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Abstract
Contemporary forest management relies on accurate forest inventory data with
information on individual tree level. There is a need for efficient and automated
data collection in forests since collecting tree-specific data from forests manually
is often laborious and time consuming. One of the most efficient tools for forest
data collection is laser scanning that creates accurate 3D visualization of forest
environment. However, the use of laser scanning in environments where GPS signal
is lost or weak creates severe inaccuracies in the resulting 3D visualization.

The goal of this thesis is to use a Simultaneous Localization and Mapping -
based framework to improve the accuracy of a laser scanning visualization in a
forest environment. We use automated tree detection for point cloud data to create
constraints for a least-squares minimization problem presented as a graph. We
compare the results of the framework in different forest plots and determine the
feasibility of the framework using an automated tree detection algorithm.

The results show that using this framework, the accuracy of the landmark
locations in a point cloud is increased consistently from decimeter level to millimeter
level. Results also confirm that the overall accuracy of the point cloud doesn’t
necessarily increase as fast as the landmark locations accuracy. This is most notable
with point cloud data that initially contains significant height errors from GPS-
deterioration. Overall, the framework works as intended while there is still room for
further development, especially with erroneous height data or problems with ground
detection.
Keywords Graph optimization, Simultaneous Localization and Mapping, Laser

scanning, Least squares minimization, Forest inventory
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Tekniikan kandidaatintyön tiivistelmä

Tekijä Jarkko Jalovaara
Työn nimi Improving kinematic laser scanning point cloud accuracy with graph

optimization
Koulutusohjelma Teknillinen fysiikka ja matematiikka
Pääaine Matematiikka ja systeemitieteet Pääaineen koodi SCI3029
Vastuuopettaja ja ohjaaja Professori Pauliina Ilmonen, TkT Antero Kukko
Päivämäärä 11.10.2021 Sivumäärä 23+2 Kieli Englanti
Tiivistelmä
Nykyaikainen metsänhoito hyödyntää tarkkaa metsäkohtaista aineistoa, jossa on
tietoa yksittäisten puiden ominaisuuksista. Koska aineiston kerääminen yksittäisistä
puista on usein työlästä ja aikaavievää, on tarvetta tehokkaalle ja automatisoidulle
menetelmälle aineiston keräämiseen. Yksi tehokkaimmista menetelmistä aineiston
keräämiselle on laserkeilaus, jolla voidaan luoda kolmiulotteinen malli metsäym-
päristöstä. Laserkeilauksen käyttö ympäristössä, jossa GPS-signaali on heikko tai
kokonaan hävinnyt, aiheuttaa kuitenkin selkeitä epätarkkuuksia kolmiulotteisessa
mallissa.

Tämän kandidaatintyön tavoitteena on käyttää Simultaneous Localization and
Mapping -pohjaista menetelmää laserkeilauksella saadun kolmiulotteisen mallin
tarkuuden parantamiseksi metsäympäristössä. Työssä käytetään automaattista puun-
tunnistusta pistepilviaineistolle pienimmän neliösumman menetelmän rajoitteiden
luomiseksi graafimuodossa. Työssä verrataan menetelmän tuloksia eri metsäpalstoilla
ja määritetään menetelmän toimintavarmuus automaattisella puuntunnistuksella.

Tulokset osoittavat, että menetelmää käyttämällä pistepilvimallin puiden sijain-
tien tarkkuus paranee johdonmukaisesti desimetritasolta millimetritasolle. Tuloksista
nähdään myös, ettei pistepilven yleinen tarkkuus välttämättä parane puiden sijaintien
tarkkuuden mukana. Ilmiö huomataan kaikista selkeimmin sellaisilla pistepilvimal-
leilla, joissa on selkeitä korkeussunntaisia virheitä GPS-signaalin puuttumisen takia.
Yleisesti menetelmä toimii kuten haluttua, mutta jatkokehitykselle on edelleen tar-
vetta varsinkin virheellisen korkeusdatan ja puutteellisen maanpinnantunnistuksen
kohdalla.
Avainsanat Graafioptimointi, Pistepilvi, Laserkeilaus, Pienimmän neliösumman

menetelmä, Metsänhoito
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1 Introduction
Forests supply a wide range of products and ecosystem services that are beneficial
from ecological, economical as well as social standpoint. Some examples of these
services include timber, biofuel, recreation services and habitat for species to support
biodiversity. Forest inventory aims to provide essential reference data from forests to
support all decision-making in forest ecosystems ranging from harvest planning to
landscape-related arrangements.(Hyyppä et al., 2020)

