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Abstract
The purpose of this bachelor’s thesis was to examine how principal component analy-
sis affects the results of data envelopment analysis. When dealing with large amounts
of data, the computing power is often a limiting factor in decision making. Therefore,
it is important to be able to reduce the the dimensionality of the data without a
significant loss of information. Furthermore, the effects of centering and scaling of
data prior to the dimensionality reduction were also studied.

First, data envelopment analysis was performed on the entire data set of Scandinavian
retailers to compute efficiency scores. Then principal component analysis and robust
principal component analysis was used to reduce the number of variables, after which
the resulting principal components were used to compute efficiency scores respectively.
The effects of centering and scaling of data were studied by performing both versions
of principal component analysis using every combination of centering and scaling.
The resulting principal components were used in the subsequent data envelopment
analysis to compute efficiency scores.

By comparing all sets of results to one another, it became clear that all data must
be scaled before the dimensionality reduction in order to produce reliable results.
No significant difference between the efficiency scores was found when the data was
centered or not centered. It was also observed that the results of data envelopment
analysis improved when a more robust version of principal component analysis was
used instead of the conventional version.
Keywords Data envelopment analysis, principal component analysis, retail sector,

efficiency
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Ansvarslärare Prof. Fabricio Oliveira
Datum 27.8.2020 Sidantal 30 Språk Engelska
Sammandrag
Syftet med denna kandidatuppsats var att undersöka hur principalkomponentanalys
påverkar resultaten av data envelopment-analys. När man hanterar stora mängder
data är datorkraften ofta en begränsande faktor i beslutsfattandet. Därför är det
viktigt att kunna minska dimensionerna av data utan en betydande förlust av in-
formation. Dessutom studerades effekterna av centrering och skalning av data före
dimensionsreduceringen.

Först utfördes data envelopment-analys på hela datamängden av skandinaviska
återförsäljare för att beräkna effektivitetspoäng. Därefter användes principalkompo-
nentanalys och robust principalkomponentanalys för att minska antalet variabler,
varefter de resulterande principalkomponenterna användes för att beräkna respektive
effektivitetspoäng. Effekterna av centrering och skalning av data studerades genom
att utföra båda versionerna av principalkomponentanalys med användning av varje
kombination av centrering och skalning. De resulterande principalkomponenterna
användes i sin tur för att beräkna effektivitetspoäng.

Genom att jämföra alla uppsättningar av resultat med varandra blev det klart att all
data måste skalas innan dimensionsreduceringen för att producera tillförlitliga resultat.
Ingen signifikant skillnad mellan effektivitetspoängen hittades när data var centrerade
eller inte centrerade. Det observerades också att resultaten av data envelopment-analys
förbättrades när man använde en mer robust version av principalkomponentanalys.
Nyckelord Data envelopment analysis, principalkomponentanalys, detaljhandel,

effektivitet
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1 Introduction
Operational efficiency is an important performance indicator in every industry, as
it directly affects the magnitude of profit or loss a company makes. Therefore,
improving the operational efficiency of a company is a goal for every decision-maker.
However, if everyone knew how to improve operational efficiency, many bankrupt
companies would still be in business.

As a by-product of technological advancements, there is more data available than
ever before. Naturally, this raises the opportunity for data-driven decision making,
where by looking at data and finding patterns, beneficial conclusions can be made.
Modern companies hardly make any major decisions without compelling evidence
that the decision is beneficial, although not all decisions are made with the necessary
evidence to justify them.

In order for a company to know how well it operates its business compared to other
similar businesses, a ranking system with the operational efficiencies of all reference
companies could be introduced. The nonlinear programming method Data Envelop-
ment Analysis (DEA) introduced by Charnes et al. (1978) was first used to measure
the relative efficiency of theoretical Decision Making Units (DMUs). The model
was later applied to the retail sector by Donthu and Yoo (1998), who studied over
several consecutive years the productivity of 24 stores belonging to the same franchise.
Mostafa (2009) studied the relative efficiencies of 47 separate retail companies in USA
from a financial perspective using DEA to determine the appropriate efficiency scores.

As the amount of data that is available for computation is increasing, so is the need
for more computing power. However, currently there is more data available than
what can be processed within a desired time frame, which raises the demand for
more effective data usage. For this purpose, Adler and Golany (2001) proposed the
usage of Principal Component Analysis (PCA) in combination with DEA in their
study on airline networks to overcome the drawbacks presented by having several
variables in the DEA model. This PCA-DEA method has since been adapted to
various studies ranging from discrimination in DEA Adler and Yazhemsky (2010) to
quality of life in Estonia Põldaru and Roots (2014).

