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Abstract
Deep neural networks (DNNs) are popular machine learning models aimed at the
recognition of patterns in the data. Often processes involving DNNs can be interesting
in an optimization framework: one might want to maximize the output of a DNN (e.g.,
corresponding to production profit), such that the input variables (e.g., corresponding
to materials or equipment) are constrained in some way. However, due to the complex
structures of DNNs, the optimization procedure can be hard to implement. Therefore,
mathematical approximations often referred to as surrogate models are used as
alternatives to DNNs due to their easier computational tractability.

In this thesis, a surrogate model for a certain type of trained DNN is implemented.
The surrogate model is used to generate adversarial images, i.e., images that are
visually indistinguishable from the original images to the human eye but cause
misclassification when processed by the DNN. The images are generated by solving
two optimization problems representing the surrogates of DNNs: the first one
minimizes the differences between the pixel values of the original and adversarial
images (L1-norm problem), whereas the second one minimizes the squares of the
differences (L2-norm problem).

The results show that both optimization problems for adversarial image generation
have their strengths and weaknesses. The solution time for the L1-norm problem is
noticeably shorter than for the L2-norm problem. However, the resulting adversarial
images have clearly identifiable modifications made compared to the originals, which
potentially makes them easier for an outside observer to detect, and hence weaker.
The L2-norm problem produces visually better adversarial images, but the solution
time is longer.

Overall, the DNN surrogate models, i.e., L1-norm and L2-norm problems efficiently
manage the task of building optimal adversarial examples, but there is still room
for further improvements regarding the solution time. For instance, it is possible to
determine optimal upper and lower bounds for the constraints in the model, which
would reduce solution time. The adversarial image quality can also be increased by
experimenting with different model parameters in L1-norm and L2-norm problems,
or by improving the objective function and adding new constraints to these problems.

Keywords Deep neural networks, Surrogate modeling, Mathematical optimization,
Mixed-integer linear programming, Adversarial examples
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Tiivistelmä
Syväoppivat neuroverkot ovat suosittuja koneoppimismalleja, joita käytetään tun-
nistamaan datassa esiintyviä epälineaarisia riippuvuussuhteita. Syväoppivilla neuro-
verkoilla mallinnetut prosessit ovat myös usein mielenkiintoisia optimoinnin näkö-
kulmasta: neuroverkon tulosta (esim. tuotannon voitto) voidaan haluta maksimoida
siten, että syötearvoihin (esim. saatavilla olevat materiaalit tai välineistö) on liitetty
rajoitusehtoja. Syväoppivien neuroverkkojen rakenteet ovat usein monimutkaisia
ja niiden optimointi voi tästä syystä olla haastavaa, joten niiden sijaan voidaan
käyttää surrogaatti-malleiksi kutsuttuja laskennallisesti nopeampia matemaattisia
approksimaatioita.

Tässä kandidaatintyössä kehitetään surrogaatti-malli korvaamaan eräänlainen
syväoppiva neuroverkko. Mallia hyödynnetään vastakkainasettelullisten kuvien (eng.
adversarial images) generoimiseen. Nämä ovat neuroverkon koulutusdatan kuvia
pienillä, ihmissilmälle näkymättömillä muutoksilla, joiden tarkoitus on aiheuttaa
väärä luokittelu neuroverkossa. Tässä työssä kuviin tehdyt muutokset optimoidaan
mahdollisimman pieniksi. Surrogaatti-mallia hyödynnetään kahdenlaisten vastakkai-
nasettelullisten kuvien generoimiseen ratkaisemalla kaksi eri optimointiongelmaa:
näistä ensimmäinen minimoi kuvien pikselien välistä erotusta, kun taas jälkimmäinen
minimoi kuvien pikselien välisen erotuksen neliötä.

Tuloksia analysoimalla huomataan, että kummallakin lähestymistavalla vastak-
kaisasettelullisten kuvien generoimiseen on omat hyödyt ja haitat. Ensimmäisen
lähestymistavan optimaaliset ratkaisut löydetään nopeammin, mutta kuvissa on
selkeitä näkyviä viittauksia siihen, että muutoksia on tehty. Tässä mielessä näitä
kuvia on helpompi tunnistaa muiden neuroverkon testaamiseen käytettyjen kuvien
joukosta, mikä tekee niistä heikompia. Jälkimmäinen lähestymistapa puolestaan
tuottaa visuaalisesti parempia kuvia, mutta optimaaliseen ratkaisuun kuluva aika on
huomattavasti suurempi.

