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Informaatio mahdollisista tulevaisuudentiloista on tärkeää päätösten vaikuttaessa
pitkälle tulevaisuuteen. Uskottavia tulevaisuudentiloja voidaan luoda skenaariomene-
telmillä. Tässä työssä käytettiin todennäköisyyspohjaista ristivaikutusmenetelmää
luomaan yhteistodennäköisyysjakauma skenaarioille siviili- ja sotilaskäyttöisistä mie-
hittämättömistä lennokeista Suomessa vuonna 2040. Skenaarioiden analysointia
varten luotiin Bayes-verkko skenaariotodennäköisyyksien pohjalta.

Ristivaikutusanalyysissä skenaariot ovat tutkittavalle systeemille olennaisten epä-
varmuustekijöiden tilojen toteumista koostuvia kokonaisuuksia. Skenaariossa jokainen
epävarmuustekijä on yhdessä tilassa, jolloin erilaisten skenaarioiden lukumäärä on
epävarmuustekijöiden tilojen ainutlaatuisten kombinaatioiden lukumäärä. Skenaarioi-
den lukumäärä on usein niin suuri, ettei skenaarioiden yhteistodennäköisyysjakauman
luomiseksi kannata yrittää arvioida jokaista erillistä skenaariotodennäköisyyttä, vaan
ne voidaan laskea todennäköisyyspohjaisella ristivaikutusmenetelmällä. Todennä-
köisyyspohjaisen ristivaikutusmenetelmän käyttämiseksi asiantuntijapaneeli arvioi
tutkittavan systeemin kannalta olennaisten epävarmuustekijöiden tilojen todennä-
köisyydet ja näiden tilojen väliset ristivaikutuskertoimet. Bayes-verkko rakennettiin
skenaariotodennäköisyyksien pohjalta valmiilla ohjelmistolla.

Työssä löydettiin todennäköisimmistä skenaarioista selkeitä yhteisiä piirteitä.
Siviilikäyttöiset miehittämättömät lennokit ovat massatuote, joita kuka tahansa
voi omistaa. Näiden osalta lainsäädäntö ei muutu merkittävästi nykyisestä. Sotilas-
käyttöiset miehittämättömät lennokit ovat vaikeita havaita, mutta toisaalta helppo
tuhota kustannustehokkaasti ja ne kykenevät toimimaan ihmisen ohjaamina lä-
hes autonomisesti. Lasketun Bayes-verkon pohjalta tarkasteltiin todennäköisintä
osaskenaariota koskien sotilaskäyttöisiä lennokeita, sekä siviilikäyttöisiä lennokeita.
Sotilaslennokkien epävarmuustekijöillä havaitiin olevan suurempi vaikutus siviili-
lennokkien epävarmuustekijöihin kuin toisinpäin. Havaittiin myös, että lennokkien
kantokyvyn kasvaessa, niiden käyttö keskittyi todennäköisemmin sotilaskäyttöön
kuin siviilikäyttöön.
Avainsanat Todennäköisyyspohjainen ristivaikutusanalyysi, skenaarioanalyysi,

Bayes-verkko, miehittämätön lennokki
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Abstract
Information about possible future states is important when the consequences of
decisions extend far into the future. Plausible future states can be created using
scenario methods.

In cross-impact analysis, scenarios are comprehensive combinations of the states
of relevant uncertainties for the system under study. In a scenario, each uncertainty
factor is in one state, so that the number of different scenarios being the unique
combination of states for the uncertainty factors. The number of scenarios is often
so large that attempting to assess each individual scenario probability for creating a
joint probability distribution of scenarios is not practical. Instead, probability-based
cross-impact analysis can be used. To utilize probability-based cross-impact analysis,
an expert panel assesses the probabilities of states for the relevant uncertainty factors
from the perspective of the studied system, as well as the cross-impact multipliers
between these states. A Bayesian network can be constructed based on scenario
probabilities using a pre-existing software.