During the past 10 years, one of the most widely used remote sensing technologies
for forest inventory data collection has been the airborne LiDAR laser scanning
method. (Pierzchala et al., 2018) Laser scanner uses LiDAR to create range estimates
from the surrounding objects and GPS-based location data to create point cloud
of the environment in order to visualize it in 3D. Several laser scanning methods
and equipment have been deployed such as terrestrial laser scanning with stationary
scanners, over-canopy-aircraft laser scanning and more recently mobile laser scanning
with hand-held, backpack-portable or UAV-operated laser scanners.(Hyyppä et al.,
2017)

In this thesis, a graph optimization based Simultaneous Localization and Mapping
algorithm (SLAM) is used to improve the accuracy of an existing 3D point cloud
visualization in forest environment. This point cloud data is gathered using a mobile
backpack laser scanner combined with Global Navigation Satellite System – Inertial
Measurement Unit (GNSS-IMU) -localization equipment to capture the original
trajectory of the scan. Since backpack scanning is performed under-canopy, the
deterioration of GPS signal results in a trajectory drift (Kukko et al., 2017) which will
be corrected using SLAM. To determine the accuracy improvement, error statistics
from both the original and corrected point cloud are compared. Point clouds are
gathered in forest environment and only the point cloud trajectory is optimized
to make the optimization problem computationally easier. After the trajectory is
optimized, the original laser scanner data is combined with the optimized trajectory
information for better accuracy.

The goal of this thesis is to find out how much improvement the Graph-SLAM
framework gives to an existing point cloud data, identify the main difficulties with
the algorithm at its current state, and analyze the effects of different parameters
and environmental attributes in the performance of the algorithm. Key question of
this thesis is to find out whether Graph-SLAM corrected 3D point cloud data can
be used to possibly extract individual tree attributes to support decision making.
Additionally, this thesis aims to briefly answer how much different environmental
parameters affect the optimization process and how to potentially improve the process
in the future.

The structure of the thesis is the following. In Section 2, the summary of mobile
laser scanning methods and data sources are presented. In Section 3, the theoretical
framework of graph optimization and Graph-SLAM to correct the trajectory GPS
data is presented. Section 4 presents the results of the optimization process and
error statistics comparison. Section 5 completes the work with overall summary.
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2 Background

2.1 Forest Inventory
Accurate forest inventory data is essential to prevent wrong decisions in forestry.
Individual tree attributes, such as tree height and DBH (diameter at breast height)
are especially important since estimates of individual tree volume, for example, can
be derived from these values. Collecting data from every single tree of the forests
separately for large plots is, however, generally not a feasible option since individual
measurement of trees is labour intensive and especially time consuming. (Jaakkola
et al., 2017; Hyyppä et al., 2020)

In an attempt to make forest data collection less laborious and more efficient,
data collection technologies based on remote-sensing have been studied.

The most important technology in last decades has been LiDAR (Light Detection
and Ranging), which is sometimes referred to as 3D laser scanning. The main idea
behind the LiDAR technology is to create an accurate 3D environment visualization
in a point cloud format. In LiDAR, the laser scanner emits laser beams around the
scanner and measures the time between the laser emission and the return time of the
laser after deflection from some surrounding objects. This results in a set of points in
3D space representing the location of the objects relative to the scanner, namely a 3D
point cloud. To create a full 3D map from the environment, as in Picture 1, separate
point clouds are combined together in a global coordinate system by assigning a
global GPS-location and scanner orientation for every separate point cloud. This
can be done with integrated GNSS-IMU -system which collects GPS location and
orientation information of the scanner. (Balenović et al., 2021; Næsset et al., 2004)

Figure 1: An example of a 3D map cross section of a forest in a point cloud format.
The colored bars near the ground are colored height intervals of the point cloud. The
empty area in the middle of the picture is the blind spot of the laser scanner, which
can be interpreted as part of the scanner trajectory. The picture was processed by
Antero Kukko.
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2.2 Mobile laser scanning
In comparison to Terrestrial based Laser Scanning TLS or conventional field measure-
ments, the mobile laser scanning methods are significantly faster for collecting data
to extract individual tree attributes. (Hyyppä et al., 2020) However, the accuracy
of mobile laser scanning is currently not sufficient to provide reliable data for tree
specific attributes. The primary source of data accuracy reduction is the weak or
absent GPS signal in dense forest environments that creates trajectory drift. Merely
the odometry measurements from IMU are generally not accurate enough to prevent
the trajectory from drifting over longer periods of time. Without reliable positional
accuracy of the laser scanner, combining individual measurements into a single point
cloud becomes inconvenient decreasing the overall accuracy of a complete point cloud.
(Kukko et al., 2017; Chang et al., 2019)

In our case, the laser scanner along with the GNSS/IMU localization system
is mounted on a backpack (Picture 2) moving around the environment with the
user. Due to dense canopy, the GPS signal can deteriorate or even become absent
creating errors in GPS-location data for point clouds. The resulting 3D map accuracy
therefore suffers with the loss of GPS signal, potentially creating duplicates of a
separate trees in the point cloud.

