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Abstract
Supply networks are the networks through which the companies get and deliver
goods and services. Disruptions in the companies’ supply networks can have serious
financial impacts on their performance. The correlation of these disruptions is a
complex area, and there is not always a clear intuition how the correlation impacts
the overall performance of the company.

In this thesis, we examine how the correlated disruptions of two suppliers impact the
disruption probability of a company. We use Probabilistic Risk Assessment (PRA)
-approach and model supply networks as Bayesian networks. We also implement
an approach to examine correlation. By Monte Carlo simulations, we examine the
disruption probabilities and the correlations with different network parameters.

The results suggest that when there are high probabilities that suppliers facing
correlated disruptions propagate a possible disruption to the next supplier, the
disruption probability of the company decreases as the correlation of these disrup-
tions increases. Furthermore, the higher the disruption probabilities of the suppliers
facing correlated disruptions are, and the higher the probabilities that these suppliers
cause a propagation of a possible disruption to the next supplier are, the higher the
disruption probability of the company is.

Keywords Supply networks, correlation, disruption, risk, Probabilistic Risk
Assessment, Bayesian network, Monte Carlo simulation
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Tiivistelmä
Toimitusverkkojen kautta yritykset hankkivat toimittajilta palveluita ja tavaroita,
joita ne tarvitsevat toimintaansa. Yritysten toimitusverkoissa tapahtuvat häiriöt
voivat johtaa vakaviin seurauksiin yritysten kannalta. Yhdessä toimitusverkossa
ilmenevät häiriöt voivat myös korreloida keskenään, mikä on kompleksinen ilmiö.

Tämä tutkimus keskittyy arvioimaan kahden toimittajan kohtaamien korreloituneiden
häiriöiden vaikutusta toimitusverkossa olevan yksittäisen yrityksen todennäköisyy-
teen kohdata häiriö. Lähestymme ongelmaa todennäköisyyspohjaisen riskinarvioinnin
näkökulmasta ja kehitämme bayesilaisiin verkkoihin perustuvan mallin, jolla tut-
kimme häiriöitä toimitusverkossa. Lisäämme malliin tavan tarkastella ja muokata
korrelaatiota, ja teemme Monte Carlo -simulaatioita eri verkon parametrien arvoilla.
Simulaatioiden perusteella arvioimme todennäköisyyttä, jolla yritys kohtaa häiriön.

Työn tulosten perusteella kahden toimittajan välisten häiriöiden korrelaatio vai-
kuttaa siihen todennäköisyyteen, jolla yritys kohtaa häiriön. Mikäli on todennäköistä,
että kahden toimittajan mahdolliset korreloituneet häiriöt siirtyvät eteenpäin seuraa-
valle toimittajalle, vaikutus voidaan todentaa. Mitä suurempi toimittajien kohtaamien
häiriöiden korrelaatio tällöin on, sitä pienempi on todennäköisyys yrityksen kohtaa-
malle häiriölle. Työssä kävi myös ilmi, että mitä suurempia ovat todennäköisyydet,
että toimittajat, jotka kohtaavat korreloituneita häiriöitä, kohtaavat häiriön tai mitä
suurempia ovat todennäköisyydet, että mahdolliset häiriöt siirtyvät näistä toimittajis-
ta seuraavaan toimittajaan, sitä suurempi on yrityksen todennäköisyys kohdata häiriö.

Avainsanat Toimitusverkot, korrelaatio, häiriö, riski, Todennäköisyyspohjainen
riskinarviointi, bayesilainen verkko, Monte Carlo -simulointi
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1 Introduction
A fire in a factory in Albuquerque on 17.3.2000 lead to a crisis in the cell phone
industry. This event caused a disruption in the supply of important chips for Nokia
and Ericsson, two competitors in the cell phone market. Nokia was more prepared for
supply disruptions and managed to meet its production target whereas Ericsson was
slow to react and suffered a big loss in potential revenue (Latour, 2001). Furthermore,
when a ship got stuck in the Suez Canal in 2021, the global supply chain went into
disorder (Lee and Wong, 2021).

Events, such as earthquakes (Käki et al., 2015) and floods (Kim et al., 2015),
can have a disruptive impact on companies and other organisations through supply
chains. A supply chain, also referred to as a supply network in this thesis, is a
network through which a company gets and delivers goods and services. If one part
of a company’s supply network suddenly stops working, the company’s ability to
serve its customers and fulfill its obligations may deteriorate, leading to a decline in
profits. Furthermore, analyzing supply chain is associated with cost management
and can be used for reducing costs and enhancing performance (Horngren et al.,
2015). By considering the disruptions while planning business operations, the risk
for catastrophic failures can be mitigated.