In this thesis, a probability-based cross-impact method was used to create a joint
probability distribution for scenarios of civilian and military unmanned aerial vehicles
in Finland in the year 2040. A Bayesian network was constructed for the analysis of
scenarios based on scenario probabilities. Clear common characteristics were found
among the most probable scenarios. Civilian unmanned aerial vehicles (UAVs) are
mass-produced and can be owned by anyone. In terms of legislation, there is no
significant change compared to the present. Military UAVs are difficult to detect
but, on the other hand, easy to destroy cost-effectively, and they can operate nearly
autonomously under human guidance. Using the created Bayesian network, the
most probable partial scenarios for military UAVs and civilian UAVs were examined.
Military uncertainty factors had greater impact on the civilian uncertainty factor
than vice versa and as the carrying capacity of UAVs increased, the use of UAVs was
more likely to focus on military use.
Keywords Probabilistic cross-impact analysis, scenario analysis, Bayesian network,

unmanned aerial vehicle
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1 Introduction
Energy crisis resulting from Russian invasion of Ukraine has demonstrated the need
for structured methodology of futures research. Energy sector and national defence,
for example, involve major investments, which have long-lasting effects; thus, requir-
ing well-founded evidence in different stages of decision making process. Numerous
methods of scenario analysis have established their place among the most widely
employed set of tools for long-term planning (Bunn and Salo, 1993).

Bunn and Salo (1993) defined scenarios as "a route through decision tree, sup-
ported by a narrative catalougue of events and opportunities". Scenarios are in the
core of cross-impact models which are scenario planning techniques that acknowledge
that realizations of events affect other events (Bañuls and Turoff, 2011). These events
appear through event probabilities, that is, the conditional probabilities of events
are affected once another event has occurred. Monte Carlo simulation methods have
been an established way to calculate scenario probabilities (Roponen and Salo, 2022).
However, Monte Carlo-based methods demand a large number of simulations to get
accurate results, which may be time consuming.

This thesis applies probabilistic cross-impact analysis (PCIA) method developed by
(Roponen and Salo, 2022) to scenario analysis. The method utilizes probabilistically
interpreted cross-impact statements to produce a joint probability distribution over
all possible scenarios by solving a series of optimization models. Furthermore, these
probability distributions can be applied to produce Bayesian networks, which open
new possibilities to the scenario method. In addition, the probabilistic nature of
the method makes it compatible for wide range of risk analysis and decision making
applications.

First, in the case study, scenario probability distributions are computed for each
scenario on the basis of expert judgments on Unmanned Aerial Vehicles (UAVs).
Afterwards, conditional probability distributions and information on conditional in-
dependence of the uncertainty factors are then used to construct a Bayesian network
using GeNIeModeler software (BayesFusion, 2021). The Bayesian network is then
applied to explore relations between the uncertainty factors.

The remainder of this thesis is structured as follows: In Section 2 scientific lit-
erature about scenario planning, cross-impact methodologies and Bayesian networks
are reviewed. In Section 3 methodology of probabilistic cross-impact analysis and
Bayesian networks are presented. In Section 4 PCIA is applied to calculate scenario
probabilities for scenarios of Unmanned Aerial Vehicles (UAVs) case study and the
results are analyzed using Bayesian network. In Section 5 conclusions and future
research suggestions are presented.
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2 Background

2.1 Technology forecasting
Technology forecasting plays a vital role in the military by fulfilling two primary
objectives: facilitating investment planning for future weapon systems and enabling
the anticipation of adversaries’ capabilities (Malmi et al., 2011). The former involves
modeling various prospective weapon systems and evaluating their potential impact
on one’s own performance, thereby assisting decision-makers in making informed
choices regarding optimal investments. On the other hand, forecasting involves
modeling and analyzing potential future weapon systems of adversaries, offering
valuable insights for devising preemptive measures to tackle forthcoming challenges.

Cho and Daim (2013) reviewed technology forecasting methods, which can be divided
roughly into four categories; Exploratory methods, normative methods, intuitive
thinking and the feedback method. Exploratory scenario planning involves exploring
a wide range of possible future scenarios without specific preferences or constraints.
It aims to uncover various potential futures by considering different factors, trends,
and uncertainties. This approach is often used when there is a high level of uncer-
tainty and a need to generate diverse and creative scenarios, which help identifying
potential risks, opportunities and challenges. Cross-impact analysis was categorized
into discontinuous exploratory technology forecasting tools by Cho and Daim (2013),
in their review of origins and historical development of technology forecasting meth-
ods. Normative scenario planning, on the other hand, takes a more focused and
prescriptive approach. It starts with a desired future outcome or a set of goals
and works backward to determine the necessary steps to reach that desired future.
Normative scenarios are built based on specific assumptions and preferences, with the
intention of guiding decision-making and shaping actions towards a preferred future.
This approach is commonly used when organizations have a clear vision or strategic
direction and want to align their efforts accordingly. Other two are intuitive thinking
and the feedback method. They are employed to improve the scenario development
process. Intuitive thinking utilizes individuals’ intuition and expertise, encouraging
creative brainstorming and subjective judgments to generate scenarios. The feedback
method involves obtaining input from stakeholders through interviews, workshops,
or surveys, enabling iterative refinement of the scenarios based on their perspectives
(Jantsch, 1967).