In this work, the goal is to use a modified graph-SLAM algorithm to reduce the
error in 3D environment maps in point cloud format. Based on the interdependencies
of observations and the initial GPS-trajectory, the graph-SLAM algorithm creates
a new trajectory with improved accuracy. Using the improved GPS-trajectory to
combine the original laser scan measurements into a single point cloud, we can expect
an accuracy improvement in a new 3D environment point map (Kukko et al., 2017).

In the paper (Kukko et al., 2017) this trajectory correction framework in forest
environment was tested with three independent forest plot data sets. The results
show that after the use of Graph-SLAM, the point cloud accuracy was significantly
improved. The distance STD from the reference tree locations to corrected point
cloud tree locations was roughly 7 millimeters, where as without trajectory correction
the same value was roughly 127 millimeters. We are exploring, whether similar
results can be achieved in different forest environment with slightly modified version
of the algorithm.

3 Data review and Methods

3.1 Point cloud and trajectory data
The two primary datatypes used in the work are point cloud data and trajectory
data. Point cloud data gathered using backpack laser scanner consists of a group
of points located in a global 3D-space associated with some information for each
point. In our case, the only needed information for each point are their respective
GPS timestamps given in seconds for ongoing week as shown in Table 1. As we later
notice, this information is vital for the graph-SLAM algorithm initialization.

Similarly, the trajectory data consist a set of points in 3D-space associated with
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Figure 2: The backpack mounted laser scanner and GNSS/IMU -equipment for
simultaneous trajectory data and point cloud data collection. The picture was taken
by Antero Kukko.

Table 1: The different data types used in this work and their components and units
for each data point. Here STD refers to standard deviation of the component

Point cloud data Trajectory data
GPS Timestamp (s) GPS Timestamp (s)
X-coordinate (m) X-coordinate (m) and STD
Y-coordinate (m) Y-coordinate (m) and STD
Z-coordinate (m) Z-coordinate (m) and STD

X-axis rotation (◦) and STD
Y-axis rotation (◦) and STD
Z-axis rotation (◦) and STD
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extra information. This data is gathered using specialized GNSS-IMU -system that
uses GPS signals and odometric technologies to capture the trajectory of the laser
scanner. Information for each point is shown in Table 1. In this work we use the
orientation data, 3D location data, associated GPS timestamps and also the standard
deviation estimates for both the location and the orientation. These are also required
for the graph-SLAM initialization. The orientation data combined with the location
data is commonly referred to as pose data.

It is important to note that during every initial scan of the laser scanner, the point
clouds are in the topocentric coordinate system, that is, the origin of the system is
the laser scanner itself. To create the complete point cloud data used in our work, a
Helmert Transformation is used to first transform the coordinates to the geocentric
coordinate system, where the origin is in the mass-center of Earth. This operation is
commonly referred to as georeferencing and it involves performing the transformation
to every point in the point cloud. The general Helmert Transformation works as
follows:

R′ = µR(R − R0), (1)

where R′ is a single point in a point cloud transformed into new coordinate system,
µ is the scaling factor, R is a rotation matrix containing rotations around all 3
cartesian coordinate axes, R is the original point and R0 represents the new origin
coordinates given in the old coordinate system. Note that in equation (1) the points
are given as a set of coordinates in R3

R′ =

⎡⎢⎣X ′

Y ′

Z ′

⎤⎥⎦ , R =

⎡⎢⎣X
Y
Z

⎤⎥⎦ , R0 =

⎡⎢⎣X0
Y0
Z0

⎤⎥⎦
as column vectors.

In our case, the xy-coordinates are represented after the transformation as coor-
dinates in the Mercator map projection and z-coordinate is represented as distance
from the sea level. (Vermeer, 2019)