The study conducted for this thesis focuses on measuring the relative efficiency
between Scandinavian retailers and observing how the relative efficiency is affected
when PCA and Robust Principal Component Analysis (RPCA) is performed prior to
DEA. The study was initially performed in three stages, where conventional DEA
with variable returns to scale was first performed to set the baseline. In the second
part, PCA was performed separately on both input and output variables, after which
the resulting principal components were used as input and output variables in the
DEA calculation. Lastly, the study was conducted by performing RPCA on the
original input and output variables and the resulting principal components were used
to form the DEA model.
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Furthermore, the effects of variance scaling and mean centering in PCA and RPCA
are investigated, as well as how these affect the final results in DEA. This is studied
by repeating the PCA-DEA and RPCA-DEA calculations with the additional change
of either not scaling the data, not centering the data, or not centering or scaling it
prior to the variable reduction technique.

2 Data and methods

2.1 Data
The data used for this thesis was obtained from Orbis; a database by Bureau van
Dijk with information on companies from all countries. The chosen data consisted
of Scandinavian retailers falling under the industry classification code 47 (Retail
trade, except of motor vehicles and motorcycles) used in the European Union, with
an annual revenue of at least AC 50 million.

The data in Orbis is not complete for all companies, which forced us to manually check
the exported data and remove all rows with incomplete information. Furthermore,
duplicate and semi-duplicate rows are common in Orbis as the database contains
information on both the operative companies and their holding companies. These
were also removed from the data based on visual examination; for instance, if the
holding company was reported with a few employees but with the combined revenue
of three subsidiaries and the three subsidiaries were reported separately, the holding
company was removed. After all conditions were met, the final data set consisted of
221 observations with five different variables.

According to Donthu and Yoo (1998), measuring retail efficiency should incorporate
not only the traditional financial aspect, but also the behavioural aspect of retailing.
The behavioural aspect requires information on customer satisfaction and similar
variables. However, this sort of information is not available in Orbis, limiting the
focus of this study solely on retailing efficiency from the financial aspect. In addition,
Donthu and Yoo (1998) argue that profit, perhaps the most intuitive output measure,
should not be used as an output variable as it is an aggregate of revenue and
cost, defined as price times output quantity and factor price times input quantity,
respectively. Therefore, the output variables chosen for this study were Sales (Y1)
and Cost of Employees (Y2). The corresponding input variables were Number of
Employees (X1), Current Number of Directors & Managers (X2), and Current Number
of Advisors (X3). Summary statistics of the aforementioned variables are presented
in Table 1 and the Pearson correlation coefficients between the chosen variables are
presented in Table 2.



3

Output Variables Input Variables
Y1 Y2 X1 X2 X3

Mean 331.10 43.97 1007 5.81 1.24
Median 122.00 20.00 470 4.00 1.00
Std Dev 757.89 91.62 2224.27 4.47 0.75

Minimum 50.00 1.00 1.00 0.00 0.00
Maximum 7912.00 985.00 27497 31.00 10.00

Table 1: Summary statistics of the variables used in the DEA model.

Y1 Y2 X1 X2 X3
Y1 1.0000
Y2 0.9573 1.0000
X1 0.9173 0.9676 1.0000
X2 0.4708 0.5245 0.4931 1.0000
X3 0.1576 0.1733 0.1845 0.2295 1.0000

Table 2: Pearson correlation coefficients between all input and output variables.

A close inspection of the correlation coefficients present very high correlations between
outputs Y1 and Y2 (r = 0.9573) as well as between input X1 and both outputs Y1
(r = 0.9173) and Y2 (r = 0.9676).

2.2 Data Envelopment Analysis
DEA is a nonparametric linear programming methodology designed to measure and
compare the relative efficiency of a set of decision-making units (DMUs). The model
was first proposed by Charnes et al. (1978) as a tool for evaluating decision units,
but it has since been applied to various fields, as summarized by Seiford (1997). One
of the main assumptions in the DEA model is whether constant returns to scale
(CRS) or variable returns to scale (VRS) are used. The original model introduced by
Charnes et al. (1978) uses CRS, whereupon the original model is colloquially known
as the CCR model, whereas the BCC model introduced by Banker et al. (1984) uses
VRS. We assumed that the returns to scale are more likely to vary than to remain
constant in this study, therefore the BCC model was used.