2.2 Cross-impact analysis
Early forecasting methods were generally based on consensus of expert panels, such as
Delphi method (Bañuls and Turoff, 2011). However, these kinds of expert judgement
based methods had a weakness in fully recognizing interactions between the forecast
elements. The need to consider events having an impact on probabilities of other
events occurring led to development of cross-impact analysis by Gordon and Hayward
(1968). In further detail, the techniques of CIA uses expert knowledge to produce
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a set of conditional probabilities for scenario events of how the occurring events
impact on probabilities of other related events (Bunn and Salo, 1993). The scenario
probabilities achieved by calculating them from the priori probabilities assessed
by the experts are assumed to be more accurate than the scenario probabilities
the experts could directly assess, because the scenarios often are multidisciplinary
in a sense that multiple experts of different disciples must need to be consulted.
Furthermore, additional problems may arise, if the experts are not familiar with
probabilistic thinking (Bunn and Salo, 1993).

Cross-impact methodology has been further expanded into numerous variations in
recent decades. Methods that identify plausible scenarios based on non-probabilistic
factors used to compute relations among events, can be referred to as structural analy-
sis methods (Roponen and Salo, 2022). The absence of probabilities in these methods
make their calculations more straightforward, which result in good applicability
for exploratory purposes. Such methods include cross-impact balances method by
Weimer-Jehle (2006) and consistency analysis method by Seeve and Vilkkumaa (2022).

Roponen and Salo (2022) develop probabilistic cross-impact method which uti-
lizes a well-justified definition of cross-impact statements and constructs probability
estimates that consider all possible scenarios. It is specifically based on estimating
the probabilities of all potential scenarios. While many probabilistic cross-impact
methods commonly employ Monte Carlo simulation, this technique often necessitates
an excessively high number of iterations to achieve accurate results, particularly
when dealing with a large number of scenarios. In contrast, the method demonstrates
favorable computational scalability when confronted with problems involving nu-
merous uncertainty factors, particularly if the number of probabilistic dependencies
between these factors is not too high.

2.3 Bayesian networks
Bayesian networks provide a helpful tool for reasoning scenarios in multiple different
disciplines, such as energy policy scenarios (Cinar and Kayakutlu, 2010) and multi-
sectoral flood damages (Harris et al., 2022). Bayesian networks (BNs) are a powerful
tool for modeling systems by representing variables as nodes connected by arcs
that depict their dependent relationships. Chen and Pollino (2012) examine good
ways of BN modeling. These networks explicitly capture cause-effect assumptions
and incorporate uncertain information, propagating this uncertainty throughout the
model. Conditional probability tables attached to each node define the strength
of relationships and express beliefs as probabilities. BNs update the probabilities
of other nodes through belief propagation, using Bayes’ theorem, by substituting a
priori beliefs with observed evidence. This makes BNs suitable for both diagnostic
and explanatory purposes, allowing users to understand the reasoning behind model
outputs and promoting system learning. Unlike black-box models like neural networks,
BNs provide transparency by displaying variable interactions. Another advantage
of BNs is their ability to classify and predict states or events even with partial or
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uncertain data, setting them apart from traditional statistical models that require
large empirical datasets (Chen and Pollino, 2012). Roponen and Salo (2022) used
Bayesian networks to represent scenarios, so that two nodes of a network that share
an edge are not conditionally independent. In this representation, the nodes represent
uncertainty factors and edges represent conditional dependencies between the nodes.
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3 Methods

3.1 Scenarios
There are many definitions of scenarios. For example, Kahn and Wiener (1967)
describe a scenario as a hypothetical sequence of events created to draw attention
to causal processes and decision points, while Ducot and Lubben (1980) define a
scenario as a collection of potential occurrences connected by various relations within
a specific field and time period, allowing for a subset to approximate the entire set
based on fundamental hypotheses. For the purpose of probabilistic cross-impact
method, a definition by Salo et al. (2022) is used. In their approach, Uncertainty
factors are modelled as random variables:

X i, i = 1, ..., n.