3.2 Simultaneous Localization and Mapping
Simultaneous Localization and Mapping (SLAM) algorithms aim to keep track of
an object’s location and orientation (commonly referred to as pose) while updating
a map around the moving object in real time. SLAM-algorithms are widely used,
for example, in autonomous vehicles such as self-driving cars, in drones as well as in
robotics, primarily as a core technique for autonomous robot design. (Kumar, 2020;
Durrant-Whyte and Bailey, 2006) More formally, the SLAM-algorithms aim to solve
a following probabilistic problem given the measurement data from object’s sensors
z and object’s odometry measurements u at some discrete time t ∈ [1, T ] with an
initial guess x0

p(x1:T , m | z1:T , u1:T , x0), (2)
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where xt represent the object’s true pose at time t and m is the map of the environment
consisting a set of landmark attributes. Note that the general notation y1:T refers
to a set of time indexed points from 1 to T and that all the posterior data is used
in solving the problem. An odometry measurement ut refers to relative information
between consecutive robot poses xt and xt+1. In our case, it suffices to find the set
of laser scanner poses x1:T ie. trajectory and the environment map m of the highest
probability instead of the whole posterior probability distribution. Different methods
of solving this SLAM problem include statistical methods such as Kalman filter as
well as Monte Carlo -based particle filtering methods. (Stachniss et al., 2016; Thrun
and Montemerlo, 2006)

In this work, the SLAM-algorithm is not used to create maps and backpack
scanner trajectories in real time. Instead, the existing map and trajectory are post-
processed to create an improved GPS-trajectory. Using the improved trajectory, we
are essentially assigning new GPS-location and orientation values for separate 2D
point cloud measurements, which improves the overall point cloud accuracy when
separate 2D measurements are combined together as presented in Chapter 3.1.

The key assumption in most of the SLAM solving methods is that both the sensor
data z1:T and odometry measurements u1:T are equally affected by the Gaussian
noise. If the measurements were not affected by any noise, the trivial solution for
the SLAM-problem poses x1:T would be to define a starting pose x0 and then obtain
the rest of the poses using exact velocity information from each point recursively
(Grisetti et al., 2017). Another assumption is that all sensor data and odometry
measurements depend only on the relative pose between the object and the observed
landmark (sensor data) or the following object’s location (odometry measurement).

It can be shown that under these assumptions the most probable set of variables
x1:T and m in Equation (2) can be found by minimizing a sum of error functions
that are derived from a graph representation of a SLAM-problem. This method is
better known as Graph-SLAM. (Grisetti et al., 2011)

3.3 Forest Graph-SLAM
The Graph-SLAM is a type of SLAM-algorithm that first creates a factor graph
which is then optimized according to certain constraints. The Forest graph-SLAM
algorithm suitable for trajectory corrections in forest environment can be divided
into three steps:

• Estimate tree trunk locations from the laser scanning data.

• Create a graph from tree trunk locations and original trajectory.

• Optimize the graph with numerical Gauss-Newton algorithm for nonlinear
least-squares problem.

Tree trunk locations in R3 are estimated from the original point cloud data. The
idea is to first extract the ground level height of the terrain from the point cloud
data. After ground level extraction, the point cloud is filtered to contain only points
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with a z-coordinate between 3-3.5 meters from the extracted point cloud. Trunks are
identified from the filtered point clouds by finding arc-like forms from the point cloud
using fitting. Finally, the arcs from the separate filtered point clouds are clustered
together creating the ultimate location estimates for the tree trunks in R3 global
coordinates (Picture 3). Additionally, for every tree location in R3, we collect the
GPS timestamp of the observation (median of trunk points’ timestamps), trunk
radius estimate (average of detected arcs’ radius estimates) and number of observed
points representing a certain tree trunk.

Figure 3: Example of tree detection in Plot 1 point cloud environment (top view)
Black represents points in the point cloud with a z-coordinate between 3-3.5 meters.
Red represents detected tree trunks from the point cloud with arc detection and
orange line represents laser scanner trajectory. The multiple clustered arc-like figures
can be considered to be errors in point cloud due to GPS-deterioration and the
respective arc detections are assumed to be from the same tree.

After tree locations estimation, the optimizable graph is created. This graph
contains 2 types of nodes and edges between them. The nodes x in the graph C(x, z)
are either poses of the laser scanner (initially from the laser scanner trajectory) or tree
trunk locations (initially from the previous step). The edges between the nodes are
measurements z from the scanner: The edges between separate poses are odometry
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measurements from the GNSS/IMU system and the edges between tree locations and
poses are sensor data measurements created by comparing tree observations from
point cloud and location information from a single pose. (Kukko et al., 2017) An
example of an optimizable graph is presented in Picture 4.

Figure 4: An example of an optimizable graph that is used for creating the objective
function. For clarity, the tree observations are labeled white and marked with
upper index m while scanner poses are labeled red. Note that edges between tree
observations and scanner poses take into account only location data while the edges
between consecutive poses use both location and orientation data.