The impacts of correlated supplier disruptions on a company are not always
clear. For example, let us consider a company with many suppliers two of which
face correlated disruptions. If the correlation is positive, it is more likely that these
suppliers fail at the same time. Then it is also more likely that these suppliers
operate at the same time. If the correlation is negative, it is more likely that these
suppliers fail at different times. Then it is also more likely that these suppliers
operate at different times. Depending on the company’s reliance on these suppliers,
these situations can impact the company in different ways. This complexity leads
to a situation that there is not always a clear intuition into how the correlation of
supplier disruptions impacts the company. To assess the risk in supply networks,
the impact of correlation needs to be studied. In this way, the risk arising from the
correlation of the supplier disruptions can be identified and prepared for.

In this thesis, we are interested in analysing supply network disruptions. The
objective is to assess the impact of correlated disruptions of two suppliers to the
disruption probability of the company in the network. We start by assuming that if
two suppliers are correlated, then the disruptions of these suppliers are also correlated.
This allows us to model the correlated disruptions as if the suppliers are correlated.
We utilize Probabilistic Risk Assessment (PRA) -approach and model supply networks
as Bayesian networks. We incorporate correlation into the model and use Monte
Carlo simulations to obtain results for a range of parameters.

This thesis is structured as follows. In Section 2, we go through the literature
to clarify concepts of supply chains and networks, disruptions, and correlations in
supply networks. In Section 3, we introduce the model, network representation,
simulation approach, and correlation in the model. In Section 4, we provide results
and limitations. Lastly in Section 5, we summarize this thesis and main results and
discuss about possible improvements of the model.
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2 Literature review
In the previous section, we highlighted why it is important to study supply network
disruptions and their correlation. In this section, we go through the concepts of supply
chains and networks, disruptions in supply networks, modelling the disruptions in
supply networks, and correlations in supply networks.

2.1 Supply chains and networks
A supply chain is a group of entities, which are linked together by flow of resources
(information, services or products) from the source of the resource to a customer
(Mentzer et al., 2001; Horngren et al., 2015). For example, the supply chain of a
factory contains its customers and all the entities that are involved with the supplies
and services that the factory uses to produce its goods. Many studies have considered
a network perspective of a supply chain (Lazzarini et al., 2001; Kim et al., 2011;
Käki et al., 2015). This means that the supply chain is not only a linear chain rather
a multidimensional network. In this thesis, we use a supply network as a hypernym
for a supply chain, meaning that supply chains are modelled as supply networks.

2.2 Disruptions in supply networks
A disruption in a supply chain is an event that blocks the normal flow of resources
(Craighead et al., 2007). Many events can lead to a disruption. Examples of events
that can lead to a disruption are floods (Kim et al., 2015) and earthquakes (Käki
et al., 2015). We define disruption as an event, which causes a major failure in a
supplier or a company. This means that the supplier or the company cannot operate.

Kim et al. (2015) divided disruptions in supply networks into two categories:
node/arc-level and network-level disruptions. When a node/arc-level disruption
occurs, the node/arc disrupts, but resources can still flow from sources of resources to
the customer by some route. When a network-level disruption occurs, arc(s)/node(s)
disrupt, and resources cannot flow from sources of resources to the customer. This
division of disruptions into categories highlights that not every disruption in the
network necessarily leads to a disruption of the customer.

2.3 Modelling disruptions in supply networks
Disruptions in a supply network can be modelled in different ways. Bayesian networks
are one quantitative method for assessing risk in supply networks. Käki et al.
(2015) used Bayesian networks to evaluate supply network disruptions and the risk
related to them. They used PRA-methodology, constructed node-level metrics, and
performed simulations to assess the most critical parts of networks. They also
provided managerial insights from the results.

Besides Bayesian networks, there are also other quantitative models. Schmitt
and Singh (2009) constructed a model based on Monte Carlo simulation and discrete-
event simulation to assess risk propagation in a supply chain. They found out that
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the inventory level at the beginning of the disruption has significant impact to the
customer service. Basole and Bellamy (2014) used a computational approach to
study risk diffusion in supply networks by constructing AB-model. They found
that the health of the supply network and risk diffusion are associated with the
structure of the network. Li et al. (2021) constructed an agent-based computational
model to analyze disruption propagation in supply networks. They considered both
forward and backward propagation of disruptions and concluded that the two different
directions of disruption propagation have different impacts on the network. Tang et al.
(2016) used cascading failure model to evaluate robustness of an assembly supply
network by simulation approach. They found out that when the node’s dependency
on other nodes decreases or when the node’s threshold for risk propagation increases
the network is more robust.

Ghadge et al. (2011) approached the disruptions qualitatively. They utilized a
case study of a tsunami in Japan in 2011 and used a systems thinking approach to
study risk propagation in the Japan supply network. They concluded that the risk
can propagate in any direction in the supply network.