The DEA model is capable of handling multiple inputs and outputs for each DMU,
to which an efficiency score is computed as the maximum ratio of weighted outputs
to weighted inputs. This ratio is subject to the constraint that similar ratios are
less than or equal to one using the aforementioned weights. Thus, the maximum
efficiency h0 for DMU 0 is determined by equations (1) and (2):
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max h0 =
∑︁n

i=1 uiyi0∑︁m
j=1 vjxj0

(1)

Subject to
∑︁n

i=1 uiyir∑︁m
j=1 vjxjr

≤ 1 ∀ r = 1, ..., s (2)

ui, vj ≥ 0; i = 1, ..., n; j = 1, ..., m

where yir and xjr are the ith output and jth input observations for the rth DMU,
and ui and vj are the weights to be estimated for the 0th DMU. By applying the
functions above to a set of DMUs, DEA identifies and connects the points with the
lowest total input for any given total output, creating an efficient frontier. The
points on the frontier are considered efficient and receive the efficiency score one,
whereas all points not on the frontier are considered inefficient and consequently
obtain an efficiency score between zero and one. A simplified visualization of the
efficient frontier by Hui and Wan (2013) is depicted in Figure 1.

Figure 1: An illustrative drawing of an efficient frontier as computed with DEA.

One of the main drawbacks of DEA is its sensitivity to outliers. Especially when
using real-life data, outliers are common and decrease the precision of the DEA as
shown by Donthu et al. (2005). However, the authors also note that in a scenario
where many efficient units are identified, having a natural outlier or adding a dummy
outlier may decrease the number of efficient units, ultimately leading to more precise
results from DEA. Another common drawback of the DEA is the tendency of an
increasing number of efficient units as the number of variables used in the model
increases, as noted by Mostafa (2009).
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2.3 Principal Component Analysis
Põldaru and Roots (2014) argue that it is necessary to reduce the impact of outliers by
reducing the number of variables in the DEA model. Furthermore, the authors argue
that reducing the dimensionality of the DEA structure improves the overall confidence
of the DEA. A solution to overcome these issues is introduced by Adler and Golany
(2001) by combining PCA and DEA. The underlying theory is achieved by using the
original variables to create principal components that are less sensitive to statistical
noise than the original variables. Adler and Golany (2001) state that PCA is used
to explain the structure of variance in a data set by creating linear combinations of
the original variables, and that the new principal components generally account for
80-90% of all variance in the data, in which case the principal components can replace
the original variables without a significant loss of information. Figure 2 provides a
visualization of the fundamental purpose of performing PCA on a collection of data
points.

Figure 2: An illustration of the two leading principal components of a multivariate
Gaussian distribution (Wikipedia, 2016).

There are alternatives regarding how PCA is performed, the two most common
approaches being Singular value decomposition (SVD) and Eigendecomposition. In
this study we decided to use the R function prcomp, which uses SVD for computing
principal components, for its ease of use and wide selection of plotting possibilities.
SVD is a linear algebra technique for decomposing matrices by using a combination
of both eigendecomposition and polar decomposition.

As we were using real-life data in this study, outlier values were expected to be
present during the analysis. To overcome this issue, PCA was performed on both
input and output variables separately, as suggested by Põldaru and Roots (2014).
A standard process of PCA is to scale and center the data so that each variable
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has unit-variance and the empirical mean of each observation is zero. This is done
in order to prevent variables with high absolute values of dominating the variance
minimization performed in PCA, as could be expected to happen based on the
variables presented in Table 1. The general view is that inputs and outputs have
to be strictly positive in DEA, as noted by Adler and Golany (2001). However, the
results from PCA are not necessarily positive. To ensure strictly positive data in the
DEA model, every principal component was increased by the smallest value in the
vector plus one, as defined by equation (3).

PCi
˜ = PC + a, a = min{PCi} + 1 (3)

2.4 Robust Principal Component Analysis
Robust PCA is a widely used modification of conventional PCA that is designed
to be less sensitive to outliers and other corrupted observations. There are various
alternatives as how to implement a more robust version of PCA, however, we chose to
use the pca function from the pcamethods package, which uses a robust modification
of SVD. This version of SVD is achieved by replacing the Euclidean distance with
the Manhattan distance, meaning that instead of minimizing the square root of the
sum of squares:

||x||2 =
√︂

x2
1 + ... + x2

n

we minimize the sum of absolute values:

||x||1 =
n∑︂

i=1
|xi|

As it is designed to perform better with corrupt observations, RPCA was chosen for
this study in order to observe whether the usage of RPCA significantly improves
the DEA results compared to PCA-DEA. Just as with conventional PCA, principal
components are computed separately for inputs and outputs using RPCA, after
which the principal components are used in the DEA model.

