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Abstract
Electricity markets have significantly changed over the recent years. These changes
have led to volatile spot markets, which has drawn attention to risk management
practices, and how they can be further developed to tackle these new challenges.
Consumers have also been heavily influenced by the aforementioned developments,
but research on consumers in the energy markets is scarce.

This thesis applies the concept of stochastic dominance to a risk-averse consumer
in the Finnish retail electricity markets. The implemented four period decision model
considers the uncertainty of the electricity spot price and determines a set of optimal
electricity contracts under the assumed risk preferences that minimize the costs
associated with these contracts. The uncertainty arising from the electricity spot
price is modeled using a binomial lattice. Once the optimal contracts are identified,
the results are compared to other decision alternatives.

According to the results, the use of stochastic dominance in choosing electricity
contracts proved worthwhile. The model provided clear results that could eas-
ily be incorporated into practical decision making. The main result showed that
mean-variance optimization did not fully represent the preferences of a risk averse
decision maker. Another notable result was that some contract alternatives offered
to customers were never preferred by risk averse decision makers.
Keywords Stochastic dominance, decision making, uncertainty, portfolio selection,

energy markets
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Tiivistelmä
Sähkömarkkinoilla tapahtuneiden muutosten takia sähkön spot-hinnat ovat aiempaa
huomattavasti epävakaampia, ja siksi riskienhallintakäytäntöihin ja niiden kehittä-
miseen on suunnattu huomiota. Kuluttajat ovat myös kokeneet nämä muutokset,
mutta kuluttajia koskeva tutkimus energiamarkkinoilla on vähäistä.

Tämä tutkimus soveltaa stokastista dominanssia viitekehyksenä riskejä välttävään
kuluttajaan Suomen energia markkinoilla. Tutkimuksessa rakennettu neljäperiodinen
päätösmalli ottaa huomioon sähkön spot-hinnasta johtuvat epävarmuustekijät ja
määrittää päätöksentekijän oletettujen preferenssien mukaan optimaaliset sopimus-
vaihtoehdot, jotka minimoivat sähkön hankintakustannukset. Sähkön spot-hinnasta
johtuvaa epävarmuutta mallinnetaan binomihilan avulla. Kun optimaaliset sopimus-
vaihtoehdot on identifiotu, tuloksia vertaillaan muihin päätösvaihtoehtoihin.

Tulosten valossa stokastisen dominanssin soveltaminen sähkösopimusten valintaan
osoittautui hyödylliseksi, sillä tulokset olivat selkeitä ja niitä pystyttiin hyödyntämään
suoraan päätöksentekoon. Päätulos oli sen osoittaminen, että keskiarvo-varianssi
optimointi ei pysty täysin kuvaamaan riskejä karttavan päätöksentekijän preferenssejä.
Toinen merkittävä tulos oli, että riskejä karttava pätöksentekijä ei koskaan preferoisi
tiettyjä kuluttajille tarjottuja sopimustyyppejä.
Avainsanat Stokastinen dominanssi, päätöksenteko, epävarmuus, portfolio valinta,

energiamarkkinat
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1 Introduction

Electricity markets are uncertain due to deregulation, renewable energy sources,

technological developments, the energy crisis in Europe as well as other factors. These

dynamics have led to a volatile spot market in electricity prices, for example, the spot

price of electricity increased at most by 150% in 2022 compared to the average price.

With these facts in mind, there is a need for risk management tools for hedging these

uncertainties (Canelas et al., 2020). Most research in the field of energy markets

regarding portfolio optimization has been conducted from the retailer’s point of view

(for example, see Gökgöz and Atmaca 2012), and the research from the consumer’s

point of view, especially in the Nordic electricity markets, is scarce. This thesis

studies the electricity contract selection problem with the aim of minimizing the costs

associated with these contracts by utilizing portfolio optimization and stochastic

dominance.

