judgements for the target
variables. The methodology’s depending on the target variable type are ex-
plained in sections 4.2, 4.3 and 4.4. The results of this phase are tested for
feasibility in the optimization problem, which is explained in 4.4. If the results
are feasible, they are used to analyze the risk of the studied system.

The elicitation concludes with a final discussion with the expert panel. At this
point the experts assemble to analyze the obtained judgements and results.
If the experts and the DM are satisfied with the results, they can proceed to
make a decision. Otherwise, a new round for eliciting judgements for target
variables is justified. In the new round, the experts give refining judgements
with controlled feedback according to the Delphi method (Dalkey and Helmer,
1963).

4.2 Continuous probability distributions

Calibration for continuous variable elicitation in Dias et al. (2018) is done
by collecting quantile estimations on seed variables. Usually, the experts
assess the 5th, 50th and 95th quantiles of the seed variables, i.e. the lower
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bound, median and upper bound. These quantiles form t = 4 intervals shown
in Table 1, and the expected proportion of realizations of the intervals are
p = [p1, p2, p3, p4] = [0.05, 0.45, 0.45, 0.05], i.e. 90% of the right answers are
expected to be located between the lower and upper bounds. The experts
observed proportion of realizations r = [r1, r2, r3, r4] can be determined by
observing how the real answers are placed in the estimations.

Table 1: Observed and expected proportions of calibration questions.

Quantiles Below 5th 5th to 50th 50th to 95th Over 95th
Observed r1 r2 r3 r4
Expected p1 p2 p3 p4

The divergence between the observed and expected proportions is calulated
with the Kullback-Leibler divergence measure

Iei
(r, p) =

t∑︂
j=1

rjln(rj

pj

). (6)

The Kullback-Leibler divergence measure will equal to zero if the observed
proportion r = p, and therefore smaller divergence measure is better. If the
observed proportion has rj = 0 for some j, then the divergence measure at
that point is zero, because limrj→0+ rjln(rj/pj) = 0. According to Dias et al.
(2018), analysing expert assessments of observed proportions will equal the
expected proportions in the long run. Furthermore, the probability distribution
of the divergence measure is related to the Chi-squared distribution χ2 for large
sample sizes. More formally

Pr{2qI(r, p) ≤ X} → χ2
t−1, as q → ∞,

where q is the number of seed variables and χ2
t−1 is the cumulative distribution

function (CDF) of the χ2-distribution with t − 1 degrees of freedom. The
calibration score Cal(ei) of the expert ei, where i = 1, 2, ..., m is calculated
from the CDF of the Chi-squared distribution with t − 1 = 4 − 1 = 3 degrees
of freedom. The calibration score for the expert is defined as the probability of
exceeding the divergence measure 2qIei

(r, p):

Cal(ei) = 1 − χ2
3{X < 2qIei

(r, p)} ∈ [0, 1]. (7)

The calibration score ranks the experts in a quantified way. With the calibration
score one, the expert is perfectly calibrated and is assumed to estimate the
target variables almost perfectly. However, calibration scores can also be very
low, and therefore some experts may not be weighted when calculating final
probability distributions of the decision maker. A threshold level α is set up at
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the beginning of the elicitation, and it indicates what is the lowest calibration
score that can be accepted. Typically, α is set around the value 0.01, but it
can be changed during the elicitation. An indicator function determines if the
expert ei will not be weighted:

1α(Cal(ei)) =

⎧⎨⎩1, if Cal(ei) ≥ α

0, if Cal(ei) < α
(8)

The value one indicates that the expert has passed the calibration and the value
zero indicates the expert has not passed the calibration. The set of qualified
experts is

Ẽ = {ei ∈ E | 1α(Cal(ei)) = 1} ⊂ E.

If Ẽ = ∅, the threshold level α needs to be modified or the calibration must be
performed again. To clarify, the experts not passing the calibration phase are
not removed from the elicitation or considered "bad", they will still answer also
the target variable questions in order to bring reference to the other estimations.

In addition to the calibration, we want our experts to also be informative in
their estimations. To analyse the informativeness, we calculate an information
score for every seed and target variable of the expert ei. The information score
is calculated using the Kullback-Leibler divergence measure as in (6), and the
idea is to compare how much the estimations of the expert diverge from the
intrinsic range of the uniform distribution (Dias et al., 2018), illustration in
Figure 3. Good estimations are the ones that diverge the most from the uniform
distribution.

Figure 3: Example of the 5th, 50th and 95th quantiles elicited from an expert
compared to the uniform distribution.
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Let xei1, xei2 and xei3 be the estimated 5th, 50th and 95th quantiles of the expert
ei respectfully, and let xei0 be the minimum value of the seed/target variable
and xei4 the maximum value for the seed/target variable. The minimum and
maximum values are the same for all experts ei, and they can be fixed by the
analyst, but usually, the range is determined by the experts. This is done
by selecting the expert ei, who has the biggest difference d = |xei3 − xei1| in
his/her 5th and 95th quantiles. The minimum and maximum values are defined
as xei0 = min[xei1] − γd and xei4 = max[xei3] + γd, where γ is an arbitrary
proportion (usually 0.1) and min[xei1] is the minimum lower bound of all experts
and max[xei3] is the maximum upper bound of all experts. The difference
between the maximum and minimum values is defined as ∆d = xei4 − xei0, and
this is called the intrinsic range, where the uniform distribution lies (Dias et al.,
2018). The information score of the expert ei for the variable j is

Ij(ei) =
t−1∑︂
k=0

pk+1ln( pi+1

(xeik+1 − xeik)/∆d
).

The average information score of the expert ei is the average of all information
scores of seed and target variables qall the expert has answered

I(ei) =
∑︁qall

j=1 Ij(ei)
qall

. (9)

The experts are weighted according to the results of the calibration and informa-
tion scores. The weights are used in order to construct probability distributions
for the DM with weighted averages. The raw global weights wi are defined as a
product of the calibration score (7), the average information score (9) and the
value of the indicator function (8)

wi = Cal(ei) · I(ei) · 1α(Cal(ei)). (10)

In addition, we obtain the global weights by normalizing the raw weights

w′
i = wi∑︁m

i=1 wi

. (11)

Additionally, one can test the performance of the DM by calculating the DM
calibration score. This is done by calculating a weighted average of the estima-
tions on the seed variables and check how the true values place in them and
calculate the calibration score (7). We usually want our DM to have a better
calibration score than the experts, and this can be done by optimizing the
weigths by increasing the threshold α until the DM calibration score maximizes.