3 Results

3.1 DEA results
First, we performed DEA on the entire collection of data with 221 DMUs, using
all three inputs and all two outputs. The summary statistics representing all three
quartiles as well as the minimum and maximum values of the resulting efficiency
scores are presented in Table 3.
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Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3298 0.5140 0.6620 0.6621 0.7696 1.0000

Table 3: Summary statistics of the computed efficiency scores.

A histogram of the efficiency scores is presented in Figure 3. The number of DMUs
that were deemed efficient was 13.
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Figure 3: A fitted gamma curve (α = 13.03, β = 19.68) over the frequency distribution of
computed efficiency scores.

3.2 PCA-DEA results

Input Variables Output Variables
IPC1 IPC2 IPC3 OPC1 OPC2

Standard Deviation 1.2765 0.9307 0.7102 1.3990 0.2066
Proportion of Variance 0.5432 0.2887 0.1681 0.9787 0.0213
Cumulative Proportion 0.5432 0.8319 1.0000 0.9787 1.0000

Table 4: Summary of the principal components computed with conventional PCA
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As can be seen from Table 4, the first two principal components explain roughly
83.2% of the variance in the data, meaning that most of the information and variance
has been preserved. In the same manner, the first principal component of the output
variables explains roughly 97.9% of the variance whereas the second component
only explains the remaining 2.1%, meaning that virtually no extra information is
provided by the second component. The high degree of explanatory power of the
first component does not come as a major surprise, as the two output variables were
highly correlated as stated in Table 2.

(a) The first two principal components plotted
against one another.

(b) The first and third principal components plotted
against one another.

Figure 4: Visualization of the computed principal components.

Figure 4 shows a scatter plot of the first two principal component scores plotted
against one another, where each point is grouped according to the country of origin.
The data points form clear lines in the scatter plot, which indicates that outliers are
present in the data, as they contribute with a significant amount of variance compared
to other data points. A common way of identifying outliers is to plot the residuals
as multiples of the standard deviation, where a cut-off point has been predetermined.
This is colloquially known as the criterion of "being more than X standard deviations
away from the mean". However, because the computed principal components indicate
that the data contains significant outliers a more robust estimator was used to
detect outliers. By creating a graph of residuals as multiples of the median absolute
deviation, the outliers are clearly shown.
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Figure 5: Visual representation of each DMU’s distance to the median as a multiple of
the median absolute deviation. The red line indicates six median absolute deviations from
the median.

Figure 5 shows that there are several DMUs whose computed principal components
deviate significantly from the median values. The magnitude by which they deviate
is sufficient to draw the leading principal components towards themselves, meaning
that the PCA calculation mistakenly considers the variance from the outlier points as
signal instead of noise. Thus, the resulting principal components are affected to some
extent by the outliers, which is possibly affecting the subsequent DEA calculation.

We used the first two principal components (IPC1 and IPC2) as input variables and
the first principal component (OPC1) as the sole output variable in the DEA model.
The summary statistics of the resulting efficiency scores are presented in Table 5.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3594 0.6990 0.8299 0.7742 0.8910 1.0000

Table 5: Summary statistics of the computed efficiency scores.

A histogram of the efficiency scores visualizing the distribution is presented in Figure
6. The number of efficient DMUs in this part was 8.
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Figure 6: A fitted gamma curve (α = 17.19, β = 22.21) over the frequency distribution of
computed efficiency scores.

3.3 RPCA-DEA results

Input Variables Output Variables
IPC1 IPC2 IPC3 OPC1 OPC2

Standard Deviation 1.266 0.977 0.972 1.399 1.000
Proportion of Variance 0.534 −0.087 0.129 0.978 −0.460
Cumulative Proportion 0.534 0.447 0.576 0.978 0.519

Table 6: Summary of the principal components computed with RPCA

As can be seen from Table 6, the first principal component explains roughly 53.4% of
the variance in the data, but the second principal component lowers the cumulative
variance explained by roughly -8.7%. If a principal component explains a negative
portion of the variance, it usually means that outliers have affected the calculation
to such an extent that the principal component, which is in itself a linear component,
does not fit in the data. This can be visually confirmed by examining Figure 7. The
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third principal component fits better in the data, explaining an additional 12.9% of
the variance.
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Figure 7: Visual representation of each DMU’s distance to the median as a multiple of
the median absolute deviation. The red line indicates six median absolute deviations from
the median.