Portfolio optimization is often a multi-objective decision making problem where

the trade-offs between risk and return are balanced. Multi-objective decision making

can be challenging in that the importance of the objectives can be subjective,

meaning that different decision makers or stakeholders may have varying opinions

and weightings for the criteria, which can introduce complexities in reaching a

consensus. Multi-objective decision making problems often have a set of Pareto

optimal solutions instead of one solution. In the set of Pareto optimal solutions,

each solution is non-dominated meaning that no objective can be improved without

affecting other objectives negatively (Petchrompo and Parlikad, 2019).

Stochastic dominance as a concept in decision theory and risk analysis helps

compare and rank random variables based on their probability distributions over

outcomes. Stochastic dominance can be used in portfolio selection without knowing

the decision maker’s risk preferences exactly (Cheong et al., 2007). Incorporating risk

preferences in optimization formulations is a viable alternative to using risk-neutral

preferences since usually, decision makers are not risk-neutral (Yau et al., 2011).

The main objective of this thesis is to develop a multiperiod decision making
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model for the selection of optimal electricity contracts from a risk-averse consumers

point of view based on the concept of stochastic dominance. We apply this approach

to a case study of a consumer in the Finnish energy market, where the decision maker

has the possibility to switch contracts every six months. The spot price of electricity

is modeled as a binomial tree in which one period is one month and the forecast spans

the duration of two years. The decision alternatives are actual electricity contracts

offered to consumers in Finland.

2 Background

2.1 Decision making under uncertainty

2.1.1 Portfolio selection

Portfolio selection, or portfolio optimization, is a topic that is well-studied in financial

literature but with applications in other domains as well. The background for portfolio

optimization originates from Markowitz (1959). In Markowitz’s approach to portfolio

optimization, also known as mean-variance optimization, investment portfolios are

ranked according to two criteria, mean and variance. The variance of a portfolio

models the risk whereas the mean of the portfolio returns represents the investment’s

expected return. Therefore it is rational that the decision maker seeks a portfolio

that maximizes their expected return and minimizes risk.

A portfolio is said to be non-dominated when there exists no other portfolio with

higher or equal expected returns and less risk. Although variance is a widely accepted

risk measure, it has its drawbacks. Variance, which is a symmetric measure, treats

upward movements as being equally significant as downward movements. Markowitz’s

model is also incapable of considering the risk of low probability events as it assumes

normally distributed returns (Giorgi, 2005). If portfolio returns, or costs in our

case, do not follow a normal distribution, alternative ways of expressing riskiness are

needed, for example, stochastic dominance (Leippold, 2015).

Stochastic dominance was introduced in the 1960s by Quirk and Saposnik (1962).
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They showed its connection to utility functions and considered first order stochastic

dominance for risk-neutral decision makers. Second order stochastic dominance

is often considered a relevant choice criterion in portfolio selection since a risk-

averse decision maker would prefer a second order stochastically non-dominated

solution, which is useful in financial economics (Roman and Mitra, 2009). In practice,

stochastic dominance has not been considered relevant in portfolio selection due to its

computational complexity until recently (Bawa et al., 1979). To date, some models

applying second order stochastic dominance have been developed, for example in

R&D portfolio selection (Ringuest et al., 2000) and financial portfolio optimization

(Dentcheva and Ruszczynski, 2003).

2.1.2 Stochastic dominance

The idea of stochastic dominance is to split the set of possible decision alternatives into

groups of dominated and non-dominated sets (Levy, 2016). A decision alternative x ∈

X represents a random variable with a known or estimated probability distribution,

for example, the returns of a stock portfolio. The cumulative density function qx(θ)

of decision alternative x is defined as

qx(θ) = P(x ≤ θ),

where θ ∈ Θ represents all the possible outcomes of decision alternative x.

The concept of first order stochastic dominance for minimization problems is

defined as follows. Alternative x∗ is first order stochastically non-dominated, and

thus belongs to the non-dominated set X∗ if there exists no alternative x′ ∈ X such

that

qx′(θ) ≥ qx∗(θ)

for all θ ∈ Θ with at least one strict inequality.