We can now move on to eliciting marginal probabilities for continuous target
variables. The idea is to construct a cumulative distribution function (CDF)
from the estimations the expert has given. We elicit the 5th, 50th and 95th
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quantiles of the target variable, but in some cases also the 25th and 75th
quantiles are included in order to obtain better accuracy, for this, the calibration
and information score must be calculated also with the additional quantiles.
The minimum and maximum values of the target variable are again determined
by the analyst or the experts. After all experts have answered the questions, we
interpolate the answers of every expert ei with either the linear or the quadratic
method, keeping in mind that interpolation can cause errors. The DM CDF is
the weighted average of all experts CDFs

PDM(X ≤ x) =
m∑︂

i=1
w′

iPei
(X ≤ x),

where w′
i is the normalized weight in (11) and Pei

(X ≤ x) is the interpolated
cumulative probability of the expert ei.

In PCIA, we want to have intervals for the marginal probabilities, and there-
fore we calculate a confidence interval (CI) for the DM probability. Hence,
optimizing the weights for better DM quality is not necessary, because we are
not interested in exact values. In order to calculate the confidence interval
at a certain significance level β, we decided to use the bootstrap confidence
interval 1, discussed in Gatz and Smith (1995), because it only assumes the
data is independent and identically distributed, and parametric methods for CI
calculations are not proper, because the number of experts in set E is usually
not large and we can not be sure what the distributions for the estimations are.
Errors in the bootstrap CI may also occur, but they can be fixed by increasing
the iteration number.

Algorithm 1: Bootstrap confidence interval
Data x̄ = (x1, x2, . . . , xn), iterations k, significance level β ;
for i = 1:k do

1. Select n datapoints randomly from data x̄ with replacement to
create a new sample x∗ = (x∗

1, x∗
2, . . . , x∗

n);
2. Calculate a new weighted average from the new sample x∗;

end
3. Order estimated weighted averages from smallest to largest;
4. Calculate a 100(1-β)% level confidence interval by choosing
[k × (β/2)] ordered estimate as lower endpoint and [k × (1 − β/2)] as
the upper endpoint.;

return Confidence interval

To conclude, the probability intervals for every outcome of the uncertainty
factor are calculated from the cumulative distributions formed by the lower and
upper bounds of the calculated confidence interval of the decision maker CDF.
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4.3 Discrete probability distributions

Calibration for discrete variable elicitation is performed with the following
methodology presented in Dias et al. (2018) and the IDEA protocol (Hanea
et al., 2017). First, we start with generating a qd number of seed variables,
which are events with a certain probability of occurrence. Next, we define a
number nb of probability bins bj = (pj, 1 − pj), where pj is the probability of
occurrence. For example, b1 = (0.2, 0.8), b2 = (0.5, 0.5) and b3 = (0.7, 0.3).
We ask our experts to assign seed variables to a corresponding bin, where
they believe the probability of occurrence lies. Let nj be the amount of seed
variables assigned to a bin bj by an expert, and let rj be the proportion of
these seed variables that actually occur. The relative information between rj

and pj is calculated with I(rj, pj) = rjln( rj

pj
) + (1 − rj)ln( 1−rj

1−pj
). As a result, for

nj independent seed variables, with the occurrence probability pj, a measure
of 2njI(rj, pj) is asymptotically Chi-squared distributed with one degree of
freedom (Dias et al., 2018). So for nb bins, we calculate the calibration score
as follows

Cal(ei) = 1 − χ2
nb

{X <
nb∑︂

j=1
2njI(rj, pj)}.

The average informativeness of the estimations for the seed variables is calculated
by comparing how many times the seed variables have been placed to the uniform
bin b = (0.5, 0.5) (Dias et al., 2018)

Is(ei) = 1
qd

nb∑︂
j=1

njI(pj, 0.5).

The information score for qt discrete target variables are calculated in the
following way. Let the probability estimations for the uncertainty factor Yl with
Kl number of outcomes be PYl

= [P 1
Yl

, P 2
Yl

, ..., P Kl
Yl

]. Let the uniform distribution
be uYl

= 1/Kl. The information score for one target variable Iei
(uYl

, PYl
) is

calculated with the divergence (6). Hence, the average information score for
the target variables is calculated as It(ei) = 1

qt

∑︁qt

l=1 Iei
(uYl

, PYl
). If the DM

wants to include the informativeness of the target variables in the weighting,
then the average information score is the mean of the seed and target variable
information scores I(ei) = (Is(ei) + It(ei))/2, otherwise we use only the seed
variable calibration. The global raw weights are gi = Cal(ei) · I(ei) · 1α(Cal(ei)),
and the normalized weights g′

i are calculated according to (11).

Now, we move on to the reference lottery method, where the idea is create two
options, shown in Figure 4. The first option is the lottery M and the other is
the reference lottery R. The expert is asked to choose between the two lotteries
and the assigned probability pr is changed depending on which lottery the
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expert preferred. In conclusion, the estimated probability P (A) is determined
when the expert is indifferent between the two lotteries M ∼ R. More formally

W · P (A) + L · (1 − P (A)) = W · pr + L · (1 − pr),

where W is the price or severity of event A occurring and L is the price or
severity of event A not occurring. The process starts with estimating the

Figure 4: Reference lottery.

probability Pei
(A1

j) of the first outcome A1
j of the uncertainty factor Yj. The

next step is to define the initial probability pr1, which is an enlightened guess
for the probability of the outcome A1

j . Next, we start eliciting the preference
of the expert between the two lotteries for l rounds. The assigned probability
prl is changed according to the preference of the expert and the bound for the
pr probability also changes. If lottery M is preferred, then prl+1 > prl and
prmin = prl. If reference lottery R is preferred, then prl+1 < prl and prmax = prl.
The new probability prl+1 is chosen randomly between [prmin, prmax]. The elic-
itation for the probability of the outcome A1

j is ended when the expert ei is
indifferent between the lottery and reference lottery. The estimated probability
Pei

(A1
j) is returned.

