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Abstract
This thesis focuses on the development of a multi-attribute decision analysis model
for the selection of air combat tactics. The model is used to support the process of
converting the air component commander’s intent into a course of action (COA).
Such a COA consists of the air combat tactics of four flights, each of which comprises
four fighter aircraft. The primary objective of the thesis is to develop a model capable
of reducing the number of COAs in consideration to a feasible amount.

Selecting air combat tactics efficiently is critical to the success of an air operation.
The difficulty of this task lies in the complexity of evaluating and comparing the
COAs. Ideally, the selected COA should represent the commander’s intent accurately.
In practice, however, the commander’s intent is interpreted at different levels of
the chain of command and can thus suffer unintentional modifications before being
realized as a COA.

In this thesis, air combat tactics are evaluated with respect to three attributes: the
probability of killing the target, the probability of surviving the encounter and the
efficiency of missiles launched. The commander’s intent is interpreted as preference
information concerning the attribute weights, which describe the relative importance
of the attributes. The COAs are compared using the concept of dominance, which
allows for identification of ineffective and effective alternatives with respect to the
interpreted preference information.

Two experiments are performed to study the effect of varying forms of preference
information on the COA recommendations provided by the model. Based on the
results of these experiments, we can conclude that an ordinal ranking of attributes
suffices to reduce the number of COAs in consideration from thousands to a handful.
In addition, the model developed in this thesis identifies effective COAs that are
generally sensible with regard to the given preference information.

Keywords air combat, decision analysis, additive value function, incomplete
preference information
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Tekniikan kandidaatintyön tiivistelmä

Tekijä Perttu Jalovaara
Työn nimi Monitavoitteinen päätösanalyysimalli ilmataistelutaktiikoiden vertailuun

epätäydellisellä preferenssi-informaatiolla
Koulutusohjelma Teknillinen fysiikka ja matematiikka
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Päivämäärä 22.10.2021 Sivumäärä 31 Kieli Englanti
Tiivistelmä
Tässä kandidaatintyössä kehitetään monitavoitteinen päätösanalyysimalli ilmataiste-
lutaktiikoiden vertailuun. Mallilla tuetaan ilmavoimien komentajan tahdon muun-
tamista toimintavaihtoehdoksi (engl. course of action, COA). COA määrittää ilma-
taistelutaktiikat neljälle parvelle, joista jokainen koostuu neljästä hävittäjästä. Työn
päätavoitteena on kehittää malli, joka kykenee tunnistamaan parhaat komentajan
tahdon mukaiset COA:t kaikista vaihtoehdoista.

Ilmataistelutaktiikoiden tehokas valitseminen on tärkeää ilmaoperaation menestyk-
selle. Tämän valintatehtävän haastavuus johtuu COA:iden arvioinnin ja vertailun
monimutkaisuudesta. Valitun COA:n tulisi edustaa komentajan tahtoa täsmällisesti.
Todellisuudessa komentajan tahto tulkitaan monella komentoketjun tasolla, mikä
altistaa sen tahattomille muutoksille ja saattaa johtaa tahdon vastaisen COA:n va-
lintaan.

Tässä työssä ilmataistelutaktiikoita arvioidaan kolmen kriteerin perusteella: vas-
tustajan torjunnan todennäköisyys, selviytymisen todennäköisyys ja ammuttujen
ohjusten tehokkuus. Komentajan tahto tulkitaan preferenssi-informaationa kritee-
ripainoista, jotka kuvaavat kriteerien suhteellista tärkeyttä. COA:iden vertailuun
käytetään dominanssia, joka mahdollistaa tehottomien ja tehokkaiden vaihtoehtojen
tunnistamisen annetun preferenssi-informaation suhteen.

Tässä työssä tarkastellaan kokeellisesti erilaisen preferenssi-informaation vaikutus-
ta mallin tuottamiin COA-suosituksiin. Kokeiden tulosten perusteella havaitaan,
että kriiterien asettaminen ordinaaliseen tärkeysjärjestykseen riittää potentiaalises-
ti parhaiden, komentajan tahtoa noudattavien COA:iden rajaamiseen tuhansista
kymmeniin. Lisäksi koetulokset osoittavat, että työssä kehitetyn mallin tuottamat
COA-suositukset ovat johdonmukaisia annetun preferenssi-informaation kanssa.

Avainsanat ilmataistelu, päätösanalyysi, additiivinen arvofunktio, epätäydellinen
preferenssi-informaatio
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1 Introduction
The primary role of a fighter aircraft is to gain and maintain control of the air.
Establishing control of the air is seen as a prerequisite for all air operations (JP 1-02).
The establishment of control of the air is dependent on many factors ranging from
the capabilities of the aircraft to the skill of the pilots and the tactics used by them.
The ability to evaluate tactical alternatives efficiently is critical to the success of air
operations (AJP-3.3). The development of practices and tools for evaluating and
selecting air combat tactics is therefore warranted.

The combination of tactics for multiple flights, i.e., units of four fighter aircraft, is
referred to as a course of action (COA). The COA is commonly decided by the Air
Operations Center (AOC), which is responsible for actualizing the intent of the air
component commander (JP 3-30). Fighter aircraft can move at extreme speeds in
a three-dimensional domain, which results in a wide range of possible engagement
alternatives. Selecting an effective COA is a difficult task not only due to the sheer
number of alternatives but also due to the complexity of measuring the value of a
COA. Instead of attempting to evaluate each COA in an objective sense, we can
evaluate them with respect to some set of preferences, preferably that of the air
component commander.

The value of a COA is easier to determine if it is evaluated with respect to multiple
attributes, instead of trying to holistically rate it as a whole. The purpose and
the desired end state of a military operation is communicated across the chain of
command through the commander’s intent, which is clear and concise in form (JP
1-02). The commander’s intent can be incorporated into a multi-attribute approach
by interpreting it as preferences concerning the attributes. These preferences can
be represented with a value function, assuming that they satisfy specific axioms
characterizing rational decision making (see, e.g., Salo and Hämäläinen, 2010). The
value function, which is a prevalent decision analysis tool for comparing alternatives,
can then be used to calculate the overall values of COAs (see, e.g., Mustajoki et al.,
2005). In this thesis, we use an additive value function (Keeney et al., 1993) to
evaluate the overall value of each COA as a weighted sum of its scores, i.e., partial
values with respect to each attribute.