Figure 1 is an example of cumulative density functions F1 and F2 for two random

variables. Using the definition of first order stochastic dominance, it can be seen that
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neither distribution dominates the other, and thus both are in the non-dominated

set X∗. Note that the dominated set may include one distribution that dominates

some other, or even all other distributions. No rational decision maker would choose

alternatives belonging to the dominated set.

Figure 1: Cumulative density functions of two random variables.

2.1.3 Second order stochastic dominance

The main benefit of second order stochastic dominance is that any risk-averse decision

maker would prefer one of the non-dominated alternatives. Risk-aversion means that

a decision maker prefers a more certain outcome over a less certain one, even if the

expected outcome of the latter is equal to or higher than the more certain outcome

(Werner, 2008). The practical difference between first and second order stochastic

dominance is that instead of comparing cumulative density functions (CDFs) to

each other, cumulative CDFs of the decision alternatives are now compared with

each other to determine which alternatives are non-dominated. The definition of

second order stochastic dominance is that alternative x∗ is second order stochastically

non-dominated if there exists no alternative x′ such that

q
(2)
x′ (θ) ≥ q

(2)
x∗ (θ), (1)
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for all θ ∈ Θ with at least one strict inequality. The definition of q(2)
x (θ) for decision

alternative x is

q(2)
x (θ) =

∫︂ θ

−∞
qx(t) dt.

2.2 Scenario modeling

In decision modeling, there is often a need to represent uncertainties so that com-

putational methods can be used to solve them efficiently. Scenario generation is

a set of techniques used to create, for example, distributions that represent future

developments (Bernaschi et al., 2007). In scenario generation, the idea is to generate

a finite set of realistic possible scenarios, for example, in this thesis a collection of

realized states for electricity prices will be approximated in the form of a binomial

lattice.

2.2.1 Binomial lattice and volatility parameter estimation

To generate scenarios for the electricity price, we apply the model proposed by Cox

et al. (1979), which is used, for example, in option pricing (Tian, 1999), pricing of

corporate liabilities (Broadie and Kaya, 2007) and valuing IPO’s (Kelly, 1998). The

model presents a methodology for creating a simple discrete-time model for valuing

options. To price options, a binomial lattice for the underlying asset is generated

using historical data of the asset’s price. From historical data, values for the u and d

coefficients, as well as the probability p for an upward movement in the lattice can

be approximated. The value of the random variable at each node of the lattice is

given by multiplying the previous value with either the u or d parameter.

The parameters of the lattice are chosen to match the expected growth rate ν

and the variance of the logarithmic price process σ2 over a chosen time period. These

parameters are defined as

σ2
p = 1

N − 1

N−1∑︂
k=0

[lnS(k + 1)
S(k) − νp]2
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νp = 1
N

ln
S(N)
S(0)

Because both expectation and variance are additive in terms of time the annual

parameters can be calculated by dividing the periodic parameters by the length of

the period. The parameters u, d and p of the lattice are thus given by

p = 1
2 + 1/2√︂

σ2/(ν2∆t) + 1

u = eσ
√

∆t

d = e−σ
√

∆t.

Figure 2 shows a four-period binomial lattice in which the path denoted with

red arrows is one possible scenario. The paths in a binomial lattice are recombining

and each node has two possible paths. The starting price represents the current

price, which is known. The probability of each outcome is given by the combined

probability of upward and downward movements where the movements are assumed

to be independent of each other. The probability of a single upward movement is p

and the probability of a downward movement is p − 1.

Figure 2: Example of a binomial lattice with four periods.
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The binomial lattice may seem relatively simple to model continuous distributions.

However, by shortening the period length ∆t more accurate distributions can be

obtained since there will be a larger number of values after several short steps

(Luenberger, 1998).

