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Abstract
Deep neural networks (DNNs) have become highly popular machine learning (ML)
models. Multiple factors have accelerated their rise in popularity. First of all, DNNs
have proven to be powerful tools in various tasks across a variety of fields, including
natural language processing, which is currently in high demand. In addition, the
structure and functionality of the neural networks are inspired by the human brain,
thus making them naturally intriguing for people. This popularity has led to extensive
research and development of the DNNs.

The mathematical optimization of trained neural networks is an area of research
that has provoked significant interest due to its promising applications. However,
as a result of their non-linear nature, DNNs are challenging to optimize. Therefore,
different mathematical formulations that exactly model the structure and behav-
ior of DNNs are employed. Beyond the classic use of the 0-1 mixed-integer linear
programming (0-1 MILP) formulation, a new and promising class of formulations,
known as the P-split formulations, has been proposed. P-split formulations make use
of disjunctive programming, which is the combination of linear programming with
disjunctive constraints arising from the need to model logical conditions.

This thesis expands the research focusing on P-split formulations by conducting a
series of computational experiments to assess the efficiency of P-split formulations in
optimizing neural networks with a more general architecture. In the computational
experiments, the solution times and linear relaxations of the P-split formulations are
compared against those of the classic 0-1 MILP formulation. The results show that the
P-split formulations do not consistently offer computational efficiency advantages over
the 0-1 MILP formulation. However, they provide tighter relaxations, demonstrating
the potential of the formulations. These findings suggest that further research is
needed to develop better-performing formulations for a broader range of network
structures.
Keywords Deep neural networks, Mathematical optimization, Mixed-integer linear

programming, Mixed-integer formulations, Disjunctive programming,
Disjunctive constraints
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Tekijä Venla Kjäll
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Koulutusohjelma Teknistieteellinen kandidaattiohjelma
Pääaine Matematiikka ja systeemitieteet Pääaineen koodi SCI3029
Vastuuopettaja Prof. Fabricio Oliveira
Työn ohjaaja M.Sc. (Tech.) Liu Yu
Päivämäärä 25.6.2024 Sivumäärä 19 Kieli Englanti
Tiivistelmä
Syväoppivat neuroverkot ovat saavuttaneet suuren suosion koneoppimismalleista
kiinnostuneiden keskuudessa. Tämän suuren suosion kehittymiseen ovat vaikuttaneet
lukuisat eri tekijät. Syväoppivat neuroverkot ovat ensinnäkin osoittaneet tehokkuu-
tensa monipuolisissa käyttökohteissa useilla eri aloilla, kuten luonnollisen kielen
käsittelyjärjestelmissä, joiden kysyntä on erityisen suurta tällä hetkellä. Lisäksi ih-
misen luonnollista mielenkiintoa neuroverkoja kohtaan lisää se, että niiden rakenne
ja toiminnallisuus pohjautuvat ihmisaivoihin. Tämä edellä kuvattu suuri suosio on
johtanut neuroverkkojen laajamittaiseen tutkimiseen ja kehittämiseen.

Koulutettujen neuroverkkojen matemaattinen optimointi on tieteenala, joka on herät-
tänyt erityistä mielenkiintoa sen lupaavien sovelluskohteiden vuoksi. Neuroverkkojen
epälineaarisen rakenteen takia niiden optimointi on kuitenkin haastavaa. Tämän
vuoksi optimoinnissa usein käytetään neuroverkkojen sijaan matemaattisia malleja,
jotka kuvaavat tarkasti niiden rakennetta ja käyttäytymistä. Klassisen lineaarisen
sekalukuoptimointimallin lisäksi on kehitetty uusi ja lupaava kategoria matemaattisia
malleja nimeltään P-split-mallit. P-split-mallit hyödyntävät disjunktiivista ohjel-
mointia (engl. disjunctive programming). Disjunktiivisessa ohjelmoinnissa mallin-
netaan rajoitteita, jotka johtuvat tarpeesta mallintaa loogisia ehtoja, kuten "joko-tai".