3.4 Graph optimization
The core idea of the graph-optimization is presented next. To obtain the optimized
trajectory for the laser scanner, we want to find a set of nodes x = (t, q) that
best support the odometry measurements and sensor data from the separate point
clouds. The poses contain the 3-dimensional location of the scanner ti ∈ R3 and
the orientation described with rotation axis r′

i ∈ R3 and rotation angle θi as unit
quaternion qi = Q(θi, r′

i). For basic preliminaries of quaternions, see Appendix A.
Decision variables in our optimization problem are the graph nodes, that is the
tree locations and the laser scanner poses. The edges, on the other hand, can be
considered the constraints of the problem: The edges zij between nodes xi and xj are
the measured relative transformations between the poses. For edges between scanner
pose and tree location marked as zm

i j, we consider only 3D locational data, thus
for these edges zm

i j = tij. For the edges between the consecutive scanner poses, the
orientation data is also used: zij = (tij, qij). The difference between the measured
transformation and the actual transformation between the two nodes is described
with the error function e(xi, xj, zij). (Grisetti et al., 2010)
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The optimized trajectory (along with possibly corrected tree locations) is thus
obtained by minimizing the sum of all error function values in the whole graph.
Visualization of the decision variables prior and after the optimization process is
shown in Picture 5. The complete optimization problem can be presented as

F (x) =
∑︂

i,j∈C

e(xi, xj, zij)T Ωij(xi, xj, zij) (3)

x∗ = argmin F (x),
where e(xi, xj, zij) is the column vector containing the error values from location
part of constraint and orientation part of the constraint. The Ωij(xi, xj, zij) for
certain constraint between two nodes is the entry in the information matrix which
tells us about the accuracy of the certain edge. The estimated accuracy information
of the constraint zij is the inverse of covariance of the measurement data, which
is obtained using standard deviation estimates of input data from GNSS-IMU -
system as explained in Section 3.1. The information estimate for single constraint
can be considered an error function weight for certain edge, where errors with
higher measurement accuracy are weighted more and vice versa. Ultimately the
measurements with higher covariance (and therefore higher possible measurement
error) decrease the weight of the error function and its overall cost in the system.
(Jelineck, 2016)

Figure 5: Visualization of some of the decision variables x prior and after the
optimization in forest sample Plot 1. Yellow line shows the initial trajectory and red
points show the initial observations. Purple line shows the optimized trajectory and
green points show the optimized observations.
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3.5 Error Functions
Graph-optimization is not only used in solving SLAM-problems. Many other problems
such as Bundle Adjustment use similar graph representation to derive the objective
function. The general graph-optimization framework g2o uses the sum of error
functions to create the objective function for the minimization problem and can
be used for BA problems and SLAM-problems alike. Consequently, this graph-
optimization framework is not sensitive to sensor data formats, that is, any type of
measurable physical quantity can be used as a base for graph-optimization. This
means that the error function e(xi, xj, zij) must be created separately for each specific
problem. (Grisetti et al., 2011, 2017)

In Forest Graph-SLAM the goal is to compare the measured relative transfor-
mations of both the location data ti ∈ R3 as well as orientation data of the scanner
qi = Q(θi, r′

i). Generally the error function between 2 decision variables in g2o
graph-optimization framework can be written as

e(xi, xj, zij) = |hk(xi, xj) − zij|, (4)

where zij is the measured transformation (edge) and hk is the synthetic measurement
function that calculates the actual transformation between nodes xi and xj.

For example, the error function between tree observations and scanner poses is
easy to determine since only 3-dimensional location data is considered. According
to equation (4) The transformation between two points in R3 is determined by
translation vector between the points and therefore the error for these edges is simply

e(xi, xj, zij) = |tij − ti − tj|, t ∈ R3, (5)

that is the difference between measured location transformation and actual location
transformation between xi and xj.

The error function between consecutive poses uses 3-dimensional location data as
well as orientaton data. This error function value is thus a 2-dimensional column
vector consisting of the location transformation error between two points as described
in equation (5) and orientation transformation error described using unit quaternions.
The difference between measured orientation and actual orientation normally is
simply qij(qjq

−1
i )−1, where qi = Q(θi, r′

i). Orientation information, however, is also
used to define estimated orientation transformations in this case. The overall error
function for consecutive poses is

e(xi, xj, zij) = (zij ⊕ (x−1
i ⊕ xj))[1:6],

where ⊕ is defined as motion composition operator

xi ⊕ xj =
[︄
qi(tj)
qi · qj

]︄
,

such that (·)[1:6] is an operator selecting first 6 elements of the vector argument.
(Grisetti et al., 2010)
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3.6 Least-Squares Solving method
The objective function (3) minimization can be carried out using Gauss-Newton
algorithm for nonlinear least-squares problems. This iterative algorithm uses local
Taylor-approksimations around the current trajectory estimate to create increments
that minimize the value of the objective function. For simplicity of notation we
define e(xi, xj, zij) := eij(x̂) The framework of single iteration in the algorithm is as
follows:

• Create Taylor expansions of the error functions around the current estimate of
x using Jacobian Jij of eij

• Create the objective function local approksimation with the error function
expansion and reformulate the objective function in quadratic form.