This thesis focuses on the development of a multi-attribute decision analysis (MADA)
model for COA selection. The model is used to support the process of converting
the commander’s intent into an effective COA. In the sequel, this process is referred
to as the decision making process. The primary objective of this thesis is to decrease
the number of COAs in consideration from thousands to a handful, thus enabling
the AOC to choose the most suitable alternative efficiently. The effect of varying
attribute weights on the effective COAs identified by the MADA model is studied
experimentally. Interpreting the commander’s intent into exact attribute weights is
often difficult, so we allow incomplete information, i.e., ordinal or otherwise impre-
cisely defined preferences, in the model (Weber, 1987). The modeling of incomplete
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preference information is motivated by its successful use in multi-attribute value
models as well as other areas, including spatial decision analysis (Harju et al., 2019),
simulation based decision making (Mattila and Virtanen, 2015), game theoretical
settings (Kokkala et al., 2019), data envelopment analysis (Salo and Punkka, 2011)
and project portfolio selection (Liesiö et al., 2007, 2008; Tervonen et al., 2017). The
use of incomplete preference information leads to an interval representation of overall
values of the COAs. The overall value intervals can then be analyzed to identify the
efficient COAs, whose potentials for usage in the prevailing real-world scenario are
then evaluated by the AOC.

The thesis is structured as follows. Section 2 briefly introduces the necessary concepts
of air combat and the current practices in COA selection. Section 3 describes the
specifications and the implementation of the MADA model in addition to outlining
the decision making process. Section 4 details two numerical experiments and presents
their results. Lastly, Section 5 concludes the thesis.

2 Selection of Air Combat Tactics
In order to limit the scope of this thesis and to simplify the problem of selecting an
effective COA, we must define what constitutes a COA. In general, any planned
sequence of activities developed to accomplish a mission can be regarded as a COA
(JP 1-02). The missions considered in this thesis fall under the category of defensive
counter air operations, in which friendly fighter aircraft (blue) are used against threat
fighter aircraft (red). Thus, we use a specific definition of the COA as a coordinated
employment of the air combat tactics, techniques and procedures (TTPs) of four blue
flights, each consisting of four fighter aircraft. A TTP can generally include a variety
of tactical principles and schemes that the pilots of a flight follow to coordinate their
efforts towards mission success. However, the concept of TTPs can be simplified
to include only two essential tactical contracts: 1) the minimum acceptable range
between blue and red aircraft and 2) the missile launch ranges of blue aircraft.

Before proceeding further, it is necessary to specify the assumptions and restrictions
of the MADA model developed in this thesis. In addition to using a simplified
definition of TTPs, the model relies on two significant assumptions. First, it is
assumed that there are no geographical restrictions on COA selection. In reality,
however, such restrictions can be imposed by a multitude of factors, ranging from
ground-based air defense of the red to the command and control capability of the blue
(JP 3-30). Because of the disregard for any geographical restrictions, the model can
recommend COAs that are theoretically effective but infeasible in practice. Second,
we are not incorporating any information on the red aircraft into the model. For
example, in reality, intercepting a flight of multi-role fighters requires a different
tactical approach than targeting a single bomber. These assumptions need to be
taken into account when considering the recommendations provided by the model.
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Let us consider three possible alternatives for the minimum acceptable range between
blue and red aircraft (CNATRA P-825): maximum range (Rmax), mid-range (Rmid)
and minimum range (Rmin). We refer to these three ranges as geometry alternatives.
There are important distinctions in the risks and opportunities of flights using TTPs
with different geometry alternatives. Assuming that the geometry management of
the flight is successful, using Rmax allows mission completion while minimizing the
risk of red missile launches against the flight. A flight using Rmid actively moves
towards the target while maintaining the ability to kinematically defeat, i.e., dodge,
any incoming missiles. Lastly, a flight employing Rmin seeks to get close to the target
and compromises the ability to kinematically defeat incoming missiles.

In a similar fashion, we recognize three possible ranges at which the blue flight can
employ missiles against the enemy (CNATRA P-825): long-range launch (Foxlong),
medium range launch (Foxmed) and close-range launch (Foxclose). These three alterna-
tives are referred to as launch range alternatives. Fox is a brevity word in air combat
terminology that is used to indicate the launch of an air-to-air missile. Foxlong is the
safest launch range alternative, as it maximizes the range between the blue and the
red aircraft at missile launch. Missiles launched at this range are the easiest for the
target to kinematically defeat. Foxmed is a balanced launch range alternative that
moderately exposes the blue flight to red missiles and increases the effectiveness of
blue missiles compared to Foxlong. Finally, Foxclose maximizes the effectiveness of
the launched missiles but it also exposes the blue flight to missile launches of the
red. Overall, the closer the flight moves to the target, the higher is the probability
of killing the target. At the same time, moving closer to the target reduces the
probability of survival of the blue flight. Thus, the selection of geometry and launch
range alternatives revolves around balancing these probabilities.

Foxlong Foxmed Foxclose

Rmax Rmid Rmin

Figure 1: Geometry (Rmax/mid/min) and launch range alternatives (Foxlong/med/close).
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The geometry alternatives and the launch range alternatives of a flight are linked in
the following manner. A flight can only employ Foxlong at Rmax, Foxmed at Rmid and
Foxclose at Rmin. This relationship is visualized in Figure 1. It is natural to assume
that a blue flight will move closer to the red aircraft only if it intends to perform
missiles launches from a closer range. Thus, a flight that uses Rmax geometry must
also use Foxlong as its only launch range. Moreover, the usage of Rmid geometry
leads to two possible combinations of launch range alternatives, namely Foxmed and
a combination of Foxmed and Foxlong. Let us now consider the possible launch range
combinations of a flight that follows Rmin geometry. Each of the combinations must
include Foxclose by assumption. Therefore, the combinations vary only in the use of
Foxlong and Foxmed: The flight can use one of the two, both, or neither. Thus, the
number of possible launch range combinations for Rmin is four. Enumerating the
launch range combinations of all three geometry alternatives results in seven unique
combinations. The seven combinations are listed as the rows of Table 1.

Table 1: TTPs as combinations of geometry and launch range alternatives. The
letters L, M and C refer to Foxlong, Foxmed and Foxclose, respectively. Cells with an
’x’ indicate the use of the columnar launch range with the geometry of that row.

TTP Geometry Launch range alternatives
alternative Foxlong Foxmed Foxclose

L Rmax x
LM Rmid x x
M Rmid x

LMC Rmin x x x
LC Rmin x x
MC Rmin x x
C Rmin x

The same geometry alternatives and launch range combinations are used by the
whole flight, i.e., the four aircraft will always follow a common plan. Furthermore,
each of the seven combinations listed in Table 1 defines a unique TTP. The TTPs are
labeled with a combination of the letters L, M and C according to the launch range
alternatives, where L refers to Foxlong, M refers to Foxmed and C refers to Foxclose.
The geometry alternative of a TPP can be deduced from the shortest launch range
used. A COA consists of the TTPs of a formation of four flights. For most formations,
we can identify flights as leading or trailing based on their relative positions. As each
flight can choose from seven different TTPs, there are a total of 74 = 2401 unique
COAs. Considering the many simplifications we made while defining air combat
tactics, the number of COAs is still rather large.