Kehitetty surrogaatti-malli toimii siis toivotulla tavalla, mutta mallissa on vielä
kehittämisen varaa ratkaisuaikojen pienentämisen sekä uusien kuvien generoimisme-
netelmien kehittämisen suhteen. Surrogaatti-mallin rajoitusehtojen ylä- ja alarajoille
voidaan määrittää optimaaliset arvot, mikä vähentäisi lopulliseen laskentaan kulunut-
ta aikaa. Vastakkainasettelullisten kuvien laatua voidaan myös parantaa kehittämällä
uusia kuvien generoimismenetelmiä, jotka voidaan toteuttaa uuden vaihtoehtoisen
kohdefunktion ja uusien rajoitusehtojen lisäämisellä optimointiongelmaan.
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1 Introduction
Deep neural networks (DNNs) have proven to be highly efficient in solving complex
problems in various fields such as computer vision, natural language processing, and
robotics to mention just a few. DNNs are machine learning (ML) models that are
designed to recognize patterns in data (Bishop, 1994). The building blocks of a
DNN are nodes or "neurons", which are grouped into consecutive layers. Each layer
receives inputs from the previous layer, applies a non-linear function to the nodes,
and produces output values to the following layer. The values at the last layer are
the output values of the DNN.

DNNs are widely used in numerous applications involving mathematical optimiza-
tion (Malek and Beidokhti, 2006; Jia et al., 2019; Fischetti and Jo, 2018). However,
due to the non-linear nature and often complex structure, DNNs can be challenging
to optimize. As a solution, one could consider replacing these complex non-linear
structures with mathematical models that are often referred to as surrogate models. A
surrogate model is a simplified mathematical approximation of the underlying process
that is less challenging in terms of computational tractability (Sobester et al., 2008).
The replacement of DNNs with surrogate models offers several benefits, especially
regarding optimization. The resulting surrogate model can be more efficient and
flexible in an optimization framework, enabling faster optimization time and problem
modification with additional constraints. As an example, one could maximize the
output of a DNN when constraints on the input values are present.

In this thesis, we focus on DNNs having the rectified linear unit (ReLU) (Nair
and Hinton, 2010) as the chosen activation function. ReLU is a piecewise linear
function that returns its input value if it is positive, and zero otherwise. We use
a 0-1 mixed-integer linear program (0-1 MILP) as the surrogate model for trained
ReLU DNNs. The notion of a trained ReLU DNN implies that the values of the
internal parameters of the ReLU DNN are fixed. The 0-1 MILP surrogate model
is implemented following Grimstad and Andersson (2019). The surrogate model is
then used to solve image classification and adversarial image generation problems.
The computational time regarding the optimization problems is also analyzed.

The outline of the thesis is as follows. Section 2 reviews previous work regarding
surrogate modeling and adversarial learning. In Section 3 the 0-1 MILP formulation is
presented and the case study is explained, followed by the results and computational
analysis of the optimization problems in Section 4. Discussion on the results, as
well as further development ideas for the 0-1 MILP surrogate model, is described in
Section 5.
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2 Literature review
Recently, different types of surrogate models have been utilized in various problems
across many fields. As an example, polynomial response surface (PRS) models, which
are statistical frameworks involving regression and variance analysis, are used by
Hosder et al. (2001) in the civil transport optimization context. In Simpson et al.
(1998), PRS models are used as a part of polynomial approximations for multidis-
ciplinary optimization. Another type of surrogate model exploited for regression
analysis is the support vector regression (SVR) model. SVR models were used by
Parbat and Chakraborty (2020) for COVID-19 case prediction and by Dash et al.
(2021) for stock forecasting. Both PRS and SVR models are supervised learning
models implying that labeled training data is used to iteratively train the model such
that the relationships between input and output values are learned. This procedure
enables the model to accurately classify or predict the outcome of input data that
has not been part of the training data set.

