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Abstract
Due to the urban transformation of past decades, the need for efficient and effective
public transportation systems continues to increase. Consequently, many methods
have been developed to optimize different components of public transportation
systems using various criteria. One often desired result for these methods is to create
a line plan where the travel time of the passengers is minimal. Schobel and Scholl
developed a formulation for the line optimization problem that achieves this result
and manages to consider the total travel time for all passengers. However, due to
the large size and the high complexity of the formulation, it cannot be solved in any
straightforward manner.

This thesis aims to expand on the work of Schöbel and Scholl by developing a
formulation for star-shaped station networks that acts as a simpler alternative to
their binary frequency formulation. The alternative formulation is developed by
leveraging the special features of star-shaped networks and tree networks in general:
There exists only one simple path between any two nodes of a tree. Thus, we show
that the driving time of any passenger is constant for their trip, and the travel time
only depends on the passenger’s transfers. Consequently, the developed formulation
tracks only the transfers, not the entire route of the passengers, and optimizes the
total travel time by minimizing the total number of said transfers.

As part of this thesis, we prove the developed formulation to be equivalent to the
binary frequency formulation of Schöbel and Scholl in star-shaped trees. It is also
found that the developed formulation is significantly smaller than the formulation
of Schöbel and Scholl, especially for larger star networks. This implies that the
developed formulation is simpler to solve, as desired. The successfully developed
formulation thus proves that the formulations of the line planning problems can be
simplified by limiting the underlying networks to trees. Additionally, the developed
formulation has limited practical applications and benefits.
Keywords Line planning, travel-time optimization, star-shaped trees



Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Tekniikan kandidaatintyön tiivistelmä

Tekijä Anna-Maija Kangaslahti
Työn nimi Matkustusaikaoptimoidut linjastosuunnitelmat puissa
Koulutusohjelma Teknillistieteellinen kandidaattiohjelma
Pääaine Matematiikka ja systeemitieteet Pääaineen koodi SCI3029
Vastuuopettaja Prof. Philine Schiewe
Työn ohjaaja Prof. Philine Schiewe
Päivämäärä 18.12.2023 Sivumäärä 34+15 Kieli Englanti
Tiivistelmä
Viime vuosikymmenten kaupungistumisen takia tarve tehokkaille ja toimiville jul-
kisille liikennejärjestelmille kasvaa jatkuvasti. Täten, liikennejärjestelmien eri osien
optimointiin on myös kehitetty useita metodeja, useille eri optimaalisuuskriteereille.
Yksi yleinen tavoite tällaiselle metodille on muodostaa järjestelmälle linjastosuun-
nitelma, jossa matkustajien matkustusaika on mahdollisimman pieni. Schöbel and
Scholl ovat kehittäneet tähän optimointiongelmaan mallin, joka saavuttaa tämän
tavoitteen minimoiden onnistuneesti kaikkien matkustajien yhteenlasketun matkus-
tusajan. Kyseistä mallia ei kuitenkaan voida ratkaista ilman uudelleenmuotoilua sen
suuren koon ja kompleksisuuden takia.

Tämän työn tavoitteena täydentää Schöbelin ja Schollin työtä kehittämällä optimoin-
tiongelmaan vaihtoehtoisen mallin tähdenmuotoisissa pysäkkiverkostoissa, joka on
Schöbelin ja Schollin mallia yksinkertaisempi ratkaista. Vaihtoehtoinen malli kehi-
tettiin tähdenmuotoisten verkkojen ja yleisesti puu-verkkojen erikoisominaisuuksien
avulla: Puun kahden solmun välille voidaan luoda täsmälleen yksi yksinkertainen
polku. Tämän ominaisuuden pohjalta työssä osoitetaan, että aika, jonka matkustaja
käyttää ajamiseen on aina tietylle matkalle vakio. Matkustajan matkustusaika siis
riippuu vain hänen tekemistään vaihdoista. Täten, kehitetty malli pitää kirjaa vain
matkustajien tekemistä vaihdoista, ei matkustusreitistä, ja optimoi yhteenlasketun
matkustusajan minimoimalla tehtyjen vaihtojen summan.

Todistamme tässä työssä, että kehitetty malli sekä Schöbelin ja Schollin malli rat-
kaisevat saman ongelman. Lisäksi huomataan, että kehitetty malli on kooltaan
huomattavasti Schöbelin ja Schollin mallia pienempi, erityisesti suurien pysäkkiver-
kostojen tapauksissa. Tämä vihjaa kehitetyn mallin olevan myös helpompi ratkaista
tavoitteiden mukaisesti. Tämä onnistuneesti kehitetty malli osoittaa siis, että linjas-
tosuunnittelun ongelmiin voidaan muodostaa yksinkertaisempi malli, kun infrastuk-
tuuria kuvaava pysäkkiverkko rajoitetaan puuverkkoihin. Kehitettyä mallia voidaan
myös soveltaa ja hyödyntää linjastosuunnittelusta rajoitetusti.
Avainsanat Linjastosuunnittelu, matkustusajan optimointi, tähdenmuotoiset puut
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1 Introduction

Due to the urban transformation of the past decades and the expanding need for
more ecological alternatives to private car ownership, efficient and effective public
transportation has become increasingly important. Consequently, as Schöbel [7]
points out, great efforts have been committed to researching the optimization of
public transportation systems.

According to several authors, this process of optimization consists of several phases
responsible for planning one component of the public transportation system, such
as the location of the stops or the timetable of the vehicles transporting passengers.
One of these phases is called line planning, and the goal of this phase is to ascertain
which paths in the network of stations referred to as lines should be serviced in the
public transportation system. [2, 6, 7] This set of lines is referred to as the line
concept of the system.

The line planning phase is executed by solving an optimization problem called
a line planning problem which determines the optimal set of lines according to the
desired metric. Since the criteria for optimality can be freely determined, there
are multiple approaches to constructing the line planning problems. As Schöbel
[6, 7] mentions, these approaches can, however, be divided into two categories: cost-
oriented models, which minimize the cost while adequate service is ensured, and
passenger-oriented models, which maximize passenger comfort within the constraints
of the given budget.

The methodology used to construct line planning problems varies especially in
the case of passenger-oriented problems. This remains true even when we are only
focusing on passenger-oriented problems, in which we aim to minimize the travel
times of the passengers. For example, some formulations aim to maximize the number
of direct passengers, some minimize the total time spent traveling in a vehicle, and a
model developed by Schöbel and Scholl minimized the total travel time including
the transfers [7].

Even though all of these formulations produce viable line concepts, they do have
their issues, as indicated by Schöbel and Scholl: The direct passenger method easily
disregards the comfort of numerous passengers, and minimizing the time spent in
vehicles may result in passenger routes with unnecessarily long or numerous transfers.
The formulation by Schöbel and Scholl resolves both of these issues by tracking all
possible driving connections and transfers. However, due to this, the size of the
formulation prevents it from being solvable in any straightforward manner. [8]

The goal of this thesis is to expand upon the formulation developed by Schöbel
and Scholl [8] by providing a formulation that acts as a simpler alternative in the
case of star-shaped trees: The specific features of trees should reduce the number of
variables required to track passenger behavior. Thus, we aim to leverage these special
features to develop a line-planning problem formulation which is both equivalent to
the formulation in [8] and easier to solve.
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2 Background
As indicated by several authors in the research papers [1, 2, 3, 8], the line planning
problem, referred to later as LPP, has been extensively studied since late 20th century.
Since there are multiple ways to define optimal in the case of public transportation,
this research has led to the development of numerous LPP models. Schöbel and Scholl
[7, 8] distinguish that the developed models can be separated into two categories,
"the cost-oriented approach" and "the customer-oriented approach".

In the cost-oriented approach, the model aims to find a line concept with minimal
costs while servicing all customers using the transportation network. These costs can
contain the initial, daily operation or management costs, or any combination of these.
In the customer-oriented approach, the aim is to find a line concept that maximizes
customer comfort, while still fulfilling the constraints imposed by the underlying
infrastructure and limited budget. [6, 7, 8] Some models, such as the ones given by
Borndörfer, Grötschel, and Pfetsch [1, 2, 3], belong to both of these categories since
they combine the two competing approaches using a weighted objective function. We
shall focus on the literature relating to models implementing the customer-oriented
approach since our new model is a customer-oriented model.

As explained by Schöbel [7] and Borndörfer et al.[1, 2], one of the earlier developed
methods for LPPs using the customer-oriented approach is the direct passenger
method. In this method, the aim is to maximize the number of passengers making
zero transfers while traveling, possibly within the limitations of additional budget
and vehicle capacity constraints. [7] One model utilizing this method was explored
by Bussieck et al.: They created a mixed integer linear programming formulation of a
LPP using integer variables to model the number of direct travelers on a line traveling
from a specific destination to another, and to model the frequency of vehicles on
some lines. In the formulation, the sum of the direct passengers is maximized while
three capacity and coverage constraints ensure that all solutions are realistic and
have sufficient coverage. [4]

Models utilizing the direct passenger method can be solved utilizing conventional
algorithms for integer programming: In their paper, Brussieck et al. demonstrate
that a mixed integer formulation maximizing direct travelers is possible to be solved
utilizing LP-relaxations and solvers utilizing the branch-and-bound method. However,
Bussieck et al. did have to reduce the formulation by replacing the numbers of
passengers with their upper and lower bounds before this was possible since the
original formulation was too large for the solvers. [4] On the other hand, Borndörfer
et al. [1, 2, 3] mention that the direct passenger method does not consider the
waiting times associated with transfers. Additionally, the method does not consider
the driving times of the lines or the paths of non-direct passengers, as indicated by
Schöbel and Scholl [8]. Consequently, as Schöbel and Scholl [8] mention, the method
allows non-direct passengers to make arbitrarily many transfers and makes direct
passengers travel using only one line even if another path including transfers might
be quicker. Therefore, the models using the direct passenger method may assign
unnecessarily complicated paths to passengers.

Schöbel mentions in her literature review [7] that another frequent method for
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formulating LPPs of the customer-oriented approach is to minimize the total travel
time of all passengers while simultaneously routing them. The routing is done while
respecting the given budgetary constraints. According to Schöbel [7], the first integer
programming formulations utilizing this total travel time minimization method were
introduced by Scholl and herself, and the formulations were later developed by
the researchers together in [8] and separately in other papers. The formulation of
Schöbel and Scholl utilizes the change&go notation where the underlying undirected
infrastructure network of stations and connecting routes (PTN) is converted to
directed change&go-graph consisting of nodes of station and line pairs and edges
representing either getting on or off a line, traveling using a line or transferring
between lines. Consequently, to route the passengers, the formulation uses variables
that indicate whether an edge is used by passengers traveling from a specific origin
to their desired destination. [8]

According to Schöbel [7], Borndörfer et al. developed formulations that also use
the same total travel time minimization method, independently from the work of
Schöbel and Scholl: Formulations in [1, 2, 3] aim to minimize both the total riding
time while ignoring the time taken by transfers, and the establishment and operating
costs of the lines. To achieve this, the formulations in [1, 2] model passenger behavior
using variables that denote the amount of passenger flow in different paths and, unlike
the formulation by Schöbel and Scholl in [8], construct the lines dynamically based
on the flow variables instead of using a set of predetermined possible lines. In the
formulation in [3], a variable is assigned for each possible path and possible line, which
are used to solve the formulation using the branch-and-price algorithm. The possible
lines are also generated dynamically in this formulation using a column-generation
algorithm instead of using a predetermined set of lines.

Since the total travel time minimization used by Schöbel and Scholl in [8] and
Borndörfer et al. in [1, 2, 3] automatically investigates the behavior of all passengers,
it generates reasonable paths for both direct and transferring passengers, contrary
to the direct passenger method. Additionally, Schöbel’s and Scholl’s formulation
[8] finds the true quickest path of a passenger since the model compares the routes
using the travel times instead of directness as the comparison criteria. This does not
completely apply to the formulations of Borndörfer et al. [1, 2, 3] since the model
ignores the time taken by transfers when comparing the travel times. Therefore, the
formulation [1, 2, 3] may incorrectly prefer transferring routes in cases where the
true travel times between a transferring and a direct route are very close.

Despite not being plagued by some of the insufficiencies of the direct passenger
method, the solving of formulations using total travel time minimization methods is
also hampered by the size and complexity of these methods: Both Schöbel and Scholl
[8] and Borndörfer et al. [1, 2, 3] ascertain that their formulations or at least their
LP-relaxations are NP-hard problems even in simple cases. This is especially true for
formulation developed by Schöbel and Scholl since they mention that due to the size
of the problem, its LP-relaxation cannot be solved in any straight-forward manner [8].
Even though Schöbel and Scholl as well as Borndörfer et al. present solution methods
to their formulation in [8] and [1, 2, 3], this issue with solvability and size inspired
us to attempt to solve the problem of these formulations by applying the ideas of
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Schöbel and Scholl to star-shaped trees and consequently create a formulation that
is easier to solve.