Before manifesting as a selected COA, the commander’s intent is passed through the
chain of command (AJP-3.3). The AOC is responsible for selecting an effective COA
that also conforms to the commander’s intent. This task is clearly demanding. Ideally,
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the selected COA should represent the air component commander’s intent accurately.
In practice, however, the commander’s intent is interpreted at different levels of the
chain of command before it is realized as the TTPs of blue flights. The commander’s
intent is typically concise and provides guidance only at the operational level (JP
3-30). Thus, an interpretation is necessary in order for the AOC to select an effective
COA. Verbal interpretations are naturally susceptible to unintentional modifications.
A more robust approach would be to interpret the commander’s intent as preference
statements concerning the relative importance of some well-chosen attributes of COAs.

In addition to providing robustness throughout the chain of command, the MADA
model developed in this thesis enables evaluation and ranking of COAs. During the
planning phase of an operation, the AOC has enough time to evaluate a vast range
of COAs with the decision support provided by the model (AJP-3.3). Therefore, it
is probable that the first COA can be selected so that it represents the commander’s
intent accurately. However, the situation might change rapidly after the first contact
with the red and thus the COA may have to be dynamically modified. Using the
model in a fast evolving combat scenario might prove to be challenging because there
is no constantly updating source of preference information. Therefore, the strength
of the model lies in the planning phase of an operation, when preference information
is reliably obtainable and time is not scarce.

3 Multi-Attribute Decision Analysis
(MADA) Model

3.1 Attributes
Having identified 2401 unique COAs in Section 2, the next step is to evaluate the over-
all value of each COA according to the commander’s intent. Using standard decision
analysis terms, the COAs are decision alternatives and the air component commander
is the decision maker (DM). The value of a decision alternative is measured with
respect to attributes. A multi-attribute value function representation of the DM’s
preferences can be used to assess the overall value of the decision alternatives (Keeney
et al., 1993). For this multi-attribute approach, we need to define attributes that are
sensible for measuring the value of a COA.

In air combat, the ratio between red aircraft shot down and blue aircraft lost is a
traditional measure of performance output (Mansikka et al., 2021). The number of
red aircraft killed and the number of surviving blue aircraft can also be used as an
operational objective in the commander’s intent. According to Mansikka et al. (2021),
the number of missiles required for a kill is another typical air combat performance
indicator. The efficient use of resources, including missiles, is especially desirable for
defensive operations, where a defender typically possesses inferior material resources
compared to an attacker (Holmes, 1995).
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Based on these air combat performance indicators, let us define three attributes
for measuring the value of a COA: the probability of killing red aircraft (PK), the
probability of survival for blue aircraft (PS), and the efficiency of air-to-air missile
usage of blue flights (EM). Each COA can be ranked with respect to these three
attributes. It is obviously impossible to accurately calculate the actual probability of
a complex event, such as the survival of the blue aircraft for a given COA. However,
this is not required for establishing a relative ranking of the COAs with respect to
each attribute. These attribute-specific rankings are determined with a rule-based
approach. Three rules are defined for each attribute, as shown in Table 2. The
preference order is established by first dividing the COAs into more and less preferred
groups according to the first rule, after which the second and third rule are used to
generate smaller subgroups. The attributes and the associated rules are in no way
absolute but they are sufficient in that they can be used to compare the COAs.

Table 2: Attribute rules. Lead and trail refer to leading and trailing blue flights.

Attribute Rule 1 Rule 2 Rule 3

Kill probability (PK) Shoot often Prefer Foxclose
Lead shoots from a
closer range than trail.

Survival probability (PS) Prefer Foxlong Shoot often Trail shoots from a
closer range than lead.

Missile efficiency (EM) Shoot seldom Prefer Foxclose
Lead shoots from a
closer range than trail.

3.2 Additive Value Function
In this thesis, the attributes are assumed to be mutually preferentially independent
(Keeney et al., 1993). Mutual preferential independence implies that the preference
over the levels of an attribute does not depend on the levels of the other attributes.
Thus, an additive value function can be used to evaluate the overall value of a COA.
The additive value function is a weighted sum of the scores of a COA with respect
to each attribute. Multiplicative and other, more complex, non-additive forms of
multi-attribute value functions (see, e.g., Dyer and Sarin, 1979) are not considered
in this thesis.

The set of decision alternatives is now denoted by X = {x1, x2, ..., x2401}, where xj is
the j-th COA. Assuming that there are n attributes instead of the exemplary three,
the overall value of the COA x ∈ X is

v(x) =
n∑︂

i=1
wivi(xi) , (1)

where xi is the measurement level of COA x with respect to attribute i, vi is the single
attribute value function of attribute i, and wi is the attribute weight of attribute
i. The attribute weights are normalized, such that wi ∈ [0, 1] ∀ i ∈ {1, 2, ..., n} and
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∑︁n
i=1 wi = 1. The measurement level xi is a direct measure of the COA with respect

to the attribute i, e.g., the average number of missiles required for a kill in the case
of the efficiency attribute EM. Defining the measurement levels can be difficult for
some attributes, e.g, PK and PS, because there are no directly measurably quantities
related to them. This problem is avoided with the rule-based approach discussed in
Section 3.1.

The single attribute value function vi in Equation (1) converts the measurement
level xi into a normalized score vi(xi) ∈ [0, 1] with respect to attribute i. Finding
an explicit form for each single attribute value function is not an easy task, as
it usually requires input from the DM or from another expert in the field. Salo
and Hämäläinen (2001) refer to this task as score elicitation and present examples
of ordinal and cardinal methods for accomplishing it. Cardinal methods of score
elicitation include directly rating the alternatives on a [0, 100] scale and eliciting
ratio comparisons about value differences. A simple, ordinal method is to rank the
alternatives with respect to each attribute and linearly score them by giving the
least preferred alternative a zero and the most preferred alternative a one. Numerous
other score elicitation methods can be found in the literature (see, e.g, Keeney et al.,
1993; Salo and Hämäläinen, 2010).

3.3 Incomplete Preference Information
Attribute weights describe the relative importance of attributes. The elicitation of
exact point estimates for the attribute weights is challenging in the selection of COAs
due to the imprecision of the commander’s intent. Complete preference information is
successfully used in many applications and numerous techniques have been developed
for the elicitation of exact point weights (Weber, 1987). However, the modeling of
incomplete preference information allows us to select COAs even if we cannot obtain
exact weights. Incomplete preference information on the weights can be given in
many forms, ranging from ordinal preferences, e.g., w1 ≥ w2 ≥ w3 or ‘attribute 1
is more important than attribute 2 which is more important than attribute 3’, to
interval-valued ratio statements, e.g., 3 ≤ w1

w2
≤ 5 or ‘attribute 1 is three to fives

times more important than attribute 2’. These types of preference statements are
discussed in detail by Salo and Hämäläinen (1992, 1995, 2010).

