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1 Introduction
Capacity expansion problems aim to solve the optimal financial and operational
decisions needed for expanding the production capacity of some resource, such as
energy grids to meet the demands of the inhabitants or the goods production capacity
of factories to meet quotas. As such, tools for solving these problems are of crucial
importance both for the public as well as private sector [Luss, 1982]. Energy capacity
expansion problems are a subtype of capacity expansion models that often introduce
extra complexity due to the limited capacity of transmission lines, multiple nodes
with varying needs and production capacities as well as time-variable and uncertain
demand and future building costs [Pereira and Pinto, 1991, Baringo and Conejo,
2013].

Various methods have been developed to address this uncertainty and stage-
wise nature of investment making, including approximate dynamic programming
[Bukenberger and Palmintier, 2018], linear-decision rule approaches [Dominguez et al.,
2016] and rolling-window approaches [Dominguez et al., 2015, Domínguez et al., 2021]
among many others. One critical modeling decision in all of the approaches is the
number and time distribution of the investment stages [Domínguez et al., 2021, Jeon,
2023]. However, the sensitivity of the results on the number of investment stages
is not thoroughly examined in the literature with relatively few studies focusing on
this critical hyperparameter.

While increasing the number of stages allows for more granular modeling of the
underlying problem and, as such, makes results more accurate, adding extra stages
comes with computational and numerical challenges. Some formulations see problem
size and solution time growing exponentially with respect to the number of stages
[Domínguez et al., 2021]. As such, getting the required precision by adding stages
might not always be a feasible option. Alternative formulations and models can be
examined to alleviate this trade-off between accuracy and computational feasibility
and to obtain better performance with revised scenario construction and problem
formulation. It is thus important to understand which models are most sensitive to
the number of investment stages.

One of the tools that can be used to decrease the computational complexity of
such problems is stochastic dual dynamic programming (SDDP). However, capacity
expansion problems need to be reformulated to suit the needs and limitations imposed
by the framework and are not suitable for SDDP out of the box.

The goal of this thesis is three-fold: first of all, demonstrate how multi-stage
energy capacity planning problems can be solved with SDDP, secondly leverage
the ability of SDDP to incorporate path-dependency to reduce the computational
complexity of multi-stage problems by generating a tree-like scenario structure,
and finally evaluate how the number of stages affects solution quality for different
formulations of energy capacity expansion problems.

The thesis is structured in the following way: in Section 2 the multi-stage capacity
expansion problem definition is introduced and a literature review is presented. Next,
core assumptions, strengths, and weaknesses of SDDP are introduced. Section 3
formulates the renewable capacity expansion problem as a stochastic dual dynamic
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program and introduces three alternate formulations, each aiming to increase the
quality of the model. Finally, the sensitivity of the results to the number of investment
stages is examined by evaluating model performance in a realistic scenario in Section 4.
Both in-group performances of each model with respect to the number of investment
stages as well as the between-group performance of the models are compared in
Section 5. Finally, directions for further research are proposed in Section 6.

2 Background

2.1 Capacity expansion formulation
2.1.1 Current formulation

While there are many ways to formulate a capacity expansion problem, we will be
building on a foundation similar to that described in [Domínguez et al., 2021]

We model a simplified energy system during a fixed planning horizon with the
following defining characteristics:

– N nodes, indexed by n ∈ 1 : N

– L transmission lines, indexed by l ∈ 1 : L

– G generators, indexed indexed by g ∈ 1 : G

– O operating points, indexed by o ∈ 1 : O

– T stages, indexed by t ∈ 1 : T

The planning horizon is split into an arbitrary number of stages. At the beginning
of each stage, we have the option to invest in power-generating units. At that
point, the investment costs for the stage are known but demand during the stage
is uncertain. After the investment decisions are made, demand growth uncertainty
is revealed and operating decisions are made. The goal of operating decisions is
to satisfy time-varying electricity demand at each node. If the demand is not met,
an unserved demand penalty cost CUS is incurred. The demand can be met by
generating power from the generators, each located at some node in the network.
The generation capacity of units is limited by the installed capacity P Ibuilt

gt as well
as the time-dependent availability factor of given power source Fgot. Electricity can
be transferred between the nodes by the aforementioned transmission lines, each of
which has its own maximum capacity P Lmax

l . To make this model more tractable
and to focus on the goals of this thesis, a few simplifying assumptions are made:

• Since our goal is to model the expansion of power system generation we do not
include the possibility to invest in transmission line capacity

• Demand growth and investment costs are stochastic and hence uncertain, other
input parameters are deterministic, though they can vary with time
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• No unit commitment or ramping constraints are considered, meaning power
flow through the system can be changed instantly

• Linear direct current representation of the power system is considered as in
Domínguez et al. [2021]

• Instead of modeling the demand and operating decisions for the whole year,
yearly variation in demand and power availability is condensed into a smaller
group of representative operating points.

• The lifetimes of generating units built are longer than the planning horizon,
meaning only units existing during the start of the horizon can be decommis-
sioned. The models can easily be refined to accommodate shorter decommis-
sioning schedules.

• Only one objective is considered - minimizing the expected total costs of our
power system over the planning horizon

To accurately describe this system, we need decision variables for operative and
investment decisions. For investment decisions, we need pI

gt(˜︁ξt−1), the amount of
power generation of generator g built at time t. Here ˜︁ξt represents the concatenated
realizations of all stochastic parameters up to and including stage t. Operating
decisions can be characterized by unserved demand dUS

not(˜︁ξt), power generated at each
power plant pG

got(˜︁ξt), and power flow through each transmission line pL
lot(˜︁ξt) at each

stage g and operating point o. The details of the stochastic scenarios are further
described in Section 4.

Each unit has its own respective stochastic investment cost per megawatt of
capacity built at stage t. Thus, the investment costs at stage t are calculated as
shown in Equation (1), where ˜︁cI

gt refers to the realized annualized investment cost
of the generating unit g at stage t and at is the years left in the planning horizon
and A the annualization factor. Equation (1) further shows the vectorized form of
the equation where the indexing on g is dropped, and variables are assumed to be
vectors of length G.

CI
t =

G∑︂
g=1

Aatp
I
gt(˜︁ξt−1)˜︁cI

gt (1)

Operating costs are incurred only from power generation and unserved demand.
Operating costs at stage t are given in Equation (2), where Ho refers to the number
of hours comprising the operating point o.

CO
t =

O∑︂
o=1

Ho(
N∑︂

n=1
dUS

notCUS +
G∑︂

g=1
pG

gotC
G
gt) (2)

With this description, we arrive at the complete model formulation described
below:
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Minimize
dUS

not,pG
got,pL

lot
,pI

gt

E˜︁ξ
{︃ T∑︂

t=1

G∑︂
g=1

Aatp
I
gt˜︁cI

gt +
O∑︂

o=1
Ho(

N∑︂
n=1

dUS
notCUS +

G∑︂
g=1

pG
gotC

G
gt)

}︃
(3a)

s.t.
t∑︂

m=1
pI

gm ⩽ P Imax
gt ∀t, g (3b)

t∑︂
m=1

pI
gm − Fgop

G
got ⩾ 0 ∀t, g, o (3c)∑︂

g∈GN(n)
pG

got +
∑︂

l∈LN(n)
pL

lot = dUS
not + ˜︁dnot ∀t, n, o (3d)

|pL
lot| ⩽ P Lmax

l ∀t, l, o (3e)
pI

gt, dUS
not, pG

got ⩾ 0 ∀t, g, o (3f)
pI

gt ∈ σ (ξt−1) (3g)
dUS

not, pG
got, pL

lot ∈ σ (ξt) , (3h)

where (3a) is the expected cost over the planning horizon, (3b) limits capacity
construction per each generator node, (3c) limits energy production to the built
capacity and the capacity availability, (3d) establishes power balance, with the sum
of unserved and served demand being equal to the one transmitted to the node
and generated at the node. (3e) and (3f) represent transmission line capacities
and non-negativity of investment and generation decisions respectively. Constraints
(3g) and (3h) represent non-anticipativity constraints as described in Ruszczynski
[1997]. GN(n) and LN(n) represent the index set of generators and transmission
lines bringing power to node n,and σ(ξt) represents the set of functions depending
only on realization of stochastic variables up to ξt.