2.4 Correlation in supply networks
Today’s world is interlinked (Easley et al., 2010). This means that many phenomena,
entities, and markets are dependent on each other. In the context of supply networks,
this means that one entity’s performance can be dependent on another entity’s
performance or some other factor that impacts both of these entities. As argued in
Section 1, correlation in supply networks is important. Among other reasons, our
interlinked world can also be perceived as one of the reasons behind the importance
of understanding correlation in supply networks.

Tomlin and Wang (2011) wrote about managing the risk of disruption in supply
chains. They mentioned that an event, for example a natural disaster, might lead to
a disruption of two suppliers that are located in the same geographical area. This
means that there can occur correlation between the disruptions of suppliers. They
also mentioned that the same geographical location is not the only attribute that
can lead to the correlated supplier disruptions, as any shared attribute between the
suppliers might lead to the correlated supplier disruptions.

While there are many approaches to modelling the disruptions in supply chains
and networks in the literature, not many studies have been made to examine the
correlation in supply networks. Pariazar et al. (2017) examined the correlation and
inspections at suppliers in supply networks in a study of supply network design. They
constructed a two-stage stochastic model to see how the risk and costs behave with the
network design. They found out that when there is no inspection of goods available,
the correlation between failures at the first-tier suppliers leads to an increase in
costs. Raghunathan (2003) studied the value of information sharing, when there may
occur correlation of demands in the supply chain. They found that the correlation
in the demand impacted the surplus of the companies and thus had an impact on
the incentives to form partnerships.

We contribute to the literature by studying the correlation’s impact on the



9

disruption probability of a company. Our objective is to examine how the correlated
disruptions in two suppliers impact the disruption probability of the company.

3 Research methods
We first present the model used in this thesis. Then the simulation approach is
reviewed and lastly, the implementation of correlation is described.

We assume that the correlation of two suppliers means that the disruptions of these
suppliers are correlated. In this way, the correlation can be modelled as a correlation
between suppliers in the network. The model used in this thesis is based on the model
constructed by Käki et al. (2015), which is an application of the PRA-approach.
Their model is based on Bayesian networks, and they use simulation approach to
obtain results. Even though their model is similar to the model used in this thesis,
the objectives of these studies differ. They aimed to examine disruptions in the
network to define the most critical suppliers and to provide managerial standpoints.
For example, they did not measure the correlation of suppliers, and they used further
derived metrics. On the other hand, we examine the correlation more closely and
use simple metrics to achieve the objective of this thesis.

3.1 Probabilistic Risk Assessment
Risk assessment can be divided into two categories - qualitative risk assessment
and quantitative risk assessment - from which the latter is referred to as PRA. In
both categories of risk assessment, the risk is measured by the likelihood and the
severity of the event. In qualitative risk assessment, the likelihood and the severity
are described qualitatively, for example, as words like "high" or "low". In quantitative
risk assessment, the likelihood is measured by a probability or a frequency, and the
severity is measured by a number, for example, the number of humans potentially
being killed or injured (Stamatelatos, 2000).

The model used in this thesis is a quantitative model. The likelihood of a failure in
a supply network is measured as a disruption probability. The severity of a disruption
is measured as an occurrence of a disruption, which is modelled as a random variable
indicating whether or not the disruption occurs.

3.2 Basics of supply network model
In this thesis, a supply network consists of nodes and arcs, which are also called
elements. In this supply network, nodes represent the suppliers (e.g. companies),
and arcs represent the connections between the nodes. In our model, every arc has
a direction, and the source of the arc is a parent node, and the sink of the arc is a
child node. In Figure 1, node j is a parent node and node i is a child node. The
focal node is the node in the supply network that we are interested in and whose
disruption probability we are examining.

Each node in the network can be disrupted in two distinct ways. First, a node
can be disrupted as a result of a propagation of disruption from its parent nodes
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through arcs. This movement of disruption is called the risk propagation. In this
way, a disruption can propagate through the network. We assume that a disruption
in the network can only propagate from a parent node to the child node (Käki et al.,
2015). Second, a node can be disrupted by some other reason, which is not dependent
on the network or its structure. This is called the node’s internal risk. Each arc can
only be disrupted by a reason that is not dependent on the network.

A disruption propagates from a parent node to the child node if the parent node
and the arc from the parent node to the child node are disrupted. This means that
only a disruption of the arc doesn’t lead to the disruption of the child node.

3.3 Network representation
Let S = (V, E), where S is the network, V is the set containing all the nodes in the
network, and E ⊆ {(i, j)|i, j ∈ V } is the set containing all the arcs in the network.

In our supply network model, every element i is represented with a binary state
Xi. In the state Xi = 1, the element i is disrupted, and in the state Xi = 0, the
element i is not disrupted. If the element is not disrupted, it means that the element
is operational and works normally. The disruption of the element means that the
element is not operational and thus cannot work at all. The state of the network is
constructed by the states of all the elements in the network.