Incomplete preference statements impose linear constraints on the set of all possible
attribute weights. The set of feasible weights consists of the combinations of attribute
weights that satisfy those linear constraints (Salo and Hämäläinen, 1992). For the
sake of example, let us inspect the set of feasible weights when working with the
three COA attributes defined previously. The weights of attributes PK, PS and EM
are denoted by wP K , wP S, and wEM , respectively. Before we gain any information
on the commander’s intent, the set of feasible weights, denoted by S, is equal to
the unconstrained set of weights W = {(wP K , wP S, wEM) | wP K + wP S + wEM =
1, wi ≥ 0, i = PK, PS, EM}. By contrast, complete information on the attribute
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weights, e.g., (wP K , wP S, wEM ) = (0.4, 0.3, 0.3), reduces the set of feasible weights to
a singleton, i.e., S = {(0.4, 0.3, 0.3)} ⊂ W .

Having discussed the two edge cases, i.e., no information and complete information,
let us now consider an example with two interval judgments about the importance
of the attributes. We have received the following verbal information from the com-
mander: ‘Kill probability is one to three times as important as survival probability
and one to two times as important as missile efficiency’. This preference statement is
formulated mathematically as 1 ≤ wP K

wP S
≤ 3 and 1 ≤ wP K

wEM
≤ 2. Alternatively, interval

judgments of this type can be written in the form Ii,j = [lij, uij], where lij is the
lower bound and uij is the upper bound for the ratio of the i-th attribute weight
and the j-th attribute weight (Salo and Hämäläinen, 1992). Using this notation, the
preference information is compactly written as IP K,P S = [1, 3] and IP K,EM = [1, 2].
Figure 2 visualizes the linear constraints imposed by the aforementioned interval
judgments and the resulting set of feasible weights S in a ternary plot.

Figure 2: Ternary plot of the linear constraints imposed by the interval judgments
IP K,P S = [1, 3] and IP K,EM = [1, 2]. The resulting feasible region S is highlighted.

Interval judgments allow the commander to express his preferences as approximate
ratio statements instead of exact estimates (Salo and Hämäläinen, 1995). This
method falls into the category of preference programming methods. Preference
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programming can be characterized as the development of interactive decision support
methods that accommodate incomplete preference information (Arbel, 1989). Salo
and Hämäläinen (2010) present a variety of preference programming methods that are
viable options for weight assessment in the context of this thesis. However, it is not
necessary to implement support for all of these weight assessment methods directly
into the MADA model developed in this thesis. We can accomplish a sufficient
level of adaptivity in weight assessment by supporting two types of input: linear
constraints and attribute-specific interval restrictions, because most of the methods
showcased by Salo and Hämäläinen (2010) output one of the two.

3.4 Comparing Overall Value Intervals
The comparison of COAs with incomplete information differs essentially from the
case of complete information. If the commander has exact estimates for the attribute
weights, the comparison of decision alternatives is straightforward because an exact
overall value for each COA is determined by the additive value function (1). By
contrast, the use of incomplete preference information leads to each COA having a
range of possible overall values on the set of feasible weights, making the comparison
more difficult. Weber (1987) presents two concepts of dominance for comparing
decision alternatives under incomplete preference information, both of which are
based on representing the overall values as intervals.

The overall value interval of a COA is denoted by V (x) = [v
¯
(x), v̄(x)], where v

¯
(x)

is the lower bound and v̄(x) is the upper bound for the possible overall values of
the COA. The attribute weights are allowed to vary within the constraints obtained
from preference information (Salo and Hämäläinen, 1992). After the calculation of
overall value intervals with the additive value function, the COAs can be compared
based on pairwise dominance, the less restrictive dominance criterion introduced by
Weber (1987). The COA xj dominates the COA xk in S, which is formally written
as xj ≻S xk, if and only if⎧⎨⎩V (xj) ≥ V (xk), for all w ∈ S,

V (xj) > V (xk), for some w ∈ S.
(2)

In other words, the conditions for pairwise dominance (2) hold when the overall value
of xj is greater than or equal to the overall value of xk for all attribute weights in
the feasible set and strictly greater for some. Pairwise dominance thus implies that
the dominating COA is never worse than and sometimes better than the dominated
COA in light of the commander’s preferences.

The COA x is non-dominated if and only if there are no other COAs that dominate
it in the set of feasible weights S, i.e.,

x ∈ XND ⇐⇒ ∄ x′ ∈ X : x′ ≻S x , (3)
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where XND ⊂ X denotes the set of non-dominated decision alternatives. Therefore,
each non-dominated COA can be considered effective because there are no strictly
better alternatives available in view of the commander’s preferences. Furthermore,
Equation (3) implies that all dominated COAs should be left out of consideration
because for each dominated COA x ∈ X \ XND there exists at least one strictly
better alternative. The concept of pairwise dominance thus allows us to exclude a
number of ineffective, dominated COAs from the analysis and determine the set of
preferred, non-dominated COAs.

The pairwise dominance relation of two COAs is determined by solving a set of linear
optimization problems (see, e.g., Salo and Hämäläinen, 1992). The conditions for
pairwise dominance (2) can be rearranged in the following manner:

V (xj) ≥ V (xk), for all w ∈ S ⇐⇒ min
w∈S

[V (xj) − V (xk)] ≥ 0 (4)

V (xj) > V (xk), for some w ∈ S ⇐⇒ max
w∈S

[V (xj) − V (xk)] > 0 . (5)

The dominance relations of two COAs can thus be established by examining their
minimum and maximum value differences. COA xj dominates COA xk if their
minimum value difference (4) is non-negative and their maximum value difference (5)
is positive. Conversely, if the minimum is negative and the maximum is non-positive
then xj is dominated by xk. Lastly, if neither of these statements is true then neither
COA dominates the other. This leads us to two linear optimization problems with
the same constraints, but different objectives:

min
w∈S

V (xj) − V (xk) (6)

max
w∈S

V (xj) − V (xk) (7)

s.t. Aw ≤ b, (8)
n∑︂

i=1
wi = 1, (9)

wi ≥ 0. (10)

The objective functions (6) and (7) stem directly from the rearranged conditions
for pairwise dominance, (4) and (5), respectively. The first linear constraint (8)
contains the m-by-n matrix A, the n-dimensional attribute weight vector w and the
m-dimensional vector b, where m is the number of constraint rows imposed by the
preference information and n is the number of attributes. The type of the preference
statements dictates the definition of matrix A and vector b. Continuing with our
example of interval judgements IP K,P S = [1, 3] and IP K,EM = [1, 2], the associated
linear constraints would be given as

A =

⎡⎢⎢⎢⎣
−1 1 0
1 −3 0

−1 0 1
1 0 −2

⎤⎥⎥⎥⎦ and b =

⎡⎢⎢⎢⎣
0
0
0
0

⎤⎥⎥⎥⎦ .
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The elements of b are non-zero in the case of strict rankings, e.g., wP K − wP S ≥ 0.2
(Salo and Hämäläinen, 2010). The remaining constraints (9) and (10) ensure that
the attribute weights remain within the bounds of their definition, i.e., wi ∈ [0, 1].