Tämä kandidaatintyö pyrkii jatkamaan P-split-malleihin kohdistuvaa tutkimustyötä
tarkastelemalla niiden tehokkuutta rakenteeltaan yleisluontoisempien neuroverk-
kojen optimoinnissa. Laskennallisten tutkimusten perusteella selvitettiin, kuinka
P-split-mallit vertautuvat klassiseen lineaariseen sekalukuoptimointimalliin tutkit-
taessa mallien pohjalta luotujen optimointiongelmien ratkaisuaikoja sekä lineaarisia
relaksaatioita (engl. linear relaxations). Tuloksista voitiin huomata, että P-split-
mallit eivät ole selvästi klassista mallia nopeampia ratkaista. Toisaalta P-split-mallit
osoittivat potentiaalinsa tuottamalla tiukempia lineaarisia relaksaatiota. Näiden tut-
kimustulosten perusteella voidaan siis todeta, että yhä on syytä jatkaa tutkimusta,
jossa tarkoituksena on löytää laskennallisesti tehokkaampia ja toimivampia malleja
neuroverkkojen optimointiin.
Avainsanat Syväoppiminen, Matemaattinen optimointi, Lineaarinen

sekalukuoptimointi, Sekalukuoptimointimalli, Disjunktiivinen
ohjelmointi, Disjunktiiviset rajoitteet
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1 Introduction
Deep neural networks (DNNs) have been established as one of the most effective
machine learning (ML) models in estimating non-linear relationships between input
and output features and recognizing complex patterns in the data. They are used
for countless tasks in a variety of fields such as robotics (Nguyen and Cheah, 2022),
speech and audio processing (Purwins et al., 2019), and even healthcare (Kollias
et al., 2018). A DNN consists of layers of neurons. Generally, there are three types
of layers: an input layer, an output layer, and hidden layers in between. Each neuron
in the hidden layers applies a linear transformation to the outputs of the neurons
in the preceding layer and then passes the result through a non-linear activation
function. The resulting value is called an activation (or output) of the neuron that is
propagated to the following layer.

Due to their popularity, the properties of DNNs are under extensive research.
However, as a result of their non-linear nature, DNNs are particularly challenging
to optimize. Thus, an intriguing research topic is the use of mixed-integer linear
programming (MILP) formulations as exact mathematical representations for DNNs.
These mathematical models can be used for analyzing trained neural networks, for
instance, by computing optimal input values according to a certain objective function
or building adversarial examples to identify hidden weaknesses of the DNN in question
(Fischetti and Jo, 2018).

One specific area of interest is DNNs that use the rectified linear unit (ReLU)
as the activation function. ReLU is a simple yet powerful activation function that
calculates the maximum between zero and its input (Nair and Hinton, 2010). The
behavior of a ReLU function in a neural network can be programmed using different
strategies. The classic method is to introduce one binary variable for each neuron
that uses the ReLU activation and apply the big-M method. This classic formulation
is called the 0-1 MILP formulation (Fischetti and Jo, 2018; Grimstad and Andersson,
2019). The more recent approach is to consider the ReLU function as a disjunction
and use the partition-based P-split formulations, which have exhibited promising
results by balancing the model size and tightness in optimization problems related
to image classification (Tsay et al., 2021; Kronqvist et al., 2022).

In this study, we consider the P-split formulations for ReLU-NNs with a more
general architecture. We compare the computational efficiency of P-split formulations
with different parametrizations to the classic 0-1 MILP formulation. The solution
times as well as the strength of the linear relaxation of each problem are analyzed.