In addition to the supervised learning models discussed above, non-supervised
interpolating surrogate models are an alternative choice for problems where data is
sparse, irregularly sampled, or missing. Contrary to supervised learning, these models
are trained with unlabeled data with the goal of finding patterns in the training
data and defining key features. It is also worth mentioning that the training of non-
supervised models often involves clustering or dimensionality reduction techniques.
As an example of a non-supervised surrogate model, in Sun et al. (2011), the authors
used a radial basis function (RBF) model as an effective surrogate in optimizing
sheet metal forming. In RBF, the value of the function depends on the distance
between a sampled and a measured point. The RBF model was demonstrated by
the authors to more accurately capture changes in key metal forming attributes (e.g.
cracking, wrinkling, and spring back) compared to other previously used surrogates
in sheet metal fracture and wrinkle modeling.

Surrogate models are also applicable as alternative representations of various
ML models. In particular, the substitution of DNNs with surrogate models offers
numerous advantages that can be later exploited. For instance, surrogate model
substitutions for DNNs are often designed such that the evaluation time is significantly
reduced. Furthermore, if an optimization framework is used as the surrogate, this
allows, for example, optimization over the DNN output. Due to their piece-wise
linearity, ReLU DNNs can be represented as a set of linear constraints and binary
variables and can hence be translated into 0-1 MILP frameworks for optimization
purposes. Fischetti and Jo (2018) presented a 0-1 MILP problem formulation for
ReLU DNNs. The formulation is applied to a digit image classification problem, where
the model is used for generating adversarial images with optimally minimal changes,
i.e., images that lead to misclassification by the original ReLU DNN. Subsequent to
this, the authors apply bound-tightening (BT) techniques to the adversarial image
0-1 MILP problem, which results in vast improvements in solution time. The authors
also note that the main drawback of the 0-1 MILP formulation is its scalability,
particularly for larger ReLU DNNs, where the solution time for the adversarial image
problem can grow large even for small grayscale images. It is also mentioned that an
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interesting avenue for future research on the topic is exploring new deep-learning
applications for the 0-1 MILP model.

Grimstad and Andersson (2019) demonstrated an adaptation of the 0-1 MILP
problem formulation introduced by Fischetti and Jo (2018). The authors present the
0-1 MILP formulation, after which a detailed description of various BT techniques
that are later employed is given. In their paper, an emphasis is placed on the use of BT
techniques to reduce the solution time of the 0-1 MILP model. Three optimization
problems using the 0-1 MILP model with BT techniques are described: bound-
tightening for ReLU DNNs with output constraints, optimization of n-dimensional
quadratic functions, and an oil production optimization problem. The authors point
out that the use of BT techniques is critical for surrogate models, especially ones
based on large ReLU DNNs, in order to avoid excessively lengthy solution time.
Furthermore, as a result of their 0-1 MILP solver quickly running out of memory
due to a large number of variables, the model failed to find an optimal solution to
the oil production optimization problem.

Adversarial examples are specifically designed objects serving as inputs to ML
models and purposely causing misclassification. These inputs are often created by
adding small, imperceptible perturbations to the original input data (Goodfellow
et al., 2014). In image recognition, the modifications often involve changing a few
pixels or adding noise to the image. One useful application of adversarial images
is data augmentation. In situations where obtaining a large training data set is
computationally expensive, additional synthetic samples can be generated to expand
the training data set. The augmentation of the training data set, in turn, makes the
DNN more robust and generalizable. In Zhao et al. (2017), a framework for generating
natural adversarial images is introduced. These images aim to be meaningfully similar
to the original images, meaning that no indication of change (e.g., obvious noise or
changed pixels) is visible to the human eye. An approach for both text and image
recognition is examined. The authors report that computational experiments and
human evaluation point out the efficiency of their modeling approach in the context
of evaluating the robustness of image-recognizing DNNs.

Adversarial examples can also be used in malicious applications, where an at-
tacker might want to purposefully give misclassification-causing data to an ML
model. The study of adversarial examples can aid in preventing such attacks, as
it allows us to increase the robustness of ML models. Another novel application of
adversarial examples is introduced by Athalye et al. (2018). The authors were able
to manufacture physical adversarial objects that consistently cause misclassification
in image recognition when changes to the background, camera distance, or rotation
of the object are made. The authors presented the algorithm for adversarial object
generation, after which the existence of adversarial 3D render examples is illustrated.
With the help of commercial 3D printing technology and by using these 3D renders
as a reference, the authors could construct physical adversarial objects. The authors
also highlight that such adversarial objects can cause serious concern in practical
image recognition applications.
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3 Methodology