There are in total xn network states, where x is the number of possible states of
an element and n is the number of elements in the network. We assume that nodes
and arcs have only two possible states (x = 2), operational and disrupted. The states
of the elements in the network could be modelled with more than two possible states,
but this would make calculations heavier. Snyder et al. (2016) also mention that the
binary model is the most usual way for modelling the supply chain system state.

Let S be a network with two nodes i and j. S = (V,E), where V = {i, j} are the
nodes of the network. Let node j be connected to node i, so arcs E of the network
S are E = {(j, i)}. This network is presented in Figure 1. The probability that a
disruption occurs in node i without impact of other nodes is αi. This is called the
internal risk parameter. βi|j is the probability that a possible disruption in node j
propagates to node i. In other words, βi|j is the probability that the arc from node j
to node i disrupts.

Figure 1: Simple network with two nodes and one arc (Käki et al., 2015).

There are eight states of the network, since there are two possible states for nodes
i and j and two possible states for arc from node j to node i. These states and the
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probability that these states occur are presented in Table 1. From these network
states there are five states, which lead to a disruption in node i.

Network state Xj Xi|j Xi P(Network state)
1 0 0 0 (1 − αj)(1 − βi|j)(1 − αi)
2 0 0 1 (1 − αj)(1 − βi|j)αi

3 0 1 0 (1 − αj)βi|j(1 − αi)
4 1 0 0 αj(1 − βi|j)(1 − αi)
5 0 1 1 (1 − αj)βi|jαi

6 1 1 0 αjβi|j(1 − αi)
7 1 0 1 αj(1 − βi|j)αi

8 1 1 1 αjβi|jαi

Table 1: Possible states of a simple network with two nodes and one arc.

These states are in rows 2, 5, 6, 7 and 8. State 6 also leads to a disruption of node
i, since propagated disruption from a parent node automatically causes a disruption
in the child node. When we add these five probabilities together, we can calculate
the probability of disruption of node i.

Fi = (1−αj)(1−βi|j)αi +(1−αj)βi|jαi +αjβi|j(1−αi)+αj(1−βi|j)αi +αjβi|jαi (1)

= (1 − βi|j)αi + βi|jαi + αjβi|j(1 − αi) (2)
Thus the probability Fi that node i is disrupted can be calculated by

Fi = αi + αjβi|j(1 − αi) (3)

The probability of disruption of the focal node is the key metric in this thesis. It
describes the probability that the focal node in the network disrupts and thus cannot
operate. Note the distinction between αi and Fi. The αi is internal risk probability,
which refers to the probability that node i gets disrupted by some other reason than
the propagation from node j. The Fi is the overall probability that node i disrupts,
which includes the probabilities of every situation in which node i disrupts.

If a node in a network has more than one parent node, one parent node causing
a propagation of disruption to the child node is sufficient enough to disrupt the child
node. This means that if a node with many parent nodes faces a disruption from
any of its parent nodes, it cannot operate anymore. In other words, this means that
every parent node is vital for the node, and the node does not have two or more
parent nodes that deliver the same goods or services for the node. This assumption
is important, as it describes the way disruptions propagate in the network. This
assumption is discussed in Section 4.

Based on (3), the probability that focal node i disrupts can be calculated exactly.
We first define each possible state of the network. Then we take the states in which
the focal node is disrupted and define the probabilities of these states occurring. By
adding up these probabilities, we can calculate the disruption probability of the focal
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node. When we consider larger networks than in Figure 1, the exact formula for
the disruption probability of the focal node is more challenging to derive. This is
due to the fact that the number of states of nodes and arcs, and thus the number of
parameters, increases exponentially. Thus, we need to find a different approach to
assess the probability of disruption of the focal node in larger networks.

Simulation is a suitable tool for assessing network metrics for our purpose. Instead
of deriving exact expressions, we can construct the results by using probability
distributions. By sampling states for each node and arc from different probability
distributions and by combining these states while considering rules for propagation
of disruptions, we can construct a state for the focal node. This is the same as
generating a sample from the focal node’s probability distribution. By the Law of
Large Numbers, if we take enough samples from this probability distribution and
inspect the states of the focal node, the sum of the states of the focal node divided
by the number of simulations should converge to the expected value of the state of
the focal node. This expected value is the disruption probability of the focal node.

3.4 Monte Carlo simulations
Since the derivation of the exact formula for the disruption probability of the focal
node in larger networks can be challenging, we use simulations for calculating this
metric.

This kind of problem is well approachable by Monte Carlo simulation. In many
Monte Carlo simulations, the outcome of a complex system is assessed by modelling
the system by certain probability density functions. Then the simulation is performed
by sampling numbers from these functions. Based on these results, different statistical
metrics are calculated (Harrison, 2010).

We use Monte Carlo simulations to obtain information about the behaviour of
the network. Simulations are performed with MATLAB-software. We construct the
network state by generating a state for each node and arc in the network. The states
are generated from binomial distributions. After all the network states are generated,
the probability of disruption of the focal node is calculated.