This thesis is structured as follows. Section 2 reviews the previous research on
mathematical modeling and optimization of DNNs. Section 3 provides an overview
of the methodology introducing the 0-1 MILP and P-split formulations. Section 4
details the design of the computational experiments and presents the results of the
study. Section 5 concludes the thesis by summarizing the key results, discussing the
limitations, and suggesting directions for future research.
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2 Literature review
Numerous applications for solving an optimization problem containing trained neural
networks have been introduced in the literature. One important application is
verifying the robustness of NNs used in safety-critical systems such as self-driving
cars or recognition of voice commands. In Belotti et al. (2016) three attack algorithms
and adversarial examples for NNs were introduced. The 100% effectiveness of these
algorithms illustrates the need for better techniques to evaluate the robustness of
neural networks. Other interesting applications include optimizing an unknown
function approximated by a trained NN and generating new images optimizing over
neural networks trained for visual perception tasks (Gatys et al., 2015). However,
this need for optimizing over complex trained neural networks does not come without
difficulties.

Today, many challenges in the optimization of DNNs relate to the indicator
constraints arising from the piecewise linear activation functions. In addition to
the ReLU function and its variations, other piecewise linear activation functions
include hard tanh and maxpooling. In Huchette et al. (2023), the authors analyzed
the challenges of optimizing over trained ReLU-NNs using polyhedral theory and
the associated optimization methodologies such as MILP. This literature indicates
that once the parameters of a network have been fixed, the NN is simply a piecewise
linear function if the activation function of each node is piecewise linear, making
optimization over these NNs a piecewise linear optimization problem. Given this
inherent linearity, MILP becomes a suitable tool in tackling these optimization
problems.

MILP provides an effective framework for finding provably optimal solutions to
nonconvex piecewise linear functions. The paper further discusses exact models for
these functions using MILP. The authors mention that while the Operations Research
community has extensively developed piecewise linear optimization methods based
on MILP, many of these methods are for separable linear functions with only few
dimensions, thus inapplicable to modeling neurons in a neural network. A common
technique to reformulate disjunctive constraints is the big-M method, used in the 0-1
MILP formulation for neural networks. However, this method often results in weak
convex relaxations that can slow down the convergence of the solution and lead to
intractable problems.

The other extreme is the extended convex hull formulation for disjunctions,
as detailed in Balas (1998). This approach can achieve the strongest possible
convex relaxation for a single unit, but results in a larger formulation. In addition,
this formulation usually performs worse than anticipated. Anderson et al. (2020)
developed an ideal non-extended formulation that was compared against the extended
formulation. Computational experiments showed that for a small ReLU-NN, the
ideal extended formulation was five times slower than the non-extended. In the case
of a larger network, Gurobi Optimizer failed to solve the extended method within
the 1800s time limit due to the extensive growth of the formulation.

These extended formulations addressing the modeling of indicator constraints
using disjunctive programming were also pioneered by Balas (1985, 1998). Disjunctive
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programming is the combination of linear programming with disjunctive constraints
and provides concepts for obtaining convex approximations of discrete optimization
problems. Balas (1985) introduced a general framework for classifying and ranking
linear programming relaxations by computational cost. The class of relaxations
establishes a hierarchy that ranges from the usual linear programming relaxation to
the convex hull of the feasible set itself.

Inspired by disjunctive programming and hierarchical relaxations, Kronqvist et al.
(2021, 2022) developed a class of formulations in between the big-M method and the
extended convex hull for general disjunctive programs, termed P-split formulations.
Tsay et al. (2021) in turn developed a similar hierarchical class of formulations
specifically for trained ReLU-NNs. The key idea of the formulations is to partition
the variables into groups and use disjunctive programming to form the convex hull
over the partitions. In this thesis, we further explore the P-split formulations for
neural networks, aiming to uncover their potential and limitations in enhancing the
optimization of ReLU-NNs..