These uncertainty factors have possible realizations in set:

Si = xi
1, ..., xi

ni
.

A single scenario is a combination of outcomes for all uncertainty factors:

s = (x1, ..., xn).

The set of scenarios can be represented as the Cartesian product, which includes all
possible combinations of outcomes:

S =
n×

i=1
Si.

The number of elements in this set depends on the number of uncertainty factors
and their possible outcomes. The total number of elements is

|S| =
n∏︂

i=1
ni.

For instance, if there are 4 factors with 3 outcomes in each of them, the total number
of scenarios is 34 = 81, so the number of scenarios increases exponentially with the
number of uncertainty factors.

3.2 Cross-impact multipliers
Cross-impact multipliers are interpreted by Salo et al. (2022) as

Cab := P (a|b)
P (a) , (1)
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where Cab is defined to be cross-impact between events a and b. The cross-impact
multiplier states how many more times likely is event a to happen when event b has
occurred. Furthermore, the cross-impact multipliers are symmetric

Cab = P (a|b)
P (a) = P (a ∧ b)

P (a)P (b) = P (b|a)
P (b) = Cba. (2)

From Equations 1 and 2 we get

p
i|j
k|l = Cij

klp
i
k ⇔ pij

kl = Cij
klp

i
kpj

l , (3)

where pij
kl = P (X i = k, Xj = l) and Cij

kl for any k ∈ Si and i ∈ Sj.
Figure 1 shows a skeleton of a cross-impact matrix with 4 uncertainty factors. Each
rectangle is a submatrix where the cross-impact statements are stored. Only white
cells need to be elicited and they can be left empty if the two uncertainty factors are
conditionally independent. Cross-impacts in black cells in the diagonal need not be
elicited, because they were not defined, because a single uncertainty factor cannot
have multiple conflicting outcomes. Grey cells are not elicited because the multipliers
are symmetric as shown in Equation 2.

Figure 1: Skeleton of a cross-impact matrix.

3.3 Conditional probability updating
Salo et al. (2022) propose a probabilistic method that involves respondents specifying
lower and upper bounds for cross-impact multiplier, converting these bounds into
scenario probabilities, and deriving lower and upper bounds for expected disutility to
assess the overall risk level and determine its acceptability for the systems. However,
the cross-impact statements are presumed to be fully consistent, thus, an optimization
problem with quadratic constraints is required to be solved, in order to acquire a
probability distribution which fits the best the statements. Roponen and Salo (2022)
formulate such an optimization model that incorporates cross-impact statements,
including inconsistent ones and various other types of statements that impose con-
straints on scenario probabilities, and subsequently combines them in a manner that
results in a probability distribution over scenarios that maximizes the fitting with
the given statements. The derivation of scenario probabilities relies on estimates,
including marginal probabilities, p̂i

k and p̂j
l , for all uncertainty factors and their

outcomes, as well as cross-impact multipliers, Ĉ
ij

kl, for selected pairs of uncertainty
factors and their outcomes, allowing for the derivation of a probability distribution
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over scenarios even when information about certain cross-impact multipliers is lacking.

Scenario probabilities can be calculated by iteratively utilizing the marginal probabil-
ities of the initial uncertainty factor p(s1), determining the conditional probabilities
p(s2|s1) that provide the optimal match to the cross-impact multipliers of the out-
comes of the first two uncertainty factors. Subsequently, the probabilities for partial
scenarios encompassing these two uncertainty factors can be estimated by employing
these conditional probabilities. Given the ordering of the uncertainty factors, a
relationship is built as follows;

p(s) = p(sN |S1:N−1)p(S1:N−1)
= p(sN |S1:N−1)p(sN − 1|S1:N−2)p(S1:N−2)
= ...

= p(sN |S1:N−1)p(sN − 1|S1:N−2)...p(s2|s1)p(s1).