Establishing every pairwise dominance relation for 2401 COAs by brute force would
require us to solve

(︂
2401

2

)︂
· 2 = 5 762 400 linear optimization problems. Fortunately,

the number of the problems can be reduced with a few simple steps. First, the
precise structure of the complete dominance relation graph (see, e.g., Weber, 1987),
i.e., which COA dominates which, is not of any interest to the commander nor is it
necessary for completing the decision process. It is sufficient to know only whether a
COA is dominated or non-dominated. Therefore, if an alternative is established to
be dominated, we can immediately exclude it from all further computations. Second,
we can define and utilize an additional form of dominance, which is introduced by
Weber (1987) as absolute dominance. According to this dominance criterion, COA
xj dominates COA xk absolutely if the lower bound of the overall value of xj is
greater than the upper bound of the overall value of xk, i.e., v

¯
(xj) > v̄(xk). Unlike

pairwise dominance, the absolute dominance of two COAs can be visually deduced
from the overall value intervals. To showcase this fact, the overall value intervals of
five arbitrarily defined COAs are plotted in Figure 3. The minimum possible value
of x5 is clearly greater than the maximum possible value of x3, i.e., v

¯
(x5) > v̄(x3).

Thus, x5 dominates x3 absolutely. The fact that x2 dominates x1, x3 and x4 can be
confirmed only by solving the associated linear optimization problems.
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Figure 3: Overall value intervals of five COAs xj, j ∈ {1, 2, 3, 4, 5}.
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Absolute dominance is more restrictive and easier to identify in comparison to pairwise
dominance. Moreover, the set of absolutely dominated COAs is a subset of the set of
dominated COAs (Weber, 1987). Therefore, it is sensible to determine the absolute
dominance structure of COAs before computing each pairwise dominance relation.
Thus, the pairwise dominance relation of two COAs needs to be computed only when
their overall value intervals overlap (Salo and Hämäläinen, 1995), e.g, in the case
of COAs x1 and x2 in Figure 3. This allows us to further reduce the amount of
pairwise dominance computations, which in turn increases the potential of the model
for real-world use because the number of COAs can be large, as discussed in Section 2.

If the preference information acquired from the commander results in too many
non-dominated COAs, we can elicit additional preference statements which will
impose stricter linear constraints on the set of feasible weights. Assuming that the
new preference statements adhere to certain rules of consistency (see, e.g., Salo and
Hämäläinen, 2010), all existing dominance relations are preserved and, usually, new
ones are established. Therefore, the set of non-dominated COAs XND stays the same
or becomes smaller when exposed to additional preference statements.

When we have exhausted the available preference information, the set of non-
dominated alternatives can not be reduced further in any objective manner. Decision
rules are commonly used to derive a decision recommendation when there are several
non-dominated alternatives left. Salo and Hämäläinen (2010) present a variety of
decision rules, ranging from maximization of expected value to weight centralization.
The following four principles are examples of decision rules that are based on overall
value intervals of COAs (Salo and Hämäläinen, 2001):

1. Maximax rule: Choose the COA x ∈ XND with the greatest upper bound of
the overall value interval, i.e., v̄(x) ≥ v̄(x′), ∀ x′ ∈ XND.

2. Maximin rule: Choose the COA x ∈ XND with the greatest lower bound of
the overall value interval, i.e., v

¯
(x) ≥ v

¯
(x′), ∀ x′ ∈ XND.

3. Central values: Choose the COA x ∈ XND with the greatest mid-point of the
overall value interval, i.e., [v

¯
(x) + v̄(x)] ≥ [v

¯
(x′) + v̄(x′)], ∀ x′ ∈ XND.

4. Minimax regret: Choose the COA x ∈ XND with the smallest maximum regret,
which indicates the largest difference between v(x) and the value of other COAs,
i.e., maxx∗∈XND

[v̄(x∗) − v
¯
(x)] ≤ maxx∗∈XND

[v̄(x∗) − v
¯
(x′)], ∀ x′ ∈ XND.

Out of the above four, Salo and Hämäläinen (2001) recommend the use of central
values and minimax regret. However, these decisions rules should never be followed
without discretion. The use of decision rules to compare alternatives with overall
value intervals is somewhat counter-intuitive because they reduce the amount of
information in the model. Furthermore, no conclusive statements can be made on
the suitability of decision rules in specific contexts (Salo and Hämäläinen, 2010).
Therefore, a sound approach would be to use multiple decision rules in parallel to
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establish an order of preference for the non-dominated COAs. The final decision
as to which COA will be used in practice should always be made by the AOC,
which can utilize additional information, e.g., geographical restrictions and positions
of blue and red forces. Figure 4 summarizes the decision making process in its entirety.

Commander’s intent

Preference information

MADA model

Non-dominated COAs

Selected COA

Additional information

AOC’s expertise

If the non-dominated set is large

Figure 4: Flowchart of the decision making process.

3.5 Core Index
Even if the set of non-dominated COAs is large, it might be possible to comment
on the effectiveness of individual TTPs. We accomplish this by applying robust
portfolio modeling methodology to the problem of selecting an effective COA. Robust
portfolio modeling is the application of preference programming methods to portfolio
selection problems (Liesiö et al., 2007). In portfolio selection, the decision maker
aims to choose an effective combination of several project proposals. This problem
description is not dissimilar to that of COA selection. Indeed, we can consider COAs
to be portfolios consisting of four projects, which are TTPs in this case. Liesiö
et al. (2007) introduce an index that can be used to convey the preferability of an
individual project. This index is called the core index and it describes how often a
project appears in the non-dominated portfolios.