As seen with regular PCA, there are several outliers that differ from the median
by multiple median absolute deviations. However, the benefit of using RPCA is
apparent when comparing Figure 7 to Figure 5, as the outlier observations above the
red line do not deviate as much from the rest of the observations as with regular PCA.
Nonetheless, the outliers are still significantly affecting the principal components as
shown when plotting the principal components against one another. Both Figures 8a
and 8b exhibit clear lines as formed by the computed principal component scores.
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(a) The first two principal components plotted against
one another.

(b) The first and third principal compo-
nents plotted against one another.

Figure 8: Visualization of the computed robust principal components.

In this part we also used the first two principal components from the original input
variables and the first principal component from the output variables in the DEA
model. The summary statistics of the resulting efficiency scores are presented in
Table 7:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4063 0.6157 0.7406 0.7186 0.8290 1.0000

Table 7: Summary statistics of the computed efficiency scores.

A histogram of the efficiency scores visualizing the distribution is presented in figure
9. The number of efficient DMUs in this part was 9.
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Figure 9: A fitted gamma curve (α = 19.69, β = 27.40) over the frequency distribution of
computed efficiency scores.

3.4 Non-centered PCA-DEA
As both PCA and DEA are sensitive to outliers, we would like to investigate whether
scaling and centering has an effect on the obtained DEA results. By performing
both versions of PCA on the original input and output variables separately first
without centering, then without scaling, and lastly without scaling or centering,
we will determine the optimal combination to use. The summary statistics of the
resulting principal components of non-centered data are presented in Table 8.

Input Variables Output Variables
IPC1 IPC2 IPC3 OPC1 OPC2

Standard Deviation 1.4846 0.7597 0.4678 1.4015 0.1894
Proportion of Variance 0.7346 0.1924 0.0729 0.9821 0.0179
Cumulative Proportion 0.7346 0.9270 1.0000 0.9821 1.0000

Table 8: Summary of the principal components computed with PCA without centering of
data.
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The share of variance explained by the first principal component has increased
from 54.3% to roughly 73.5% which is in line with the fact that centering decreases
differences in scale between data points.
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Figure 10: Visual representation of each DMU’s distance to the median as a multiple of
the median absolute deviation. The red line indicates six median absolute deviations from
the median.

Further indication can be seen from the MAD distance graph presented in Figure
10. When the graph above is compared to Figure 5, it is clear that the observed
points deviate less from the median value. The results of the efficiency scores for
each DMU is, nonetheless, of more importance when determining whether the PCA
has succeeded or not. The summary statistics of the computed efficiency scores are
presented in Table 9.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4148 0.7221 0.8259 0.7840 0.8854 1.0000

Table 9: Summary statistics of the computed efficiency scores.



15

Efficiency

F
re

qu
en

cy

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
5

10
15

20

Figure 11: A fitted gamma curve (α = 23.13, β = 29.50) over the frequency distribution
of computed efficiency scores.

The resulting histogram of efficiency scores is presented in Figure 11. By comparing
Figure 11 to Figure 6, it is clear that the DEA results have not been significantly
affected by the non-centered data. The number of efficient units in this part was
7 compared to the 8 efficient units found with centered data. In addition, the
histograms of efficiency scores are almost equally skewed.

3.5 Non-centered RPCA-DEA
In this part we perform the same computations as earlier using RPCA, but without
centering the data in advance. When performing RPCA on the original input
and output variables separately without centering the data, the resulting principal
components are presented in Table 10.
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Input Variables Output Variables
IPC1 IPC2 IPC3 OPC1 OPC2

Standard Deviation 1.1711 0.9564 1.0000 1.3953 1.0000
Proportion of Variance 0.7848 0.1223 −0.3967 0.9779 −0.4041
Cumulative Proportion 0.7848 0.9071 0.5104 0.9779 0.5738

Table 10: Summary of the principal components computed with RPCA without centering
of data.