Let the S = {V, E} be the network with nodes V = {1, 2, 3} and arcs E =
{(2, 1), (3, 1)}. The network is in Figure 2.

Figure 2: Network with three nodes and two arcs (Käki et al., 2015).
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The state of node 1 (X1) is generated in the following way. First, X2 and X3 are
generated. Because neither node has parent nodes, these states are simply generated
by sampling random numbers from binomial distributions. X2 is generated from a
binomial distribution with parameter α2, which gives us α2 of the time 1 and (1 − α2)
of the time 0, when generating many numbers from this distribution. X3 is generated
the same way using the corresponding parameter.

Second, the impacts of these two nodes to focal node 1 are generated. States of
the arcs are generated first, and then states of the arcs are multiplied by states of the
corresponding nodes. X1|2 is generated from a binomial distribution with parameter
β1|2. This state is then multiplied by X2. For example, if X2 = 0 and X1|2 = 1, the
overall impact of node 2 to node 1 is X2 · X1|2 = 0 · 1 = 0. The impact of node 3 is
generated the same way with X1|3 and X3.

Last, X1 is generated from three different states. The first two states are the
ones generated from nodes 2 and 3, and the third one is generated from the internal
risk parameter of node 1. This internal state of node 1 is generated from a binomial
distribution with parameter α1.

X1 = max(X2 · X1|2, X3 · X1|3, Internal state of node 1) (4)

Based on (4), X1 is the maximum of the internal state of node 1 and the states
from nodes 2 and 3. For example, if the states from nodes 2 and 3 are 0, but the
internal state of node 1 is 1, X1 = 1.

The state of the focal node is collected after each simulation. After all the
simulations have been performed, the number of simulations where the focal node
is disrupted is counted and divided by the total number of simulations to get the
probability of disruption of the focal node. For example, if 33 out of the 100
simulations turn out to disrupt the focal node, the probability that the focal node
disrupts is 0.33.

3.5 Implementation of correlation
In order to modify and examine the correlation between two nodes, we create an
auxiliary node into the network. This node is connected to both correlated nodes
with auxiliary arcs. We want both correlated nodes to be fully dependent on the
probabilities relating to the auxiliary node, and thus we use conditional probabilities
to create the probabilities relating to the correlated nodes.

Let us update our simple network in Figure 2. Node s is added to the network,
and it is connected to nodes 2 and 3 via conditional probabilities. Node s is auxiliary
and does not represent any real object. The probabilities of disruption F2 and F3
are calculated with conditional probabilities.

F2 = P (2) = P (2|s)P (s) + P (2|s̄)P (s̄) (5)

F3 = P (3) = P (3|s)P (s) + P (3|s̄)P (s̄) (6)

From (5) and (6) we can see that the probabilities of disruption of nodes 2 and
3 are fully dependent on the probabilities relating to node s. By implementing
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probabilities with this approach, we can modify the correlation between nodes 2 and
3 through node s. The original network does not conceptually change much, since
parameters α2 and α3 are just replaced by parameters F2 and F3. This modified
network is in Figure 3.

Figure 3: Network, correlation added (Käki et al., 2015).

Implementing (5) and (6) into the model creates new parameters to be considered.
Because node s is auxiliary, parameters P (2|s), P (2|s̄), P (3|s), P (3|s̄), P (s) and
P (s̄) do not represent any objects or qualities in reality. This allows us to choose
the parameters so that the correlation varies between nodes 2 and 3. In this way, we
are able to examine how the correlation between two nodes impacts the probability
of disruption of the focal node.

We quantify correlation as

ρ(A, B) = 1
N − 1

N∑︂
i=l

(Ai − µA

σA

)(Bi − µB

σB

), (7)

where A and B are two different vectors, σA and σB are the standard deviations
of A and B, µA and µB are the means of A and B, N is the number of data points
and i is the number of a data point. This is called the Pearson correlation coefficient.

In the simulation phase, the generation logic of states in artificial part differs from
the generation logic of states in other parts of the network. The state of node s (Xs)
is generated, but X2|s and X3|s are not generated. If Xs = 1, X2 and X3 are generated
from binomial distributions with corresponding parameters P (2|s) and P (3|s). If
Xs = 0, X2 and X3 are generated from binomial distributions with corresponding
parameters P (2|s̄) and P (3|s̄). The states of these two correlated nodes are collected
into corresponding vectors, and the Pearson correlation coefficient between these
vectors is calculated. This way correlation can be measured to examine its impact
on the probability of disruption of the focal node.

Let us consider two nodes A and B with binary states. Let’s inspect the correlation
of these nodes. Graphs presenting the states of nodes A and B with correlation
values of 1 and -1 are presented in Figures 4 and 5. Circles represent the states of
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these nodes, and the percentage in the middle of the circle represents the state’s
theoretical portion of all the states. In both figures, the disruption probabilities of
node A and node B are 0.5.