Let T = {L, M, C, LM, LC, MC, LMC} be the set of available TTPs in air combat.
The letters L, M and C refer to launch ranges Foxlong, Foxmed and Foxclose, respectively.
The core index of TTP t ∈ T with regard to the set of feasible weights S, denoted
by CI(t, S), is defined as

CI(t, S) = |{x ∈ XND(S) | t ∈ x}|
|XND(S)| ,
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where XND(S) is the set of non-dominated COAs with regard to S and |{·}| denotes
the number of COAs in the respective set (Liesiö et al., 2007). Here, t ∈ x indicates
that the TTP t appears at least once in the COA x. If a TTP is included in all
non-dominated COAs, its core index is 1 and it is called a core TTP. Conversely, if
a TTP does not appear in any of the non-dominated COAs, its core index is 0 and it
is called an exterior TTP. TTPs that do not fit into either of these categories are
called borderline TTPs. The core index of a borderline TTP is strictly greater than
zero but less than one (Liesiö et al., 2007).

The core or exterior status of a TTP remains unchanged when additional preference
information is elicited (Liesiö et al., 2007). By definition, a non-dominated COA
must include every core TTP and can not include any exterior TTP. Moreover, if
we obtain complete preference information, the COA with the greatest overall value
also includes all previously identified core TTPs. Therefore, the MADA model can
provide decision support even if the number of non-dominated COAs is large by
recommending TTPs with a high core index.

3.6 Implementation
The MADA model developed in this thesis is implemented in MATLAB R2020a.
Microsoft Excel spreadsheets are used as input and output files for convenience.
The input spreadsheet defines how the COAs are labeled, what attributes are used
to compare them, and how the COAs are ranked with respect to each attribute.
All of the experiments in Section 4 use the same labeling of COAs, i.e., the COA
xj ∈ X = {x1, x2, ..., x2401} always represents the same combinations of TTPs of
four blue flights. The attributes and the associated rules remain as described in
Section 3.1. The rules are used to established a ranking of COAs with respect to
each of the three attributes. These rankings are converted into scores vi(xi) ∈ [0, 1]
in MATLAB. Different forms of the single attribute value function vi are examined
in the experiments.

The output spreadsheet contains overall value intervals which are computed with
the additive value function (1) according to the given preference information. The
preference information can be modified in MATLAB to observe its effect on the overall
value intervals and dominance relations of COAs. As discussed in Section 3.4, the
pairwise dominance relations are established by solving linear optimization problems,
specifically with the linprog function from MATLAB’s Optimization Toolbox. The
MATLAB program formats all relevant data into the output spreadsheet, including
a list of non-dominated COAs, which can then be sorted according to the decision
rules introduced in Section 3.4, if necessary.
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4 Experiments
In this section, the MADA model is tested with varying forms of incomplete preference
information. The effect of the preference information on the number of non-dominated
COAs is of particular interest. First, we examine a scenario where the incomplete
preference information is given as an ordinal ranking of the relative importance of
attributes. The shape of the single attribute value function is also varied. In the
second experiment, we test the model with attribute weight interval restrictions that
converge towards complete preference information, i.e., exact point weights. The
exact point weights, towards which the weight intervals converge, is varied and the
results are compared. A linear single attribute value function is used invariably
throughout the second experiment.

4.1 Experiment I: Preference Order and Attribute Scoring
4.1.1 Effect on the number of non-dominated COAs

The first scenario to be examined involves incomplete preference information in the
form of ordinal statements, specifically weak rankings (see, e.g., Salo and Hämäläinen,
2010). Weak rankings of attribute weights are of the form wi ≥ wj. Here, two weak
rankings are used to establish a preference order of attributes, e.g., wP K ≥ wP S ≥
wEM . With three attributes, there exist a total of six unique preference orders. The
overall value intervals and dominance relations of COAs are computed for the six
preference orders. The sets of feasible weights that correspond to these preference
orders are visualized in a ternary plot in Figure 5.

Figure 5: Ternary plot of the feasible regions defined by ordinal preference information.
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In addition to the varying preference statements, we study the effect of the shape
of the single attribute value function vi on the number of non-dominated COAs.
In our experiments, the measurement levels xi exist only in the form of ordinal
rankings. The simplest shape of the single attribute value function in this case is
linear, where the COA on rank r receives a score vi(xi) of 1 − r−1

m−1 with m = 2401
being the number of COAs. Thus, the least preferred (rank 2401) COA with respect
to attribute i receives a score of zero and the most preferred (rank 1) COA a one. In
addition to linear scoring, we test a categorical single attribute value function. In
categorical scoring, the COAs are divided into c categories based on their ranking.
The categories are then scored linearly, i.e., all COAs in category j receive a score of
1 − j−1

c−1 , where category 1 is the most preferred and category c is the least preferred.
Thus, the difference in score between two neighbouring categories is 1

c−1 . Figure 6
visualizes three distinct shapes of the single attribute value function, corresponding
to linear and categorical scoring.
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Figure 6: Three shapes of the single attribute value function. c denotes the number
of categories in categorical scoring. The measurement levels xi are ordinal rankings,
where #1 denotes the best and #2401 the worst COA with respect to attribute i.

Table 3 presents the results of varying the preference order of attributes and the
shape of the single attribute value function. Computing the overall value intervals
and dominance relations of the COAs for a given preference order takes around 15
seconds on average with MATLAB R2020a running on a desktop computer with an
Intel Core i5-9600K processor. The first observation to be made is that employing
categorical scoring results in a constant number of non-dominated COAs. By con-
trast, when linear scoring is used the number of non-dominated COAs appears to
fluctuate around the arithmetic mean of approximately 12.7. The preference orders
wP S ≥ wP K ≥ wEM and wEM ≥ wP S ≥ wP K yield the most and least non-dominated
COAs, respectively. There are no clear deviations in the results. However, there is
a clear change in the behaviour of the MADA model when the shape of the single
attribute value function is altered from linear to categorical. Unsurprisingly, the
number of categories c seems to correlate with the number of non-dominated COAs.
Because the number of non-dominated COAs is relatively low in this experiment, it
is not necessary to analyse the core indices of individual TTPs.
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Table 3: Number of non-dominated COAs with ordinal preference information. The
weights of attributes probability of kill, probability of survival and efficiency of
missiles are denoted by wP K , wP S and wEM , respectively.

Preference
information

Linear
scoring

Categorical
scoring (c=7)

Categorical
scoring (c=3)

wP K ≥ wP S ≥ wEM 11 3 59
wP K ≥ wEM ≥ wP S 12 3 59
wP S ≥ wP K ≥ wEM 18 3 59
wP S ≥ wEM ≥ wP K 13 3 59
wEM ≥ wP K ≥ wP S 15 3 59
wEM ≥ wP S ≥ wP K 7 3 59

To gain an understanding of why categorical scoring leads to fixed numbers of non-
dominated COAs, we study the three non-dominated COAs provided by scoring based
on a division into seven categories. These three COAs are labeled as x558, x939 and
x957. Inspecting the overall value intervals of x558, x939 and x957 clarifies the situation:
All three COAs have an overall value interval of [1, 1]. Their overall value is the maxi-
mum, i.e., 1, for any set of attribute weights. In this thesis, COAs that obtain a score
of 1 with respect to each attribute are referred to as globally optimal COAs. Thus,
the COAs x558, x939 and x957 are globally optimal when categorical scoring with c = 7
is used. The preference information has no effect on the number of non-dominated
COAs in this case, because the globally optimal COAs dominate all other alternatives.