The share of variance explained by the first principal component has increased from
53.4% to roughly 78.5%, which is an almost identical increase as the one observed
with PCA and no centering of data. In addition, the second principal component
which accounted for a decrease in explained variance when data was centered now
explains roughly 12.2% of the variance in the data, whereas the third principal
component now obtained a negative value of approximately -40.4%.
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Figure 12: Visual representation of each DMU’s distance to the median as a multiple of
the median absolute deviation. The red line indicates six median absolute deviations from
the median.

From Figure 12 it can be seen that the outlier values are deviating relatively more
from the median value without centering of data, when comparing to Figure 7.
Nonetheless, the cumulative variance explained by the first two principal components
reaches the 80-90% interval described by Adler and Golany (2001), whereas the two
main principal components computed with centered data only explain a total of
44.7% of the variance. The corresponding efficiency scores are presented in Figure
13.
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Figure 13: A fitted gamma curve (α = 138.11, β = 155.49) over the frequency distribution
of computed efficiency scores.

The summary statistics of the efficiency scores are presented in Table 11. The number
of efficient units identified with RPCA and no centering of data was 7.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.5972 0.8538 0.9050 0.8882 0.9401 1.0000

Table 11: Summary statistics of the computed efficiency scores.

3.6 Non-scaled PCA-DEA
Performing PCA on the input and output variables without scaling data prior to the
analysis yields results as presented in Table 12.
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Input Variables Output Variables
IPC1 IPC2 IPC3 OPC1 OPC2

Standard Deviation 2224 3.887 0.727 762.957 26.304
Proportion of Variance 1.000 0.000 0.000 0.999 0.001
Cumulative Proportion 1.000 1.000 1.000 0.999 1.000

Table 12: Summary of the principal components computed with PCA without scaling of
data.

The effect of not scaling the data prior to PCA is apparent, as indicated by the
fact that the first principal component (IPC1) explains all of the variance of the
input variables. In addition, the share of variance explained by the first principal
component of the output variables (OPC1) has also increased to roughly 100%.
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Figure 14: Visual representation of each DMU’s distance to the median as a multiple of
the median absolute deviation. The red line indicates six median absolute deviations from
the median.

From Figure 14 we can notice that the outlier values are forming clear clusters relative
to the majority of the data points. When comparing the distance plot to Figure
5 and 10, it is clear that the outliers are still significantly present, although less
so than when both centering and scaling of data was performed before PCA. The
corresponding histogram of efficiency scores from the DEA calculation are presented
in Figure 15.
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Figure 15: A fitted gamma curve (α = 331.18, β = 348.89) over a frequency distribution
of computed efficiency scores.

The summary statistics of the efficiency scores are presented in Table 13. The number
of efficient units identified with RPCA and no centering of data was 13.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.6637 0.9371 0.9609 0.9492 0.9787 1.0000

Table 13: Summary statistics of the computed efficiency scores.

3.7 Non-scaled RPCA-DEA
The resulting principal components from performing RPCA without scaling of data
are presented in Table 14.
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Input Variables Output Variables
IPC1 IPC2 IPC3 OPC1 OPC2

Standard Deviation 2224.27 4.470 0.750 762.951 91.619
Proportion of Variance 1.000 0.000 0.000 0.999 −0.013
Cumulative Proportion 1.000 1.000 1.000 0.999 0.986

Table 14: Summary of the principal components computed with RPCA without scaling
of data.

The same effect can be witnessed here as with regular PCA when the data is not
scaled. The first principal components are solely explaining all of the variance in
the data. However, the relative deviations between the data points are not as clear
with RPCA as with PCA, which is apparent when comparing Figure 14 to Figure 16
below.

0

10

20

30

40

0 50 100 150 200
DMU

M
ul

tip
le

 o
f M

ed
ia

n 
A

bs
ol

ut
e 

D
ev

ia
tio

n

Figure 16: Visual representation of each DMU’s distance to the median as a multiple of
the median absolute deviation. The red line indicates six median absolute deviations from
the median.

Figure 16 shows clearly that the outlier values are deviating more from the median
when data has not been scaled, as compared to when data is both scaled and
centered. This can be visually confirmed by comparing Figure 7 to the graph above.
A histogram of the efficiency scores from the subsequent DEA is presented in Figure
17.
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Figure 17: A fitted gamma curve (α = 15.44, β = 69.17) over the frequency distribution
of computed efficiency scores.