(4)

3.3.1 Optimization model

An optimization model for calculating the conditional probabilities is formulated by
Roponen and Salo (2022) as follows:

Objective

min
q(k|s1:i−1)

i−1∑︂
j=1

∑︂
(k,l)∈Rij

[(
∑︂

s∈S1:i−1|sj =I

q(k|s)q(s)) − Ĉ
ij

klp̂
i
kp̂j

l ]2 (5)

Constraints ∑︂
s∈S1:i−1

q(k|s)q(s) = p̂i
k ∀k ∈ 1, 2, ..., ni (6)

ni∑︂
k=1

q(k|s1:i−1) = 1 ∀s1:i−1 ∈ S1:i−1 (7)

q(k|s1:i−1) ≥ 0 ∀k ∈ 1, 2, ..., ni, si:i−1 ∈ Si:i−1 (8)

Where q(k) is set to p̂1
k at the beginning of the iteration process for any k ∈ S1 =

1, ..., n1. The third summation in the objective function takes sum over partial
scenarios where j-th state of an uncertainty factor is the same as in relation Rij,
where Rij is a binary relation Rij = Si×Sj, such that (si, sj) ∈ Rij if and only if
the cross-impact multiplier Ĉ

ij

kl is available. The probabilities for the next partial
scnearios, which are created by adding the states of the i-th uncertainty factor, k ∈ Si,
to the previous partial scenarios, s1:i−1, can be defined using formula q(s1:i−1, k) =
q(s1:i−1)q(k|s1:i−1). As a result, constraint (6) ensures that the computed probabilities
exactly match the estimated marginal probabilities p̂i

k for the outcome si = k. This
guarantees a precise alignment between the computed probabilities and the estimated
marginal probabilities. Finally, the last two constraints guarantee that the probability
distributions are non-negative and they sum up to 1, in other words, are well-defined.
MATLAB r2022b is used as a solver.
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3.4 Bayesian networks
Bayesian networks are directed acyclic graphs that represent uncertainties and
probabilistic dependencies between variables (Stephenson, 2000). Figure 2 is presents
a simple example of a Bayesian network, where the two main components are
nodes represented by spheres and edges represented by arrows. The nodes represent
variables or events, while the edges represent causal relationships between the nodes.
The dependencies between the nodes are conditional probability distributions and
each node has its own conditional probability table, that quantifies the probabilistic
relationship of the node and its parent nodes. Directed edges represent parent-
child relationship of the nodes, in other words which variables condition a given
variable(Stephenson, 2000). For example, in Figure 2 alphabetical order represents
one topological ordering of the graph. Given nodes X = X1, X2, ..., Xn, the joint
probability distribution of a Bayesian network can be calculated by

P (X) =
n∏︂

i=1
P (Xi|Parents(Xi)), (9)

which means that the joint probability of all values can be calculated by taking the
product of the probabilities of each variable, given the values of its parent nodes.
On the other hand, if there exists no edge between two nodes, then the nodes are
conditionally independent given their parents (Stephenson, 2000). In the case study
of this thesis, a Bayesian network is employed to compute probability distributions for
the states of uncertainty factors, given the specification of probability distributions
for certain selected nodes.

Figure 2: An example of a Bayesian network.
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4 Case study
In this section a case study on analysing scenarios concerning unmanned aerial
vehicles (UAV) using probabilistic cross-impact method. UAVs have proved to be an
interesting topic regarding futures research. For example, in the Russian-Ukrainian
war, commercial UAVs have become an irreplaceable tool for reconnaissance and
artillery weapons fire adjustment (Chávez, 2023). Commercial drones have been
previously used by terrorist groups in conflicts, however, their use to this extent
in modern total war by a major power is revolutionary and will likely have great
effects to future wars (Chávez, 2023). The rise of new warfare technologies will most
likely create a need to counter the enemy’s use of the technology. Effectiveness of
the future countermeasures is an open question and answer to that will shape the
adaptation of any new war technology.

4.1 Expert judgments
Table 1 presents the uncertainty factors, their corresponding outcomes, along with
their marginal probabilities. This information, including the cross-impacts, was
gathered through expert elicitation. The cross-impact multipliers were assessed
values using a seven-point integer scale from -3 to 3. Values were assigned only to
pairs of factors where the assigned values contained substantial information about
each other. Evaluated pairs of uncertainty factors are indicated as X in Figure 3, while
the pairs without X are conditionally independent. The entire cross-impact matrix is
presented in Figure 4. Cross-impact multipliers in lower triangle of the cross-impact
matrix are not assessed, because the cross-impact multipliers are symmetric, as shown
in Equation 2. Another appealing characteristic of PCIA, is that the cross-impact
statements do not need to be fully consistent, as pointed out in Subsection 3.3.
This reduces the effort required by the elicitation process, because all of the rows of
uncertainty factors do not need to sum up to one, as can be seen in Figure 4.
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Uncertainty factor Outcome/Description Probability