In addition to the MILP-based methods, further options for encoding indicator
constraints have been introduced in the context of other supervised machine learning
methods. For example, Belotti et al. (2016) introduced a nonlinear and nonconvex
mixed integer non-linear programming (MINLP) reformulation for Support Vec-
tor Machine (SVM) methods with the ramp loss function. The empirical results
showed that a class of classification problems can be solved more efficiently using
the MINLP formulation. Also, the study emphasized the importance of aggressive
bound tightening (BT), a crucial tool in MINLP, in tackling the known challenges of
MIP formulations as well. The significance of bound tightening has already been
addressed in studies concerning the optimization of trained DNNs.

Grimstad and Andersson (2019) presented several BT procedures for the 0-1
MILP formulation by Fischetti and Jo (2018). The procedures are divided into two
categories: feasibility-based bound tightening (FBBT) and optimization-based bound
tightening (OBBT). A computational study is provided, focusing on the solution
times of three different optimization problems involving the 0-1 MILP formulation
and BT procedures. The BT procedures can be computationally expensive, thus
the authors suggest pre-computing the bounds and saving them for potential reuse.
However, the results show that bound tightening procedures can significantly improve
the solution times, even though the best-performing BT procedure depends on the
problem.

Furthermore, in the partition-based formulation for ReLU-NNs by Tsay et al.
(2021) bounds on the partitions play an important role in the tightness of the model.
In the computational experiments, OBBT was implemented by tightening bounds for
all auxiliary variables. The results showed that the BT procedure improved all models
since they consider interdependencies among all inputs within a partition. If BT
procedures are not under consideration, the variable bounds for P-split formulations
can also be computed using interval arithmetic that gives valid but not tightest
possible bounds.



9

3 Methodology
This section covers the 0-1 MILP formulation, introduction to disjunctive pro-
gramming, the general form of the P-split formulation, and the special case of the
formulation for the ReLU neural networks. For simplicity, we introduce only the
formulation for disjunctions with one constraint per disjunct, but the formulation
can easily be extended to multiple constraints per disjunct (Kronqvist et al., 2022).
The performance of the 0-1 MILP and P-split formulations for neural networks are
compared in the computational experiments in the following section.

3.1 The 0-1 MILP formulation
This classic formulation was implemented following the paper by (Grimstad and
Andersson, 2019). We consider ReLU DNNs consisting of K + 1 layers that are
labeled with numbers from 0 to K. The layer 0 corresponds to the input layer of the
neural network, which is not typically calculated as a separate layer. Whereas the
layer K denotes the output layer of the network. Each layer k ∈ {0, ..., K} comprises
nk neurons numbered from 1 to nk.

Let xk ∈ Rnk denote the output vector of layer k. Since layer 0 is the input layer
of the DNN, x0 corresponds to the input vector of the network, where x0

j is the j-th
input value. Respectively, xK is the output vector of the DNN and xK

j is the j-th
output value. For each hidden layer in the ReLU DNN, the output of the neuron is
calculated according to the formula

xk = ReLU(W k−1xk−1 + bk), (1)

where ReLU(y) = max(0, y) for each vector y componentwise. We should note that
because of the ReLU function, all output vectors xk are positive even though the
weight and bias matrices may contain negative entries. The exceptions are the vector
x0, which represents the input of the network as a whole, and the output layer of the
network which uses the identity activation and is thus calculated as

xK = W K−1xK−1 + bK , (2)

without the ReLU function.
To represent the ReLU function as a set of 0-1 MILP constraints, we examine

the linear equation
wT x + b = x − s, x, s ≥ 0, (3)

where x represents the positive part and s the negative part of the output of the
ReLU function. Assuming that we can obtain finite bounds L and U such that
L ≤ wT x + b ≤ U , the ReLU logic can be imposed using the big-M constraints

x ≤ Uz

s ≤ −L(1 − z)
z ∈ {0, 1}
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where z is a binary activation variable used to encode the activation behavior of the
ReLU function.