The probabilities for the rest of the outcomes are estimated with the same
procedure. However, the probability for the next outcome Ak+1

j is between
[0, 1 − ∑︁k

x=1 Pei
(Ax

j )], and therefore the first value pr1 must be between that
interval. This process is performed Kj − 1 times, where Kj is the number of
outcomes of the uncertainty factor Yj. The estimate for the last probability
Pei

(AKj

j ) is calculated as the complement with respect to the other outcome
probabilities: Pei

(AKj

j ) = 1 − ∑︁Kj−1
x=1 Pei

(Ax
j ). The DM probability is calculated



16

with a weighted average

PDM(Ak
j ) =

m∑︂
i=1

g′
iPei

(Ak
j ),

where g′
i is the normalized weight. The confidence interval for the DM probability

is calculated by using the bootstrapping algorithm 1. However, the bootstrap
algorithm may give probability intervals that do not sum up to one, and
therefore the lower and upper end points are normalized in a way that the
results are proper probability distributions.

4.4 Cross-impact judgements

In order to acquire judgements efficiently on cross-impact multipliers, we create
a consistency table, which indicates the level of consistency of two outcomes
with a strict qualitative description. We use this method, because numerical
descriptions might be difficult to understand if the concept of cross-impact
multipliers is not familiar. These qualitative consistency tables have been used
in Weimer-Jehle (2006) and Seeve (2018). However, we must describe the

Table 2: Consistency descriptions to pairs of outcomes A and B.

Level
c

Description Interval
Qc

3 Strongly increasing. The occurrence of outcome A
strongly increases the probability of outcome B to
occur.

δ2 − δz

2 Increasing. The occurrence of outcome A increases
the probability of outcome B to occur.

δ1 − δ2

1 Slightly increasing. The occurrence of outcome A
slightly increases the probability of outcome B to
occur.

δ0 − δ1

0 Independent. The outcomes occur independently and
have no direct relation.

δ0 ± δ/10

-1 Slightly reducing. The occurrence of outcome A
slightly reduces the probability of outcome B to occur.

δ−1 − δ0

-2 Reducing. The occurrence of outcome A moderately
reduces the probability of outcome B to occur.

δ−2 − δ−1

-3 Strongly reducing. The occurrence of outcome A
strongly reduces the probability of outcome B to occur.

δ−z − δ−2

consistencies carefully, because bad qualitative descriptions can be misleading
and they might not describe the relationship of the pair of outcomes in a proper
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way. As mentioned before, the cross-impact multipliers are non-negative values,
and therefore in order to convert the consistency levels c from Table 2 into
a form that can be used in calculations, we use a parameter δ ∈ R≥1, and
we can define a specific level of consistency as cross-impact multiplier interval
Qc shown in Table 2. The parameter z is an upper limit to the power of the
parameter δ, if one is deemed necessary.

To start the calibration, a pool of seed variables are generated. Each seed
variable describes the cross-impact multiplier of two outcomes according to the
definition (1). The experts are shown the Table 2, which contains descriptions
of the consistency levels and their numerical intervals. Next, the experts are
asked to assign levels c ∈ [−3, 3] to represent the consistency of the outcomes in
the seed variables at a somewhat certain confidence. However, it is challenging
to assign a strict level to represent a consistency, and therefore the experts
can give judgements such as "the level lies between 0 and 2", which indicates
that the expert believes the true cross-impact multiplier lies in the interval
[Qlow

0 − Qupp
2 ]. Thus, estimating an interval [−3, 3] is the most uninformative.

We create three (t = 3) intervals for the expected proportion p = [p1, p2, p3].
Depending on the number and difficulty of the seed variables, the expected
proportion can be changed. Generally, we want our experts to estimate the cross-
impacts multipliers correctly at a chance of 60 − 90%, meaning the minimum
expected proportion is [0.2, 0.6, 0.2] and the maximum [0.05, 0.9, 0.05]. From
the results we can calculate the observed proportion r. The calibration score
Cal(ei) is calculated in the same way as in (7), where we use the Chi-squared
distribution with two degrees of freedom. The information score is calculated for
the seed and target variables by scoring the width of the estimated consistency
level interval [clow, cupp] with a linear function:

Ij(ei) = 1 − |cupp − clow|
6

The average information score is I(ei) = 1
qall

∑︁qall
j=1 Ij(ei), where qall is the

number of seed and target variables. The global raw weights are calculated as
in (10), i.e. ui = Cal(ei) ·Ici(ei) ·1α(Cal(ei)), and they are normalized as in (11).

The cross-impact multiplier elicitation starts by dividing every pair of uncer-
tainty factors (Yk, Yl) into sub-matrices Ckl ∈ CIM. These sub-matrices are
presented in the elicitation sheet, where the experts can manually give con-
sistency judgements as presented in Figure 5 using the Table 2 as a reference.
The sub-matrices that expert ei has constructed are compiled into one CIM,
which is denoted as Cei

. During the process, the following instructions are key
elements in order to minimize the workload of the experts and to obtain better
judgements:
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Figure 5: Example of cross-impacts judgements to a pair of uncertainty factors.

• If the number of cross-impacts multipliers is very large, then a certain
number of most significant or potentially risky combinations of outcomes
are selected, and the experts will assess only these.

• The experts are allowed to not give judgements on consistencies, where
they feel very uncertain. The DM and the analyst will provide the proper
solution. Intervals for consistency levels are allowed.

• The facilitator must guide the experts in giving mathematically realistic
solutions in a way that the judgements will not be biased.

From the matrices Cei
, we can calculate the lower and upper bounds for the

DM cross-impact multipliers [C low
DM − Cupp

DM ]. Firstly, we convert the estimated
consistencies c in the matrix Cei

into intervals Qc, and calculate the interval
mean. Secondly, the confidence intervals are calculated for the weighted mean
CDM = ∑︁m

i=1 u′
iCei

using the bootstrap algorithm 1 at a 99% confidence level
for more uncertainty. In situations, where all experts give the same level of
consistency to a pair, we set the DM bounds to equal the interval of the specific
level c according to Table 2. Finally, we remove independence assumptions
using a parameter ξ ∈ R>0 in the following way:

• If δ−1/2 < C low
DM ≤ 1 and Cupp

DM > δ, then set C low
DM = 1 + ξ

• If 1 ≤ Cupp
DM < δ1/2 and C low

DM < δ−1, then set Cupp
DM = 1 − ξ.

Now, we proceed to test feasibility of the solution by running the optimization
problem. Obtaining a non-feasible solution indicates that the cross-impact
judgements are mathematically impossible, and therefore procedures for in-
vestigating what caused the non-feasibility must take place. To have a clue,
where to begin investigating, we can run the optimization problem separately
for every sub-matrix, and see if they get a feasible solution. This is not proven
to be a correct method, but it gives a direction, where the problem might be.