3.1 The 0-1 MILP surrogate model
We consider ReLU DNNs that contain K + 1 layers, numbered from 0 to K. Here,
layer 0 corresponds to the input (in the literature, the input is usually not counted
as its own layer) whilst layer K corresponds to the output of the ReLU DNN. The
remaining layers k ∈ {1, ..., K − 1} are referred to as the hidden layers of the ReLU
DNN. The ReLU DNN’s structure also includes numerically valued weights W and
biases b. The weights W are associated with the connections between nodes in
adjacent layers, and biases b are associated with each node in a layer. Each layer
k ∈ {0, ..., K} consists of nodes numbered from 1 to nk.

Let xk ∈ Rnk be the vector corresponding to the values of the nodes in layer k
and xk

j ∈ R be the value of the j-th node in layer k, for j ∈ {1, . . . , nk}. Using this
notation, we can refer to the x0

j as to the value in the j-th input node and to xK
j as

to the value in the j-th output node. For each hidden layer k ∈ {1, . . . , K − 1}, the
output vector xk is computed using the values of the nodes from the previous layer
as

xk = σ(W kxk−1 + bk), (1)
where σ is a non-linear activation function and W k ∈ Rnk×nk−1 and bk ∈ Rnk are
corresponding matrices for the weights and biases for the layer k. The activation
function in this 0-1 MILP formulation in all hidden layers is the piecewise-linear
ReLU function. Therefore, function σ(x) in (1) is defined as σ(x) := ReLU(0, x) =
max{0, x} and is applied component-wise in the layers. The output layer K of the
ReLU DNN is calculated without an activation function, so we have

xK = W KxK−1 + bK .

The piecewise-linear ReLU activation function is represented by a set of 0-1 MILP
constraints following the implementation in Grimstad and Andersson (2019). To
achieve this, we consider the following linear equation

wTx + b = x − s, x ≥ 0, s ≥ 0, (2)

where w represent the weights, y the previous layer values, b the bias term, and
the output of the ReLU function is divided into a positive part x and a negative
part −s. Note that a solution to (2) is not unique: if (x, s) is a solution, then
(x + δ, s + δ), δ ≥ 0 is also a solution. We circumvent this problem by requiring at
least one of the terms in (x + δ, s + δ) to be zero, which corresponds to the case δ = 0.
This requirement is achieved with the use of a binary activation variable z ∈ {0, 1}
such that the implications z = 0 ⇒ x = 0 and z = 1 ⇒ s = 0 hold. Assuming that
one can calculate non-negative values U and L such that −L ≤ wTy + b ≤ U , the
ReLU activation function can be implemented using the big-M constraints

x ≤ Uz,

s ≤ −L(1 − z),
z ∈ {0, 1}.
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After incorporating the above big-M constraints to correspond with each hidden
layer node, the following 0-1 MILP surrogate model can be constructed to represent
ReLU DNNs:

Input layer bounds
L0

j ≤ x0
j ≤ U0

j j = 1, ..., n0, (3a)

Hidden ReLU layers
W kxk−1 + bk = xk − sk

xk, sk ≥ 0

}︄
k = 1, ..., K − 1, (3b)

Binary activation variables
zk

j ∈ {0, 1} k = 1, ..., K − 1, j = 1, ..., nk, (3c)

Big-M constraints
xk

j ≤ Uk
j zk

j

sk
j ≤ −Lk

j (1 − zk
j )

⎫⎬⎭ k = 1, ..., K − 1, j = 1, ..., nk, (3d)

Output layer
W KxK−1 + bK = xK , (3e)

Output layer bounds
LK

j ≤ xK
j ≤ UK

j j = 1, ..., nK . (3f)

The above 0-1 MILP model (3) represents a trained ReLU DNN, i.e., the values for
the weight and bias matrices (W k and bk) are given and hence the model cannot be
used for training a ReLU DNN. Values for the bounding terms Uk

j and Lk
j are also

provided as parameters. The variables in (3) are the aforementioned non-negative
real variables xk

j and sk
j and the binary activation variables zk

j .
It is important to note that the constraint set (3a)-(3f) precisely represents a

trained ReLU DNN: for a given input vector x0, the output layer values (and also
the hidden layers values) are the same for both the surrogate model and the original
ReLU DNN. However, a solution to a given 0-1 MILP problem is not necessarily
unique, and thus, degenerate solutions can exist. If a node in layer k receives zero
as its input from the previous layer k − 1, the corresponding binary variable zk

j can
freely be set to either 0 or 1 without having any effect on the outcome of the model.