Finally, using the binary activation variable z for each neuron (j, k) and including
the big-M constraints we obtain the 0-1 MILP formulation

L0 ≤ x0 ≤ U0 (5a)

W k−1xk−1 + bk = xk − sk

xk, sk ≥ 0

}︄
K = 1, ..., K − 1 (5b)

zk
j ∈ {0, 1} k = 1, ..., K − 1 j = 1, ..., nk (5c)

xk
j ≤ Uk

j zk
j

sk
j ≤ −Lk

j (1 − zk
j )

⎫⎬⎭ K = 1, ..., K − 1, j = 1, ..., nk (5d)

W KxK−1 + bK = xK (5e)

LK ≤ xK ≤ UK . (5f)

The set of constraints (5) represents a trained ReLU DNN. The constraint (5a)
bounds the input variables and the constraint (5e) represents the output of the
network. Consequently, constraints (5b-5d) represent the activations of the hidden
layers.

3.2 Disjunctive programming and the P-split formulation
Disjunctive programming refers to mathematical programming with disjunctive
constraints that arise from logical conditions, such as conjunction ("and"), disjunction
("or"), and negation ("complement of"). First, we present the general form of the
P-split formulation that is applicable to MILP problems that contain constraints
with a clear disjunctive structure

∨
l∈D

[gk(x) ≤ bl,k ∀k ∈ Cl], x ∈ χ ⊂ Rn, (6)

where χ is a convex compact set, D includes the disjunct indices, and Cl contains
the constraint indices of disjunct l. To derive the P-split formulations following
Kronqvist et al. (2022), we make three additional assumptions about the structure
of the problem.

1. The functions gk : Rn → R are convex and additively separable, i.e., gk(x) =∑︁n
i=1 hik(xi) where hik : R → R are convex functions and each disjuction is

non-empty over χ.

2. The functions gk are bounded over χ.
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3. Each disjunct contains significantly fewer constraints than variables in each
disjunction, that is, |Cl| << n, ∀l ∈ D.

The third assumption specifies the problem structures that are advantageous for the
P-split formulations.

The key idea of the P-split formulation is to split the variables of each disjunction
into P sets. All variables must be included in precisely one partitioning and index
set I1, ..., IP , that is, I1 ∪ ... ∪ IP = 1, ..., n and Ii ∩ Ij = ∅, i ̸= j. This partitioning
operation lifts the disjunction into a higher dimension in a disaggregated form while
effectively linearizing the constraints. Based on the variable partitioning, P × |D|
auxiliary variables αl

s ∈ R are introduced together with the constraints∑︂
i∈Is

hi,l(xi) ≤ αl
s ∀s ∈ {1, ..., P}, ∀l ∈ D. (7)

With the constraints (7) and the auxiliary variables αl
s the disjunction (6) can be

presented in a disaggregated form

∨
l∈D

[gk(x) ≤ bl,k] −→ ∨
l∈D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑︁
i∈I1

hi,l(xi) ≤ αl
1

...∑︁
i∈IP

hi,l(xi) ≤ αl
P

P∑︁
s=1

αl
s ≤ bl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x ∈ χ, αl ∈ RP ∀l ∈ D. (8)

The reformulation (8) splits (or disaggregates) the constraint in the disjunction (6)
into P parts.

Next, the disjunction (8) is relaxed by considering the split constraints as global
constraints.

∨
l∈D

⎡⎢⎣ P∑︁
s=1

αl
s ≤ bl

αl
s ≤ αl

s ≤ αl
s ∀s ∈ {1, ..., P}

⎤⎥⎦
∑︂
i∈Is

hi,l(xi) ≤ αl
s ∀s ∈ {1, ..., P}, ∀l ∈ D

x ∈ χ, αl ∈ RP ∀l ∈ D.