Drone price (Civilian use)
Mass product 0.7
Rare product 0.25

Avalaibility collapses 0.05

Legislation for civilian
drones

No legislation 0.3
Some legislation 0.5

Use banned 0.2

Prevalence in civilian use
Everybody owns a drone 0.6

Some amateur/professional users 0.35
Very little 0.05

Carrying capacity
Stays the same as current 0.2

Doubles 0.4
Multiples 0.4

Fading properties of
military UAVs

Easy to detect 0.2
Challenging to detect (current) 0.6

Nearly impossible to detect 0.2

Durability against weapon
systems

Easy and cheap to destroy 0.5
Easy and expensive to destroy 0.35

Hard to destroy 0.15

Typical autonomy of
military UAVs

Remote controlled 0.3
Self-directed, but under supervision 0.6

Completely autonomous 0.1

Table 1: Uncertainty factors with descriptions of outcomes and their probabilities.

Figure 3: Uncertainty factors and independencies. Evaluated cross-impacts are
marked with X for each uncertainty factor pair and white cell mark conditional
independency of the pairs.
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Figure 4: Cross-impact matrix of the case study.

4.2 Results
Method developed by Roponen and Salo (2022), presented in Section 3, was used to
calculate scenario probability distribution for total number of 37 = 2187 scenarios.
Ten most probable scenarios are shown in Table 2. There is clear uniformity among
them.

The 10 most probable scenarios

• Drone price → mass product

• Prevalence of civilian use → nearly everyone owns a drone

• Fading properties of military UAVs → challenging to detect

• Legislation for civilian UAVs → some legislation

• Durability against weapon systems → cheap and easy to destroy

• Typical autonomy of military UAVs → self directed, but under supervision

On the other hand, there are no consistent patterns for carrying capacity among
these ten most probable scenarios. Indeed, the influence of carrying capacity on
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uncertainty factors 5-7 was found to be minimal, as evidenced by the data in Table
2. While carrying capacity exhibited significant variation, the remaining uncertainty
factors experienced only marginal changes. This observation was further supported
by the constructed Bayesian network, wherein no configuration of carrying capacity
states demonstrated a substantial impact exceeding a few percentage points on
uncertainty factors 5-7.

These results suggest that in 2040, drones are likely to become a mass-produced
commodity, resulting in a significant drop in their prices. They have become widely
prevalent in civilian use, to the extent that nearly everyone owns a drone. However,
the properties of military UAVs have evolved in such a way that they are hard to
detect and track effectively.

In terms of legislation, there are some regulations for civilian UAVs. This sug-
gests that authorities have recognized the need to address the increasing prevalence
of drones in society. The legislation achieve a balance between risks and concerns
of civilian UAVs and reponsible drone use. On the other hand, military UAVs have
become relatively easy and cost effective to destroy, because military research centers
have started to address the issue of threat potential threats that UAVs pose by
advancing counter-UAV technology. Military UAVs are not yet fully autonomous and
their operating require human involvement. While military operations cannot solely
rely on UAVs, they still offer valuable aid in gathering information, for example.

Scenario States of uncertainty factors Probability
1. 1,2,1,2,2,1,2 2.95%
2. 1,2,1,1,2,1,2 1.87%
3. 1,2,1,2,2,2,2 1.75%
4. 1,2,1,3,2,1,2 1.55%
5. 1,2,1,2,2,1,1 1.52%
6. 1,1,1,2,2,1,2 1.47%
7. 1,3,1,3,2,1,2 1.31%
8. 1,2,1,2,3,3,2 1.07%
9. 2,2,2,3,2,1,2 1.00%
10. 1,2,1,2,1,1,1 0.98%

Table 2: Ten most probable scenarios and their states of uncertainty factors.

A Bayesian network was constructed using GeNIeModeler software (BayesFusion,
2021). This required conditional probability distributions and conditional indepen-
dence information. A network with the elicited state probabilities is in Figure 5.
Furthermore, the GeNIeModeler software allowed to change state probabilities and
further explore partial scenarios. Two different partial scenarios were generated with
the software; most probable civilian UAV and military UAV partial scenarios. In
these partial scenarios, uncertainty factors 1-3 describe the state of civilian UAVs
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and 4-7 describe the state of military UAVs.