2.3 Data

The data used in this thesis includes historical spot price data of electricity prices,

studio apartments yearly electricity consumption on a monthly level and pricing

data of electricity contracts for consumers offered by the largest retailers on the

Finnish markets. The Electricity spot price data is from the European network

of transmission system operators for electricity (ENTSO-E, 2023). The spot price

data has 75215 points. Each point represents the hourly spot price in the Finnish

market starting from the 1st of January 2015 until the 31st of July 2023. The spot

price data is aggregated into monthly averages. Figure 3 shows the yearly electricity

consumption of a studio apartment on a monthly level (Thermopolis, 2023) and

Figure 4 illustrates the aggregated monthly electricity spot prices. Note the large

spike in the electricity prices in 2022 caused by Russia’s invasion of Ukraine and

the resulting energy crisis, meaning that the data may not be fully representative of

future electricity prices.

Figure 3: Yearly electricity consump-
tion of a studio apartment.

Figure 4: Electricity spot price in Fin-
land between 2015 and 2023.

Table 1 describes the electricity contracts that are the decision alternatives in
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the model. The contract data is taken from Finnish electricity retailers and thus

represents actual decision alternatives.

# Name Description Spot Margin Base

1 Fortum Kesto per consumption
indefinite length no 15,98 c/kWh 4,02 €/month

2 Lumme XS
fixed price
indefinite length
1750 kWh/year

no 0 c/kWh 19 €/month

3 Helen Fiksu-sähkö
per consumption
12 month -
fixed length

no 9,49 c/kWh 3,99 €/month

4 Helen Pörssisähkö spot price
indefinite length yes 0,38 c/kWh 3,93 €/month

Table 1: Contracts for the decision model.

3 Case study of electricity contract selection

This section presents a multiperiodic decision model for minimizing the costs of an

electricity contract strategy. At the beginning of each six-month time period the

decision maker will have an option of selecting a new contract type. The planning

horizon length is two years so the model consists of four decision periods. The

uncertainty in this model arises from the unknown future electricity spot prices.

The decision maker is assumed to be risk averse, so the second order stochastically

non-dominated set of all the possible strategies contains cost-minimizing solutions

that the decision maker would prefer.

3.1 Electricity price forecast and scenario generation

To model the uncertainty in future electricity spot prices, a binomial lattice with

twenty-four periods is approximated from past prices using the model proposed by

Cox et al. (1979). The approximated lattice contains prices ranging from 0.556 cents

to 44.931 cents per kWh. The prices in the final period are very close to normally

distributed as the p parameter, which signals the probability of an upward move,



14

equals 0.4999. The other parameter values are u = 1.0958, d = 0.9126, σ2 = 0.1004

and ν = −0.0310.

Once the binomial lattice has been populated with possible spot prices, all possible

scenarios can be obtained by traversing the lattice starting from the initial spot

price and exploring all the possible paths that the electricity price might take. The

probability of each scenario is given by the binomial formula P(s) = pn(1 − p)24−n,

where n is the number of upward movements in scenario s. The number of scenarios

obtained is 224 = 16777216.

3.2 Problem formulation

To model the multiperiodic decision problem, each period has four decision variables

xt,i ∈ {0, 1}, where t ∈ {1, 2, 3, 4} denotes one of the six month decision periods

in the two year time horizon and i ∈ {1, 2, 3, 4} denotes one of the four possible

contract alternatives shown in Table 1. The timeline of the decision making model is

illustrated in Figure 5.

Figure 5: Timeline of the decision making model.

A strategy is denoted by Z = (x1,1, ..., x1,4, ..., x4,1, ..., x4,4). In each six-month

period only one contract type can be chosen meaning that ∑︁4
i=1 xt,i = 1, ∀t. If the

12-month fixed length contract is chosen, the same contract type must also be chosen

in the next six-month period meaning that xt,3 ≥ xt−1,3 − xt−2,3, where xt,3 for t < 1

is zero.