Later research that utilizes or improves upon these two customer-oriented approach
methods is scarce, however, research using other approaches can be found. For
example, Goerick and Schmidt [5] developed a model for minimizing travel time in a
more randomized setting, and Zhou et al. [11] created a multi-objective optimization
model that considers several limitations and effects of the underlying infrastructure.
Goerick’s and Schmidt’s model is a bi-level optimization model where the upper level
is the line plan optimization, and the lower level is the passenger route optimization
minimizing the individual travel time. This way the model does not assume that the
passenger path is either independent of the line plan or assigned by the staff, but
rather decided independently by each passenger on their own. Goerick and Schmidt
also show the viability of this model’s integer formulation for problems containing
up to 10 stations and provide a generic solution algorithm for problems containing
up to 250 stations. [5]. On the other hand, the mixed integer non-linear model of
Zhou et al. optimizes cost and travel times while considering capacity restrictions of
the vehicles, travel and transfer times, and the effects of the same tracks being used
by multiple lines. Zhou et al. also verify that the model is feasible and efficient to
solve using an outer approximation of the objective function by studying it in the
simplified Hong Kong transportation network. [11]

Much of the recent research related to customer-oriented LPPs aims to combine
solving the LPP responsible for the line concept, the optimization of the timetables,
and other later phases of the line planning. Some examples are the paper by Yan and
Goverde [10] as well as the paper by Schöbel [9]. Yan and Goverde create a method
for combining the line concept with the timetabling by developing a multi-frequency
line planning model and a multi-period timetabling optimization model and creating
an iterative framework that can be utilized for simultaneous solving: the iterative
framework consists of feedback loops between the two models so that the regularity
constraints of the timetabling model are gotten from the solutions of the line planning
model, and the values of the solutions for the timetabling model are inputted to the
frequency constraints of the line planning model. [10] Schöbel, contrarily, integrates
line planning, timetabling, and vehicle scheduling by proposing an eigenmodel that
iterates between the three phases as well as several heuristic approaches to solve
the integrated problem. [9] Additionally, Schöbel argues that models that integrate
several phases into one are always better optimizers than using several models to
optimize the phases individually [9]. However, public transportation plans still are
executed sequentially, which means that models meant to create the line concept
while not considering the later phases still retain utility.
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3 Mathematical Models and Notation

In this section, we shall review the methodology and notation used to model and
study LPP formulations in a star-shaped transportation network. The section is
structured as follows: In subsection 1, we outline and define the concepts and notation
used throughout this section and thesis. In subsection 2, the formulation for the LPP
with minimal perceived travel time using the existing methodology of Scholl and
Schöbel [8] is introduced. In subsection 3, we introduce a new compact formulation
for the LPP with minimal travel time.

3.1 Basic Methodology and Definitions
As previously indicated, this thesis studies the LPP with minimal perceived travel
time specifically in a star-shaped transportation network. Here, a star-shaped
transportation network is defined to be a transportation network with one central
station and many leaf stations. In addition, the central station has a direct connection
to all leaf stations, however, leaf stations only have a connection to the central station.
More formally, a star-shaped transportation network refers to a finite undirected
tree-graph PTN = (S, E), where the node set S represents stops, the edge set E
represents possible direct connections between two stations, and only one node in S
has a degree larger than 1. Additionally, to unify the notation of lines later, we add
a dummy leaf station which will not be the destination or origin of any passengers.
Therefore, in this thesis, we define the node set S to be S = {−1, 0, 1, ..., n} where
node 0 is the central node, −1 is the dummy station node, and n is the number of
tangible leaf station nodes. Hence, the degree of node 0 is n + 1, and the degree
for node i ∈ {−1} ∪ {1, ...n} is 1. Additionally, we define the edge set E to be of
the form E = {{0, j} | j ∈ S \ {0}}. Figure 1 shows an example of a PTN as this
paragraph outlines, when the number of tangible leaf nodes n is 3.

Figure 1: A picture of the PTN graph when the number of tangible leaf nodes n = 3.
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Let us assume that the PTN used in LPP is as described above and fixed. Now let
us define the line pool L, meaning the set of possible lines in the PTN. We assume
that no line travels the same edge more than once to ensure that all created lines are
cost-efficient, meaning that L is the set of possible simple paths in the PTN. Since
the described PTN is a tree, between two nodes of the PTN, there exists only one
simple path, meaning that each line can be specified using the origin station and the
terminus of the line, which we assume to be two different stations. All of the lines
can also be specified by a sequence of stops that it travels through. Since the line is
a simple path, if the line starts or ends at the central node, this sequence includes
only two stations. Otherwise, it includes three. To unify the notation, we add the
dummy station as the third station to the two stop lines. Hence, we can make the
following definition

Definition 3.1. Line Pool
The line pool for the LPP is defined as follows

L := {[i, j] | i, j ∈ S \ {0}, i ̸= j}

where each of the lines corresponds to a sequence of stops as follows [i, j] := (i, 0, j).
Here, line [−1, a] := (−1, 0, a), for example, would correspond to the two-stop line
originating from the center node and ending at the leaf node a.

Additionally to the line pool, we define an origin-destination set R ⊂ S \{0}×S \
{0}, which tracks all of the trips, meaning the origins and the corresponding desired
destination, the passengers wish to take in the PTN using origin-destination pairs,
later referred to as the OD-pairs. We assume that the origin and the destination
have to be different nodes. Additionally, we assume that if a leaf node in the PTN is
set as an origin in the R, there is at least one passenger that wishes to travel from
there to another leaf node. Similarly, we assume that if a leaf node is a destination
in the R, there is at least one passenger that wishes to travel there from another leaf
node.

If the LPP does not fulfill these assumptions, i.e. in the R of the LPP, there
exists an OD-pair involving the center node and no leaf-node-to-leaf-node OD-pairs
with the same origin or the destination as the first mentioned OD-pair, the set-up can
be adjusted manually to include the outlying OD-pairs while fulfilling the mentioned
assumptions: for any OD-pair involving the center node and with no leaf-node-to-
leaf-node OD-pairs using the same origin or destination, we include a two stop line
between the origin and the destination as part of the final line plan, and reduce the
budget by the cost of that line.

Since the eventual model will utilize binary frequencies and all leaf nodes are only
connected to the center node in the PTN, based on our assumptions, we can disregard
all origin-destination pairs involving the center node in our model: The vehicles have
infinite capacity in the case of binary frequencies and, due to the structure of the
PTN, any passengers paths traveling out of or into a leaf node must go through the
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center node. Hence, if we ensure that, in the optimal solution, a passenger can travel
from leaf node a to leaf node b, we ensure that there also exists a feasible path for all
passengers wishing to travel from leaf node a to the center node or from the center
node to the leaf node b. Consequently, we get the following formal definition for R.

Definition 3.2. The origin-destination set
The origin-destination set of the LPP is defined as follows:

R := {(s, t) ∈ S × S | s ̸= t, s · t > 0}

To optimize a line plan, we optimize the passenger routes in the given PTN
using the defined line pool within budgetary constraints. This, on the other hand,
requires a better formulation that tracks the optimal passenger route in the PTN,
the lines the passenger uses to travel said route as well as if the node is the origin or
the destination of the passenger. Hence, we convert the PTN into a directed graph
CG = (V , E) referred to as a change&go network or a CG-network, as later referred
to in this paper. Each path in the constructed CG-network represents traveling a
specific route in the PTN using specific lines. Therefore, each path in the CG-network
corresponds to a path in the PTN.

To achieve this, the node set V consists of the change&go nodes VCG and the
origin-destination nodes VOD. The change&go nodes VCG, or CG nodes for short,
are created by attaching the PTN nodes to the lines traveling through the PTN node
so that one CG node connects one PTN node to one line traveling through it. The
origin-destination nodes, or OD nodes for short, are created by connecting each of
the leaf PTN nodes to the notation OD to indicate that the PTN node is a possible
origin or destination. Consequently, the formal definition of V is as follows:

Definition 3.3. Definition of V

The node set V is defined as follows

V := VCG ∪ VOD

where

1° VOD := {(i, OD) | ((i, j) ∈ R) ∨ ((j, i) ∈ R)}

2° VCG := {(k, [i, j]) | k ∈ S, [i, j] ∈ L, (k = 0) ∨ (k = i) ∨ (k = j)}

Similarly, the edge set E consists of a group of go edges Ego, change edges Echange,
and origin-destination edges EOD, later referred to as OD edges. Here, the go edges
represent traveling a direct connection between the two stations, represented by the
PTN edges, in one direction using a line traveling through the two stations in the
right order. Thus, the go edges are created as follows: Let the CG node be of the
form (k, [i, j]) ∈ VCG. Now, a go edge is created to connect this CG node to CG
node (k′, [i, j]) ∈ VCG where k′ is the PTN node that follows the PTN node k in the
sequence definition of the line [i, j] ∈ L. Consequently, this set can be divided into
sets of line edges El, which represent all the edges that can be traveled using the line
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l. Similarly, the line l can also be defined as a sequence of the go edges belonging to
El.

On the other hand, the OD edges represent getting on a line at a passenger’s
origin or getting off a line at their destination. Hence, the OD edges are created as
follows: Let the CG node be of the form (k, OD) ∈ VOD. Now, an OD edge is created
to connect this OD node to every CG node (k, [i, j]) ∈ VCG, to represent getting on a
line from PTN node k. Additionally, an OD edge is created to connect each CG node
of the form (k, [i, j]) ∈ VCG to this OD node (k, OD) ∈ VOD to represent getting off
a line at the PTN node k. Since there are no OD nodes attached to the center node
of the PTN, there are also no OD edges attached to any CG nodes connected to the
center node of the PTN.

In contrast, the change edges represent a possible transfer between lines. All
possible change edges can be made by pairing two CG nodes with the same station
value but different line values. The first CG node contains the line the passenger
transfers from and the second CG node contains the line the passenger transfers to.
However, while solving the LPP, we are only interested in the optimal passenger
routes. Therefore, we can simplify solving the LPP by eliminating all transfers that
cannot belong to an optimal passenger route.

As mentioned before, each path in the CG-network corresponds to a path in the
PTN. If the corresponding PTN-path is not simple, the path in the CG network must
include unnecessary travel and therefore cannot represent an optimal passenger route
with respect to minimal perceived travel time. Hence, we assume that passengers use
routes corresponding to a simple path in the PTN. Since the PTN is a tree, there
exists only one simple path between two points in the PTN. Consequently, the path
in the PTN corresponding to the passenger route is fixed for any (s, t) ∈ R. We
mark this result as a remark as follows:

Remark 3.4. We assume that passengers only travel routes corresponding to a simple
path in the PTN. Consequently, the path in the PTN corresponding to the passenger
route is fixed for any (s, t) ∈ R.

The simple path connecting an arbitrary the OD-pair (s, t) ∈ R is ((s, 0), (0, t)).
Consequently, a leaf node in the PTN can only be either the beginning or the end
of a simple path corresponding to an OD-pair, and therefore, either the origin or
the destination of a passenger route. Hence, any transfers made in the leaf nodes
will lead to a non-optimal passenger route. Therefore, we only allow transfers in the
center node. Additionally, if a passenger route uses a transfer from the line [i, j] ∈ L
to line [k, i] ∈ L in the center node, it cannot correspond to a simple path in the
PTN. Hence, we eliminate any transfers where the start station of the first line and
the end station of the second line are the same.

Due to only including optimal passenger routes, we can also eliminate any
transfers between lines with the same starting station or end station: Any passenger
routes using a transfer from line [i, j] to [k, j] or from line [i, k] to [i, j], where
[i, j], [k, j], [i, k] ∈ L and k ∈ S \ {0, i, j}, are longer than passenger routes only
using the line [i, j] to travel the same PTN edges. Hence, any route using such
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transfers cannot be optimal. Based on all of the principles explained above, the
formal definition of E is as follows:

Definition 3.5. Definitions on E

The following definitions hold:

E := Ego ∪ Echange ∪ EOD

where

1° El=[i,j] := {((p, [i, j]), (q, [i, j])) ∈ VCG×VCG | (p = i ∧ q = 0)∨(p = 0 ∧ q = j)}

2° Ego := ⋃︁
l∈L El

3° Echange := {((0, [i, j]), (0, [p, q])) ∈ VCG × VCG | p ̸= i, q ̸= i, q ̸= j)}

4° EOD := {((k, OD), (k, [k, j])) ∈ VOD×VCG|(k, k′) ∈ R}∪{((k′, [i, k′]), (k′, OD)) ∈
VCG × VOD | (k, k′) ∈ R}

Definitions 3.3 and 3.5 and the structure of the CG-network, in general, are further
demonstrated in the Appendix B, which presents the CG-network corresponding to
the PTN presented in Figure 1.