(9)

The formulation (9) is a P-split representation of the original disjunction (7), where
the auxiliary variable bounds αl

s, αl
s are defined as follows

αl
s := min

x∈χ

∑︂
i∈Is

hi,l(xi), αl
s := max

x∈χ

∑︂
i∈Is

hi,l(xi). (10)

Tight bounds are not required for the P-split formulations, but weaker bounds result
in weaker relaxations. Lastly, taking the extended convex hull (Balas, 1998) of the
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disjunction (9) produces the P-split formulation

αl
s =

∑︂
d∈D

ν
αl

s
d ∀s ∈ 1, ..., P , ∀l ∈ D (11a)

P∑︂
s=1

ν
αl

s
l ≤ blλl ∀l ∈ D (11b)

αl
sλd ≤ ν

αl
s

d ≤ αl
sλd ∀s ∈ 1, ..., P , ∀l, d ∈ D (11c)∑︂

i∈Is

hi,l(xi) ≤ αl
s ∀s ∈ 1, ..., P , ∀l ∈ D (11d)

∑︂
l∈D

λl = 1, λ ∈ 0, 1|D| (11e)

x ∈ χ, αl ∈ RP , ναl
s ∈ R|D| ∀s ∈ 1, ..., P , ∀l ∈ D. (11f)

3.3 The P-split formulation for ReLU-NNs
The behavior of each ReLU node can be represented as a disjunction[︄

y = wT x + b
wT x + b ≥ 0

]︄
∨

[︄
y = 0

wT x + b ≤ 0

]︄
(12)

where w contains the weights, x is the input vector and b is the bias. The variable
y determines the output of the node. This disjunction can be modeled as the P-split
formulation with a few simplifications. First, we denote∑︂

i∈Is

hi(xi) =
∑︂
i∈Is

wixi (13)

and since here ∑︁
i∈Is

hi is affine, then (11d) can be reinforced to an equality constraint
while retaining convexity. Secondly, we can introduce only one shared α variable for
both of the disjuncts since both of the disjuncts contain the same sum of functions
(13) up to a scaling factor. Then we can use the equality constraint for the two
disaggregated variables (11a) to project out the variable ναs

1 .
The constraint for the output y of the ReLU node is formulated following Tsay

et al. (2021). We replace wT x =
P∑︁

s=1
ναs

2 in the disjunction (12) and accompany the
bias b with the binary variable λ2 resulting in the P-split formulation for neural
networks
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αs =
∑︂
i∈Ip

wixi ∀s ∈ 1, ..., P (14a)

P∑︂
s=1

(αs − ναs
2 ) ≤ −bλ1 (14b)

P∑︂
s=1

ναs
2 ≥ −bλ2 (14c)

αsλ1 ≤ αs − ναs
2 ≤ αsλ1 ∀s ∈ 1, ..., P , ∀d ∈ D (14d)

αsλ2 ≤ ναs
2 ≤ αsλ2 ∀s ∈ 1, ..., P , ∀d ∈ D (14e)

y =
P∑︂

s=1
ναs

2 + λ2b (14f)

λ1 + λ2 = 1. (14g)

Constraints (14) represent the behavior of a single ReLU neuron. Subsequently,
similarly to the classic 0-1 MILP formulation, we propose these P-split constraints
for each neuron (j, k) of the hidden layers in a neural network. Furthermore, the
constraints (5a), (5e) and (5f) regarding the input and output of the whole network
remain necessary.

4 Computational experiments
In this section, we conducted a series of computational experiments. The experiments
aim to investigate how the computational efficiency of the P-split formulation (11)
for ReLU-NNs compares to the classic 0-1 MILP formulation (5). In addition to the
solution times of each formulation, the root relaxation objective values were recorded
to obtain information on the tightness of the formulations. In these experiments, we
optimized ReLU-NNs with a more general structure. Previous comparisons have been
made solving optimal adversary problems with NNs trained for image classification
tasks (Tsay et al., 2021; Kronqvist et al., 2022) where the networks consist of a large
input layer and a few small hidden layers.