• Compute the increment x′ by solving the linear system of equations

• Obtain solution by adding the increment x′ to the current estimate x

Assuming all the components of the decision variables x are euclidean, it suffices to
create Taylor expansion of the error function normally as eij(x̂ + ∆x̂) ≃ eij + Jij∆x̂.
In our case, however, the orientation data qi = Q(θi, r′

i) is described with unit
quaternion to prevent singularities in the optimization process. The components in
this representation span over the non-euclidean rotation group SO(3), which prevents
the use of ordinary Gauss-Newton solving method.

The restriction to use only euclidean components in the optimization can be
avoided by interpreting the SO(3) space as a manifold, a space which behaves locally
as an euclidean space. The workaround is to substitute the normal + -operator with
⊞ -operator that serves as a map for variation ∆x from the Euclidean space to a
manifold. More formally, the ⊞ -operator is a map

⊞ : S × R3 → S

that takes current state space S and small variation in R3 and yields the resulting
state space in S. In our case the state space consists of location in R3 and orientation
in SO(3). Variance in euclidean location can be easily expressed by simple vector
addition, whereas variation in orientation is expressed using unit quaternions q. The
formulation of ⊞ for our state variable x is

x ⊞ ∆x =
[︄

t + ∆t

q · exp(∆q
2 )

]︄
,

where q is unit quaternion and t is location in R3 Hertzberg et al. (2013).
The Taylor expansion of the error function in the manifold environment can be

presented as follows:

eij(x̂ ⊞ ∆x̃) ≃ eiĵ + Jij
ˆ ∆x̃ (6)
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where
Jij
ˆ = ∂eij(x̂ ⊞ ∆x̃)

∂∆x̃

represents the Jacobian in the manifold. Thus, the local approximation of the
objective function is of form

F (x ⊞ ∆x) =
∑︂

i,j∈C

Fij(x̂ ⊞ ∆x̃) =
∑︂

i,j∈C

eij(x̂ ⊞ ∆x̃)T Ωijeij(x̂ ⊞ ∆x̃),

which according to equation (6) can be expressed as follows:

F (x ⊞ ∆x) ≃
∑︂

i,j∈C

(eiĵ + Jij
ˆ ∆x̃)T Ωij(eiĵ + Jij

ˆ ∆x̃)

≃
∑︂

i,j∈C

eiĵ

T Ωijeiĵ⏞ ⏟⏟ ⏞
cij

+2 eiĵ

T ΩijJij
ˆ⏞ ⏟⏟ ⏞

bij

∆x̃ + ∆x̃T Jij
ˆ T ΩijJij

ˆ⏞ ⏟⏟ ⏞
Hij

∆x̃

Removing the sum and rearranging leads us to a following quadratic equation:

F (x ⊞ ∆x) ≃ c + 2bT ∆x̃ + ∆x̃T H∆x̃,

which can be minimized by normal Gauss-Newton approach by solving the following
linear system. This minimization yields the increment direction for a single iteration
of the Gauss-Newton from

H∆x̃∗ = −b

by solving for ∆x̃∗. The single iteration solution x∗ is thus obtained by re-mapping
the increment ∆x̃∗ to original non-euclidean space with ⊞. Instead of adding the
increment normally to the current estimate, we obtain solution as:

x∗ = x ⊞ ∆x̃∗

using ’boxplus’ operator instead of normal summation.
(Grisetti et al., 2010; Hertzberg et al., 2013)

4 Results
The test data was collected from Evo forest study area located in Hämeenlinna,
Finland. The overall study area contains roughly 120 sample plots of size 32x32
meters Boreal Forest Zone environment. The main tree species appearing in Boreal
Forest Zone environment are pine, spruce and birch.