Figure 4: States of nodes A and B with correlation value of 1 between nodes A and
B.

Figure 5: States of nodes A and B with correlation value of -1 between nodes A and
B.

From Figures 4 and 5 we can see that the states of nodes A and B are always the
same, when the correlation between these nodes is 1. Whereas when the correlation
is -1, these states are always the opposite.
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3.6 The impact of parameters of the correlated nodes on
results

While we are interested in the correlation between two nodes, the other parameters
of the correlated nodes may impact the severity of the impact of correlation on the
disruption probability of the focal node. For example, let us consider the situation
in Figure 3. If we have F2 = F3 = 0.1, there occurs only few disruptions from nodes
2 and 3, even though they are correlated. Same applies to β1|2 and β1|3. If these
parameters are set to 0.1, the impact of nodes 2 and 3 on node 1 occurs more rarely.
Furthermore, if there are more nodes in the network impacting node 1 than nodes 2
and 3, the impact of correlated nodes might get lost to the impact of other nodes in
the network. This might happen, if we have low values for F2, F3, β1|2 and β1|3.

For these reasons, we simulate through the network with different parameters of
the correlated nodes. In our example above, these parameters are F2, F3, β1|2 and
β1|3.

4 Results

4.1 Network used in the study

Figure 6: Modification of a network introduced by Käki et al. (2015).

We consider a network S = (V, E) in Figure 6. This network contains 12 nodes
and 13 arcs. The network contains auxiliary arcs from node s to nodes 6 and 7
and an auxiliary node s, which generates the correlation between nodes 6 and 7 via
conditional probabilities, as presented in (5) and (6). In this way, we can examine
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how different levels of correlation impact the probability of disruption of focal node
C.

4.2 Parameter values used in the study
Internal risk probabilities are αi = {0.1|i ∈ V \ {6, 7, C}}. The value of the internal
risk probability of focal node C is determined to be 0. The values of α6 and α7
are replaced by F6 and F7, which are fully dependent on the probabilities relating
to node s. The values between F6 and F7 are the same through simulations, and
thus we mark the value of them simply by α. The value of α is changed during the
simulations to examine the impact of correlation to FC with different levels of α.
The values of F6 and F7 are produced by parameters P (6|s), P (6|s̄), P (7|s), P (7|s̄),
P (s) and P (s̄) by (5) and (6). These parameter values are constructed by simulation
approach.

We construct a distinct simulation where the objective is to produce the set of
parameters that produces different correlations between two nodes. In this simulation,
we have nodes a and b that we want to make correlated. We also have the auxiliary
node s which sets up the correlation via conditional probabilities by (5) and (6). We
first scope the range of parameters Fa and Fb to {0.2, 0.5, 0.8}. The values between
parameters Fa and Fb are same, so we mark them by α. After this, we set P (s),
P (a|s) and P (b|s) go through the range from 0 to 1 with interval of 0.1. With each
combination of these parameters, we use (5) and (6) to generate P (a|s̄) and P (b|s̄).
If these values are greater or equal to 0 and smaller or equal to 1, we construct a 10
000 sample simulation for the states of nodes a and b. If this obligation is not fulfilled,
we move on to the next combination of parameters. In the simulation, we first
generate a state for node s. If Xs = 1, Xa and Xb are generated from the binomial
distributions with corresponding parameters P (a|s) and P (b|s). If Xs = 0, Xa and
Xb are generated from the binomial distributions with corresponding parameters
P (a|s̄) and P (b|s̄). These states are collected to corresponding vectors, and after
10 000 simulations the correlation between these vectors is calculated. After all the
simulations, we pick 10 different correlation values and corresponding values of P (s),
P (a|s) and P (b|s) for each value of α. These parameters can be used to construct
correlation between any two nodes that do not have parent nodes. Now we use these
parameters for the network in Figure 6 where a = 6, b = 7, α = F6 = F7 and node s
is the auxiliary node. From these parameters, we only provide the values of α in this
thesis.

The probabilities that a disruption passes from node j to node i are βi|j =
{0.5|(j, i) ∈ E \ {(7, 4), (6, 4), (s, 7), (s, 6)}}. The values between β4|6 and β4|7 are
the same through the simulations, and thus we mark the values of β4|6 and β4|7 by β.
The value of β is changed during the simulations to examine the impact of correlation
to FC with different levels of β.

Simulations with each value of α and β are performed with 10 different correlations.
With each correlation, we simulate the network 100 000 times. In total, we simulate
1 000 000 times with each combination of parameters α and β. Let’s call this sample
of 1 000 000 simulations a set. The range of parameters α and β is {0.2, 0.5, 0.8}.
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Since the simulations are performed with all combinations of parameters α and β,
we simulate 9 sets in total. We select this range of α and β to be able to inspect the
impact of these parameters, while still having as little different values as possible. This
restriction is done, since every new value of α or β requires new sets of simulations,
which take time.