2.1.2 Solution methods

Solution methods for multi-stage capacity expansion problems can be roughly split
into two approaches: deterministic and stochastic. Deterministic approaches generally
rely on exploring all paths of possible scenario realizations. However, with the number
of constraints growing exponentially with respect to the number of stages, these
methods can become too computationally demanding. [Domínguez et al., 2021,
Ruszczynski, 1997]

A theoretical foundation for non-deterministic methods has been laid by Rock-
afellar and Wets [1991], Ruszczynski [1997] who linked non-anticipativity constraints
and scenario structures, creating a new formulation that can be solved by cutting
plane methods. They further proposed methods for alleviating the computational
complexity with Monte Carlo sampling and regularization.

Domínguez et al. [2021] is one of the more recent papers focusing on comparing
various solutions methods against each other. Among the tried solution methods
were the following:
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• Linear-decision rule approach, where it is assumed that decision variables have
a linear relationship with the stochastic variables as described in Kuhn et al.
[2011].

• Multi-stage stochastic programming approach, where the multi-stage problem
is solved explicitly.

• Rolling-window approach, which approximates the solution to the whole multi-
stage problem by solving multiple concurrent two-stage capacity expansion
problems.

2.2 SDDP
2.2.1 SDDP in energy planning

Stochastic dual dynamic programming was first applied to energy planning by Pereira
and Pinto [1991] and has since received widespread attention and both methodological
as well as empirical developments.

Newham and Wood [2007] extended SDDP to allow for investment of integer sizes
and restricted each investment to be used only once to allow electricity transmission
planning with SDDP. Soares et al. [2017] devised an approach for decreasing solution
variability (at the cost of increased expected cost) and Machado et al. [2021] created
a way to parallelize the currently single-thread computations of SDDP by decreasing
the number of synchronization threads in the algorithm. In this thesis, SDDP.jl
[Dowson and Kapelevich, 2021] is used, as it implements these, among many other
methodological advances.

2.2.2 Basics of SDDP

Stochastic dual dynamic programming can be used to solve multi-stage problems of
the form given in Equation (4) by using the Bellman principle of optimality. Here
Ct refers to the cost function, xt, ut to the state and control variables, and ωt, Ωt to
realizations of random variables, and their sample space respectively. The indices
corresponding to stages t and xt may depend on all variables ωi, xi, ui∀i < t. Similar
problem formulations can be found in control theory - utilizing stage-wise costs and
decisions (or controls) that affect the admissible decision space and costs at the next
stages.

Eω1∈Ω1

⎡⎣Min
u1

⎧⎨⎩C1(x1, u1, ω1) + Eω2∈Ω2

[︄
Min

u2

{︄
C2(x2, u2, ω2)

+Eω3∈Ω3

[︃
Min

u3

{︃
x3, u3, ω3) + E(...)

}︃]︃}︄]︄⎫⎬⎭
⎤⎦ (4)

A system solvable by stochastic dual dynamic programming is characterized
by the nodes, states, controls, random variables, and the rules controlling them:
decision rules, transition functions, and the objective function. In a simple SDDP
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system without feedback, each node (as represented in Figure 1) can be considered
as belonging to a given stage. The node has an incoming state x and an outgoing
state x′. Additionally, each node has its own random variables ω, realizations of
which are independent of any other events in the model, and are considered as being
scenarios. In the node, a decision rule u = πi(x, ω) is used to map the incoming state
to the outgoing state by the transition function x′ = Ti(x, u, ω) while incurring a
cost Ci(x, u, ω), this is the cost appearing in the recursive formula (4). This process
is illustrated in Figure 1.

u = πi(x, ω)
x′ = Ti(x, u, ω)x x′

ω

Ci(x, u, ω)
Incoming state Outgoing state

Randomness

Cost

Figure 1: State transition diagram of a single node

Given a network of nodes and the transition probabilities between them, with the
transition probabilities being fixed and not depending on realizations of any random
variables or decisions made, the SDDP algorithm can minimize the total expected
cost of the model by finding optimal decision rules.

The SDDP algorithm iterates over the following phases: A forward pass, where
scenario realizations are sampled starting from the first stage until the last one.
During the forward pass, approximate subproblems are solved for each of the states,
using the approximation of the cost-to-go function derived from the cutting planes
of previous iterations.