Since the CG-graph is directed, we can model the possible directions of flow at
each node by defining a set of incoming edges δ+( v ) and a set of outgoing edges
δ−( v ) for each node v ∈ V . The definition happens as follows:

Definition 3.6. Incoming and outgoing sets

If v ∈ {(i, [i, j]) ∈ V |i ∈ S \ {0}, j ∈ S \ {i}}, then

δ+( v ) = {((i, OD), (i, [i, j]))}
δ−( v ) = {((i, [i, j]), (0, [i, j]))}

.
If v ∈ {(j, [i, j]) ∈ V |i ∈ S \ {j}, j ∈ S \ {0}}, then

δ+( v ) = {((0, [i, j]), (j, [i, j]))}
δ−( v ) = {((j, [i, j]), (j, OD))}

.
If v ∈ {(0, [i, j]) ∈ V |i, j ∈ S \ {0}, i ̸= j}, then

δ+( v ) = {((i, [i, j]), (0, [i, j]))} ∪ ...

...{((0, [c, d]), (0, [i, j]))}(c∈S \ {0, j}, d∈S \ {c, j, 0})

δ−( v ) = {((0, [i, j]), (j, [i, j]))} ∪ ...

...{((0, [i, j]), (0, [c, d]))}(c∈S \ {i, d, 0}, d∈S \ {i, 0}
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.
If v ∈ {(i, OD) ∈ V |i ∈ S \ {0}}, then

δ+( v ) = {((i, [c, i]), (i, OD))}(c∈S \ {0, i})

δ−( v ) = {((i, OD), (i, [i, d]))}(d∈S \ {0, i})

3.2 Original Formulation for the LPP with Minimal Per-
ceived Travel Time

In this paper, we compare the developed formulation and its solutions to the for-
mulation for the LPP with the minimal perceived travel time developed by Schöbel
and Scholl. In this section, we shall outline the final formulation for the LPP in the
PTN and CG networks as specified in Section 3.1 and the necessary definitions and
explanations in the notation. For a more detailed explanation behind the reasoning
and features of the formulation, please refer to the paper of Schöbel and Scholl. [8]

For the formulation, we shall make the following assumptions: we assume that
the total available budget for the line plan B is known, the cost of establishing the
line Cl is known for every line l ∈ L, the travel time between two stations tuv is
known for every edge (u, v) ∈ E, the number of passengers wishing to travel from
station s to t, i.e. quantity wst is known for each origin-destination pair (s, t) ∈ R,
and passengers will only travel to their destination using simple paths in PTN and
CG. To determine the most time-efficient path, we determine an edge cost ce for
each edge to represent the time cost of passengers choosing to take that path. As
proposed by Schöbel and Scholl [8], the edge cost is set as follows

ce =

⎧⎪⎪⎨⎪⎪⎩
0, e ∈ EOD

k1tuv, e = ((u, l), (v, l)) ∈ Ego

k2, e ∈ Echange

(1)

where k1 and k2 are positive parameters that can be used to scale the time costs for
transferring when compared to driving in a line.

To model the paths of the passengers in the CG with integer programming, we
define variable xe

st ∈ {0, 1} to represent whether the edge e is used while passengers
travel from s to t, variable yl ∈ {0, 1} for l ∈ L to represent whether the line is
included in the chosen line plan. We assume the passengers to always look for the
shortest path meaning that, as stated by Schöbel and Scholl [8], "xe

st = 1 if and only
if edge e is used on the shortest dipath" when traveling from node (s, OD) to node
(t, OD) in CG, and similarly variable yl = 1 "if and only if line l is chosen to be
in the line concept". Moreover, to set up a flow problem constraint ensuring that
all passengers take uninterrupted paths, we define parameter θ ∈ Z|V|×|E| to be the
node-arc-incidence matrix of CG, variable xst ∈ {0, 1}|E| to be vector containing the
values of xe

st corresponding to the columns of θ, and parameter bst ∈ Z|V| to be the
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vector containing the flow values as defined by

bi
st =

⎧⎪⎪⎨⎪⎪⎩
1, i = (s, OD)
−1, i = (t, OD)
0, otherwise

(2)

Using, these variables Schöbel and Scholl present the following formulation for
the LPP with minimal perceived travel time in [8], which they label as LPMT1. The
formulation is defined below.

(LPMT1) min
∑︂

(s,t)∈R

∑︂
e∈E

wst ce xe
st (3)

s.t.
∑︂

(s,t)∈R

∑︂
e∈El

xe
st ≤ |R||El| yl ∀ l ∈ L (4)

θxst = bst ∀ (s, t) ∈ R (5)∑︂
l∈L

Clyl ≤ B (6)

xe
st ∈ {0, 1} ∀ (s, t) ∈ R, e ∈ E (7)

yl ∈ {0, 1} ∀ l ∈ L (8)

As stated by Schöbel and Scholl, constraint (4) ensures that line l ∈ L is included
in the line concept if any of the edges belonging to it are used for any (s, t) ∈
R, constraint (5) ensures that the paths of all passengers are uninterrupted, and
constraint (6) ensures that the establishment costs of the line plan remain within
the given budget. The objective function (3), naturally, minimizes the perceived
travel time since the objective function sums the time costs of all edges of CG used
by the passengers in the available line plan and, therefore, minimizes the total time
spent by the passengers both while traveling on the lines as well as transferring by
minimizing this sum.[8]

The formulation above is developed using binary frequencies, meaning that we
assume the transportation vehicles to have infinite capacity. Consequently, Schöbel
and Scholl mention that the formulation does not take into account the possible
capacity limits or the number of vehicles traveling on the line. Furthermore, the
formulation includes an implicit assumption that all passengers take the same route
in CG. Schöbel and Scholl provide another formulation utilizing integer frequencies
which considers capacity limitations and the number of traveling vehicles in the paper
[8]. However, the details of this formulation are not necessary for this paper.
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3.3 The Compact Formulation For the LPP with Minimal
Perceived Travel Time

In this section, we outline our model’s reasoning and formulation in the PTN as
described in Section 3.1. The main idea is to provide a model that also considers
the transfers between lines while minimizing the total perceived travel time, and
requires less computations to solve, at least in non-trivial cases. Therefore, we aim
to create a model that records the necessary passenger behavior with fewer variables
than LPMT1, while still being consistent with the structure of the PTN and CG
defined in Section 3.1.

As the basis for our model, we use the Remark 3.4. Additionally, we assume that
all lines use the same vehicles, meaning that the travel time of a go-edge in the CG
is not dependent on the line, only on the stations the passengers traveling between.
Therefore, the total driving time of a path in CG for any (s, t) ∈ R depends only on
the corresponding path in the PTN. Since, as stated in the Remark 3.4, that path is
fixed in PTN for any (s, t) ∈ R, the total driving time of a passenger in CG is also
fixed for any (s, t) ∈ R. Therefore, the perceived travel time for any set of OD-pairs
R is affinely dependent on the number of transfers made by the passengers. Based
on the definition of the transfer-edge set Echange, transferring is only possible in the
center node. Therefore, the model needs to monitor the behavior of the passengers
only at this node. Additionally, the model needs to monitor which lines are included
in the line plan.

We assume that all vehicles used in the network have infinite capacity and
consequently, all passengers traveling from the same origin to the same destination
take the same path. To ensure that the model monitors the necessary behavior,
let us define that variable x

(i, 0), (0, j)
direct ∈ {0, 1}, where i, j ∈ S \ {0} and i ̸= j,

represents whether any passengers take the direct line from node i to j, and variable
x

(i, 0), (0, j)
transfer ∈ {0, 1}, where i, j ∈ S \ {0} and i ≠ j, represents whether passengers

transfer on their way from i to j. Additionally, to monitor the selected line plan, let
us define variable zl ∈ {0, 1}, where l ∈ L, to represent whether the line l is included
in the line plan. Consequently, zl = 1 if and only if line l is part of the line plan. Let
us also assume that the cost of creating line l ∈ L, Cl, the budget for the line plan,
B, and the number of passengers wishing to travel from s to t, wst, where (s, t) ∈ R,
are known.

Using these variables and known parameters, we can model the LPP problem
with minimal perceived travel time using the formulation defined below. We shall
later refer to this formulation as the compact formulation.
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Definition 3.7. The compact formulation

min
∑︂

(s,t)∈R
wst · x

(s, 0), (0, t)
transfer (9)

s.t. x
(i, 0), (0, j)
direct + x

(i, 0), (0, j)
transfer = 1 ∀ (i, j) ∈ R (10)

x
(i, 0), (0, j)
direct ≤ z[i,j] ∀ [i, j] ∈ L : (i, j) ∈ R (11)∑︂

k ̸=i

z[i,k] ≥ 1 ∀ i ∈ S \ {−1, 0} : (i, j) ∈ R (12)
∑︂
k ̸=j

z[k,j] ≥ 1 ∀ j ∈ S \ {−1, 0} : (i, j) ∈ R (13)

x
(i, 0), (0, j)
transfer ≤

∑︂
i ̸=k ̸=j

z[i,k] ∀ (i, j) ∈ R (14)

x
(i, 0), (0, j)
transfer ≤

∑︂
i ̸=k ̸=j

z[k,j] ∀ (i, j) ∈ R (15)
∑︂
l∈L

Cl · zl ≤ B (16)

x
(i, 0), (0, j)
direct , x

(i, 0), (0, j)
transfer ∈ {0, 1} ∀ (i, j) ∈ R (17)

zl ∈ {0, 1} ∀ l ∈ L (18)

In this model, constraint (10) ensures that all passengers are taking the same
path and that passengers are traveling from node i ∈ S \ {0} to node j ∈ S \ {0} if
origin-destination pair (i, j) ∈ R exists. Constraint (11), on the other hand, ensures
that the three-stop line [i, j] ∈ {[i, j] ∈ L | i · j ≠ 0} is included in the line plan if
any passengers are traveling directly between those nodes. Constraint (16), on the
other hand, ensures that the establishment costs of the resulting line plan do not
exceed the budget available.

Furthermore, constraint (12) ensures that if there is an origin-destination pair
where leaf node i ∈ S \ {0} is the origin station, at least one line, that originates
from that origin station, has to be included in the line plan. Similarly, constraint
(13) ensures that if there is an origin-destination pair where the leaf node i ∈ S \ {0}
is the destination, then at least one line, that terminates at that station, has to be
included in the line plan. This means that all passengers wishing to travel from a
leaf node to the center node or from the center node to a leaf node have to have
at least one line they can use to do so. Moreover, all passengers wishing to travel
from the leaf node to an leaf node will first drive from their origin to the center
node and then from the center node to their destination, due to the structure of
the PTN. Consequently, these constraints ensure that all passengers have at least a
combination of lines they can transfer between to complete their journey.

Where constraints (12) and (13) ensure that all origin-destination pairs have
at least one possible traveling path in the selected line plan, constraints (14) and
(15) correspondingly ensure that those paths are feasible in the CG network defined
in section 3.1. In practice, this means that if x

(i, 0), (0, j)
transfer = 1 for some (i, j) ∈ R,
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constraint (14) ensures that at least one line starting from node i, other than the
direct line [i, j] ∈ L, is included in the line plan, and constraint (15) ensures that at
least one line ending to node j, other than the direct line [i, j] ∈ L, is included in
the line plan. Hence, constraints (14) and (15) ensure that if passengers transfer on
their way from node i ∈ S \ {0} to j ∈ S \ {0}, at least one passenger route, which
does not involve using the direct line [i, j], must be possible in the selected line plan.
In this case, the line plan may or may not include the direct line [i, j], however, if it
is included it is interpreted not to be used.

4 Analysis of the LPMT1 and the Compact For-
mulation

In this section, we show that the compact formulation satisfies the objective of this
thesis: We shall show that the compact formulation is a valid and simpler alternative
to the LPMT1 formulation. First, we shall show that the compact formulation and
the LPMT1 are equivalent and, therefore, solve the same problem. Afterward, we
shall compare the complexity of the problems by comparing the approximate sizes of
the formulations, and then make the necessary conclusions.

4.1 The Proof of Equivalence of LPMT1 and the Compact
Formulation

For our compact formulation to even be a valid alternative to the LPMT1 formulation
introduced by Schöbel and Scholl [8], we must show that these formulations solve
the same LPP, i.e. these two formulations are equivalent. We do this by proving
that, an optimal solution of the compact formulation can be constructed from any
optimal solution of the LPMT1 formulation and an optimal solution of the LPMT1
formulation can be constructed from any optimal solution of the compact formulation.
In this section, we shall complete this proof in two phases. First, we prove that there
exists a corresponding feasible solution in the compact solution for every optimal
solution in the LPMT1 formulation and vice versa. In the second phase, we show
that if the initial solution is optimal, then the corresponding solution in the other
formulation is also optimal.