4.3 Simulation results
The disruption probabilities of focal node C in Figure 6 with different values of
parameters α and β are presented as a function of the correlation between nodes 6 and
7 in Figure 7. Simulations through the network are performed with different values
of parameters to examine for which values of parameters α and β the correlation
between nodes 6 and 7 impacts FC .

Figure 7: FC as a function of the correlation between nodes 6 and 7 with different
parameters α and β.

As we can see from Figure 7, the higher the β is, the higher the FC is. This tells
us that when β4|6 and β4|7 increase, FC increases. We can also see that the higher the
α is, the higher the FC is. This means that when F6 and F7 increase, FC increases.

The most interesting result occurs in the impact of correlation between nodes
6 and 7 to FC , when β is as high as 0.8. In a situation, where the correlation in
the network has no impact on FC , a constant line could be fitted through the data
points of each combination of α and β. But from Figure 7 we can clearly see that as
correlation between nodes 6 and 7 increases and β = 0.8, FC decreases with every
value of α. On the other hand, when β = 0.2, the correlation has no impact on FC .

The highest and the lowest simulated values of correlation and FC related to
these correlations with different values of α and β are presented in Table 2. On the
top of Table 2, different values of α and β are presented. On the left, different values
of FC and correlation between nodes 6 and 7 are presented. The differences between
values of FC are calculated in the last two rows.

There are four combinations of α and β where the absolute value of relative
difference of FC is more than 5%. This difference is significant. These combinations
are the ones where β = 0.8 and the one where α = 0.5 and β = 0.5. In all of these
combinations, the relative difference of FC is negative. This supports the observation
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α = 0.2 α = 0.5 α = 0.8
β 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
The highest correlation
in Figure 7 0.875 0.877 0.880 0.800 0.799 0.802 0.874 0.876 0.877

The lowest correlation
in Figure 7 -0.250 -0.249 -0.250 -0.800 -0.802 -0.799 -0.250 -0.251 -0.250

FC with the highest
correlation in Figure 7 0.311 0.338 0.353 0.346 0.419 0.455 0.380 0.489 0.547

FC with the lowest
correlation in Figure 7 0.312 0.351 0.392 0.349 0.449 0.545 0.383 0.505 0.590

The difference of FC with
the highest and the lowest
correlations in Figure 7

-0.001 -0.013 -0.039 -0.004 -0.031 -0.090 -0.004 -0.015 -0.042

The relative difference of
FC with the highest and the
lowest correlations in Figure 7

-0.36 % -3.65 % -9.95 % -1.01 % -6.80 % -16.52 % -0.94 % -3.02 % -7.18 %

Table 2: The highest and the lowest simulated values of the correlation and FC

related to these correlations with different values of α and β.

made earlier regarding Figure 7 that when β is high, FC decreases as the correlation
between nodes 6 and 7 increases.

We can also see that when the β = 0.2, the absolute value of relative difference
of FC is less than 1.1% with every value of α. This means that the correlation has
no significant impact on FC when β is low.

4.4 Assessment of the results
According to our model, an increase in the value of α or β leads to an increase
of FC . This means that when we have higher probabilities that correlated nodes
disrupt or propagate a possible disruption to the next node, it is more probable
that the focal node disrupts. When we have high probabilities that correlated nodes
propagate possible disruptions to their child node (β), the correlation has an impact
to the probability of disruption of the focal node. In this situation, as the correlation
increases between the correlated nodes, the probability of disruption of the focal
node decreases. When β is low, the correlation has no impact on the disruption
probability of the focal node.

The results regarding parameters α and β are intuitive. FC is a sum of multipli-
cations of probabilities, and if the value of some parameter increases, the value of
FC increases.

The results regarding the correlation may seem counterintuitive at the first look,
as one could think that the correlation of nodes in the network must cause higher
probability of disruption of the focal node. The results can be explained by examining
a simple network with correlation presented in Figure 3. Let us consider two extreme
examples. In the first example, the correlation between nodes 2 and 3 is 1, and β1|2
and β1|3 are 1. In the second example, the correlation between nodes 2 and 3 is -1,
and β1|2 and β1|3 are 1.

In the second example, states of nodes 2 and 3 (X2 and X3) are always different,
since the correlation is -1. Because β1|2 = 1 and β1|3 = 1, node 1 certainly disrupts
from either one of the nodes, meaning that F1 = 1 no matter what the α1 is. In
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the first example, X2 and X3 are always the same, since correlation is 1. There are
possibilities that X2 = X3 = 0, meaning that disruption is not propagated from
nodes 2 and 3 to node 1. Therefore, node 1 might not be disrupted, and F1 can be
lower than 1, depending on α1.