19

By identifying the sub-matrices, where the incorrect intervals for cross-impacts
may lie, we can try to widen the intervals for λ percents iteratively until they
reach determined limits to the lower and upper bounds (lb, ub). The correction
algorithm 2 aims to shift the cross-impact multipliers closer to the value one.
The algorithm can be found in the appendix A. After this procedure, we can
again check if removing independence assumptions can be done. The final
option if the methods above are not working is to perform the elicitation for
the particular sub-matrices again. Moreover, we must observe if the intervals
for the cross-impact multipliers are too wide, because even if it may lead to
feasible solutions, the informativeness of the cross-impact multipliers are not
appropriate. For example, if the interval is Ckl

ij ∈ [0.45 − 2.33], it indicates that
the consistency of the outcomes Ak

i and Al
j can be anything. Hence, considering

a new cross-impact elicitation for this is justified.

5 Experimental case study

5.1 Problem setup

The developed elicitation process is used in an experimental case study, where
the object is to test the efficiency of the process, analyse the quality of the
judgements and to evaluate the total risk of the system. The main focus
was on evaluating the risk of graduation delay from scenarios caused by the
COVID-19 crisis. The target group was bachelor students whose graduation
is planned for the academic year of 2020-2021. The experts in this study are
five students, whose identities are kept anonymous, however, their backgrounds
are highlighted in Table 3. The study focuses on four different uncertainty

Table 3: Backgrounds of the selected experts.
Expert 1 Computer Science
Expert 2 Mechanical and Structural Engineering
Expert 3 Engineering Physics and Mathematics
Expert 4 Industrial Engineering and Management
Expert 5 Chemical Engineering

factors that can affect the graduation of the bachelor student. The uncertainty
factors and their outcomes are illustrated in Table 4, and the explanations for
the factors are explained below.

The first uncertainty factor is the COVID-19 situation in Finland during the
academic year of 2020-2021. The focus is on estimating the probabilities for
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Table 4: An example of a scenario colored in blue. Top row contains the
uncertainty factors and the columns below contain their outcomes.

COVID-19
situation

(Discrete)

Course
arrangements
(Continuous)

Student
performance
(Continuous)

Financial
situation of a

student
(Continuous)

Stable Normal: 0-10%
courses online.

Low: < -5 credit
difference

Impaired: < −50
euros monthly

Moderate Mixed: 11-80%
courses online

Normal: ±5
credit difference

Normal: ±50
euros monthly

Critical Remote: 81-100%
courses online.

High: > 5 credit
difference

Improved: > 50
euros monthly

three different discrete outcomes that include the virus spreading rate and
restriction protocols with respect to the situation of July 2020 in Finland. This
is a parameter that defines the overall behaviour of the society, and therefore
can correlate highly with other factors.

• Stable: The number of infections will remain at or below the level of July
2020 and the phasing out of restrictions will continue, with restrictions
completely lifted by the end of 2020.

• Moderate: Infections will rise again to the level of March 2020, and
restrictions will be reintroduced to the same extent as in spring 2020.

• Critical: The number of infections will rise to an unprecedented level in
Finland, and much higher restrictions will be introduced than in spring
2020.

The second uncertainty factor is course arrangements. This factor estimates
the percentage of the courses organized online in Aalto University during the
academic year of 2020-2021, and it may correlate highly with the COVID-19
situation, because universities change their operative strategies often according
to the recommendations of the government and health authorities. Further-
more, this factor can affect the students studying methods and motivation in a
negative or a positive way, depending on the preferences of the student.

The third uncertainty factor is student performance. This factor targets in
measuring the difference of credits obtained in the year of studies compared to
the credit goal of the individual student. The difference to the goal is measured,
because bachelor students planned to graduate within 2020-2021, may have
different numbers of credits left to obtain in order to complete the requirements
of the degree.
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The fourth uncertainty factor is the financial situation of a student. This
factors aims in measuring the difference in the students monthly operating
assets, that is, the amount of money the student uses monthly for basic needs.
This factor is interesting, because there might be significant differences due
to the fact that many students lost their summer job due to the COVID-19 crisis.

The risk analysis for the system is done by calculating the expected utility. We
have estimated every outcome an expected utility U ∈ [−1, 1], which indicates
how the outcome speeds up the graduation of a bachelor student. Negative
values indicate delay and positive values indicate acceleration in the graduation.
Value zero means the outcome has no effect. The scenario specific expected
utilities are calculated as averages of the outcome utilities, and they can be
interpreted as time utilities. We can specify the utility U = −1 to indicate five
period delay (one academic year) and U = 1 to indicate five period speed up.
Using this information we can say that a utility U = −0.2 would mean a one
period delay. The outcome specific expected utilities are shown in Table A1 in
the appendix.

We used the following expected proportions and parameters in the process.
For continuous variable calibration, we used the expected proportion of p =
[0.05, 0.45, 0.45, 0.05] for the 5th, 50th and 95th quantiles. For cross-impact
multiplier calibration we used an expected proportion of p = [0.2, 0.6, 0.2],
which means we looked for 60% of correct estimations and 20% under- and
overshoots were allowed. This is important to keep in mind, because the experts
might give under/overconfident judgements. The threshold level for calibration
scores was set to α = 0.01, the delta parameter for the cross-impact multipliers
was set to δ = 1.3, the maximum power for the delta parameter was z = 4, the
independence removing parameter was ξ = 0.05 and the correction parame-
ter λ = 0.08. The limits for the correction algorithm 2 are presented in Table A2.

Seed variables were formulated in a way that they represent the target vari-
ables as much as possible, and the information for them was acquired from
the following websites: Finnish Institute for Health and Welfare (Terveyden
ja hyvinvoinnin laitos, 2020), Statistics Finland (Tilastokeskus, 2020), The
Social Insurance Institution of Finland (Kela, 2020), Aalto University (2018),
Aalto University (2019) and Aalto University Learning Centre (2020). Both
probability and cross-impact multiplier calibrations use eight seed variables.
We decided, to calculate the probability weights only according to continuous
variable calibration, because the problem has few uncertainty factors and only
one of them is discrete. The elicitation sheet and the judgements of the experts
are presented in appendix A.
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5.2 Process analysis

The process was performed separately for every expert using remote connections,
following the steps explained in 4.1. We performed one main round for the
elicitation and one fast round, where the experts gave some refining judgements
on the target variables. The elicitation sheet covered the calibration phase in
parts one and two, and the target variable elicitation phase in parts three and
four. For every expert, we presented the main idea of the process and carefully
explained the instructions. Overall, the process worked well, and most of the
confusion occurred only at the beginning, as the experts were getting used
to the types of questions and developing a routine on how to answer them.
Manually giving judgements for the various questions was considered to be easy
among the experts, however, constant contemplation and giving judgments was
becoming more tough when time went by, so breaks had to be taken.