In this work 5 different 32x32 meters plots were analyzed and SLAM-correction
was applied for every plot independently. In Table 2 the key attributes for each plot
and reference data information is presented.
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Table 2: Measurement information for each forest plot located in test site Evo

Plot number 1 2 3 4 5
Trajectory length (m) 380.3 415.2 527.3 420.5 326.1
Trajectory duration (s) 345 399 633 448 351
Number of trees 95 197 281 136 75
Number of observations 225 263 226 182 474
Initial plot height error (m) 0.528 2.955 2.866 1.310 0.645

The input data for SLAM-framework was collected AkhkaR4DW VUX-1HA laser
scanner together with NovAtel Pwrpak7 GNSS-IMU localization equipment mounted
on a backpack. The measurement frequency for point cloud data and trajectory data
was 200 Hz. The point density for the laser scanner was set to 5085 points for single
measurement with the scanning angle of 360 degrees with scanning surface roughly
perpendicular to the moving direction. The average moving speed for the of the
backpack scanner is roughly 1 m/s in the forest terrain. The whole backpack-mounted
equipment for data collection is shown in Picture 2.

Figure 6: Plot 3 and Plot 4 unoptimized and optimized trajectory aligned from top
view

Computational tools used for Forest Graph-SLAM included Matlab-script for
collecting tree observations as well as Python-script that creates the graph from
observations and original trajectory and sends it trough the g2o-optimizer. The
observations are obtained by performing tree detection process in consecutive 10
second time windows of a single plot point cloud to create duplicate observations
from single tree. The tree observations input for graph creation and trajectories
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are provied all in an easily accessible text file format. Point cloud data, on the
other hand, is in a .laz-file format that was accessed by a separate C++-script from
Matlab-environment. All the visualization results are created using external software
TerraScan and Matlab-visualization tools. Examples of aligned unoptimized and
optimized graph are shown in Figure 6 and in Appendix B.

The automated algorithm for collecting tree locations in 10 second time windows
of the original point cloud uses arc detection method developed by Eric Hyyppä.
(Hyyppä et al., 2020) The parameters for the tree detection were set so that only
observations with over 0.5m radius were considered, 90% of an inlier ratio for circle
fitting was required as well as 30% of the arc length. This improves the reliability of
the tree detection but decreases the amount of trees detected. To hasten the detection
process, the point cloud data was filtered so that only points with 3-3.5 meters from
detected ground were considered. The ground level detection for the filtering was
performed using external software TerraScan based on point cloud triangulation.
(TerraSolid, 2021)

Table 3: Initial internal point cloud accuracy and Forest Graph Slam -optimized
internal point cloud accuracy for each forest plot. Here the errors are calculated as a
distance (m) from tree observation in a cluster to the center of the cluster. For error
statistics, all of the tree observations from all clusters were taken into account.

Plot number 1 2 3 4 5
Mean error (initial) 0.353 0.687 0.361 0.759 0.645
Mean error (optimized) 0.005 0.002 0.002 0.006 0.013
Error STD (initial) 0.236 0.484 0.367 0.534 0.438
Error STD (optimized) 0.005 0.002 0.003 0.005 0.014
Max error (Initial) 1.117 2.070 1.180 2.025 2.292
Max error (optimized) 0.040 0.010 0.013 0.027 0.124

In order to measure the improvement of the point cloud accuracy, the internal
accuracy of the Forest Graph Slam method was considered. In this work, the internal
accuracy of a landmark (in our case, a tree) is the average planar distance from all
clustered landmark observations presumably belonging to the same actual landmark
to the center of that landmark cluster. The tree observations were clustered together
by combining observations with similar radius, planar location and long enough time
windows. The point cloud internal accuracy is then defined by averaging over all the
tree observations and their respective clusters as in Table 3. Because the optimization
process itself is not fixed into a specific orientation or location, comparing internal
accuracy is more applicable than absolute accuracy comparison without up to date
reference data. An example of comparison between original point cloud and optimized
point cloud for single plot is shown in Picture 7. The overall results and statistics
for the internal accuracy for each plot are shown in Table 3.

Additionally, the overall point cloud accuracy without landmarks was tested
briefly using height error measurements at the planar crossings of scanner trajectory.
The height error for a crossing is defined as a difference between the z-coordinates
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(elevation) of the trajectories in planar crossings where by assumption their elevation
should roughly be the same. The results of overall accuracy for each plot are shown
in Table 4

Table 4: The overall point cloud accuracy (elevation component) and Forest Graph
Slam -optimized overall point cloud accuracy (elevation component) for each forest
plot. Here the errors are calculated as a difference between the z-coordinates of
the trajectories in planar crossings. For error statistics, all of the planar trajectory
crossings are taken into account.

Plot number 1 2 3 4 5
Mean error (initial) 0.528 2.955 2.866 1.310 0.645
Mean error (optimized) 0.373 0.789 2.015 0.690 0.085
Error STD (initial) 0.402 1.790 2.037 0.920 0.313
Error STD (optimized) 0.294 0.623 1.994 0.705 0.054
Max error (Initial) 1.298 5.902 5.372 2.907 1.325
Max error (optimized) 0.880 2.215 5.235 1.742 0.139

5 Summary
Using Forest Graph Slam framework, we were able to increase the accuracy of 5
point cloud data sets collected from 5 different forest test sites with backpack laser
scanning equipment. To optimize the point cloud accuracy, we first created a graph
representation of the data from original trajectory and tree observations from the
original point cloud. Using graph-optimization, we obtained the optimized trajectory,
which was then used to create optimized point cloud from the environment.