As we can see from Figure 7, there is no data for the high negative correlation,
when α is high or low. If we wish to get a correlation level close to -1, there has
to occur many network states, where nodes 6 and 7 have the opposite states. It is
unlikely that many opposite states could be generated from the binomial distributions
with the same parameter value, when the value of parameter α is high or low.

4.5 Assessment of the model
There are many assumptions related to our model, which restrict its usability. Still,
this model provides important insights about the impact of correlation of two nodes
to the disruption probability of the focal node.

The range of parameters α and β is {0.2, 0.5, 0.8}, which is quite small but enough
to provide insights about these parameters’ effect on the impact of correlation to FC .
If more detailed results are needed, the range of these parameters could be broadened.
When applying a broader range, one must keep in mind that for low and high values
of α, the correlated nodes are unlikely to have high negative values of correlation.

Ghadge et al. (2011) and Li et al. (2021) stated that the disruptions can propagate
in more than one direction. We restrict this point of view to comply with Käki
et al. (2015) and assume that disruption can propagate only from parent nodes to
child nodes. They noted that this direction of disruption propagation is normal
in usual supply networks in which the flow of materials is from the suppliers (the
parents) to the company or to the next supplier (the child). This means that even
though we make this assumption regarding the propagation of disruptions, the results
of this thesis are applicable to many supply chains. Because we do not consider
propagation of disruptions from child nodes to parent nodes, our results on assessing
the probability of disruption of the focal node might be lower compared to the results
that could be obtained with a model that considers both directions of disruptions.
This happens due to the fact that adding more sources of disruption to nodes makes
it more probable that nodes fail.

The propagation of disruptions in the model needs to be assessed in another way
too. We assume that if any of the parent nodes causes the disruption to propagate
to its child node, the child node disrupts. This is basically a situation, where every
supplier is a key supplier, and a company or a supplier cannot operate without every
one of its suppliers. This is not the only way to model the propagation of disruptions.
A disruption could move from parent nodes to the child node, for example, if 50% or
all of the parent nodes cause a propagation of disruption to the child node.

The approach to disruption propagation used in this thesis is not applicable to all
situations. For example, let us consider a grocery store which has a single supplier
of milk that does not provide other products for the store. If the supplier of milk
cannot provide milk for the grocery store, the store can still provide other products
for the customer and thus is operational. With our approach, if this store cannot get
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milk from its supplier of milk, it cannot operate.
Our approach might provide more precise results when assessing supply networks,

where all the suppliers’ products are vital for the next supplier or the company. For
example, this could be a supply network of a tea shop, which sells only one type of
tea. There is a supplier of tea and a supplier of cups in the shop’s supply network. If
one of these suppliers cannot deliver products to the shop and causes a propagation
of disruption for the shop, the shop cannot sell cups of tea to its customers.

As these two examples illustrate, the propagation of disruptions is dependent on
the company’s nature. In the future, the impact of correlation between suppliers to
FC should be studied with different structures of disruption propagation.

The sizes of supply networks are usually large (Käki et al., 2015). We have a
small and artificial network in our model, and the correlation is measured between
two nodes. In some supply networks, there may be correlations between more than
just two nodes. In future, the impacts of correlations between more than two nodes
could be studied.

For these earlier presented reasons, our conclusions are not applicable in all
situations, and one should be careful when applying them into the practice.

5 Conclusions
This thesis concentrates on the supply networks and the correlation of disruptions
in them. The main objective is to understand how the correlation of disruptions
between two suppliers impacts the disruption probability of the company. We assume
that correlation between suppliers implies the correlation of their disruptions. We
apply Probabilistic Risk Assessment -approach, and construct a Bayesian network
model, which is based on the model studied by Käki et al. (2015). The correlation
is implemented to the model via conditional probabilities. After constructing the
network model, Monte Carlo simulations are performed with different parameters to
obtain results.

The results imply that correlated disruptions of two suppliers have an impact on
the probability of disruption of the company with the following condition. When
there are high probabilities that a possible disruption propagates from suppliers,
which face correlated disruptions, to the next supplier in the network (parameter β),
the higher the correlation is, the lower the disruption probability of the company is.
If the parameter β is low, the correlation doesn’t impact the disruption probability
of the company.

This thesis can be extended in the future. The model’s network structure can be
improved by modifying the propagation of disruptions. For example, in a situation of
many suppliers, the propagation of disruptions can be changed so that the propagation
from only one of the suppliers does not disrupt the next supplier or the company. In
this way, more realistic results could be gained in situations in which the company
uses many suppliers to acquire certain goods or services. Another step in improving
this model would be to allow the disruptions to propagate also from companies to
suppliers. This change would better reflect the propagation of disruptions because,
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for example, a sudden drop in the demand for a supplier’s produced goods or services
(disruption in company or next supplier) can disrupt the supplier. In the future, the
impact of the position and the number of correlated nodes in the supply network
can also be studied to examine if these qualities impact the disruption probability of
the company.
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