The times taken by the experts in the first round, refining round and overall
remained within tolerable limits and are presented in Table 5. The average
overall time taken by the experts was approximately 100 minutes. Keeping in
mind that our study had only 16 seed variables in total and 66 target variables,
the time taken by one expert on average was quite good. Performing a larger
study containing ten times more seed and target variables will probably cost
an entire day of work (8-10 hours) for one expert.

Table 5: Times taken by experts at each round.
Expert 1 2 3 4 5

Time of round 1 131 min 53 min 66 min 134 min 33 min
Time of round 2 10 min 15 min 25 min 15 min 10 min

Overall time 141 min 68 min 91 min 149 min 43 min

In the calibration phase, the experts were not told that they are answering
calibration questions, but they understood by themselves that the questions
have a known answer, and that the results might qualify them in some way.
This indicates that, in practice, it is not always feasible to keep the calibration
part unknown from the experts. However, for future studies, the analyst could
merge seed and target questions together into the same phase.

The target variable elicitation phase was considered to be the easiest among the
experts, although, a somewhat large amount of thinking was required in order
to understand pairwise relationships better in the cross-impact elicitation part.
In probability elicitation, the reference lottery method used for the COVID-19
uncertainty factor was considered to be hard to understand at the beginning,
and therefore took more time than the other methods. From this it can be de-
duced that eliciting continuous variables is more efficient than discrete variables.
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Additionally, for continuous variables the workload for eliciting probabilities is
smaller than in discrete variables. Consider two uncertainty factors (continuous
and discrete) with ten outcomes each. For the continuous uncertainty factor
we are able to get probabilities for every outcome with just one lower bound,
median and upper bound estimation. For the discrete one, the expert needs
to estimate nine different probabilities and the last one is calculated as the
complement. Giving cross-impact judgements with a qualitative scale from -3
to 3 was considered to be an easy an fast way in giving the pairs of outcomes a
representation of their relationship.

One refining round of elicitation was performed, because the first judgements
had some inconsistencies and big differences, and the Delphi method (Dalkey
and Helmer, 1963) aims in pushing the judgements of the experts in the same
direction. The experts were not shown the judgements of the others, but they
were told the direction and approximate magnitudes of the judgements. This
resulted in some new and more consistent results. If the study would have been
larger, more refining rounds for target variables could have been performed.

5.3 Results

The following data was obtained from the elicitation process. The calibration
scores, information scores and weights for probability and cross-impact judge-
ments are presented in Figure 6, which are color scaled from red (worst) to
green (best).

Figure 6: Calibration scores, information scores and normalized weights of
probability and cross-impact judgements.

It is useful to keep in mind that we used only eight seed variables for each target
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variable type, which means the observed proportions of the experts always differ
from the expected proportions, meaning, the calibration scores may look bad,
but actually they are not. For example, experts three and five gave very good
probability judgements on the seed variables, but got only a score of ≈ 0.54.
Overall the experts performed well in the calibration phase. They performed
better in the probability calibration compared to the cross-impact calibration,
where we used a more flexible expected proportion. If we would have used the
most strict expected proportion p = [0.05, 0.9, 0.05] for the cross-impacts, only
two experts would have qualified from the calibration and their calibration
score would not have been the best. These calibration results indicate that the
probability judgements of the experts are quite reliable, but the cross-impact
judgements must be critically evaluated as under/overshoots can occur in target
variables.

Final refined judgements for the target variables regarding the probabilities are
visualized in Figure 7. The DM probabilities with the 95% confidence intervals
are illustrated in Figure 8, and the numerical marginal probabilities for the
outcomes are shown in Table 6. In the light of the calibration scores of the
experts in Figure 6, we can say that using 95% confidence intervals for the
probabilities give reliable and useful predictions for the future.

Figure 7: Probability judgements.
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Figure 8: Constructed DM probabilities and 95% confidence intervals.

Table 6: Marginal probabilities
Uncertainty factor Outcome Marginal probability

COVID-19
Stable

Moderate
Critical

[0.3744 − 0.5504]
[0.2319 − 0.5648]
[0.0608 − 0.2177]

Course arrangements
Normal
Mixed

Remote

[0.0041 − 0.0798]
[0.6116 − 0.8857]
[0.0345 − 0.3843]

Student performance
Low

Normal
High

[0.0770 − 0.6364]
[0.2966 − 0.5302]
[0.0669 − 0.3928]

Financial situation
Impaired
Normal

Improved

[0.0009 − 0.0302]
[0.4177 − 0.8036]
[0.1661 − 0.5815]
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In the cross-impact multiplier elicitation, the experts gave judgements to every
pair of outcomes, with some refining judgements in the second round. Every
pair of uncertainty factors obtained dependent judgements except the pairs
(Course arrangements, Financial situation) and (Student performance, Finan-
cial situation), which were deemed independent. In the result analysis, we
did not obtain a feasible solution for the optimization problem immediately,
so we applied independence removing and we widened the cross-impacts of
the sub-matrices (COVID-19, Financial situation) and (Course arrangements,
Student performance).

Figure 9 shows the dependent uncertainty factors and their cross-impact multi-
pliers with 99% confidence intervals, where green cells indicate an increasing
effect in the cross-impact multiplier and red cells indicate a decreasing effect.
Due to the calibration scores, the cross-impact multipliers are still not the
most reliable even with 99% confidence intervals. Some cross-impacts have
very wide independent intervals, for example, COVID-19: critical and course
arrangements: mixed, where the interval is [0.2959 − 1.3956]. This means we
can not really tell anything about their relationship. The experts, however,
where satisfied with their own judgements and as decision makers we can only
give controlled feedback, but not force them to change their thinking.

Figure 9: Confidence intervals at 99% for the cross-impact multipliers. Rest of
the uncertainty factor pairs were estimated to be independent, i.e. [δ ± δ/10] =
[0.8700 − 1.1300].