3.2 Image classification
We considered the MNIST (Deng, 2012) handwritten digit data set for the training
and testing of our ReLU DNN, which we then represented as a 0-1 MILP using the
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surrogate model (3). Examples of the digit data set can be seen in Figure 1. After
the training phase is complete, the values for the parameters in the weight and bias
matrices W k and bk in model (3) can be extracted from the trained ReLU DNN. We
fixed the values of bounding parameters as follows: L0

j = 0 and U0
j = 1 in (3a) (pixel

value range), Lk
j = LK

j = −1000 and Uk
j = UK

j = 1000 in (3d) and (3f) (arbitrary
sufficiently large bounds to not affect the outcome of the model). It is important to
highlight that calculating tighter bounds values Uk

j and Lk
j in the hidden layers can

significantly improve the computational tractability of the resulting optimization
Problem (3). However, the implementation of this procedure is not considered in
this thesis.

Just like in the case of the ReLU DNN, the model (3) can be used to classify an
input image. To achieve this, the input layer variables x0

j are fixed to correspond to
an input image, such that x0

1 equals the value of the first pixel, x0
2 the value of the

second pixel, and so forth, following the same pattern for each subsequent pixel. An
artificial objective function (e.g., maximizing any hidden or output node) is added
to the model (3), after which the model is optimized. The reason for introducing
the artificial objective function in Problem (3) is solely driven by the requirement
imposed by the optimization software, which mandates the presence of an objective
function in every optimization problem.

It is important to note that each of the variables xk
j , sk

j and zk
j can only obtain one

specific value once the input variables x0
j have been initialized (disregarding possible

degenerate solutions), as discussed in Section 3.1. After the optimization process
is complete, the index of the output variable xK

j , j ∈ {0, . . . , 9} with the highest
value corresponds to the predicted digit. We refer to this optimization problem as
0-1 MILP classification.

3.3 Generating optimal input images
In order to utilize the model (3) to solve various problems, we can add additional
constraints to it and modify the objective function to represent a desired optimization
goal. We considered the following objective function

Max. xK
j , j ∈ {0, ..., 9}

that maximizes the output node value corresponding to a given digit and constructed
10 different optimization problems for every j ∈ {0, ..., 9}. Once optimal values for
the variables xk

j , sk
j and zk

j have been found by optimizing the problem, the values
in the variables x0

j corresponding to grayscale values of a pixel can be extracted to
produce input images. These images can be seen in Figure 2. One of the interesting
highlights one can pinpoint from Figure 2 is that despite containing noise, many of
the images still clearly resemble the digit label given by the ReLU DNN. We refer to
this optimization problem as optimal input images.
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Figure 1: Randomly picked images of each digit from the MNIST handwritten digit
data set

3.4 Adversarial images
In this section, we apply model (3) to the problem of adversarial images discussed
in Section 2. The model is utilized for generating adversarial digit images with
optimally minimal changes with respect to the MNIST training data set.

We assume that an image with its given training label d must be misclassified as
the digit d̂ = (d + 5) mod 10, following Table 1. To introduce the aforementioned
misclassification condition into model (3), we introduce the constraint in the output
layer requiring the value in the output node xK

d̂
to be at least 20% higher than in the

other output nodes. Due to the flexibility of the surrogate model (3), this constraint
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Figure 2: Optimal input images to the optimization problem discussed in section 3.3.
The label in each image is the classification given by the ReLU DNN after extracting
the variables corresponding to pixel values from the optimization problems

can be implemented by adding the following linear constraints to Problem (3):

xK
d̂

≥ 1.2 · xK
j , j ∈ {0, ..., 9}\{d̂}. (4)

Table 1: Misclassification labels for adversarial images
Actual label Misclassified label
Digit 0 Digit 5
Digit 1 Digit 6
Digit 2 Digit 7
Digit 3 Digit 8
Digit 4 Digit 9
Digit 5 Digit 0
Digit 6 Digit 1
Digit 7 Digit 2
Digit 8 Digit 3
Digit 9 Digit 4