We only construct the proof of equivalence for the binary frequency formulation
created by Schöbel and Scholl. This is done since the binary frequency formulation is
the only sensible comparison: The compact formulation relies heavily on the features
and assumptions of the binary frequency such as the assumption of infinite vehicle
capacity. Hence, it is reasonable to assume that it is not possible to construct a
proof of equivalence between the compact formulation and any formulation utilizing
integer frequencies, due to the incompatible assumptions.
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4.1.1 Proof for the Existence of a Corresponding Feasible Solution

In this section, we introduce the proof that for any optimal solution to one formulation,
there exists a feasible solution in the other.

First, we formulate the proof for the existence of a corresponding feasible solution
in the LPMT1 for any optimal solution of the compact formulation.

Lemma 4.1. For any feasible solution of the compact formulation, we can construct
a feasible solution of LPMT1.

Proof:

Let (xdirect, xtranfer, z) with xdirect = (x(i, 0), (0, j)
direct )(i,j∈S \ {0}, i ̸=j), (x(i, 0), (0, j)

transfer )(i,j∈S \ {0}, i ̸=j),
and z = (zl)(l∈L) be a feasible solution of the compact formulation.

For any x
(s, 0), (0, t)
direct = 1, let us set for origin-destination pair (s, t) ∈ R

xe
st =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, e = ((s, [s, t]), (0, [s, t]))
1, e = ((0, [s, t]), (t, [s, t]))
1, e = ((s, OD), (s, [s, t]))
1, e = ((t, [s, t]), (t, OD))
0, otherwise

(19)

For any x
(i, 0), (0, j)
transfer = 1, constraints (14) and (15) ensure that ∃ p, q ∈ S \ {i, j} :

z[i,p] = 1, z[q,j] = 1. Therefore, if x
(s, 0), (0, t)
transfer = 1, let us set for origin-destination pair

(s, t) ∈ R.

xe
st =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, e = ((s, [s, p]), (0, [s, p]))
1, e = ((0, [q, t]), (t, [q, t]))
1, e = ((s, OD), (s, [s, p]))
1, e = ((t, [q, t]), (t, OD))
1, e = ((0, [s, p]), (0, [q, t]))
0, otherwise

(20)

for some fixed p, q ∈ S \ {s, t}, where z[s,p] = 1 and z[q,t] = 1.
Additionally, set for line l ∈ L, yl = zl.

Let us now show that a corresponding solution (xst, y) with xst = (xe
st)(e∈E, (s,t)∈R)

and y = (yl)(l∈L) constructed with the method described above is a feasible solution
to the LPMT1 formulation described in the Section 3.2.
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Let us show that the corresponding solution fulfills constraint (6):
Based on constraint (16), we get ∑︂

l∈L
zl ≤ B

We set that for the corresponding solution yl = zl, l ∈ L.
Therefore, ∑︂

l∈L
yl =

∑︂
l∈L

zl ≤ B

and consequently the corresponding solution fulfills the LPMT1 constraint (6).

Let us show that the corresponding solution fulfills the LPMT1 constraint
(5):

The constraint (5) can be reformulated as follows:

∀ (s, t) ∈ R : ∑︂
e∈δ+( v )

xe
st −

∑︂
e∈δ−( v )

xe
st = 0 ∀ v ∈ V \ {(s, OD), (t, OD)} (21)

∑︂
e∈δ+( v )

xe
st −

∑︂
e∈δ−( v )

xe
st = −1 v = (s, OD) (22)

∑︂
e∈δ+( v )

xe
st −

∑︂
e∈δ−( v )

xe
st = 1 v = (t, OD) (23)

where δ+( v ) is the set of incoming edges connected to node v ∈ V , δ−( v ) is the set
of outgoing edges connected to node v ∈ V . Therefore, if the corresponding solution
fulfills constraints (21),(22), and (23) for all (s, t) ∈ R, then the corresponding
solution fulfills LPMT1 constraint (5). Let us prove these constraints for all (s, t) ∈ R
by proving that they are fulfilled for an arbitrary (s, t) ∈ R.

Using the incoming and outgoing flow sets in Definition 3.6, we can separate
constraint (21) into the following subcases:

(21) :
x

((i, OD), (i, [i,j]))
st − x

((i, [i,j]), (0, [i,j]))
st = 0, v = (i, [i, j]) (21.1)

x
((0, [i,j]), (j, [i,j]))
st − x

((j, [i,j]), (j, OD))
st = 0, v = (j, [i, j]) (21.2)∑︂

c∈S \ {0, i}
x

((i, [c,i]), (i, OD))
st −

∑︂
d∈S \ {0, i}

x
((i, OD), (i, [i,d]))
st = 0, v = (i, OD),

s ̸= i ̸= t (21.3)

∑︂
c,d∈S \ {0, j}, c ̸=i

x
((0, [c,d]), (0, [i,j]))
st + x

((i, [i,j]), (0, [i,j]))
st ...

... −
∑︂

c,d∈S \ {0, i}, d ̸=j

x
((0, [i,j]), (0, [c,d]))
st − x

((0, [i,j]), (j, [i,j]))
st = 0, v = (0, [i, j]) (21.4)
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where i, j ∈ S \ {0} and i ̸= j.

Note that, for arbitrary (s, t) ∈ R, x
((i, OD), (i, [i,j]))
st = x

((i, [i,j]), (j, [i,j]))
st and x

((0, [i,j]), (j, [i,j]))
st =

x
((j, [i,j]), (j, OD))
st for all i, j ∈ S \ {0} where i ̸= j, by definitions (19) and (20). Simi-

larly, by definitions (19) and (20), for arbitrary (s, t) ∈ R, x
((i, [c,i]), (i, OD))
st = 0 and

x
((i, OD), (i, [i,d]))
st = 0 for all i ∈ S \ {0, s, t}, and c, d ∈ S \ {0, i}. Consequently,

constraint equations (21.1), (21.2), and (21.3) hold for all i, j ∈ S \ {0} where i ̸= j
and (s, t) ∈ R.

Finally, due to constraint (10), we need to analyse the constraint (21.4) only
when x

(s, 0), (0, t)
direct = 1 and when x

(s, 0), (0, t)
transfer = 1, for an arbitrary (s, t) ∈ R:

Let x
(s, 0), (0, t)
direct = 1 for an arbitrary (s, t) ∈ R. Based on the construction rule

(19),

x
((i, [i,j]), (0, [i,j]))
st = x

((0, [i,j]), (j, [i,j]))
st =

⎧⎨⎩1, i = s ∧ j = t

0, otherwise

and x
((0, [c,d]), (0, [i,j]))
st = 0 and x

((0, [i,j]), (0, [c,d]))
st = 0 for all approapriate values of of c

and d. Hence, the constraint (21.4) is fulfilled for all values of i, j ∈ S \ {0} where
i ̸= j, when x

(s, 0), (0, t)
direct = 1 for arbitrary (s, t) ∈ R.

Let x
(s, 0), (0, t)
transfer = 1, for an arbitrary (s, t) ∈ R. Now, based on construction rule

(20),

x
((i, [i,j]), (0, [i,j]))
st =

⎧⎨⎩1, i = s ∧ j = p

0, otherwise

x
((0, [i,j]), (j, [i,j]))
st =

⎧⎨⎩1, i = q ∧ j = t

0, otherwise

x
((0, [c,d]), (0, [i,j]))
st =

⎧⎨⎩1, c = s ∧ d = p ∧ i = q ∧ j = t

0, otherwise

x
((0, [i,j]), (0, [c,d]))
st =

⎧⎨⎩1, i = s ∧ j = p ∧ c = q ∧ d = t

0, otherwise

for fixed p, q ∈ S \ {s, t}, where z[s,p] = 1 and z[q,t] = 1.
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Consequently, if i = s and j = p, then∑︂
c,d∈S \ {0, j}, c ̸=i

x
((0, [c,d]), (0, [i,j]))
st + x

((i, [i,j]), (0, [i,j]))
st ...

... −
∑︂

c,d∈S \ {0, i}, d ̸=j

x
((0, [i,j]), (0, [c,d]))
st − x

((0, [i,j]), (j, [i,j]))
st

=
∑︂

c,d∈S \ {0, p},c ̸=s

0 + 1 −
∑︂

c,d∈S \ {0, s}, d ̸=p

x
((0, [i,j]), (0, [c,d]))
st − 0

=0 + 1 − 1 − 0 = 0

if i = q and j = t, then∑︂
c,d∈S \ {0, j}, c ̸=i

x
((0, [c,d]), (0, [i,j]))
st + x

((i, [i,j]), (0, [i,j]))
st ...

... −
∑︂

c,d∈S \ {0, i}, d ̸=j

x
((0, [i,j]), (0, [c,d]))
st − x

((0, [i,j]), (j, [i,j]))
st

=
∑︂

c,d∈S \ {0, t}, c ̸=q

x
((0, [c,d]), (0, [i,j]))
st + 0 −

∑︂
c,d∈S \ {0, q}, d ̸=t

0 − 0

=1 + 0 − 0 − 1 = 0

and otherwise ∑︂
c,d∈S \ {0, j}, c ̸=i

x
((0, [c,d]), (0, [i,j]))
st + x

((i, [i,j]), (0, [i,j]))
st ...

... −
∑︂

c,d∈S \ {0, i}, d ̸=j

x
((0, [i,j]), (0, [c,d]))
st − x

((0, [i,j]), (j, [i,j]))
st

=0 + 0 − 0 − 0 = 0

meaning that the constraint (21.4) holds for all i, j ∈ S \ {0} where i ̸= j and
(s, t) ∈ R.

Since all of the subcases of constraint (21) hold for arbitrary (s, t) ∈ R, the
corresponding solution satisfies the constraint (21) for an arbitrary (s, t) ∈ R.

Using the incoming and outgoing sets in Definition 3.6 and the fact that, based
on construction rules (19) and (20), x

((i, [c,i]), (i, OD))
st = 0 for all i ∈ S \ {t} and

x
((i, OD), (i, [i,d]))
st = 0 for all i ∈ S \ {s}, for any (s, t) ∈ R, we can simplify the

constraints (22) and (23) to the forms

−
∑︂

d∈S \ {0, s}
x

((s, OD), (s, [s,d]))
st = −1 (22.1)

∑︂
c∈S \ {0, t}

x
((t, [c,t]), (t, OD))
st = 1 (23.1)

Due to constraint (10), we need to analyze the simplified forms (22.1) and (23.1)
only when x

(s, 0), (0, t)
direct = 1 and when x

(s, 0), (0, t)
transfer = 1, for an arbitrary (s, t) ∈ R.

Based on the construction rules (19) and (20), both when x
(s, 0), (0, t)
direct = 1 and when
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x
(s, 0), (0, t)
transfer = 1, there exists exactly one value of d, for which x

((s, OD), (s, [s,d]))
st = 1, and

exactly one value of c, for which x
((t, [c,t]), (t, OD))
st = 1. In both cases, x

((s, OD), (s, [s,d]))
st =

0 and x
((t, [c,t]), (t, OD))
st = 1 for all other values of c and d.

Consequently, simplified forms (22.1) and (23.1) hold in both subcases. There-
fore, the corresponding solution satisfies the constraints (22) and (23) for an arbitrary
(s, t) ∈ R.

Since we have shown the corresponding solution to satisfy the constraints (21),
(22), and (23) for an arbitrary (s, t) ∈ R, we have proven that the corresponding
solution fulfills the constraint (5) in the LPMT1.

Let us show that the corresponding solution fulfills the LPMT1 constraint
(4):

Since xe
st ∈ {0, 1} for all (s, t) ∈ R and e ∈ El, then∑︂

(s,t)∈R

∑︂
e∈El

xe
st ≤ |R| |El|

for all l ∈ L.
Consequently, for any values of yl, l ∈ L, where yl = 1, the constraint (4) is

fulfilled.
Now, let yl = 0, for an arbitrary l = [i, j] ∈ L. By the construction rules of the

corresponding solution, zl = yl = 0, meaning that due to the constraint (11)

x
(i, 0), (0, j)
direct ≤ zl=[i,j] = 0

Therefore, it must be that in the original feasible solution x
(i, 0), (0, j)
direct = 0 and,

by constraint (10), x
(i, 0), (0, j)
transfer = 1 for l = [i, j]. Based on the construction rule (20),

xe
st = 1 only if e ∈ El′ with zl′ = 1. Since zl = 0, xe

st = 0 for all e ∈ El, and ,
consequently, ∑︂

(s,t)∈R

∑︂
e∈El

xe
st =

∑︂
(s,t)∈R

∑︂
e∈El

0 = 0 ≤ |R| |El| · 0 = |R| |El| · yl

Hence, constraint (4) is fulfilled for any values of yl, l ∈ L where yl = 0, meaning
that the constraint (4) is fulfilled for all values of yl, l ∈ L

Since we have shown that the corresponding solution fulfills all of the constraints
of the LPMT1 formulation, we have proven that the corresponding solution is a
feasible solution to the LPMT1 formulation described in Section 3.2. Thus, we have
proven Lemma 4.1 to be true.