27

The expected risk was calculated by minimizing and maximizing the expected
utility of the system. We obtained a lower bound Risklow = −0.23 and an
upper bound Riskupp = 0.16, which would indicate that in the worst case, the
graduation of a third year bachelor student will be delayed with one period,
and in the best case, the graduation will speed up with almost one period.
An interesting observation was that by running the optimization problem by
setting every uncertainty factor independent from each other, we obtained a
lower bound Risklow

ind = −0.27 and an upper bound Riskupp
ind = 0.05, which means

that in the worst case the graduation would delay with approximately one and
a half period and in the best case the student will approximately graduate on
time. Basically, with the cross-impact judgements of the experts, we predict a
larger variation in the expected utility, which yields a slightly better worst case
and a better best case utility compared to the risk assessment with independent
uncertainty factors. The risks are visualized in Figure 10.

The result for the risk assessment is not the most reliable as the calibration
scores for the cross-impacts judgements were not the best. In addition, the
expected utilities for the outcomes and scenarios were estimated subjectively
without any judgements from experts, and therefore obtaining better utility
judgements would yield a different result in the risk assessment. However, the
marginal probabilities and cross-impact judgements estimate somewhat well
the direction of what might happen in the future.

Figure 10: Lower and upper bounds of the dependent and independent risk
assessment.



28

6 Conclusion

This thesis developed a process for eliciting expert judgements for probabilistic
cross-impact assessment purposes, which aimed in making scenario based risk
evaluations more efficient. The process was tested in an experimental case
study, where we produced a risk assessment for a system with 81 potential
scenarios. As a whole, the process worked as expected with the exception that
it had to be performed remotely. The judgements for the marginal probabilities
produced reliable data, but the cross-impact judgements have the potential to
be under/overconfident, and therefore the results of the risk assessment may
not be sufficient to make decisions.

According to the empiric results in the process analysis 5.2, we can conclude
that the process is quite efficient overall in eliciting judgements for approxi-
mately 80 variables (seed+target). For larger scale studies it is necessary that
the experts assemble in one place and use an allotted time for the process,
because even if all experts would be capable to use an entire day for the pro-
cess remotely, it becomes hard and time taking for the analyst and facilitator
to use an entire day for just one expert at a time. It is important that the
experts are not left without help, because also in our process the experts would
have given illogical judgements. However, as we have learned in the current
circumstances, working remotely is increasing fast. For future applications, it
would be useful to turn this process into a web based software that can handle
multiple experts giving judgements at the same time in different locations,
independently, anonymously and with the assistance of a facilitator. With a web
based tool, it would be possible to study implementing a Bayesian network in
the process, which would update the prior distributions of the data by gathering
real time information on events as time goes by. Additionally, in terms of
workload, it would be useful to focus on continuous variables as much as possible.

The reliability of the produced data is strongly based on the calibration results
of the experts. If we want our experts to be calibrated with better precision,
we must generate more seed variables and acquire information on them. This
is a laborious process for the analyst, but it would produce better results
as we get more accurate observed proportions for the experts, which can be
compared to the expected proportions. Additionally, the performance of the
experts can be improved by giving controlled feedback after the elicitation. The
number of experts participating in the elicitation is also important, because
it would be useful to have many opinions. A panel of five experts is quite
small for giving judgements on high risk systems. The more experts the better,
but it would also mean that the judgements can have a lot of variance, and
therefore multiple refining rounds for the target variables are likely to be needed.
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Most difficulties in eliciting and analysing data occurred with the cross-impact
judgements. Eliciting cross-impacts judgements requires the facilitator to ob-
serve and point out possible mathematical impossibilities, i.e. non-feasible
solutions. This is quite laborious for the facilitator and it might lead to biased
judgements. Furthermore, obtaining a non-feasible solution requires examining
what caused it. Our method to test feasibility one pair of uncertainty factors
at a time performed well, but our data was quite small. For larger data sets
this might not be an appropriate method. For a potential web based software,
it is worth considering testing the feasibility automatically as the experts give
their judgements on cross-impacts.

This thesis does not examine or take position on how the expected consequences
or utilities for risk assessment purposes are elicited. Thus, for future research
one can implement the elicitation for consequences and utilities into the process
presented here.

We are grateful for all the experts who volunteered their time to help with the
study. It is worth mentioning that the experts are only third year students
with no work experience in epidemiology, economics or university management,
and in this sense they actually gave very good judgements. In addition, none
of the experts are considered at any point bad or good, only their judgements
are qualified in a mathematical way.
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A Appendix

Algorithm 2: Cross-impact correction
Set maximum correction rounds Rd. Set λ percentage increase. Set
sub-matrix specific lower/upper bounds (lbij, ubij);

for r = 1:Rd do
Test feasibility for every sub-matrix Cij of the CIM;
if all sub-matrices Cij feasible then

break;
else

for every non-feasible Cij do
for k = 1:size(Cij, 1) do

for l = 1:size(Cij, 2) do
if Cij(k, l)low > ubij or Cij(k, l)upp < lbij then

Cij(k, l)low = Cij(k, l)low · (1 − λ/2);
Cij(k, l)upp = Cij(k, l)upp · (1 + λ/2);

end
end

end
end

end
end
Run optimization for whole system;



Elicitation sheet 

 

Part 1. Answer the following questions. Give your estimates as 5th, 95th and 50th quantiles. To be 

more specific, your answers are estimates of values so that the true value of the question has a 5%, 

95% and 50% probability of being less or equal to the value you have estimated, i.e. the lower and 

upper bounds and the median. 

Example: From a fleet of 1000 airplanes, how many planes will malfunction after 2000 hours of 

flight? ➔ 5th = 2, 95th = 20 and 50th = 5. 

 

1. Estimate how many confirmed infections of SARS-Cov-2 virus occurred in Finland during the 

week 32 (3.8.2020-9.8.2020).  

5th 95th  50th 

   

 

2. Estimate how many COVID-19 test samples were performed in Finland during the week 32 

(3.8.2020-9.8.2020).  Give you answer in tens of thousands. 

5th 95th  50th 

   

 

3. Estimate the overall incidence of SARS-Cov-2 virus cases in Finland. Give your answer in 

thousands or with more precision. 

5th 95th  50th 

   

 

4. Estimate the percentage of students that have completed at least 55 credit points at Aalto 

University in the academic year 2019-2020.  

5th 95th  50th 

   

 

5. Estimate the number of bachelor’s degrees produced in Aalto University in academic year 

2019-2020. 