Regarding the objective function in Problem (3), we considered minimization of
the differences between the corresponding pixels’ values of the original and adversarial
images. We considered two cases by minimizing: 1) the L1-norm and 2) the L2-norm,
where the generalized Lp-norm for a vector v of length n is defined as

∥v∥p =
(︄

n∑︂
1

vp
n

)︄ 1
p

, p ≥ 1. (5)

The implementation of the above optimization problems was achieved by introducing
additional variables δj ≥ 0 and adding the following linear constraints into the
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surrogate model (3):

−δj ≤ x0
j − x̂0

j ≤ δj, j ∈ {1, ..., n0}, (6)

where x0
j and x̂0

j correspond to a pixel in the original and adversarial image, respec-
tively. With these constraints in place, the Lp-norm can be minimized by adding
the objective function Min. ∑︁n0

1 δp
n0 to Problem (3). Note that due to the 1

p
-th

power from the definition of (5) being an increasing function, the optimal solution
δ = (δ1, . . . , δn0) to Min. (∑︁n0

1 δp
n0)

1
p is also the optimal solution to Min. ∑︁n0

1 δp
n0 ,

and therefore we can neglect the use of the 1
p
-th power in the objective function.

Hence, the objective functions for the two problems were

L1-norm: Min.
n0∑︂
1

δn0 , (7)

L2-norm: Min.
n0∑︂
1

δ2
n0 . (8)

Note that the L1-norm objective function (7) is linear, whereas the L2-norm objective
function (8) is quadratic. Hence, the former optimization problem is a 0-1 MILP
problem and the latter is a 0-1 mixed-integer quadratic programming (0-1 MIQP)
problem. We refer to these optimization problems as L1-norm problem and L2-norm
problem respectively. The optimal adversarial images and the computational time
for the optimization problems are discussed more in Section 4.

4 Computational experiments

4.1 Design of the experiments
The 0-1 MILP problem (3) described in Section 3 was implemented using the
programming language Julia version 1.8.5 (Julia, 2023). The source code can be
found in the GitHub repository ML_as_MO. The adversarial image optimization
problems are solved using the Gurobi Optimizer version 10.0.1 (Gurobi-Optimizer,
2023). For computational time analysis and reproducibility, all of the experiments
are performed on a MacBook Pro with an M2 processor.

The MNIST data set consists of 70 000 unique 28 × 28 pixel grayscale images, of
which 60 000 are used for training and 10 000 for testing of the ReLU DNN. Each
image has a label j ∈ {0, . . . , 9} corresponding to a digit, and the grayscale values
are normalized to the range [0, 1] where 0 corresponds to a black pixel and 1 to a
white pixel. The ReLU DNN was generated and trained using Flux.jl (Flux.jl, 2023).
Within each training cycle, all of the training data is propagated through the ReLU
DNN, and subsequently, the internal parameters of the network are adjusted to
minimize the discrepancy between the ReLU DNN predictions and the corresponding
labels. The ReLU DNN consists of the input and output layers and two hidden
layers. The shape of the ReLU DNN is (784, 32, 16, 10), where the number in the
list represents the number of nodes in each layer. The numbers of neurons in the
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input and output layers are fixed to correspond with the number of pixels in an
image and the number of classification predictions the ReLU DNN can have, whereas
the number of hidden layers, as well as the number of neurons they consist of, are
arbitrarily chosen but with the intent of keeping the ReLU DNN relatively small.
The ReLU DNN reached an accuracy of 93, 31% on the test set after 50 training
cycles.

As mentioned previously, we considered four optimization problems: 0-1 MILP
classification, optimal input images, the L1-norm problem, and the L2-norm problem.
However, in this and the subsequent sections, our primary focus was on the L1-norm
and the L2-norm problems as they have numerous applications as discussed in Section
2.

4.2 Adversarial images
Figure 3 shows adversarial images resulting from the optimization problem described
in Section 3.4. These adversarial images are generated using the training set, and
specifically training images in Figure 1 as input parameters. The images on the left-
hand side of Figure 3 are generated considering the objective function (7) minimizing
the L1-norm distance, and for the images on the right-hand side, the objective
function (8) minimizing the L2-norm distance.

Figure 4 shows the difference in pixels between generated adversarial images
presented in Figure 3 and the original images presented in Figure 1. It is important
to mention that the grayscale values in each image of Figure 4 are inverted (i.e., pixel
value p ∈ [0, 1] becomes 1 − p) to improve the presentation quality. These images
visualize the exact alterations required to be made for each original image presented
in Figure 1 to cause misclassification as in Figure 3.