Similarly , we formulate the proof for the existence of a corresponding solution in
the compact formulation for an optimal solution in the LPMT1. Since the structure
of the proof is very similar to the proof of Lemma 4.1, we only provide the algorithm
for constructing the corresponding solution in this section. The complete proof for
Lemma 4.2 can be found in the Appendix A.
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Lemma 4.2. For any optimal solution of the LMPT1 formulation, we can construct
a feasible solution of the compact formulation defined in Definition 3.7.

Proof: The proof for Lemma 4.2 can be found in the Appendix A.

In the proof, the corresponding solution in the compact formulation is defined
from the optimal solution of LPMT1 as follows:

For any (s, t) ∈ R, let us set

x
(s, 0), (0, t)
direct =

⎧⎨⎩1, x
((s, [s,t]), (0, [s,t]))
st = 1 ∧ x

((0, [s,t]), (t, [s,t]))
st = 1

0, otherwise
(28)

and

x
(s, 0), (0, t)
transfer =

⎧⎨⎩1, ∃ p, q ∈ S \ {0, s, t} : x
((0, [s,p]), (0, [q,t]))
st = 1

0, otherwise
(29)

Additionally, let us set zl = yl for lines l ∈ L.

4.1.2 Proof of the optimality in both directions

In this subsection, we shall prove that the corresponding solution in one of the
formulations is optimal if the original solution in the other formulation is optimal.

Let us annotate that the objective function (3) of the LPMT1 formulation is

f(x) = f ( (xe
st)( (s,t)∈R, e∈E) ) =

∑︂
(s,t)∈R

∑︂
e∈E

wst ce xe
st, xe

st ∈ {0, 1} (30)

and the objective function (9) of the compact formulation is

g(x) = g( (x(s, 0), (0, t)
transfer )(s,t∈S \ {0}, s ̸= t) ) =

∑︂
(s,t)∈R

wst · x
(s, 0), (0, t)
transfer (31)

Let us first simplify the objective function (30) using the fact that the driving
time is set for every (s, t) ∈ R due to the tree-structure of the PTN:

In Section 3.2, it is defined that travel time between the stations u and v, tuv

i.e. the time it takes to drive from station u to station v, does not depend on the
line taken. Therefore, the total driving time associated with origin-destination pair
(s, t) ∈ R depends only on the passenger’s path from s to t in the PTN-network,
not the CG-network. As mentioned in Remark 3.4, the passenger’s path in the
PTN-network is fixed for every (s, t) ∈ R. Consequently, the total driving time is
also fixed for every (s, t) ∈ R. Let the total travel time for (s, t) ∈ R be marked
with constant Tst.

Now, we can denote that∑︂
((u, l), (v, l)) ∈ Ego

tuv · x
((u, l), (v, l))
st = Tst ∀ (s, t) ∈ R (32)



26

Using this denotation we can simplify the objective functions of feasible solutions
to the LPMT1 formulation from function (30) the following way:

f(x) =
∑︂

(s,t) ∈ R

∑︂
e ∈ E

wstcex
e
st

=
∑︂

(s,t)∈R
wst · (

∑︂
((u, l), (v, l)) ∈ Ego

k1 · tvu · x
((u, l), (v, l))
st +

∑︂
e ∈ Echange

k2 · xe
st)

=
∑︂

(s,t)∈R
wst · (k1 ·

∑︂
((u, l), (v, l)) ∈ Ego

tvu · x
((u, l), (v, l))
st + k2 ·

∑︂
e ∈ Echange

xe
st) | (32)

=
∑︂

(s,t)∈R
wst · (k1 · Tst + k2 ·

∑︂
e ∈ Echange

xe
st)

=
∑︂

(s,t)∈R
wst · k1 · Tst + k2 ·

∑︂
(s,t)∈R

wst ·
∑︂

e ∈ Echange

xe
st (33)

It is also important to note that in an optimal LPMT1-solution, for all i ∈ S\{0, s}
or j ∈ S \ {0, t} where (s, t) ∈ R, x

((0, [i,p]), (0, [q,j]))
st = 0, as mentioned in Section

??. Consequently, the objective function of any optimal solutions of the LPMT1
formulation can be further simplified to the following form:

f(xoptimal) =
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · (

∑︂
(s,t)∈R

wst ·
∑︂

b, c∈S \ {0, s, t}
x

((0, [s,b]), (0, [c,t]))
st ))

(34)

where parameters wst, k1, k2, and Tst do not depend on the decision variables. The
simplification is provided in detail in Appendix C.

Let us determine the relationship between the values of the objective functions of
two corresponding solutions. The resulting relationships are explained in Lemmas 4.3
and 4.4 below. Since the structure of the proof for Lemmas 4.3 and 4.4 is very similar,
we provide the detailed proof only to Lemma 4.3 in this section as a demonstration.
The detailed proof to Lemma 4.4 can be found in the Appendix D.

Lemma 4.3. Let ((x(i, 0), (0, j)
direct )(i,j∈S \ {0}, i ̸= j), (x(i, 0), (0, j)

transfer )(i,j∈S \ {0}, i ̸= j), (zl)(l∈L)) be
an optimal solution to the compact formulation described in Definition 3.7, and
let ((xe

st)((s,t)∈R, e ∈ E), (yl)(l∈L)) be its corresponding feasible solution in the LPMT1
formulation as defined in the proof of Lemma 4.1. Now

f(x) = f ( (xe
st)( (s,t)∈R, e∈E) )

=
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · g( (x(s, 0), (0, t)

transfer )(s,t∈S \ {0}, s ̸= t) )

=
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · g(x) (35)

Proof. Let arbitrary (s, t) ∈ R. Now if x
(s, 0), (0, t)
transfer = 1, due to constraints (14) and

(15), there exists p, q ∈ S \ {s, t} such that z[s,p] = z[q,t] = 1. Based on conversion
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rule (20),

x
((0, [a,b]), (0, [c,d]))
st =

⎧⎨⎩1, a = s ∧ b = p ∧ c = q ∧ d = t

0, otherwise
for fixed p, q ∈ S \ {s, t}, where z[s,p] = 1 and z[q,t] = 1.

Consequently, when x
(s, 0), (0, t)
transfer = 1,

k2 · wst ·
∑︂

e ∈ Echange

xe
st = k2 · wst ·

∑︂
a∈S \ {0}

∑︂
d∈S \ {0, a}

∑︂
b, c∈S \ {0, a, d}

x
((0, [a,b]), (0, [c,d]))
st

= k2 · wst · (0 + x
((0, [s,p]), (0, [q,t]))
st )

= k2 · wst · 1 = k2 · wst · x
(s, 0), (0, t)
transfer

On the other hand, if x
(s, 0), (0, t)
transfer = 0, due to constraint (10), x

(s, 0), (0, t)
direct = 1.

Consequently, based on conversion rule (19), xe
st = 0 for all e ∈ Echange.

Hence, when x
(s, 0), (0, t)
transfer = 0,

k2 · wst ·
∑︂

e ∈ Echange

xe
st = k2 · wst ·

∑︂
e ∈ Echange

0

= k2 · wst · 0 = k2 · wst · x
(s, 0), (0, t)
transfer

Thus, for arbitrary (s, t) ∈ R,

k2 · wst ·
∑︂

e ∈ Echange

xe
st = k2 · wst · x

(s, 0), (0, t)
transfer (36)

Consequently, from simplified form (33) we get

f(x) =
∑︂

(s,t)∈R
wst · k1 · Tst + k2 ·

∑︂
(s,t)∈R

wst ·
∑︂

e ∈ Echange

xe
st | (36)

=
∑︂

(s,t)∈R
wst · k1 · Tst + k2 ·

∑︂
(s,t)∈R

wst · x
(s, 0), (0, t)
transfer | (31)

=
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · g(x)

which matches to equation (35). Hence, lemma 4.3 is true.

Lemma 4.4. Let ((xe
st)((s,t)∈R, e ∈ E), (yl)(l∈L)) be an optimal solution to the LPMT1

formulation and ((x(i, 0), (0, j)
direct )(i,j∈S \ {0}, i ̸= j), (x(i, 0), (0, j)

transfer )(i,j∈S \ {0}, i ̸= j), (zl)(l∈L)) be
its corresponding solution in the compact formulation, both as defined in the proof of
Lemma 4.2. Now, the objective function of the corresponding solution is

g(x) = g( (x(s, 0), (0, t)
transfer )(s,t∈S \ {0}, s ̸= t) )

= 1
k2

(f ( (xe
st)( (s,t)∈R, e∈E)optimal

) −
∑︂

(s,t)∈R
wst · k1 · Tst)

= 1
k2

(f(xoptimal) −
∑︂

(s,t)∈R
wst · k1 · Tst) (37)
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Proof: The proof is provided in the Appendix D.

Let us now investigate the optimality of the corresponding solutions:

Theorem 4.5. Let x be an optimal solution of either the compact formulation or
the LPMT1 formulation and y be the feasible corresponding solution in the other
formulation, constructed from x. Then solution y must also be optimal.

Proof. Let us first prove that a corresponding solution in the compact formulation
is optimal if the initial solution is optimal in the LPMT1 formulation by disproving
the antithesis:

Let x = ((x(i, 0), (0, j)
direct )(i,j∈S \ {0}, i ̸= j), (x(i, 0), (0, j)

transfer )(i,j∈S \ {0}, i ̸= j), (zl)(l∈L)) be a cor-
responding feasible solution in the compact formulation, and y = ((xe

st)((s,t)∈R, e∈E), (yl)(l∈L)
be the initial solution in LPMT1. From lemma 4.4, we get that the value of the
objective function of the solution x is

g(x) = 1
k2

(f(yoptimal) −
∑︂

(s,t)∈R
wst · k1 · Tst = 1

k2
(f(y) −

∑︂
(s,t)∈R

wst · k1 · Tst

The antithesis is that even if

f(y) = min f(x)

then there exists an optimal solution in the compact formulation

x′ = ((x(i, 0), (0, j)
′

direct )(i,j∈S \ {0}, i ̸= j), (x′ = ((x(i, 0), (0, j)
′

direct )(i,j∈S \ {0}, i ̸= j), ((z′
l)(l∈L))

for which

g(x′) = g((x(i, 0), (0, j)
′

transfer )(i,j∈S \ {0}, i ̸= j)) < g((x(i, 0), (0, j)
transfer )(i,j∈S \ {0}, i ̸= j)) = g(x)

Using lemma 4.1, we get that there exists a feasible solution y′ in LPMT1 that
corresponds to the optimal solution x′. From lemma 4.3, we get that the value of
the objective function of this solution is of the form

f(y′) =
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · g(x)

If g(x′) < g(x), then

f(x′) =
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · g(x′)

<
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · g(x)

<
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · 1

k2
(f(y) −

∑︂
(s,t)∈R

wst · k1 · Tst)

= f(y)
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which would mean that f(y) ̸= min f(x). Thus, the antithesis is proven false, and
consequently, the original clause must be true.

Let us then prove that a corresponding feasible solution in the LPMT1 formulation
is optimal if the initial solution is optimal in the compact formulation:

Let y = ((xe
st)((s,t)∈R, e∈E), (yl)(l∈L) be a feasible corresponding solution in the

LPMT1 formulation, and x = ((x(i, 0), (0, j)
direct )(i,j∈S \ {0}, i ̸= j), (x(i, 0), (0, j)

transfer )(i,j∈S \ {0}, i ̸= j),
(zl)(l∈L)) be the initial solution in the compact formulation. From lemma 4.3, we get
that the value of the objective function of the solution y is

f(y) =
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · g(x)

The antithesis is that even if

g(x) = min g(x)

there exists an optimal solution

y′ = ((xe
′

st)((s,t)∈R, e∈E), (y′
l)(l∈L))

for which
f(y′) = f(xe

′

st)((s,t)∈R, e∈E)) < f((xe
st)((s,t)∈R, e∈E)) = f(y)

Using lemma 4.2, we get that there exists a feasible solution x′ in the compact
formulation that corresponds to y′. From lemma 4.4, we get that the objective
function value of this solution is of the form

g(x′) = 1
k2

(f(x′
optimal) −

∑︂
(s,t)∈R

wst · k1 · Tst) = 1
k2

(f(y′) −
∑︂

(s,t)∈R
wst · k1 · Tst)

If f(y′) < f(y), then we get

g(x′) = 1
k2

(f(y′) −
∑︂

(s,t)∈R
wst · k1 · Tst)

<
1
k2

(f(y) −
∑︂

(s,t)∈R
wst · k1 · Tst)

<
1
k2

(
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · g(x) −

∑︂
(s,t)∈R

wst · k1 · Tst)

= g(x)

which would mean that g(x) ̸= min g(x). Thus, the antithesis is proven to be false,
and consequently, the original clause must be true. Thus, the corresponding solution
is shown to be optimal both when the initial solution is an optimal solution of either
the LPMT1 formulation or the compact formulation. Thus, Theorem 4.5 must be
true.
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Based on Theorem 4.5, we can construct an optimal solution for the compact
formulation from any optimal solution of the LPMT1 formulation and vice versa.
Thus, we can assume that these formulations are equivalent.