We confirmed the results by comparing the internal accuracy of the point clouds
before and after the optimization process. The results show that the planar accuracy
of tree observations was increased from decimeter level to millimeter level as presented
in Table 2. We also confirmed the increased accuracy by plotting the point cloud using
external software (Picture 7) to see that generally the observable tree trunks have
indeed better accuracy after the process. The millimeter level accuracy for planar
tree locations is sufficient to be used accurately for forest management purposes.
Extracting individual tree attributes would in addition require accurate overall point
cloud accuracy around the trees.

Although the internal accuracy of the tree observations was increased in all of
the plots almost equally, the overall point cloud accuracy described with elevation
error was lacking for some of the plots. We confirmed that smaller number of tree
observations compared to actual trees prior the optimization results in worse overall
accuracy of the point clouds (especially noticeable in Plot 3, in Figure 6). This is
natural since less tree observations results in less constraints in the optimization
process potentially decreasing the effect of optimization process. To overcome this,
one could perform the arc detection for the original point cloud with softer constraints
to create more tree observations. However, this can potentially result in more false
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Figure 7: Example of accuracy improvement in part of Plot 1 point cloud visualization.
The upper picture represents the unoptimized point cloud and the bottom picture
represents the optimized point cloud. Dark blue plot represents the unoptimized
trajectory. Pink and turquoise both represent the same optimized trajectory. This
figure was produced by Antero Kukko

positive trees, which could create local anomalies in the optimized point cloud. The
optimal parameters for finding the tree observations should then be confirmed with
trial and error with respect to number of trees in the reference data.

Another potential improvement for the algorithm would be to use the Forest
Graph Slam framework iteratively for a single point cloud multiple times. The
first iterations of the framework would potentially fix the initial elevation errors in
the point cloud so that the number of observed trees would increase in the further
iterations. Since lack of tree observations in different time windows is mostly due to
failures in ground level extraction, further improvements in the ground extraction
algorithm would also be useful. As a whole, the arc detection is stable enough
to provide reasonable tree observations if the elevation errors are small enough.
Improving ground detection algorithm or using iterative framework is probably the
most useful approach in future Forest Graph Slam development.

Extracting individual tree attributes for forest management purposes is possible
if both the internal, and overall accuracy of the point cloud suffice. This was the case
for most of the plots in our test site after the optimization. In the future with some
improvements to the framework, Forest Graph Slam could provide a stable source of
forest inventory data from backpack laser scanners in any forest environment.
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A Quaternions
Quaternions are an extension of complex numbers, usually represented as

a + bi + cj + dk

where a, b, c, d ∈ R and i, j, k are the basic quaternions. Quaternions have similar
properties as complex numbers with one important difference: the multiplication of
quaternions is noncommutative. This can be seen from the fundamental formula for
quaternion multiplication

i2 = j2 = k2 = ijk = −1 (A1)

which shows the relationship between the basic quaternions and their similarity to
complex numbers. All of the basic computation rules along with the multiplication
can be derived from the equation (A1).

An alternative interpretation of the quaternions is a combination of a vector and
scalar [︄

s
v

]︄
where s is a scalar and v ∈ R3 This interpretation is especially useful with practical
applications of quaternions such as representing rotations in 3-dimensional space.
Technically, every rotation in R3 can be represented as rotation around some axis
represented as unit vector. This interpretation requires 4 parameters, 3 for the unit
vector in R3 and 1 for the rotation angle. The overall representation can be achieved
by the use of unit quaternion

q = Q(u, θ) =
[︄

cos(θ/2)
usin(θ/2)

]︄

where u is the unit vector and θ is the rotation angle.
It should be noted that rotations can also be represented using only 3 parameters

using Euler’s angles that would provide easier computations. However, the use of
Euler’s angels can produce singularities in some processes. Using 4 parameters to
represent rotations is therefore a more stable approach.
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B Optimized trajectories
In this appendix the unoptimized and optimized trajectories (Pictures B1-B2) are
presented from top view. Note that trajectories are only planar visualizations of pose
variables’ location components ti ∈ R3.

Figure B1: Plot 1 and Plot 2 unoptimized and optimized trajectory aligned
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Figure B2: Plot 5 unoptimized and optimized trajectory aligned
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