To solve the second order stochastically non-dominated strategies, a cumulative

cost distribution is associated with all strategies. The cost of a strategy in one month

m depends on the chosen contract type and the scenario s. The cost equations for
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the contracts are

C1(m) = M1km + B1

C2(m) = B2

C3(m) = M3km + B3

C4(m, s) = es,mkm + M4km + B4,

where M is the margin of a given contract, km is the consumption for month m, es,m

is the monthly spot price in scenario s and Bi is the base cost of contract i. The

contracts are indexed as in Table 1. Using the monthly cost equations, the cost of a

strategy in one scenario s ∈ S is given by

C(s) = x1,1[C1(1, s) + C1(2, s) + C1(3, s) + C1(4, s) + C1(5, s) + C1(6, s)] +

· · ·

x1,4[C4(1, s) + C4(2, s) + C4(3, s) + C4(4, s) + C4(5, s) + C4(6, s)] +

· · ·

x4,1[C1(19, s) + C1(20, s) + C1(21, s) + C1(22, s) + C1(23, s) + C1(24, s)] +

· · ·

x4,4[C4(19, s) + C4(20, s) + C4(21, s) + C4(22, s) + C4(23, s) + C4(24, s)],

where each row in the sum is the cost of one period for a given contract alternative

Z = (x1,1, x1,2, ..., x4,4). The sum can be written as

C(s) =
4∑︂

t=1

4∑︂
i=1

xt,i

6·t∑︂
m=(t−1)·6+1

Ci(m, s)

note the indexing of the m variable which is a translation from 6-month decision

periods to 1-month periods. Given the scenario costs, the cumulative cost distribution
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of one strategy can be obtained from

q(θ) =
∑︂
s∈S

I(C(s) ≤ θ) · P(s), ∀θ.

Here I : R ↦→ {0, 1} denotes a function indicating whether a given scenario cost

is below or equal to the threshold value θ and P(s) is the probability of scenario

s realizing. After calculating cumulative distributions for all possible strategies,

the second order stochastically non-dominated set can be found by exhaustively

enumerating all possible pairs and comparing them as in (1). In practice, the

cumulative CDFs were determined by dividing the costs of a strategy into buckets

summing the probabilities in each bucket and finally cumulating the probabilities

twice.

3.3 Results

The initial number of possible strategies is 216, of which 145 are feasible for the

given constraints. Since the number of possible strategies was so low, the method of

exhaustive enumeration and pairwise second order stochastic dominance comparison

could be applied efficiently in 0.6 seconds on a 2020 MacBook Pro with a 2,3 GHz

Intel core i7 processor. The Python version used in the modeling was 3.10.13

Table 2 shows all second order stochastically non-dominated strategies. The

number in each period denotes the index of the selected contract alternative from

Table 1. As can be seen, contract alternative 4 is selected in all decision periods

except one. This is caused by the relatively low spot price prediction compared to

the costs of the other contract alternatives. Since electricity is the only source of

uncertainty, strategies that do not include contract alternative 4 have a standard

deviation of 0. Thus among the strategies that do not include contract alternative

4 the one with the lowest cost dominates all others. A future consideration could

be adding, for example, electricity consumption as a source of uncertainty. This

would make it possible for strategies not containing contract alternative 4 to have a

non-zero standard deviation thus providing more interesting results.
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The cumulative probability distributions of the second order stochastically non-

dominated strategies are in Figure 6. The result is that according to the model,

a risk-averse decision maker, regardless of their utility function, would not select

contract alternatives 1 or 3 in any decision period

Contract in
period 1

Contract in
period 2

Contract in
period 3

Contract in
period 4 Mean (€) Std (€)

SSD-Strategy 1 4 2 4 4 414.988 37.202
SSD-Strategy 2 4 4 4 4 427.753 52.598

Table 2: Second order stochastically non-dominated strategies.

For illustration, Figure 7 presents the cumulative probability distributions for one

non-dominated strategy and one dominated strategy. In the non-dominated strategy,

denoted with red color, contracts 4, 2, 4 and 4 are selected. In the dominated strategy,

denoted with light blue, contract alternatives 1, 1, 2 and 4 are chosen. Figure 7

shows that the density function of the non-dominated strategy is greater or equal for

all cost values compared to the density function of the dominated strategy, meaning

that the costs of the non-dominated strategy are concentrated towards the lower end

of the cost axis and thus dominate the other strategy.