4.2 The Comparison of sizes for LPMT1 and the Compact
formulation

The objective of the thesis was to develop a simpler alternative for the LPMT1
formulation. Since the compact formulation defined in Section 3.3 was shown to
be equivalent to the LPMT1 formulation in the previous subsection, it is a good
candidate for the simpler alternative. In this subsection, we shall investigate this
further by calculating and comparing the approximate sizes for both formulations.

To simplify the calculations of the approximate sizes, wedetermine the approximate
sizes of the origin-destination set R and the linepool L, as well as the PTN-graph
(S, E) and CG-graph (V , E) as they are defined in Section 3.1. We will approximate
the size as a function of the number of the leaf stations, using the Big O notation.

Let n be the number of leaf stations in the PTN, meaning leaf nodes that represent
physical stations. Now, due to the structure of the PTN defined in Section 3.1, the
size of the PTN-graph, the linepool, and the OD-set can be approximated as follows:

|S| = |{−1, 0, 1, ... , n}| = n + 2 ⇒ O(n)
|E| = |{{0, j} | j ∈ S \ {0}}| = |S \ {0}| = n + 1 ⇒ O(n)
|L| = (|S \ {0}|)(|S \ {0}| − 1) = n2 + n ⇒ O(n2)
|R| ≤ |S \ {−1, 0}| · (|S \ {−1, 0}| − 1) = n2 − n ⇒ O(n2)

Similarly, the size of the CG-graph is approximated step by step as follows:

|VOD| ≤ |S \ {−1, 0}| = n ⇒ O(n)
|VCG| = 3 · |L| = 3n2 + 3n ⇒ O(n2)
|V| = |VCG| + |VOD| = O(n2) + O(n) ⇒ O(n2)

and

|El| = 2 ⇒ O(1)
|Ego| =

∑︂
l∈L

|El| = 2 · |L| ⇒ O(n2)

|Echange| = |S \ {0}| · (|S \ {0}| − 1) · (|S \ {0}| − 1) · (|S \ {0}| − 3) = n4 − n2 ⇒ O(n4)
|EOD| ≤ 2 · |VOD| · |{(k, [k, j]) ∈ VCG | k is fixed}| = 2n · O(n2) ⇒ O(n3)
|E| = |Ego| + |Echange| + |EOD| = O(n2) + O(n4) + O(n3) ⇒ O(n4)

Utilizing these calculations, we determine the approximation for the number of
variables in each formulation, as a function of the number of leaf stations n. The
results are summarized below as follows: Table 1 shows the approximations for the
number of variables in each variable group present in the formulations as well as
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the relevant information used to calculate it. Table 2 shows the approximation for
the number of each type of constraint present in the LPMT1 formulation. Table 3
presents the same information for the compact formulation. The calculations used
to determine the results in Tables 1, 2, and 3, can be found in the Appendix E.

The variable group Exact amount Size approximation
LPMT1 xe

st |R| · |E| O(n6)
yl |L| O(n2)

Total number O(n6)
Compact x

(s, 0), (0, t)
direct |R| O(n2)

x
(s, 0), (0, t)
transfer |R| O(n2)

zl |R| O(n2)
Total number O(n2)

Table 1: The approximations for the number of variables, categorized by formulation
and the variable group.

Constraint Reference Exact Amount Size Approximation
(4) |L| O(n2)
(5) |V| · |R| O(n4)
(6) 1 O(1)

Total number O(n4)

Table 2: The approximations for the number of each type of constraint in the LPMT1
formulation.

Constraint References Exact Amount Size Approximation
(10), (14), (15) |R| O(n2)

(11) min(|L|, |R|) O(n2)
(12) |{i ∈ S \ {−1, 0} : (i, j) ∈ R}| O(n)
(13) |{j ∈ S \ {−1, 0} : (i, j) ∈ R}| O(n)
(16) 1 O(1)

Total number O(n2)

Table 3: The approximations for the number of each type of constraint in the compact
formulation.

From Table 1 and by comparing Tables 2 and 3, we can see that both the number
of variables and the number of constraints grow significantly faster in the LPMT1
formulation than in the compact formulation. Thus, we can conclude that the
compact formulation is significantly smaller than the LPMT1. This indicates that
the compact formulation should also be simpler and more efficient to solve than
LPMT1, as desired. However, further research is required to verify this conclusion
empirically.
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5 Summary and Conclusions
In this thesis, we utilized the features of trees to create a formulation for the line
planning problem that minimizes the total travel time of all passengers traveling
in a star-shaped station network: Based on the fact that, in tree networks, there
exists only one simple path between two nodes, we were able to show that, in trees,
the total travel time depends only on the number of transfers made. Consequently,
we used this result to create the compact formulation introduced in Definition 3.7,
where the total travel time is minimized by minimizing transfers.

As aimed in this thesis, the developed compact formulation acts as a simpler
alternative to the formulation developed by Schöbel and Scholl in [8] and introduced
in this thesis in Section 3.2: In Section 4.1, the compact formulation is shown to be
equivalent to the formulation developed by Schöbel and Scholl, in this paper referred
to as LPMT1. Additionally, the compact formulation is shown to be significantly
smaller than the corresponding version of the LPMT1 formulation in Section 4.2,
which indicates that the compact formulation should be also easier to solve. However,
more research should be done to corroborate this empirically.

Since the compact formulation is a simpler alternative to the LPMT1 formulation,
the computation times of certain line planning problems could be reduced by replacing
the LPMT1 formulation with the compact formulation. Due to the significant
difference in size, the compact formulation could still be usable in some instances
when the corresponding LPMT1 formulation has grown too large to be solved within
reasonable computation times. However, the scope of application and therefore the
potential of the compact formulation is limited: While constructing the compact
formulation, we relied heavily on the specific features of the star-shaped tree. Thus,
the formulation cannot be generalized even to most trees without heavy restructuring.

Despite its limited scope of application, the compact formulation can potentially
be useful in several instances. This is because certain station networks, where multiple
chains of nodes connect a single central transfer hub, can be modeled as a star: If we
assume that the lines start and terminate at the endpoints of the different branches
originating from the hub, each leaf node of the star can be set to represent one entire
branch using the assumptions and reasoning shown in Section 3.1. Some real-world
transit systems, such as Stockholm’s metro system Tunnelbana and Frankfurt’s
S-Bahn commuter rail system, can be modeled as this type of network under certain
assumptions. Thus, the compact formulation can be used to create approximate line
plans for existing transit systems despite not fully representing them.

Beyond its limited applications and benefits, the compact formulation demon-
strates that the special features of trees can be leveraged to construct simpler
alternatives to the generally applicable formulations. This affirms the potential for
further research on generalizing the compact formulation or the methods used in
this thesis to other types of trees. The resulting generalized models could be used
to accurately model a wider range of existing and potential traffic systems. Further
research should also be done on comparing the actual computation times of compact
formulation on different algorithms and to verify if the difference in computation
times is significant enough to warrant a shift in methodologies.
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A The Detailed Proof for the Existence of a Fea-
sible Solution in LPMT1

In this Appendix, we show detailed proof for Lemma 4.2 stated below as Lemma A.1.

Lemma A.1. For any optimal solution of the LMPT1 formulation, we can construct
a feasible solution of the compact formulation defined in Definition 3.7.

Proof:

Let (x, y) with x = (xe
st)((s,t)∈R, e∈E) and y = (yl)(l∈L) be an optimal solution to

the LPMT1 formulation. Since (x, y) is an optimal solution, for all i ∈ S \ {s, 0} or
j ∈ S \ {t, 0}, x

((i, l), (j, l))
st = 0 where l ∈ L, x

((0, [i,p]), (0, [q,j]))
st = 0, x

((i, OD), (i, l))
st = 0,

and x
((j, l), (j, OD))
st = 0. The reasoning for this is as follows:

Since we are only interested in the optimal solutions, Remark 3.4 applies. Due to
this and the shape of the PTN, the fixed simple paths in the PTN, which correspond
to the routes traveled by the passengers, are determined as follows: for (s, t) ∈ R,
the fixed route is ( (s, 0), (0, t) ). Since driving edges ((i, l), (j, l)), where l ∈ L
and i ∈ S \ {s, 0}, or j ∈ S \ {t, 0}, do not correspond to any of the PTN edges
listed above, they cannot be included in the route the passenger takes from s to t.
Thus, for all i ∈ S \ {s, 0} or j ∈ S \ {t, 0}, x

((i, l), (j, l))
st = 0. Similarly, OD edges

((i, OD), (i, l)) for all i ∈ S \ {s, 0} or ((j, l), (j, OD)) for all j ∈ S \ {t}, where
l ∈ L, cannot be used to access the starting and the ending node of the fixed PTN
route. Hence, x

((i, OD), (i, l))
st = 0, and x

((j, l), (j, OD))
st = 0 for all i ∈ S \ {s, 0}, and

j ∈ S \ {t, 0}.
Additionally, any CG-path that includes multiple transfers done in the same

PTN-node cannot be the quickest alternative: Since the passengers only transfer on
the center node, and all lines travel through the center node, a passenger can always
access the line they plan to take out of the node with up to one transfer. Therefore,
any transfers made in the optimal solution must be between a line the passenger is
taking into the center node and a line the passenger is taking out of the center node.
Since the lines are simple paths in the PTN, this together with the construction of
the fixed PTn paths means that, the line the passengers are transferring out of must
originate in s, and the line the passengers are transferring into must end at t, for all
(s, t) ∈ R. Thus, for all i ∈ S \ {s, 0} or j ∈ S \ {t, 0}, x

((0, [i,p]), (0, [q,j]))
st = 0.

For any (s, t) ∈ R, let us set

x
(s, 0), (0, t)
direct =

⎧⎨⎩1, x
((s, [s,t]), (0, [s,t]))
st = 1 ∧ x

((0, [s,t]), (t, [s,t]))
st = 1

0, otherwise
(A1)

and

x
(s, 0), (0, t)
transfer =

⎧⎨⎩1, ∃ p, q ∈ S \ {0, s, t} : x
((0, [s,p]), (0, [q,t]))
st = 1

0, otherwise
(A2)



36

Additionally, let us set zl = yl for lines l ∈ L.

Let us now show that a corresponding solution (xdirect, xtranfer, z) with xdirect =
(x(i, 0), (0, j)

direct )(i,j∈S \ {0}, i ̸=j), (x(i, 0), (0, j)
transfer )(i,j∈S \ {0}, i ̸=j), and z = (zl)(l∈L) constructed with

the method described above is a feasible solution to the compact formulation described
in the Section 3.3.

As an optimal and therefore feasible solution of LPMT1, the initial solution
fulfills the constraint (5). As mentioned in Section ??, this constraint can be written
using the incoming and outgoing edges as constraints (21), (22), and (23). Based
on the definitions of the incoming and outgoing edge sets described in Definition
3.6, the constraint (21) can be separated and simplified into subcases represented
in (21.1), (21.2), (21.3), and (21.4). Based on all of these subcases, and since for all
i ∈ S \ {s, 0} or j ∈ S \ {t, 0}, x

((i, l), (j, l))
st = 0, x

((0, [i,p]), (0, [q,j]))
st = 0, x

((i, OD), (i, l))
st = 0,

as well as x
((j, l), (j, OD))
st = 0, if the initial solution is feasible in the LPMT1, then the

following holds

∀(s, t) ∈ R :
∀ i, j ∈ S \ {0} : i ̸= j :

x
((i, OD), (i, [i,j]))
st = x

((i, [i,j]), (0, [i,j]))
st (A3.1)

x
((0, [i,j]), (j, [i,j]))
st = x

((j, [i,j]), (j, OD))
st (A3.2)

x
((s, [s,t]), (0, [s,t]))
st = x

((0, [s,t]), (t, [s,t]))
st (A3.3)

x
((s, [s,j]), (0, [s,j]))
st =

∑︂
c ∈S \ {0, s, t}

x
((0, [s,j]), (0, [c,t]))
st , j ̸= t

(A3.4)∑︂
d∈S \ {0, s, t}

x
((0, [s,d]), (0, [i,t]))
st = x

((0, [i,t]), (t, [i,t]))
st , i ̸= s

(A3.5)∑︂
d ∈S \ {0, s}

x
((s, OD), (s, [s,d]))
st = 1 (A3.6)

∑︂
c ∈S \ {0, t}

x
((t, [c,t]), (t, OD))
st = 1 (A3.7)

Let us first show that the corresponding solution fulfills the constraint (10):
Based on equation (A3.3), x

((s, [s,t]), (0, [s,t]))
st = x

((0, [s,t]), (t, [s,t]))
st = 1 or x

((s, [s,t]), (0, [s,t]))
st =

x
((0, [s,t]), (t, [s,t]))
st = 0. If x

((s, [s,t]), (0, [s,t]))
st = x

((0, [s,t]), (t, [s,t]))
st = 1, based on conversion

rule (A1), x
(s, 0), (0, t)
direct = 1.