Figure 6 presents the most probable partial scenario considering civilian UAV factors
with a significant probability of 30.9%. Uncertainty factor 1-3 are same as in most of
the ten most probable scenarios. Probability distribution of carrying capacity states
is uncertain with doubling as its most likely state. This configuration does not have
any impact on states 5-7, if it is compared to the most likely scenario.

Figure 7 presents two different military UAV partial scenarios with equal prob-
ability of 8.22%. Carrying capacity has significant impact on uncertainty factors 1-3
depending if it is in state 2 or 3. Carrying capacity has a vital role in flight range
and applications of UAVs. If carrying capacity doubles, civilian drones are more
likely to become a mass product and they are prevalent in civilian use. On the other
hand, if carrying capacity multiples, civilian drones are more likely to be rarer and
their prevalence in civilian use is also rarer. Furthermore, the use of UAVs tends
to have more military applications as the carrying capacity increases. In this case,
legislation of UAVs is comparatively more lenient.

It is likely that the limited connecting edges between military and civilian un-
certainty factors cause them to act a bit as their own separate worlds that do not
interact very much. Moreover, the states of civilian uncertainty factors can be
changed only if carrying capacity changes, because only it connects the rest of the
military uncertainty factors to the civilian uncertainty factors. In other words, the
uncertainty factors 5-7 are conditionally independent with the civilian uncertainty
factors. Furthermore, changes in the military uncertainty factors were more likely to
change states of the civilian uncertainty factors through carrying capacity than vice
versa.
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Figure 5: The constructed Bayesian network in GeNIe Modeler software (BayesFusion,
2021).

Figure 6: Most probable civilian UAV partial scenario with probability 30.9%.
Uncertainty factors 1-3 are in states (1, 2, 1)
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(a) Partial scenario with uncertaintyfactors 4-7 in states (2, 2, 1, 2)

(b) Partial scenario with uncertaintyfactors 4-7 in states (3, 2, 1, 2)

Figure 7: Two most probable military partial scenarios with equal probability of
8.22%.
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5 Conclusions
In this thesis, we presented methodology of probabilistic cross-impact analysis devel-
oped by Roponen and Salo (2022) and applied it to technology forecasting concerning
UAVs in Finland year 2040. The method was used to calculate scenario probability
distribution for 2187 unique scenarios from the basis of expert judgments. Ten
most probable scenarios were analyzed, which exhibited notable level of uniformity.
However, when examining carrying capacity in these scenarios, there was a lack of
consistency among its states. The most likely scenarios suggest that drones have
become an integral part of civilian life in Finland in 2040. Military UAVs, on the
other hand, face increased challenges, due to evolution of counter-UAV technologies.

To further investigate relationships between the uncertainty factors, a Bayesian
network was constructed from conditional probability and conditional independence
information using GeNIe Modeler software (BayesFusion, 2021). First, a Bayesian
network with basic marginal probabilities of the uncertainty states was presented in
Section 4.2. Afterwards, the network was applied to analyze three partial scenarios:
two military UAV scenarios of equal probability of 8.22% and one civilian UAV
scenario of probability 30.9%. The conclusion drawn from these is that carrying
capacity has a significant impact on uncertainty factors of the civilian UAVs. If
carrying capacity doubles, civilian drones are more likely to be mass-produced and
more prevalent in civilian use. Conversely, if carrying capacity multiplies, civilian
drones becomes rarer and their prevalence in civilian use stays limited. Notably, in
the latter case, legislation of UAVs will stay comparatively more lenient.

The limited edges connecting military and civilian UAV uncertainty factors suggest
that they function to some extent independently from each other. Regarding the
network topology, it would be intriguing to explore whether the network method
could incorporate unidentified uncertainty factors that could potentially alter the
entire network structure. For instance, it would be valuable to examine the influence
of groundbreaking UAV-related technologies on the other uncertainty factors and
network edges. However, it is challenging to embed these kinds of black swans into
the model, because making expert assessments about unknown unknowns can be
arduous (Taleb, 2015).

The obtained results provide primarily information about the uncertainty states
and do not offer substantial insights into the broader context. To gain a more
comprehensive understanding of the state of the environment of the uncertainty
factors, it would be beneficial to employ qualitative scenario methods and develop
narratives around the most probable scenarios. This approach would facilitate a
clearer and more detailed depiction of the potential future conditions. Currently,
both military and civilian UAVs have proved to be significant warfare technologies.
However, their countermeasures, especially for the civilian drones, require more
research and innovation.
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