Figure 6: q(2)-distributions for both
non-dominated strategies.

Figure 7: q(2)-distributions for one
non-dominated strategy and one dom-
inated strategy.

Table 3 shows the strategies that are mean-variance non-dominated with respect

to these two criteria

min. µZ =
∑︂
s∈S

P(s)C(s),
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min. σ2
Z =

∑︂
s∈S

P(s)(C(s) − µZ)2,

where µZ is the mean cost of strategy Z and σ2
Z is the variance of the costs of strategy

Z. There is an overlap between the second order stochastically non-dominated set

and mean-variance non-dominated strategies suggesting that there is consistency

between the two approaches. However, the second order stochastically non-dominated

set also includes strategies that are not included in the mean-variance non-dominated

set. This shows that second order stochastic dominance is better at expressing the

preferences of a risk-averse decision maker compared to mean-variance optimization.

The reason why this comparison is of interest is that mean-variance analysis and

expected utility are the two main branches of portfolio selection. The two approaches

could also be used jointly by choosing strategies that are both mean-variance and

second order stochastically non-dominated.

Contract in
period 1

Contract in
period 2

Contract in
period 3

Contract in
period 4 Mean (€) Std (€)

MV-Strategy 1 2 2 3 3 435.312 0
MV-Strategy 2 4 2 3 3 420.708 5.428
MV-Strategy 3 4 2 4 3 417.145 19.307
MV-Strategy 4 4 2 4 4 414.988 37.202

Table 3: Mean-variance non-dominated strategies.

4 Conclusions

This thesis studies the selection of electricity contracts from a risk-averse consumer’s

point of view. The decision making model applies second order stochastic dominance

with the aim of minimizing the costs related to the contracts using a multiperiod

approach. The uncertainty in the model arises from the future electricity spot prices,

which are approximated with a binomial lattice.

Studying stochastic dominance in the context of electricity contract selection

proved useful as it indicated results that could easily be used in decision making.

The main result was the difference between the non-dominated strategies when

using stochastic dominance and the mean-variance approaches. This showed that
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the mean-variance approach does not fully represent the preferences of risk-averse

decision maker. Another notable result was that certain types of contract alternatives

were never preferred by a risk-averse decision maker.

The stochastic dominance approach was applied to only a small number of contract

choices and the model makes strong assumptions about the behavior of electricity

prices such as constant volatility and growth rate. Also discounting of costs was

not incorporated into the model, it is however quite relevant in financial settings

and could provide more accurate results. Due to these factors, the results should be

interpreted with caution.

The energy markets in Europe have changed due to Russia’s invasion of Ukraine,

so a future research subject could be applying the model to electricity price data

collected after February 2022. Other improvements to the model could be made in

the scenario modeling part. The binomial lattice does not account for seasonality,

which has a strong effect on electricity prices, or changing volatility. In the binomial

lattice, the price increases and decreases are constant compared to the sharp spikes

and changing volatility in real electricity spot prices. Customer behavior is also a

topic that is relevant in the context of energy markets. Sharp spikes in electricity

prices tend to lead to noticeable demand responses by consumers.



20

References

V. S. Bawa, E. B. Lindenberg, and L. C. Rafsky. An efficient algorithm to determine

stochastic dominance admissible sets. Management Science, 25(7):609–622, 1979.

M. Bernaschi, M. Briani, M. Papi, and D. Vergni. Scenario-generation methods for

an optimal public debt strategy. Quantitative Finance, 7(2):217–229, 2007.

M. Broadie and Ö. Kaya. A binomial lattice method for pricing corporate debt and

modeling Chapter 11 proceedings. Journal of Financial and Quantitative Analysis,

42(2):279–312, 2007.

E. Canelas, T. Pinto-Varela, and B. Sawik. Electricity portfolio optimization for

large consumers: Iberian electricity market case study. Energies, 13(2249), 2020.