From the left-hand side of Figure 4 one can notice that when minimizing over
the L1-norm distance, it is sufficient to change only a few pixels in the original
images in Figure 1 to cause misclassification as in Table 1. However, the changes
made in the pixels are drastic: in most cases, the pixel value has switched between
the two extremes, changing from 0 (black) to 1 (white). Due to this phenomenon,
the position of changed pixels is easily detectable by the human eye, and therefore,
simply by looking at the left-hand side of Figure 4 one can effortlessly pinpoint the
changes made in each image.

However, from the right-hand side of Figure 4 we can notice that when minimizing
the L2-norm distance, almost all pixels in each image have experienced a change in
color. Contrary to the L1-norm problem, the changes are visually a lot more subtle,
meaning that the same pixels in the original and adversarial image exhibit a high
degree of similarity in their grayscale intensity. Additionally, one will not be able to
effortlessly detect the differences between the images on the right-hand side of Figure
4 and in Figure 1: at a quick glance it might not be obvious that any changes have
been made. Therefore, in the context of difficult-to-detect adversarial images, the
images generated using L2-norm seem to be more appealing than L1-norm images.
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Figure 3: Adversarial images generated for the original images in Figure 1 when
minimizing the L1-norm distance (left-hand side) and the L2-norm distance (right-
hand side) and ensuring misclassification as in Table 1

4.3 Computational time analysis
Table 2 shows the number of variables and constraints for the 0-1 MILP classification
problem presented in Section 3.2 and L1-norm and L2-norm problems described in
Section 3.4 as well as the computational time required to solve the corresponding
optimization problems. Table 2 also presents computational time required by the
ReLU DNN with the structure described in Section 4.1 and generated using Flux.jl
(Flux.jl, 2023) to make a prediction, i.e., propagate forward given input. For each
of the optimization problems and ReLU DNN, we considered 100 different images
as input. Therefore, the columns titled "Avg. time (s)", "Min. time (s)" and "Max.
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Figure 4: The inverted pixel differences between the original images in Figure 1 and
their adversarial images in Figure 3. The left(right)-hand side corresponds to the
differences between the original images in Figure 1 and left(right)-hand side images
in Figure 3

time (s)" in Table 2 presents the average, minimum, and maximum computational
time accordingly over 100 instances.

While approximately two orders of magnitude slower in terms of computational
time compared to the ReLU DNN, performing digit classification with the 0-1
MILP model (3) remains computationally fast, with an average solution time of 4, 7
milliseconds. This is due to the forward propagation nature of the model discussed
in Section 3.2. The only feasible and hence optimal values for the model variables
are found directly by feeding input layer values to the model without the need for
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further optimization procedures by the optimization software.
More interesting results are regarding the optimization time for the L1-norm and

L2-norm problems. We can see that the number of variables and constraints in these
optimization problems have increased from 958 to 1742 and from 25 760 to 27 338,
respectively, compared to the image classification problem discussed in Section 3.2.
This increase is due to the presence of the additional variables δj ≥ 0 needed for the
objective functions (7) and (8) and constraints in (6). Furthermore, optimizing the
L1-norm is significantly faster compared to the L2-norm, with an average solution
time of 6, 31 and 107, 12 seconds, respectively. There is also a drastic difference
between the minimum and maximum computational time for both problems: the
maximum solution time is approximately 143 times greater in the L1-norm problem
and 97 times greater in the L2-norm problem, compared to the respective minimum
solution time.

Table 2: Number of variables and constraint and computational time of the
optimization problems, as well as the computational time of image classification by
the ReLU DNN

Variables Constraints Avg. time (s) Min. time (s) Max. time (s)
ReLU DNN
classification

- - 6,5 ·10−5 3,1 ·10−5 33,1 ·10−5

MILP classi-
fication

958 25760 470 ·10−5 420 ·10−5 670 ·10−5

L1-norm 1742 27338 6,31 0,32 43,12
L2-norm 1742 27338 107,12 8,13 784,62

5 Discussion and conclusions
In this thesis, we implemented the transformation of a trained ReLU DNN into a
0-1 MILP surrogate model (3) following Grimstad and Andersson (2019). Using the
surrogate model, we generated adversarial images based on the MNIST handwritten
digit data set. Two sets of adversarial images were generated by minimizing the
proposed 0-1 MILP surrogate model over L1-norm and L2-norm distances (as defined
in (5)) between the original and the adversarial images such that the adversarial
image would be misclassified as a predefined digit.