The summary statistics of the efficiency scores are presented in Table 15. The number
of efficient units identified with RPCA and no scaling of data was 2.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1792 0.1950 0.2023 0.2233 0.2198 1.0000

Table 15: Summary statistics of the computed efficiency scores.

3.8 Non-scaled, non-centered PCA-DEA
In the last two parts we perform the same computations as in the previous stages,
but with the difference that the data used for PCA and RPCA, respectively, has
neither been centered nor scaled. Using the aforementioned setup and regular PCA
yields the principal components presented in Table 16.
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Input Variables Output Variables
IPC1 IPC2 IPC3 OPC1 OPC2

Standard Deviation 2442 5.929 0.945 833.139 26.797
Proportion of Variance 1.000 0.000 0.000 0.999 0.001
Cumulative Proportion 1.000 0.000 0.000 0.999 1.000

Table 16: Summary of the principal components computed with PCA without centering
or scaling of data.

It is clear that the effects of not scaling the data are present, as the variances
explained by each principal component are virtually equal to the results obtained
with PCA and no scaling of data. This can be visually confirmed by comparing the
table above to Tables 12 and 14.
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Figure 18: Visual representation of each DMU’s distance to the median as a multiple of
the median absolute deviation. The red line indicates six median absolute deviations from
the median.

It can be seen from Figure 18 that the outlier values deviate more from the median
value when the data is not scaled prior to PCA, as can be confirmed by comparing
the graph above to Figures 10 and 14. A histogram of the computed efficiency scores
is presented in Figure 19.
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Figure 19: A fitted gamma curve (α = 456.10, β = 478.70) over the frequency distribution
of computed efficiency scores.

The summary statistics of the efficiency scores are presented in Table 17. The number
of efficient units identified with PCA without centering or scaling of data was 11.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.6927 0.9396 0.9625 0.9528 0.9799 1.0000

Table 17: Summary statistics of the computed efficiency scores.

3.9 Non-scaled, non-centered RPCA-DEA
In this last part we perform RPCA on the input and output variables separately
without centering or scaling the data. The obtained principal components are
then used in the subsequent DEA model. The principal components with the
aforementioned setup are presented in Table 18.
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Input Variables Output Variables
IPC1 IPC2 IPC3 OPC1 OPC2

Standard Deviation 2224.265 4.418 0.750 762.929 91.619
Proportion of Variance 1.000 0.000 0.000 0.999 −0.014
Cumulative Proportion 1.000 0.000 0.000 0.999 0.985

Table 18: Summary of the principal components computed with RPCA without centering
or scaling of data.

The same issue is apparent here as with the previous combinations of not scaling the
data before computing principal components. IPC1 and OPC1 are measured in a
completely different magnitude than the other variables, naturally resulting in the
two variables accounting for virtually all variance in the data.
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Figure 20: Visual representation of each DMU’s distance to the median as a multiple of
the median absolute deviation. The red line indicates six median absolute deviations from
the median.

No significant improvement or deterioration can be seen when comparing Figure 20
to the three other distance plots from the setups where scaling was not performed.
The corresponding histogram of efficiency scores is presented in Figure 21.
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Figure 21: A fitted gamma curve (α = 3.80, β = 12.88) over the frequency distribution of
computed efficiency scores.

The summary statistics of the efficiency scores are presented in Table 19. The number
of efficient units identified with RPCA without centering or scaling of data was 8.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0623 0.1899 0.2602 0.2950 0.3274 1.0000

Table 19: Summary statistics of the computed efficiency scores.

3.10 Compilation of results
The results presented in this section have been compiled in this subsection to
summarize the most clear discoveries and to allow the results to be compared with
one another. All histograms of efficiency scores have been compiled in Figure 22 on
the next page.
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(f) PCA-DEA not scaled
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(g) RPCA-DEA not scaled
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(h) PCA-DEA not centered or scaled
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(i) RPCA-DEA not centered or scaled

Figure 22: Compilation of all histograms of efficiency scores.



27

By looking at Figures 22b and 22d and comparing them to Figures 22f and 22h, it is
clear that scaling causes the computed efficiency scores to become more negatively
skewed with PCA-DEA. On the other hand, with RPCA-DEA scaling seems to cause
the opposite effect, as the efficiency scores became more positively skewed as can
be seen from Figures 22g and 22i. From these results we can conclude that scaling
should always be performed prior to variable reduction techniques. However, no clear
conclusions could be drawn by only inspecting the efficiency scores regarding whether
centered data or non-centered data provides more reliable results. The advantage
of using a more robust estimator is also not clear by only inspecting the computed
efficiency scores, as Figures 22b and 22d are fairly similar to Figures 22c and 22e.