M. P. Cheong, G. B. Sheble, D. Berleant, C. C. Teoh, J. P. Argaud, M. Dancre,

and F. Barjon. Second order stochastic dominance portfolio optimization for an

electric energy company. IEEE Lausanne Power Tech, pages 819–824, 2007.

J. C. Cox, S. A. Ross, and M. Rubinstein. Option pricing: A simplified approach.

Journal of Financial Economics, 7(3):229–263, 1979.

D. Dentcheva and A. Ruszczynski. Optimization with stochastic dominance con-

straints. SIAM Journal on Optimization, 14(2):548–566, 2003.

ENTSO-E. European network of transmission system operators for electricity.

https://www.entsoe.eu, 2023. [Online; accessed 10-September-2023].

E. De Giorgi. Reward–risk portfolio selection and stochastic dominance. Journal of

Banking Finance, 29(4):895–926, 2005.

F. Gökgöz and M. E. Atmaca. Financial optimization in the Turkish electricity

market: Markowitz’s mean-variance approach. Renewable and Sustainable Energy

Reviews, 16(1):357–368, 2012.

S. Kelly. A binomial lattice approach for valuing a mining property IPO. The

Quarterly Review of Economics and Finance, 38(3):693–709, 1998.

https://www.entsoe.eu


21

M. Leippold. Value-at-risk and other risk measures. https://papers.ssrn.com/

sol3/papers.cfm?abstract_id=2579256/, 2015. [Online; accessed 8-September-

2023].

H. Levy. Stochastic Dominance. Springer, 2016.

D.G. Luenberger. Investment Science. Oxford University Press, 1998.

H.M. Markowitz. Portfolio Selection: Efficient Diversification of Investments. Yale

University Press, 1959.

S. Petchrompo and A. K. Parlikad. A review of asset management literature on

multi-asset systems. Reliability Engineering System Safety, 181:181–201, 2019.

J. P. Quirk and R. Saposnik. Admissibility and measurable utility functions. Review

of Economic Studies, 29:140–146, 1962.

J. L. Ringuest, S. B. Graves, and R. H. Case. Conditional stochastic dominance in

R&D portfolio selection. IEEE Transactions on Engineering Management, 47(4):

478–484, 2000.

D. Roman and G. Mitra. Portfolio selection models: a review and new directions.

Wilmott journal: the International Journal of Innovative Quantitative Finance

Research, 1(2):69–85, 2009.

Thermopolis. https://www.thermopolis.fi/

blog-1-kodin-sahkonkulutuksen-seuranta-asunnoissa-ja-kodeissa/,

2023. [Online; accessed 10-September-2023].

Y.S. Tian. A flexible binomial option pricing model. Journal of Futures Markets:

Futures, Options, and Other Derivative Products, 19(7):817–843, 1999.

J. Werner. Risk Aversion. The New Palgrave Dictionary of Economics, 2008.

S. Yau, R. H. Kwon, J. S. Rogers, and D. Wu. Financial and operational decisions

in the electricity sector: Contract portfolio optimization with the conditional

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2579256/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2579256/
https://www.thermopolis.fi/blog-1-kodin-sahkonkulutuksen-seuranta-asunnoissa-ja-kodeissa/
https://www.thermopolis.fi/blog-1-kodin-sahkonkulutuksen-seuranta-asunnoissa-ja-kodeissa/


22

value-at-risk criterion. International Journal of Production Economics, 134(1):

67–77, 2011.


	Abstract 
	Abstract (in Finnish)
	Contents
	1 Introduction
	2 Background
	2.1 Decision making under uncertainty
	2.1.1 Portfolio selection
	2.1.2 Stochastic dominance
	2.1.3 Second order stochastic dominance

	2.2 Scenario modeling
	2.2.1 Binomial lattice and volatility parameter estimation

	2.3 Data

	3 Case study of electricity contract selection
	3.1 Electricity price forecast and scenario generation
	3.2 Problem formulation
	3.3 Results

	4 Conclusions