On the other hand, based on the equations (A3)

x
((s, OD), (s, [s,t]))
st = x

((s, [s,t]), (0, [s,t]))
st = x

((0, [s,t]), (t, [s,t]))
st = x

((t, [s,t]), (t, OD))
st = 1
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Consequently, we get from equation (A3.6)∑︂
d∈S \ {s}

x
((s, OD), (s, [s,d]))
st = 1

⇔ x
((s, OD), (s, [s,t]))
st +

∑︂
d∈S \ {s,t}

x
((s, OD), (s, [s,d]))
st = 1 |x((s, OD), (s, [s,t]))

st = 1

⇔ 1 +
∑︂

j∈S \ {s,t}
x

((s, OD), (s, [s,j]))
st = 1

⇔
∑︂

j∈S \ {s,t}
x

((s, OD), (s, [s,j]))
st = 0

Additionally, we get from equation (A3.7)∑︂
i∈S \ {t}

x
((t, [i,t]), (t, OD))
st = 1

⇔ x
((t, [s,t]), (t, OD))
st +

∑︂
i∈S \ {s, t}

x
((t, [i,t]), (t, OD))
st = 1 |x((t, [s,t]), (t, OD))

st = 1

⇔ 1 +
∑︂

i∈S \ {s, t}
x

((t, [i,t]), (t, OD))
st = 1

⇔
∑︂

i∈S \ {s, t}
x

((t, [i,t]), (t, OD))
st = 0

Consequently, x
((s, OD), (s, [s,p]))
st = 0 and x

((t, [q,t]), (t, OD))
st = 0 for all p, q ∈ S \ {s, t}.

Thus, based on the equations (A3), for all p, q ∈ S \ {s, t},∑︂
c∈S \ {0, s, t}

x
((0, [s,p]), (0, [c,t]))
st = x

((s, [s,p]), (0, [s,p]))
st = x

((s, OD), (s, [s,p]))
st = 0

and ∑︂
d∈S \ {0, s, t}

x
((0, [s,d]), (0, [q,t]))
st = x

((0, [q,t]), (t, [q,t]))
st = x

((t, [q,p]), (t, OD))
st = 0

Therefore, it must be that x
((0, [s,p]), (0, [q,t]))
st = 0 for all p, q ∈ S \ {s, t}. Based

on conversion rule (A2), this means that x
(s, 0), (0, t)
transfer = 0. Thus, if x

((s, [s,t]), (0, [s,t]))
st =

x
((0, [s,t]), (t, [s,t]))
st = 1, then x

(s, 0), (0, t)
direct + x

(s, 0), (0, t)
transfer = 1 + 0 = 1 meaning that contraint

(10) is fulfilled in this subcase.

If x
((s, [s,t]), (0, [s,t]))
st = x

((0, [s,t]), (t, [s,t]))
st = 0, then based on conversion rule (A1),

x
(s, 0), (0, t)
direct = 0. Additionally, based on equations (A3),

x
((s, OD), (s, [s,t]))
st = x

((s, [s,t]), (0, [s,t]))
st = x

((0, [s,t]), (t, [s,t]))
st = x

((t, [s,t]), (t, OD))
st = 0
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and ∑︂
d∈S \ {0, s}

x
((s, OD), (s, [s,d]))
st = 1

⇔ x
((s, OD), (s, [s,t]))
st +

∑︂
d∈S \ {0, s, t}

x
((s, OD), (s, [s,d]))
st = 1 |x((s, OD), (s, [s,t]))

st = 0

⇔
∑︂

d∈S \ {0, s, t}
x

((s, OD), (s, [s,d]))
st = 1

Consequently, since xe
st ∈ {0, 1}, there must exist p ∈ S \ {s, t} for which

x
((s, OD), (s, [s,p]))
st = 1. Let us fix p ∈ S \ {s, t} such that x

((s, OD), (s, [s,p]))
st = 1.

Thus, we get from equations (A3),∑︂
c∈S \ {0, s, t}

x
((0, [s,p]), (0, [c,t]))
st = x

((s, [s,p]), (0, [s,p]))
st = x

((s, OD), (s, [s,p]))
st = 1

Since xe
st ∈ {0, 1}, this means that for the fixed p ∈ S \ {s, t}, there must exist

q ∈ S \ {s, t} for which x
((0, [s,p]), (0, [q,t]))
st = 1.

Consequently, there must exist p, q ∈ S \ {s, t} for which x
((0, [s,p]), (0, [q,t]))
st = 1.

Based on the conversion rule (20), this means that x
(s, 0), (0, t)
transfer = 1.

Thus, if x
((s, [s,t]), (0, [s,t]))
st = x

((0, [s,t]), (t, [s,t]))
st = 0, then x

(s, 0), (0, t)
direct + x

(s, 0), (0, t)
transfer =

0 + 1 = 1, meaning that constraint (10) is fulfilled also in this subcase. Consequently,
the corresponding solution fulfills the constraint (10).

Let us now show that the corresponding solution fulfills the constraint (11):
We have set zl = yl for all l ∈ L. Therefore, since x

(i, 0), (0, j)
direct ∈ {0, 1}, if y[i,j] = 1

in the initial solution, the inequality x
(i, 0), (0, j)
direct ≤ z[i,j] holds.

Thus, the constraint (11) is fulfilled if y[i,j] = 1.

If y[i,j] = 0, since xe
st ∈ {0, 1}, then by constraint (4) of the initial solution,∑︂

(s,t)∈R

∑︂
e∈E[i,j]

xe
st ≤ 0 ⇔ x

((i, [i,j]), (0, [i,j]))
st + x

((0, [i,j]), (j, [i,j]))
st = 0, ∀ (s, t) ∈ R

⇔ x
((i, [i,j]), (0, [i,j]))
st = x

((i, [i,j]), (0, [i,j]))
st = 0, ∀ (s, t) ∈ R

Consequently, x
((i, [i,j]), (0, [i,j]))
ij = x

((i, [i,j]), (0, [i,j]))
ij = 0. Therefore, x

(i, 0), (0, j)
direct = 0

based on construction rule (A1), meaning that

0 = x
(i, 0), (0, j)
direct ≤ z[i,j] = y[i,j] = 0

Hence, constraint (11) is also fulfilled when y[i,j] = 0 in the initial solution.

Thus, constraint (11) is fulfilled for all [i, j] ∈ L for which (i, j) ∈ R.
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Let us now show that the corresponding solution fulfills constraints (12) and
(13):

Let us prove by contraposition that constraint (12) holds for arbitrary s ∈
S \ {−1, 0} and p ∈ S \ {−1, 0, s}, and constraint (13) holds for arbitrary
t ∈ S \ {−1, 0} and q ∈ S \ {−1, 0, t}, where (s, p), (q, t) ∈ R: Since zl ∈ {0, 1}
for all l ∈ L, this happens by showing that if there exists s, t ∈ S \ {−1, 0},
p ∈ S \ {−1, 0, s}, and q ∈ S \ {−1, 0, t}, for which (s, p), (q, t) ∈ R, in the
corresponding solution such that∑︂

k ̸= s

z[s,k] < 1 or
∑︂
k ̸= t

z[k,t] < 1

then the initial solution cannot be an optimal solution in the LPMT1 formulation.

Let us first assume that the initial solution is an optimal solution of the LPMT1
and fix that for s, t ∈ S \ {−1, 0}, p ∈ S \ {−1, 0, s}, q ∈ S \ {−1, 0, t}, where
(s, p), (q, t) ∈ R, ∑︂

k ̸= s

z[s,k] < 1 or
∑︂
k ̸= t

z[k,t] < 1

Since we have set that zl = yl for all l ∈ L, and yl ∈ {0, 1}, we get that for these
fixed s, t ∈ S \ {−1, 0} ∑︂

k ̸= s

z[s,k] < 1 or
∑︂
k ̸= t

z[k,t] < 1
∑︂

k ̸= s

y[s,k] < 1 or
∑︂
k ̸= t

y[k,t] < 1

⇔
∑︂

k ̸= s

y[s,k] = 0 or ⇔
∑︂
k ̸= t

y[k,t] = 0

⇔ ∀ k ∈ S \ {0, s} : y[s,k] = 0 or ⇔ ∀ k ∈ S \ {0, t} : y[k,t] = 0

By constraint (4) of the LPMT1, since xe
st ∈ {0, 1}, we get that

∀ k ∈ S \ {0, s} : ∀ k ∈ S \ {0, t} :∑︂
(s′,t′)∈R

∑︂
e ∈ E[s,k]

xe
s′t′ ≤ 0

∑︂
(s′,t′)∈R

∑︂
e ∈ E[k,t]

xe
s′t′ ≤ 0

⇔
∑︂

e ∈ E[s,k]

xe
sp ≤ 0 ⇔

∑︂
e ∈ E[k,t]

xe
qt ≤ 0

⇔ x((s, [s,k]), (0, [s,k]))
sp + x((0, [s,k]), (k, [s,k]))

sp ≤ 0 ⇔ x
((k, [k,t]), (0, [k,t]))
qt + x

((0, [k,t]), (t, [k,t]))
qt ≤ 0

⇔ x((s, [s,k]), (0, [s,k]))
sp = 0 ⇔ x

((0, [k,t]), (t, [k,t]))
qt = 0

We have previously, shown that any optimal solution to the LPMT1 fulfills the
equations (A3). Hence, using equations (A3.1) and (A3.2), we get∑︂

d∈S \ {0, s}
x((s, OD), (s, [s,d]))

sp =
∑︂

d∈S \ {0, s}
x((s, [s,d]), (0, [s,d]))

sp =
∑︂

d∈S \ {0, s}
0 = 0
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or ∑︂
c∈S \ {0, t}

x
((t, [c,t]), (t, OD))
qt =

∑︂
c∈S \ {0, t}

x
((0, [c,t]), (t, [c,t]))
qt =

∑︂
c∈S \ {0, t}

0 = 0

This, in turn, conflicts with equation (A3.6) or equation (A3.7), meaning that
the initial solution cannot be an optimal solution in the LPMT1 formulation.

Thus, the corresponding solution fulfills the constraints (12) and (13).

Let us show that the corresponding solution fulfills constraints (14) and (15):
Since zl ∈ {0, 1} for all l ∈ L, if x

(s, 0), (0, t)
transfer = 0 for an arbitrary (s, t) ∈ R, then

x
(s, 0), (0, t)
transfer = 0 ≤

∑︂
s ̸= k ̸= t

z[s,k] and x
(s, 0), (0, t)
transfer = 0 ≤

∑︂
s ̸= k ̸= t

z[k,t]

Therefore, constraints (14) and (15) are fulfilled for all (s, t) ∈ R where x
(s, 0), (0, t)
transfer =

0.

Contrarily, if x
(s, 0), (0, t)
transfer = 1 for an arbitrary (s, t) ∈ R then, by contruction rule

(A2), there exists p, q ∈ S \ {0, s, t} for which x
((0, [s,p]), (0, [q,t]))
st = 1. As a natural

consequence, we get based on equations (A3.4) and (A3.5)

x
((s, [s,p]), (0, [s,p]))
st =

∑︂
c∈S \ {0, s, t}

x
((0, [s,p]), (0, [c,t]))
st ≥ x

((0, [s,p]), (0, [q,t]))
st = 1

and
x

((0, [q,t]), (t, [q,t]))
st =

∑︂
d∈S \ {0, s, t}

x
((0, [s,d]), (0, [q,t]))
st ≥ x

((0, [s,p]), (0, [q,t]))
st = 1

Since xe
st ∈ {0, 1}, this means that x

((s, [s,p]), (0, [s,p]))
st = 1 and x

((0, [q,t]), (t, [q,t]))
st = 1.

By the constraint (4) of the initial solution, we thus get

|R| |E[s,p]| · y[s,p] ≥
∑︂

(s′,t′)∈R

∑︂
e∈E[s,p]

xe
s′t′ ≥

∑︂
e∈E[s,p]

xe
st ≥ x

((s, [s,p]), (0, [s,p]))
st = 1

and

|R| |E[q,t]| · y[q,t] ≥
∑︂

(s′,t′)∈R

∑︂
e∈E[q,t]

xe
s′t′ ≥

∑︂
e∈E[q,t]

xe
st ≥ x

((0, [q,t]), (t, [q,t]))
st = 1

Consequently, since xe
st ∈ {0, 1}, y[s,p] = 1 and y[q,t]. Additionally, since we have

set that zl = yl for all l ∈ L, we get∑︂
s ̸= k ̸= t

z[s,k] ≥ z[s,p] = y[s,p] = 1 = x
(s, 0), (0, t)
transfer

and ∑︂
s ̸= k ̸= t

z[k,t] ≥ z[q,t] = y[q,t] = 1 = x
(s, 0), (0, t)
transfer
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Therefore, the constraints (14) and (15) are fulfilled for all (s, t) ∈ R where
x

(s, 0), (0, t)
transfer = 1.