5th 95th  50th 

   

 

6. Estimate how many bachelor theses were published between January and July 2020 in Aalto 

University. 

5th 95th  50th 
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7. Estimate the difference in the number of working 15 to 24-year-olds in June 2020 compared 

to June 2019.  Give your answers in tens of thousands or with more precision. 

5th 95th  50th 

   

 

8. Estimate the number of new under 25-year-olds in June 2020 who will receive basic income 

support. Give your answer in thousands or with more precision. 

5th 95th  50th 
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Part 2. Consider the table below, which indicates the level of consistency of two outcomes, i.e., the 

cross-impact multiplier. The cross-impact multiplier is defined as the probability of outcome B given 

that outcome A occurred and divided by the probability of B, more formally C = P(B|A)/P(B).  

Table 1. 

Level Description C 

3 Strongly increasing. The occurrence of outcome A strongly 
increases the probability of outcome B to occur. 

1.69 - 4.82 

2 Increasing. The occurrence of outcome A increases the probability 
of outcome B to occur. 

1.3 - 1.69 

1 Slightly increasing. The occurrence of outcome A slightly increases 
the probability of outcome B to occur. 

1 – 1.3 

0 Independent. The outcomes occur independently and have no 
direct relation. 

0.87 - 1.13 

-1 Slightly reducing. The occurrence of outcome A slightly reduces the 
probability of outcome B to occur. 

0.77-1 

-2 Reducing. The occurrence of outcome A moderately reduces the 
probability of outcome B to occur. 

0.59-0.77 

-3 Strongly reducing. The occurrence of outcome A strongly reduces 
the probability of outcome B to occur. 

0.20-0.59 

 

Below are presented eight (8) pairwise events. Select the level of cross-impact [-3,3] from the table 

above that corresponds to the pair of outcomes below.  Give your answer as a specific level or as an 

interval. For example, the cross-impact lies at level 2 or between levels 2-3. 

Outcome A Outcome B Level   

COVID-19 situation in 
Finland in spring 2020. 

A bachelor’s thesis is published in Aalto University 
between January and June 2020. 

 

COVID-19 situation in 
Finland in spring 2020. 

A 15-24-year-old working in June 2020 (Entire Finland).  

COVID-19 situation in 
Finland in spring 2020. 

A working age (15-24) individual becomes an 
unemployed jobseeker in summer 2020 (Entire Finland). 

 

COVID-19 situation in 
Finland in spring 2020. 

An individual is accepted to study in Aalto University. 
Consider the whole population of Finland. 

 

COVID-19 situation in 
Finland in spring 2020. 

A course is arranged in the summer period of the year 
2020 in Aalto University. 

 

A Student obtains a goal 
number of credit points 
in spring 2020.  

A student’s financial situation in summer 2020 stays 
unchanged compared to the situation in spring 2020. 

 

Restriction policies in 
Finland at the middle of 
June 2020 (15.6.-21.6.). 

A COVID-19 test taken at the end of July 2020 (21.7.-
26.7.) in Finland shows a positive result. 

 

Restriction policies in 
Finland at the end of June 
2020 (22.6.-28.6.). 

An individual person getting confirmedly infected by the 
SARS-Cov-2 virus during the week 32 (3.8.-9.8.) in 
Finland. 
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Part 3. Answer the following questions in the same way as in Part 1 with your best capability. Give 

you answers as 5th, 95th and 50th quantiles. Assess every question independently. 

 

1. Consider the courses in Aalto University. On average, what is the percentage of them that 

will be organized remotely during the academic year 2020-2021? 

5th 95th  50th 

   

 

2. On average, how much will the amount of obtained credits of a single student differ from 

his/her planned credit goal at the end of the academic year 2020-2021?  

5th 95th  50th 

   

 

3. How will the monthly operating assets (money available for basic needs) of a student change 

in the academic year of 2020-2021? Give your answers in euros. 

5th 95th  50th 

   

 

The following question requires assistance from the facilitator.  

4. What is your estimate to the probability of Covid-19 to be in a stable / moderate / critical 

situation in the academic year 2020-2021?  

Table 2. 

 

 

Probability(Stable) =    

Probability(Moderate) =   

Probability(Critical) = 

 

 

 

 

COVID-19 outcomes in academic year 2020-2021 

Stable: The number of infections will remain at or below the level of July 2020 and the phasing 
out of restrictions will continue, with restrictions completely lifted by the end of 2020. 

Moderate: Infections will rise again to the level of March 2020, and restrictions will be 
reintroduced to the same extent as in spring 2020. 

Critical: The number of infections will rise to an unprecedented level in Finland, and much higher 
restrictions will be introduced than in spring 2020. 
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Part 4. Fill in the levels of consistencies ranging from -3 to 3 according to Table 1.  The definitions to 

the COVID-19 outcomes were presented in Table 2. Furthermore, consider how the outcomes on the 

side A influence the outcomes on the side B. For example, if the outcome COVID-19: Stable occurs, 

how will it relate with the remote course arrangements.  

Note: If you feel very uncertain about the consistency, leave the cell of the grid blank.  

 

  Course arrangements (B) 
 

  Normal: 0-
10% courses 

online 

Mixed: 11-
80% courses 

online 

Remote: 81-
100% 

courses 
online 
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  Student performance (B) 

  Low: < -5 
credit 

difference 

Normal: ± 5 
credit 

difference 

High: > 5 
credit 

difference 
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  Financial situation of a student (B) 

  Impaired: 
Operating 

assets 
/month  
< -50 € 

Normal:  
Operating 

assets 
/month  
± 50 € 

Improved:  
Operating 

assets 
/month  
> 50 € 
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  Financial situation of a student (B) 
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assets 
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Normal:  
Operating 

assets 
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  Financial situation of a student (B) 
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< -50 € 
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assets /month  
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Probability elicitation

Expert 1

Min 5th 5th 95th Max Correct value

Seed 1 3 50 125 200 327 168

Seed 2 0 20000 80000 100000 215000 48969

Seed 3 100 3000 4500 5000 10900 7805

Seed 4 13.5 20 40 85 100 36 %

Seed 5 200 400 1100 1400 1600 1340

Seed 6 0 200 500 700 960 295

Seed 7 -109000 -20000 -10000 -3000 6000 -31000

Seed 8 0 2500 7500 9000 21900 10793

Target2 0 10 50 85 100

Target 3 -20 -15 -5 10 15

Target 4 -60 0 30 100 210

Target 1 0.29 0.32 0.39 COVID-19: (Critical, Moderate, Stable)