Globally optimal COAs result naturally from the use of ordinal measurement levels
xi combined with the categorical single attribute value functions. For example,
let us consider a division of COAs in to three categories with respect to each at-
tribute. If the COA x∗ is ranked in the top third with respect to every attribute,
the score vi(x∗

i ) is equal to one for every i. Thus, the lower and upper bounds of
the overall value interval of x∗ are also equal to one, i.e., v

¯
(x∗) = v̄(x∗) = 1. Let

us now continue the previously discussed case of c = 7 and inspect the globally
optimal COAs x558, x939 and x957. The TTPs constituting these three COAs are
listed in Table 4 alongside the measurement levels of the COAs. The flights of a
COA are labeled positionally with numbers 1, 2, 3 and 4, where 1 refers to the
leading flight and 4 to the last flight. The measurement levels xi are attribute-specific
rankings, where #1 denotes the best and #2401 the worst COA with respect to
attribute i. With 2401 COAs, the top seventh consist of the 2401/7 = 343 best COAs.

The globally optimal COAs x558, x939 and x957 are ranked in the top seventh with
respect to every attribute. These three COAs balance the probability of killing the
target and the probability of surviving while maintaining a good missile efficiency,
at least from the perspective of the MADA model developed in this thesis. We
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Table 4: Globally optimal COAs when categorical scoring with c = 7 is used. The
TTPs are labeled with combinations of the letters L, M and C, which denote the
launch ranges Foxlong, Foxmed and Foxclose, respectively. The measurement levels of
COAs are ordinal rankings, where #1 denotes the best and #2401 the worst COA.

COA
Constituting TTPs Measurement levels

1 2 3 4 PK PS EM

x558 LM LC M LC #180 #316 #340

x939 M MC LM L #321 #241 #128

x957 M MC LMC LC #237 #145 #110

will not attempt to evaluate these COAs from a practical point of view, as that
would require considerable expertise in the field of air combat. However, we can still
try to recognize patterns in the TTPs of the non-dominated COAs. Indeed, in all
three COAs, the TTPs of the first and third flights include Foxmed, the TTP of the
second flight includes Foxclose and the TTP of the fourth flight includes Foxlong. No
conclusive statements can be made based on this observation, but it is interesting
nonetheless.

4.1.2 Alternative scoring functions

In order to further understand the effects of different shapes of the single attribute
value function, we inspect the set of non-dominated COAs with no preference infor-
mation on the relative importance of attributes. More specifically, the behaviour of
the number of non-dominated COAs with categorical scoring is studied as the number
of categories c is increased. Two examples have already been presented, namely c = 3
and c = 7. The number of non-dominated COAs is plotted as a function of c in
Figure 7. For comparative purposes, the number of non-dominated COAs is 52 if
linear scoring is used and no preference information is given.

At first, the number of non-dominated COAs decreases rapidly as the number of
categories is increased. At c = 2 the number of non-dominated COAs is 260. It
reaches a minimum of 1 at c = 8, 9, 10 and then begins to increase. At the minimum
point, the single non-dominated COA is the previously inspected x957. The increase
of non-dominated COAs is not monotonic because we are dealing with the dominance
relations of a discrete set of decision alternatives. The number of non-dominated
COAs is reduced temporarily when an increase in the number of categories leads
to a decrease in the scores of some of the previously non-dominated COAs. We
can expect the number of non-dominated COAs to eventually reach 52 because the
categorical single attribute value function approaches the linear function as c → ∞.
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Figure 7: Number of non-dominated COAs as a function of the number of categories,
when categorical scoring is used and no preference information is given on the relative
importance of the attributes PK, PS and EM.

4.2 Experiment II: Convergence of Weight Intervals
4.2.1 Effect on the number of non-dominated COAs

The second experiment studies the behaviour of the set of non-dominated COAs
as the set of feasible weights is restricted progressively. More specifically, the pref-
erence information is given in terms of attribute weight interval restrictions that
convergence towards exact point weights. The scores of COAs are determined by the
linear single attribute value function, as it does not produce any globally optimal
COAs. Thus, the incomplete preference information actually has an effect on the
non-dominated COAs. The experiment is performed with four different points of
convergence: (wP K , wP S, wEM) = (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1

3 , 1
3 , 1

3). The first
three points correspond to a convergence towards the attributes PK, PS and EM,
respectively. The last point corresponds to a convergence towards the center of the
weight region. In addition to examining the number of non-dominated COAs, we
study the core indices of individual TTPs, defined in Section 3.5.

The linear optimization problem (6) for determining pairwise dominance relations
contains the lower bound wi ≥ 0 for the weights of all attributes i. The convergent
attribute weight intervals are implemented by defining an increasing lower bound wi ≥
l, l ∈ [0, 1] for the appropriate weight. For example, when we perform the experiment
with the point of convergence (wP K , wP S, wEM ) = (1, 0, 0), the appropriate constraint
is wP K ≥ l. The lower bound l is increased with a step size of ϵ = 0.005 on every
iteration. When the point of convergence is (wP K , wP S, wEM) = (1

3 , 1
3 , 1

3), the lower
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bound is applied to all three attribute weights. In this case, the step size must be
reduced to one third of the original ϵ because it is added to three lower bounds instead
of just one. Figure 8 provides visual examples of the convergent weight interval
experiment. In the examples, the lower bounds are wP K ≥ l = 0.3 for convergence
towards PK and wi ≥ l/3 = 0.1 , i = PK, PS, EM for convergence towards the center
of the weight region. The area of an equilateral triangle is proportional to the square
of the length of its sides. Thus, the area of the feasible region S is (1 − 0.3)2 = 49%
of the entire weight region in both examples.

Figure 8: Examples of the second experiment visualized in ternary weight plots. The
restrictions are wP K ≥ 0.3 for the left plot and wi ≥ 0.1 , i = PK, PS, EM for the
right plot. The arrows indicate the convergence direction of the restrictions.

The behaviour of the number of non-dominated COAs is studied with respect to
the area of the feasible region. The area is given is terms of percentages of the
unconstrained weight region and 0% is defined to indicate the final singleton weight
point. Figure 9 presents the the progression of the number of non-dominated COAs
for the alternative points of convergence mentioned previously. In this experiment,
the computation times of determining the non-dominated COAs ranged from seconds
to just over a minute, depending on the size of the feasible region.