4.1 Design of the experiments
For the computational experiments, we used the programming language Julia (version
1.10.2) (Julia, 2024) for implementing the P-split formulation (14) as well as building
and training the ReLU-NNs. Two ReLU-NNs, medium and large, were built using
the Julia package Flux.jl (Flux.jl, 2024). The details of the networks are presented
in the Table 1. The networks were trained using the Adam optimizer with a learning
rate of 0.0005, and L2 regularization was applied to prevent overfitting. The concrete
compressive strength dataset (Yeh, 2007) was used for training. It contains eight
input variables corresponding to different concrete ingredients. The output variable
is the concrete hardness in megapascals.
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size layers number of parameters MAPE
medium (8, 64, 32, 1) 2 689 11.94%

large (8, 128, 64, 32, 1) 11 521 11.11%

Table 1: The trained ReLU-NNs used in the experiments. MAPE refers to the Mean
Average Percentage Error of the test set.

The trained neural networks were then formulated into optimization problems
where the objective was to find optimal inputs that maximize the concrete hardness.
The maximization problem is first formulated using the 0-1 MILP formulation
with and without bound tightening. The 0-1 MILP formulation had already been
implemented in the Julia package called Gogeta.jl (Gogeta.jl, 2024). Secondly, the
problem is formulated as the P-split formulation with a varying number of splits.
We used values P = 2, 3, 4, 6, 8. Notice that P = 8 corresponds to the full split in
the first hidden layer. The variable bounds αs and αs are derived using the interval
arithmetic. In partitioning the variables, we use a strategy based on node weights
(Tsay et al., 2021). First, the weights of the variables are sorted to have the weights
in each partition as close as possible. This sorting returns the variable indices, which
are then partitioned into groups of equal size (the group size can differ by one if the
division did not result in equal parts), i.e., I1 = I2 = ... = IP .

The resulting maximization problems were solved using the Gurobi-Optimizer
(version 11.0.0) (Gurobi-Optimizer, 2024). The following Gurobi parameter settings
MIPFocus=3 and Cuts=1 were used to reduce variation in the results and to stay
consistent with the computational results in Kronqvist et al. (2022). As previously
noted, the focus of the experiments was on the solution times and root relaxation
objective values.

The root relaxation is the initial linear program (LP) relaxation at the root node
of the branch-and-bound tree, meaning it is the first LP relaxation that Gurobi solves
after presolving. The root relaxation objective value depends on the formulation
of the optimization problem. It is desirable to have a root relaxation value that is
close to the true optimal value since the root relaxation sets the initial bound on the
optimal solution, i.e., for a maximization problem the smaller the root relaxation
value, the better. Thus, the root relaxation objective value informs us of the tightness
of the formulation. The tightness of the relaxation is meaningful because tighter
relaxations reduce the search space that is explored by branching.

4.2 Results
Figures 1 and 2 show the resulting solution times for the medium and large NN
with different formulations. The solution times of the big-M problems, both with
and without bound tightening (BT), are represented as horizontal lines. The big-M
outperforms the P-split formulations for both sizes of the neural networks. However,
we can notice that the solution times do not grow monotonically because values
P = 4 and P = 6 give faster solution times. This observation aligns with the
results in (Tsay et al., 2021), where the intermediate values of N (or P ) effectively
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balance the model size and tightness for more complex problems. The authors also
offered an explanation for this phenomenon. The intermediate values of P can be
computationally advantageous because they offer tighter continuous relaxations, but
at the same time, the subproblems remain small.

Figure 1: The solution times for the medium ReLU-NN.

Figure 2: The solution times for the large ReLU-NN.
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When we increase the number of splits we end as the convex-hull formulation
that provides the strongest possible relaxation. At the same time, the problem size
increases as shown in Figure 3, thereby increasing the computational costs. This
explains why, when P = 8, solving the problem took the longest time.

Figure 3: Number of variables in the different formulations.