Expert 2

Min 5th 5th 95th Max

Seed 1 3 150 220 300 327

Seed 2 0 20000 30000 50000 215000

Seed 3 100 6999 7400 7500 10900

Seed 4 13.5 40 45 50 100

Seed 5 200 500 550 700 1600

Seed 6 0 700 750 900 960

Seed 7 -109000 -30000 -25000 -20000 6000

Seed 8 0 10000 18000 20000 21900

Target2 0 25 40 50 100

Target 3 -20 -10 -7 -5 15

Target 4 -60 -50 0 50 210

Target 1 0.15 0.57 0.28 COVID-19: (Critical, Moderate, Stable)

Expert 3

Min 5th 5th 95th Max

Seed 1 3 30 140 300 327

Seed 2 0 50000 100000 200000 215000

Seed 3 100 1000 3500 10000 10900

Seed 4 13.5 30 70 95 100

Seed 5 200 300 600 1000 1600

Seed 6 0 50 200 600 960

Seed 7 -109000 -100000 -30000 -10000 6000

Seed 8 0 1000 8000 20000 21900

Target2 0 5 60 90 100

Target 3 -20 1 5 10 15

Target 4 -60 10 30 150 210

Target 1 0.16 0.2 0.64 COVID-19: (Critical, Moderate, Stable)
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Expert 4

Min 5th 5th 95th Max

Seed 1 3 55 85 95 327

Seed 2 0 20000 35000 50000 215000

Seed 3 100 6000 7500 9000 10900

Seed 4 13.5 25 40 60 100

Seed 5 200 600 1000 1300 1600

Seed 6 0 400 650 900 960

Seed 7 -109000 -80000 -45000 -30000 6000

Seed 8 0 2000 4000 6000 21900

Target2 0 40 60 80 100

Target 3 -20 -5 0 10 15

Target 4 -60 -20 80 150 210

Target 1 0.03 0.47 0.5 COVID-19: (Critical, Moderate, Stable)

Expert 5

Min 5th 5th 95th Max

Seed 1 3 70 140 210 327

Seed 2 0 10000 40000 100000 215000

Seed 3 100 6000 7000 10000 10900

Seed 4 13.5 40 60 80 100

Seed 5 200 800 1100 1500 1600

Seed 6 0 300 600 900 960

Seed 7 -109000 -40000 -20000 -10000 6000

Seed 8 0 3000 7000 10000 21900

Target2 0 50 80 90 100

Target 3 -20 -15 -5 10 15

Target 4 -60 0 50 200 210

Target 1 0.05 0.35 0.6 COVID-19: (Critical, Moderate, Stable)
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Cross-impact elicitation

Expert 1 Expert 2 Expert 3

low upp low upp low upp

Seed 1 2 2 -2 -2 0 0

Seed 2 -3 -3 -2 -2 -1 -1

Seed 3 3 3 1 1 1 2

Seed 4 0 1 0 0 0 0

Seed 5 3 3 -2 -1 2 2

Seed 6 0 0 0 0 -1 0

Seed 7 -2 -2 0 1 -2 -2

Seed 8 -2 -2 0 0 -2 -1

Expert 4 Expert 5 Correct approximate answers

low upp low upp

Seed 1 0 0 -1 0 Seed 1 -3

Seed 2 -1 -1 -2 -1 Seed 2 -1

Seed 3 1 1 1 2 Seed 3 2

Seed 4 0 0 -1 -1 Seed 4 0

Seed 5 3 3 0 0 Seed 5 3

Seed 6 0 0 0 0 Seed 6 0

Seed 7 -2 -2 -2 -1 Seed 7 -3

Seed 8 -1 -1 -2 -1 Seed 8 -3

Expert 1 Target variables

Courses Student perf Financial

1 2 -2 -2 3 2 0 3 2

Covid-19 -3 -2 3 2 -1 -2 -1 -1 2

-3 -3 3 3 -2 -3 -2 -2 3

-2 3 -2 0 0 0

Courses 3 1 3 0 0 0

3 -2 3 0 0 0

0 0 0

Student perf 0 0 0

0 0 0

Expert 2 Target variables

Courses Student perf Financial

2 0 -2 -1 0 1 1 0 -1

Covid-19 -2 -1 1 1 0 -1 -1 1 2

-3 -2 3 2 -1 -3 -2 -1 2

-1 2 -1 0 0 0

Courses 0 0 0 0 0 0

1 -1 1 0 0 0

0 0 0

Student perf 0 0 0

0 0 0
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Expert 3 Target variables

Courses Student perf Financial

2 1 -2 0 0 0 0 0 0

Covid-19 -3 2 3 -1 0 1 -1 0 1

-3 2 3 -1 0 1 -2 -1 2

0 0 0 0 0 0

Courses 1 -1 1 0 0 0

1 -1 1 0 0 0

0 0 0

Student perf 0 0 0

0 0 0

Expert 4 Target variables

Courses Student perf Financial

1 3 -3 0 0 0 0 0 0

Covid-19 -3 -2 3 1 -1 1 -1 0 1

-3 -3 3 1 -1 1 -2 0 2

0 0 0 0 0 0

Courses 1 -1 1 0 0 0

1 -1 1 0 0 0

0 0 0

Student perf 0 0 0

0 0 0

Expert 5 Target variables

Courses Student perf Financial

1 0 -1 -1 0 1 -2 2 1

Covid-19 -2 -1 2 1 -1 -2 -1 -1 2

-3 1 3 2 1 -2 -2 -1 2

0 2 -1 0 0 0

Courses 1 0 1 0 0 0

2 -1 2 0 0 0

0 0 0

Student perf 0 0 0

0 0 0
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Table A1: Utilities for the outcomes of the uncertainty factors.
Uncertainty

factor
Utility for
outcome 1

Utility for
outcome 2

Utility for
outcome 3

1 Stable: 0 Moderate: -0.4 Critical: -1
2 Normal: 0 Mixed: -0.1 Remote: -0.5
3 Low: -1 Normal: 0 High: 1
4 Impaired: -0.1 Normal: 0 Improved: 0.1

Table A2: Limits for the correction algorithm.
Pair Lower bound Upper bound

(COVID-19, Financial situation) 0.95 1.05
(Course arrangements,Student performance) 0.98 1.02
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