The number of non-dominated COAs behaves similarly in the cases of convergence to-
wards the three corners of the weight region, i.e., (wP K , wP S, wEM ) = (1, 0, 0), (0, 1, 0)
and (0, 0, 1). However, when the point of convergence is set to be in the center of the
weight region, the number of non-dominated COAs decreases more rapidly. When
the area is decreased to 40% of the entire weight region, there are only three non-
dominated COAs left. By contrast, the number of non-dominated COAs at this point
is 19, 23 and 17 for convergence towards PK, PS and EM, respectively. The faster
decrease for convergence towards the center implies that there are only a few COAs
that balance the three attributes exceptionally well. The single non-dominated COA
for the exact weights (wP K , wP S, wEM ) = (1

3 , 1
3 , 1

3) is x957, which was identified in the
first experiment as globally optimal in the case of categorical scoring with c = 7.
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Figure 9: Number of non-dominated COAs as a function of the area of the feasible
region with different points of convergence for the weight intervals.

4.2.2 Effect on the core indices of individual TTPs

The study of core indices is motivated by the possibility of identifying core TTPs
that could be recommended even if the number of non-dominated COAs is large.
As a reminder, the core index of a TTP t ∈ T = {L, M, C, LM, LC, MC, LMC}
indicates the fraction of non-dominated COAs that include the TTP t. Figure 10
presents the values of core indices before any preference information is given. The
core indices of all TTPs lie within the interval [0.4, 0.6], which indicates that the
non-dominated COAs are balanced relatively well.
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Figure 10: Core indices of TTPs when no preference information is given (area of the
feasible region at 100%) and linear scoring is used. The letters L, M and C denote
the launch ranges Foxlong, Foxmed and Foxclose, respectively.
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The progression of core indices is visualized in Figure 11. Changing the point of
convergence leads to noticeable differences in the core indices of TTPs. When the
weight intervals converge towards PK, the use of the launch range Foxclose is frequent
in the non-dominated COAs. TTPs C and MC have the highest core indices at almost
every point in the graph. The TTP L, which utilizes the launch range Foxlong and
the corresponding geometry alternative Rmax, has the lowest core index. Weighting
the probability of kill more heavily than the other attributes should promote the
use of TTPs that allow multiple missile launches and minimize the distance to the
target. These findings are thus sensible from a practical point of view.

Convergence towards PS produces sensible core indices as well. When PS is weighted
more heavily, the core index of TTP L is significantly higher than the rest. The
second highest core index belongs to LMC, the TTP that utilizes all three launch
ranges. Contrary to the results for convergence towards PK, the core index of C is
decreased as the feasible region moves towards PS. This is expected because a flight
employing Rmin geometry compromises the ability to kinematically defeat incoming
missiles and the TTP C only uses the closest launch range. Thus, using TTP C leads
to a decreased probability of survival for the blue flight. The results for convergence
towards EM are more difficult to interpret. In this case, LM has the highest core
index until the area is only 11%, at which point the core indices of M and MC surpass
it. We will not attempt to form a speculative explanation for these findings.

Convergence towards the center of the weight region results in core indices that
clearly deviate from the rest. At the previously mentioned point of 40% area, TTPs
L and LM are identified as external. Simultaneously, LMC becomes a core TTP.
However, these results follow directly from the rapid decrease in the number of
non-dominated COAs. The core index plots remain constant starting from the
point of 40% area, where the number of non-dominated COAs is only three, until
the number of non-dominated COAs decreases again around 10% area. Moreover,
because the number of non-dominated COAs is low, core indices do not provide as
much additional value to the decision maker. However, we can conclude that the
non-dominated COAs consist of TTPs that are sensible with regard to the given
preference information.



28

0%10%20%30%40%50%60%70%80%90%100%

Area of the feasible region

0

0.5

1

C
o

re
 i
n

d
e

x

a) Convergence Towards Probability of Kill (PK)
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b) Convergence Towards Probability of Survival (PS)
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c) Convergence Towards Efficiency of Missiles (EM)
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d) Convergence Towards Center of the Weight Region

Figure 11: The core indices of TTPs as functions of the area of the feasible region.
The results are presented for convergence towards a) probability of kill, b) probability
of survival, c) efficiency of missiles and d) the center of the weight region. The TTPs
are labeled with combinations of the letters L, M, and C, which denote the launch
ranges Foxlong, Foxmed and Foxclose, respectively.
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5 Conclusion
In this thesis, we develop a multi-attribute decision analysis model for the selection
of air combat tactics. After defining the vital concepts of air combat and discussing
the current practices in COA selection, the thesis describes the MADA model and
how it can be used to improve the process of selecting a COA. The COAs are
evaluated and ranked with respect to three attributes: probability of kill, probability
of survival and efficiency of missiles. An additive value function is used to determine
overall value intervals for the COAs based on incomplete preference information
elicited from the commander’s intent. The overall value intervals are compared using
the concept of pairwise dominance. We are thus able to identify non-dominated
COAs, which are considered effective with respect to the given preference information.

We perform two extensive experiments to study the effect of varying preference
information on the set of non-dominated COAs identified by the model. The results
provided by the experiments lead us to the three main conclusions. First, incomplete
preference information, e.g., weak ranking of attributes, suffices to reduce the num-
ber of COAs in consideration to feasible levels. Second, the non-dominated COAs
identified by the model consist of TTPs that are generally sensible with respect to
the given preference information. Finally, the shape of the single attribute value
function has a significant impact on the set of non-dominated COAs.

The MADA model is capable of identifying a small set of effective COAs from thou-
sands of alternatives. The model also provides robustness throughout the chain of
command as it does not rely on verbal interpretations that are prone to unintentional
modifications. Nevertheless, in its current state, the model has plenty of room
for improvement. First, the model is based on a simplified version of air combat
tactics. The simplified TTPs have only two constituting factors, namely geometry
and launch range alternatives. Second, many situational factors are left unconsidered.
For example, the surface-to-air capability of the opponent can impose geographical
restrictions for the blue flights. Lastly, close attention must be paid to selecting sin-
gle attribute value functions in order to obtain valid recommendations from the model.

The MADA model developed in this thesis fulfills its intended purpose, but it also
opens up interesting avenues for future research. The problems associated with
the selection of air combat tactics call for collaboration with air combat experts.
Feedback from air combat experts is especially beneficial for fine-tuning the single
attribute value functions. Simulations of air combat could be used to rule out COAs
that do not adhere to the geographical restrictions of the situation. Regardless of
the opportunities for further development, we believe that the model can already be
considered a successful application of multi-attribute decision analysis and incomplete
preference information.
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