Thus, the corresponding solution fulfills the constraints (14) and (15).

Let us finally prove that the corresponding solution fulfills constraint (16):
We have assumed that the cost of creating line l ∈ L, Cl, and the budget, B, are

known and, therefore, remain constant for the different formulations. Additionally,
we set zl = yl for all l ∈ L. Consequently, based on these assumptions and from
constraint (6) of the initial feasible solution we get∑︂

l∈L
Cl · zl =

∑︂
l∈L

Cl · yl ≤ B

Therefore, the corresponding solution fulfills the constraint (16).

Thus, the constructed corresponding solution is a feasible solution to the compact
formulation, and, consequently, any optimal solution of the LPMT1 formulation has
a corresponding feasible solution in the compact formulation.
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B The Change&Go Network with Three Tangible
Leaf Nodes in the PTN

In this appendix, Figure B1 presents the change&go network corresponding to the
PTN shown in Figure 1.

Figure B1: The change&go network when the corresponding PTN is a star-shaped
tree with three actual leaf nodes, as shown in Figure 1.
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C The Simplification of Equation (33)
In this appendix, we shall show the simplification of the transformed objective function
of the LPMT1 presented in equation (33) into the simplified form represented in
equation (34). The basis of the simplification is that in an optimal LPMT1-solution,
for all i ∈ S \ {0, s} or j ∈ S \ {0, t} where (s, t) ∈ R, x

((0, [i,p]), (0, [q,j]))
st = 0, as

mentioned in Appendix ??.
The simplification happens as follows:

f(xoptimal) =
∑︂

(s,t)∈R
wst · k1 · Tst + k2 ·

∑︂
(s,t)∈R

wst ·
∑︂

e ∈ Echange

xe
st

=
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · (

∑︂
(s,t)∈R

wst · (
∑︂

a∈S \ {0}

∑︂
d∈S \ {0}

...

...
∑︂

b, c∈S \ {0, a, d}
x

((0, [a,b]), (0, [c,d]))
st ))

=
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · (

∑︂
(s,t)∈R

wst · (
∑︂

a∈S \ {0, s}

∑︂
d∈S \ {0}

...

...
∑︂

b, c∈S \ {0, a, d}
x

((0, [a,b]), (0, [c,d]))
st +

∑︂
d∈S \ {0}

∑︂
b, c∈S \ {0, s, d}

x
((0, [s,b]), (0, [c,d]))
st ))...

...| x
((0, [i,p]), (0, [q,j]))
st = 0, ∀ i ∈ S \ {0, s}

=
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · (

∑︂
(s,t)∈R

wst · (
∑︂

a∈S \ {0, s}

∑︂
d∈S \ {0}

∑︂
b, c∈S \ {0, a, d}

0...

... +
∑︂

d∈S \ {0, t}

∑︂
b, c∈S \ {0, s, d}

x
((0, [s,b]), (0, [c,d]))
st +

∑︂
b, c∈S \ {0, s, t}

x
((0, [s,b]), (0, [c,t]))
st ))...

...| x
((0, [i,p]), (0, [q,j]))
st = 0, ∀ j ∈ S \ {0, t}

=
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · (

∑︂
(s,t)∈R

wst · (0 +
∑︂

d∈S \ {0, t}

∑︂
b, c∈S \ {0, s, d}

0...

... +
∑︂

b, c∈S \ {0, s, t}
x

((0, [s,b]), (0, [c,t]))
st ))

=
∑︂

(s,t)∈R
wst · k1 · Tst + k2 · (

∑︂
(s,t)∈R

wst ·
∑︂

b, c∈S \ {0, s, t}
x

((0, [s,b]), (0, [c,t]))
st ))

where parameters wst, k1, k2, and Tst do not depend on the decision variables.
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D The Detailed Proof for the Lemma 4.4
In this appendix, we show the detailed proof for the Lemma 4.4 used in Section 4.1.2.
The particular Lemma is introduced as D.1 below.

Lemma D.1. Let ((xe
st)((s,t)∈R, e ∈ E), (yl)(l∈L)) be an optimal solution to the LPMT1

formulation and ((x(i, 0), (0, j)
direct )(i,j∈S \ {0}, i ̸= j), (x(i, 0), (0, j)

transfer )(i,j∈S \ {0}, i ̸= j), (zl)(l∈L)) be
its corresponding solution in the compact formulation, both as defined in Appendix
??. Now, the objective function of the corresponding solution is

g(x) = g( (x(s, 0), (0, t)
transfer )(s,t∈S \ {0}, s ̸= t) )

= 1
k2

(f ( (xe
st)( (s,t)∈R, e∈E)optimal

) −
∑︂

(s,t)∈R
wst · k1 · Tst)

= 1
k2

(f(xoptimal) −
∑︂

(s,t)∈R
wst · k1 · Tst) (D1)

Proof. Let arbitrary (s, t) ∈ R. Now, based on conversion rule (A2),

x
(s, 0), (0, t)
transfer =

⎧⎨⎩1, ∃ p, q ∈ S \ {s, t} : x
((0, [s,p]), (0, [q,t]))
st = 1

0, otherwise

By equations (A3), for i, j ∈ S \ {s, t},∑︂
c∈S \ {0, s, t}

x
((0, [s,j]), (0, [c,t]))
st = x

((s, OD), (s, [s,j]))
st ∈ {0, 1}

∑︂
d∈S \ {0, s, t}

x
((0, [s,d]), (0, [i,t]))
st = x

((t, [i,t]), (t, OD))
st ∈ {0, 1}

∑︂
j∈S \ {0, s}

x
((s, OD), (s, [s,j]))
st = 1

∑︂
i∈S \ {0, t}

x
((t, OD), (t, [i,t]))
st = 1

Thus, if there exists p, q ∈ S \ {s, t} for which x
((0, [s,p]), (0, [q,t]))
st = 1,∑︂

c∈S \ {0, s, t}
x

((0, [s,p]), (0, [c,t]))
st > 0

∑︂
d∈S \ {0, s, t}

x
((0, [s,d]), (0, [q,t]))
st > 0

⇔
∑︂

c∈S \ {0, s, t}
x

((0, [s,p]), (0, [c,t]))
st = 1 ⇔

∑︂
d∈S \ {0, s, t}

x
((0, [s,d]), (0, [q,t]))
st = 1
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and ∑︂
j∈S \ {0, s}

x
((s, OD), (s, [s,j]))
st = 1

∑︂
i∈S \ {0, t}

x
((t, OD), (t, [i,t]))
st = 1

⇔ 1 +
∑︂

j∈S \ {0, s, p}
x

((s, OD), (s, [s,j]))
st = 1 ⇔ 1 +

∑︂
i∈S \ {0, t, q}

x
((t, OD), (t, [i,t]))
st = 1

⇔
∑︂

j∈S \ {0, s, p}
x

((s, OD), (s, [s,j]))
st = 0 ⇔

∑︂
i∈S \ {0, t, q}

x
((t, OD), (t, [i,t]))
st = 0

meaning that for all j ∈ S \ {s, p} and i ∈ S \ {t, q},∑︂
c∈S \ {0, s, t}

x
((0, [s,j]), (0, [c,t]))
st = x

((s, OD), (s, [s,j]))
st = 0

∑︂
d∈S \ {0, s, t}

x
((0, [s,d]), (0, [i,t]))
st = x

((t, [i,t]), (t, OD))
st = 0

Consequently,∑︂
b, c∈S \ {0, s, t}

x
((0, [s,b]), (0, [c,t]))
st =

∑︂
c∈S \ {9, s, t}

x
((0, [s,p]), (0, [c,t]))
st +

∑︂
b∈S \ {0, s, t, p}

...

...
∑︂

c∈S \ {0, s, t}
x

((0, [s,b]), (0, [c,t]))
st

= 1 +
∑︂

b∈S \ {0, s, t, p}
0

= 1 = x
(s, 0), (0, t)
transfer

If x
((0, [s,p]), (0, [q,t]))
st = 0 for all p, q ∈ S \ {s, t}, then∑︂

b, c∈S \ {0, s, t}
x

((0, [s,b]), (0, [c,t]))
st =

∑︂
0, b, c∈S \ {s, t}

0

= 0 = x
(s, 0), (0, t)
transfer

Therefore, for arbitrary (s, t) ∈ R,

x
(s, 0), (0, t)
transfer =

∑︂
b, c∈S \ {s, t}

x
((0, [s,b]), (0, [c,t]))
st (D2)
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Consequently, from the objective function (31), we get

g(x) =
∑︂

(s,t)∈R
wst · x

(s, 0), (0, t)
transfer | (D2)

=
∑︂

(s,t)∈R
wst ·

∑︂
b, c∈S \ {0, s, t}

x
((0, [s,b]), (0, [c,t]))
st

= 1
k2

(
∑︂

(s,t)∈R

∑︂
b, c∈S \ {0, s, t}

k2 · wst · x
((0, [s,b]), (0, [c,t]))
st )

= 1
k2

(
∑︂

(s,t)∈R
wst · k1 · Tst +

∑︂
(s,t)∈R

∑︂
b, c∈S \ {0, s, t}

k2 · wst · x
((0, [s,b]), (0, [c,t]))
st ...

... −
∑︂

(s,t)∈R
wst · k1 · Tst) | (34)

= 1
k2

(f(xoptimal) −
∑︂

(s,t)∈R
wst · k1 · Tst)

which matches to the equation (D1). This means that lemma 4.4 is true.
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E The Complete Calculations of the Approxima-
tions For the Number of Variables And Con-
straints

This appendix includes the complete calculations used to calculate the number of
different groups of variables and different variables in the LPMT1 formulation and
the compact formulation. The number of variables and the constraints using the big
O notation. and the approximation is given as a function of n, which represents the
number of leaf stations in the underlying PTN-graph. The results of this appendix
are summarized in the tables 1, 2, and 3 of the Section 4.2.

Utilizing the LPMT1 formulation defined in Section 3.2 and the size approxima-
tions calculated in Section 4.2, we can define the size approximations for the number
of variables in a specific group as follows:

xe
st : |(xe

st)((s,t)∈R, e∈E) = |R| · |E| = O(n2) · O(n4) ⇒ O(n6)
yl : |(yl)(l∈L)| = |L| = n2 + n ⇒ O(n2)

The size approximations for the number of a certain type of constraints (4) and
(6) can be calculated similarly as below:

(4) : |L| = n2 + n ⇒ O(n2)
(6) : 1 ⇒ O(1)

From these numbers, we can determine the approximation for the total number of
variables in the LPMT1 formulation is

O(n2) + O(n6) = O(n6)

The size approximation for the flow constraint (5) is slightly more complex: The
constraint is presented in matrix multiplication form where the incidence matrix
θ ∈ Z|V|×|E|, the variable vector xst ∈ {0, 1}|E|, and the parameter b ∈ ZV . There-
fore, the number of equations contained in one matrix multiplication is in fact |V|.
Consequently, the approximation for the number of flow constraints is as follows:

(5) : |V| · |R| = O(n2) · O(n2) ⇒ O(n4)

Thus, the approximation for the total number of constraints in the LPMT1 formula-
tions is

O(n2) + O(1) + O(n4) = O(n4)

Similarly, we can calculate the approximation for the number of variables in a
specific group of the compact formulation utilizing the definition of the compact
formulation in Definition 3.7 and the size approximations calculated in Section 4.2:

x
(s, 0), (0, t)
direct : |(x(s, 0), (0, t)

direct )((s,t)∈R) = |R| ⇒ O(n2)
x

(s, 0), (0, t)
transfer : |(x(s, 0), (0, t)

transfer )((s,t)∈R) = |R| ⇒ O(n2)
zl : |(zl)(l∈L)| = |L| = n2 + n ⇒ O(n2)
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Based on these approximations, we can determine the approximation for the total
number of variables in the compact formulation as follows:

O(n2) + O(n2) + O(n2) = O(n2)

The approximations for the number of each constraint in the compact formulation
can be calculated similarly, as demonstrated below:

(10) : |R| = n2 − n ⇒ O(n2)
(11) : min(|L|, |R|) = |R| = n2 − n ⇒ O(n2)
(12) : |{i ∈ S \ {−1, 0} : (i, j) ∈ R}| ≤ |S| − 2 = n ⇒ O(n)
(13) : |{j ∈ S \ {−1, 0} : (i, j) ∈ R}| ≤ |S| − 2 = n ⇒ O(n)
(14) : |R| = n2 − n ⇒ O(n2)
(15) : |R| = n2 − n ⇒ O(n2)
(16) : 1 ⇒ O(1)

Consequently, we can calculate the approximation for the number of constraints
in the compact formulation as below:

4 · O(n2) + 2 ∗ ·O(n) + O(1) = O(n2)
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