We analyzed the generated adversarial images and solution time required to solve
the 0-1 MILP problem with the aforementioned L1-norm and L2-norm distances. The
original images can be seen in Figure 1, the complete adversarial images in Figure 3,
the highlighted pixel changes in Figure 4, and the solution time of the optimization
problems in Table 2. The two optimization problems discussed in Section 3.4 that
were used for adversarial image generation have some notable differences in both
solution time and appearance of the resulting images. The images corresponding to
the L1-norm problem have only a few pixels changed, but the changes are drastic
(in most cases, the pixel changes to the extreme opposite, from black to white)
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and hence, easy to discern. On the other hand, the images corresponding to the
L2-norm problem have a larger number of pixels changed in total, but the changes
are considerably more subtle for the human eye. This demonstrates that the L2-norm
adversarial images are more likely to go unnoticed by an outside observer in an image
recognition context.

However, despite the visual advantages for the human eye of the L2-norm problem
adversarial images, this approach has a drawback regarding the solution time. The
solution time for the L2-norm problem is on average around 17 times higher when
compared to the L1-norm problem. This illustrates the tradeoff between the two
formulations: the L1-norm problem offers faster image generation whereas the L2-
norm problem offers visually more challenging images to detect. It is important to
note that while the solution time for individual images in both cases is relatively small
when considering the MNIST data set, this can change for other applications. For
instance, processing larger colorful images can be significantly more computationally
demanding, and due to the quadratic objective function in the L2-norm problem,
the solution time might also grow exponentially and hence, be too large for a more
complex ReLU DNN.

One obvious improvement that can be implemented into the 0-1 MILP surrogate
model (3) is the bound tightening techniques discussed in Fischetti and Jo (2018)
and Grimstad and Andersson (2019). Including these bound-tightening techniques in
the surrogate model can lead to substantial improvements in solution time without
any drawbacks to the visual adversarial image quality.

Another possible improvement that can lead to visually better results in the
L1-norm and L2-norm problems is a more sophisticated adversarial label selection
process compared to the arbitrary d̂ = (d + 5) mod 10 that is used in this thesis. For
example, if a label that already has a high activation value in a trained ReLU DNN
was used as the misclassified label, the adversarial image should (in theory) have fewer
differences compared to the original image, which might make the adversarial image
harder to detect for the human eye. Another advantage of an improved adversarial
label selection process is that we could generate a large number of adversarial images
considering a single predefined false label for all digits. For instance, this could be
advantageous in scenarios where a malicious attacker aims to manipulate a digit
recognition processor to misclassify all images as zeros while avoiding detection by
external observers.

Alongside these, one could also modify the alternative objective function and
additional constraints to be added into the 0-1 MILP Problem (3) with different goals
in mind. The value of 20% chosen arbitrarily in constraint (4) could be increased
to generate adversarial images that are misclassified with greater confidence by the
ReLU DNN. One could also limit the extent to which a pixel is allowed to change
with respect to its surrounding pixels. This could lead to more subtle visible changes
and hence more challenging adversarial images to detect for the human eye. The
optimal adversarial image approach presented in this thesis could be used as a basis
to create more visually subtle adversarial images through minor alterations in the
L1-norm or L2-norm problems.

Overall, the 0-1 MILP surrogate model is a flexible tool for representing trained
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ReLU DNNs as mathematical optimization problems. The flexibility of the model
allows us to solve a given problem from alternative viewpoints by adding constraints
and changing the objective function. Additionally, we can compare the results of
optimizing the 0-1 MILP surrogate model with an emphasis on different key attributes,
such as the computational time of the optimal solution or the level of difficulty in
detecting the adversarial images, similar to the scenarios explored here. Nevertheless,
there are still prospects for further research regarding the 0-1 MILP surrogate model
and its applications. As an example, possible future developments could involve
the development of an approach to introduce different activation functions or types
of layers (e.g., convolutional layers) into the surrogate model. Such developments
could provide a strong foundation for future advancements in the surrogate modeling
context.
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