Figure 4 presents the root relaxation objective values of the formulations. From
the figure, it can be seen that the P-split formulations yield lower values than the
big-M formulation. Since we are solving a maximization problem, lower values
are preferred and indicate tighter formulations. This result is expected because
the P-split formulations are designed to fall in between the big-M and convex-hull
when considering the model tightness. The tighter the model, the faster it tends to
converge to the optimal solution. However, in this case, the tightness is achieved
by introducing additional variables and constraints. Although the model is tighter,
handling more variables and constraints diminishes the computational benefits.

These results show the importance of the third assumption that characterizes the
problem structures that are advantageous for P-split formulations. In the case of
ReLU-NNs, the architecture of the network defines the problem structure. If the NN
has a large input layer, it leads to a situation where we have disjunctive constraints
involving a large number of variables. The number of variables and constraints that
are introduced by the P-split formulations depends on the number of partitions
and disjunctive terms instead of the number of variables within each disjunctive
constraint. If the number of variables is large, using a P-split formulation is more
beneficial. However, in a more general case, as demonstrated in these computational
experiments, it is not as effective compared to the classic formulation. Although
the P-split formulation implemented in this thesis might not be the most compact
version, it still demonstrates the phenomenon.
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Figure 4: The root relaxation objective values of the different formulations.

5 Conclusion
In this thesis, the P-split formulation (14) for ReLU-NNs was implemented following
Kronqvist et al. (2022) and Tsay et al. (2021), and its computational efficiency
was assessed with more general network architectures. The P-split formulation had
previously shown rather impressive results in optimizing trained ReLU-NNs, as well as
other problems, including K-means clustering and P-ball problems. The performance
of the classic 0-1 MILP formulation (5) by (Grimstad and Andersson, 2019) served as
the baseline against which the performance of the P-split formulation was compared.
The comparison was conducted through a series of computational tests, focusing on
solution times and root relaxation objective values of each formulation.

The results of the computational experiments showed that although P-split
formulation performs well in optimizing some network architectures (large input size
with a few layers), its overall performance is not as strong. In fact, its performance
appears to be inferior to the classic MILP formulation. On the other hand, the results
demonstrated that for some values of P , the formulation was faster to solve compared
to other values. This observation indicates that partitioning the variables can indeed
help balance the model size and tightness well, improving its tractability. The P-split
formulations also provided stronger relaxations than the classic formulation.

The performance of the P-split formulation could be further improved by employ-
ing different bound tightening procedures or partitioning strategies as discussed in
Tsay et al. (2021). In the scope of this thesis, we considered only one partitioning
strategy based on node weights that is relatively easy to implement and outperforms
the random partitioning strategy. BT procedures were also beyond the scope of this
thesis. Hence, the auxiliary variable bounds were calculated using simple interval
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arithmetic. However, bound tightening of auxiliary variable bounds could be a
valuable tool in achieving better-performing formulations, as argued in the same
paper by Tsay et al. (2021).

Other limitations include only training two ReLU-NNs with similar architectures,
differing only in size. Also, only one dataset, the concrete compressive strength (Yeh,
2007), was used in training the networks. Additional observations on the performance
of the P-split formulations could have arisen by experimenting with the number
of hidden layers and nodes. The mean average performance errors of the trained
networks were quite high as shown in the table 1. However, the errors should not
affect the computational results since we were not interested in the accuracy of the
optimal solutions in this thesis.

In light of this thesis, it can be concluded that there is much potential in the
partition-based P-split formulations. They offer a useful alternative for optimizing
ReLU-NNs with a favourable structure. However, due to the popularity and wide use
of neural networks, it is important to be able to assess the properties of them more
efficiently. Mathematical modeling and optimizing function as important tools in that
even though optimizing larger NNs remains a challenge. Consequently, the research
for developing better-performing formulations for neural networks and improving the
existing ones is still relevant in the future.
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