4 Conclusions
The purpose of this thesis was to perform a case study on Scandinavian retail com-
panies using Data Envelopment Analysis and two variations of Principal Component
Analysis in order to study how the results of DEA are affected by the usage of variable
reduction. The results of DEA are of particular importance in data-driven decision
making, and as data is increasingly gathered and utilized, so is the need for more
precise results. In addition, decision making is dependent on an increasing number of
variables, which raises the need for a secure way of dimensionality reduction without
loss of information.

The study was performed initially in three stages, where the baseline for the DEA
results was first set by performing DEA on the entire data set using all three input
variables and both output variables. In the second part, PCA was first conducted on
the input and output variables separately to obtain principal components. The first
two principal components of the input variables were used as input in the subsequent
DEA model, whereas the first principal component of the output variables was the
sole output. In the third stage, Robust PCA was used to obtain principal components
which have not been affected by outliers and other corrupted observations as much
as when regular PCA is used. The input and output variables in the subsequent
DEA model were otherwise equal.

As both PCA and DEA are sensitive to outliers, we wanted to investigate how
centering and scaling of data prior to the dimensionality reduction affects the scores
from DEA. For this purpose, both PCA-DEA and RPCA-DEA calculations were
repeated a total of three times, first by not centering the data, then without scaling
it, and lastly without centering or scaling the data.

The results from initial three stages where data was both scaled and centered indicate
that outliers have significantly affected the principal components used in the DEA
model. This can be confirmed from the results of the PCA, and from the fact that
the set of efficiency scores is more negatively skewed than when DEA is performed
without any form of variable reduction. However, the presence of outliers might have
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improved the overall results of DEA as has been argued in previous research. The
fact that the number of efficient units decreased in both PCA-DEA and RPCA-DEA
from the initial 13 units in conventional DEA supports this claim. On the other
hand, this decrease in efficient units could also be caused by the decrease from in
number of variables used in computing the efficiency scores.

By repeating the PCA-DEA and RPCA-DEA calculations using the three combi-
nations of centering and scaling, we obtained results that clearly support the usage
of scaling the data prior to dimensionality reduction. The resulting principal com-
ponents are heavily affected by differences in scale between the variables, in this
case leading to one variable accounting for virtually all variance in the data. A
clear difference in efficiency results is shown between PCA-DEA and RPCA-DEA,
however, as scaling of the data shifts the distribution of efficiency scores towards
the maximum value in PCA-DEA. On the other hand, scaling of data shifts the
distribution of scores to the opposite direction when RPCA-DEA is used, leading to
a positively skewed distribution. The effects of centering the data are not as clear,
as the distribution of efficiency scores remained almost equal in PCA-DEA, and
the number of efficient units decreased by one. There were more apparent effects of
centering in RPCA-DEA, as the distribution of efficiency scores was more negatively
skewed than when the data was centered. Furthermore, the number of efficient units
decreased by two.

The biggest improvement was, however, in the obtained principal components from
RPCA. When the data was centered the first two PCs accounted for less than 50% of
the variance in the data, whereas the same PCs accounted for more than 90% of the
total variance when data was not centered. In combination with the results from the
subsequent DEA calculation, the non-centered RPCA-DEA model presents possibly
the most confident results in this study, rivaling those of the regular RPCA-DEA
model.

5 Future prospects
There is still room for further research on the effects of PCA and RPCA on a
subsequent DEA calculation. One of the main points of interest could be in the
investigation of how the computed efficiency scores are affected if all outliers are
removed from the data set. In this study, we chose not to remove the outliers,
although they were significantly affecting both the PCA and the DEA calculations.

Another important aspect of further research could be to investigate when it is
necessary to use variable reduction techniques before a DEA calculation. In this
study, the number of variables was relatively low (3 inputs, 2 outputs), which means
that there was no restricting factor that forced us to perform variable reduction. This
raises the question whether the variable reduction actually improved the results or not.
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A third prospective field of research considers the assumption of returns to scale
in the DEA model. We used the BCC model in our calculations, meaning that we
assumed variable returns to scale. However, there is no evidence that this assumption
is correct. Further studies could therefore focus on the differences in results when the
assumption of returns to scale is changed between increasing, decreasing, constant,
and variable returns to scale.
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