A backward pass, where the approximations of the cost-to-go functions are refined
by adding new cuts to the subproblem as per Kelley’s algorithm [Kelley, 1960]. Since
cost-to-go is assumed to be convex with respect to the state variables, we receive an
under-approximation of the true minimum of the cost-to-go function (and thus the
overall optimization function).

This process allows us to refine our lower bound for the solution iteratively. After
the iteration is complete, an upper bound for the resulting policy is estimated by
sampling realizations of the scenario space and solving related problems with the
cost-to-go function refined during the iteration process. This process can then be
continued until sufficient convergence or number of iterations is reached.
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3 Model formulation

3.1 Model 1
It should now be noted that the capacity expansion model previously described
cannot be directly modeled as an SDDP problem and needs to be modified to suit
the restrictions that SDDP imposes.

Let us start the process with the objective function described in Equation (3a).
The objective contains the sum of expected values over stages. The goal is to
split it into a stage-wise component and cost-to-go term while considering the non-
anticipativity conditions on each variable. Disregarding constants, stage-wise cost
Ct = CI

t + CO
t can be described with decision variables pI

gt,dUS
not,pG

got, pL
lot, stochastic

parameters ˜︁cI
gt, ˜︁dnot, and the investment decisions in previous stages pI

gm, as described
in (1) (2). Hence, the only decision variables that affect future stage-wise costs are
the investment decisions, which do so through the sum P Ibuilt

gt = ∑︁t
m=1 pI

gm, which is
equal to the total capacity built until the stage t (that is, the total capacity at the
stage t) as described in Equation(5). It follows that the problem can be decomposed
as follows: pI

gt, dUS
not, pG

got, pL
lot ∈ u are the control variables, P Ibuilt

gt ∈ x are the state
variables, with the corresponding transition function shown in Equation (5).

P Ibuilt
g(t+1) = P Ibuilt

gt + pI
gt (5)

Finally Ct ∈ σ (x, u, ω). The stochastic parameters ˜︁cI
gt,

˜︁dnot are assumed to be
independent of state variables and will be modeled by discrete scenarios. The
decision process can be formulated as follows:

Stage 0 Investment costs for period 1 become known and capacity is built, no operating
decisions are made.

Stage 1 Demand for period 1 becomes known and operating decisions for period 1 are
made. Investment costs for period 2 become known and investment decisions
for period 2 are made

Stage t Operating costs for period t become known and operating decisions for period
t are made. Investment costs for period t + 1 become known and investment
decisions for period t are made.

Stage T Operating costs for period T become known and operating decisions for period
T are made

The process is illustrated in Figure 2, where I represents investment stages and
O operational stages. Note that the realization of operating costs of period t and
investment costs of period t − 1 are done in the same period. This is possible due to
the fact that the operating decisions are not influenced by the investment decisions
in the following stages, as operating decisions do not affect the outgoing state, and
investment decisions do not affect the constraints or cost of operating decisions of the
same stage. We finally obtain the formulation described by (6). Ωt represents the
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I
t=0

I&O
t=1

I&O
t=2

I&O
t=3

O
t=4

I
t=0

I&O
t=1

O
t=2

I
t=0

O
t=1

30 years

15 years 15 years

7.5 years 7.5 years 7.5 years 7.5 years

Capacity is built Operating costs calculated

Capacity is built
Operating costs calculated

Capacity is built
Operating costs calculated

Figure 2: Illustrative figure of Model 1 with 1, 2 and 4 investment stages
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discrete and finite set of uncertainty realizations at time t, these will be elaborated
on in Section 4

Min
u0

⎧⎨⎩C0(P Ibuilt
g0 , u0) + Eω1∈Ω1

⎡⎣Min
u1

⎧⎨⎩C1(P Ibuilt
g1 , u1, ω1) (6a)

+Eω2∈Ω2

[︄
Min

u2

{︄
C2(P Ibuilt

g2 , u2, ω2)

+Eω3∈Ω3

[︃
Min

u3

{︃
C3(P Ibuilt

g3 , u3, ω3) + E(...)
}︃]︃}︄]︄⎫⎬⎭

⎤⎦⎫⎬⎭
Where:

Ct(P Ibuilt
t , ut, ωt) =

G∑︂
g=1

Aatp
I
g˜︁cI

gωt
+

O∑︂
o=1

Ho(
N∑︂

n=1
dUS

no CUS +
G∑︂

g=1
pG

goC
G
g ) (6b)

With decision policy u being restricted by following at each stage t
pIbuilt

gt ⩽ P Imax
gt ∀g (6c)

pIbuilt
gt − Fgotp

G
got ⩾ 0 ∀g, o (6d)∑︂

g∈GN(n)
pG

got +
∑︂

l∈LN(n)
pL

lot = dUS
not + ˜︁dnoωtt ∀n, o (6e)

pI
gt, dUS

not, pG
got ⩾ 0 ∀g, o (6f)

|pL
lot| ⩽ P Lmax

l ∀l, o (6g)
And the transition function between states being

P Ibuilt
g(t+1) = P Ibuilt

gt + pI
g (6h)

3.2 Model 2
While Model 1 is equivalent to the classical formulation of the capacity expansion
problem, if we want to understand how uncertainty affects planning decisions, we
must next focus on making decisions and costs compatible across simulations. In
the above formulation, as in Domínguez et al. [2021] the last year of each period
is used to represent the demand during the whole period. This can overestimate
the total demand (in the usual case of positive demand growth), and thus drive
higher operating costs and unnecessarily large investments when the amount of
stages is low. This leads to the number of investment stages affecting solutions both
through increased uncertainty, as well as overestimation of demand, leading to large
differences between solutions with different numbers of investment stages.

This effect can be mitigated and the operating costs of simulations with different
numbers of investment stages can be made comparable. For example, when comparing
models with 1, 2, and 4 investment stages, one can simulate each of these with 4, 2,
and 1 operating stages per investment stage respectively. Figure 3 illustrates how the
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I
t=0

I&O
t=1

I&O
t=2

I&O
t=3

O
t=4

I
t=0

O
t=1

I&O
t=2

O
t=3

O
t=4

I
t=0

O
t=1

O
t=2

O
t=3

O
t=4

7.5 years 7.5 years 7.5 years 7.5 years

7.5 years 7.5 years 7.5 years 7.5 years

7.5 years 7.5 years 7.5 years 7.5 years

Capacity built

Operating decisions Operating decisions Operating decisions Operating decisions

Capacity built Capacity built

Operating decisions Operating decisions Operating decisions Operating decisions

Figure 3: Illustrative figure of Model 2 with 1,2 and 4 investment stages, each having
4 operational stages

new stage structure is built, with each box representing one stage. where for each
stage either operating decisions, investment decisions, or both are made. This change
makes operating- and investment costs more comparable across the models with
different numbers of investment stages. Generally, the process would be as follows:

Stage 0 Investment costs for period 1 become known and capacity is built, no operating
decisions are made.

Stage t Operating costs for period t become known and operating decisions for period
t are made. If stage t is an investment stage, investment costs for period t+1
become known and investment decisions for period t+1 are made.

Stage T Operating costs for period T become known and operating decisions for period
T are made

This model can be implemented simply by increasing the number of stages in
(6b) and adding a single new constraint as shown in (7), where no/d represents the
number of operating stages per one investment stage. Effectively the new constraint
forces the new capacity built to be 0 for stages where investment decisions are not
made.

pI
gt = 0 if (t − 1) ̸≡ 0 mod no/d (7)
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3.3 Model 3
In formulations of Model 1 and Model 2, capacity can only be built at the beginning
of each investment stage, and decommissioning of power plants can cause the model
to over-invest in generating capacity before necessary. Hence one of the reasons for
the decrease in costs with an increase in investment stages would be due to the more
granular planning capabilities - not the effect of uncertainty. The aim of the third
model is to eliminate the effect of the inability to plan capacity building within an
investment stage. This will help us further isolate the effect of uncertainty on the
solution quality, as we remove the change in solutions caused by the decommissioning
schedule and expected value of demand growth.

This model fixes the issue by creating capacity-building plans. The capacity-
building plans are created during the investment stages, and the plan is valid up
until the next investment stage. The capacity is then built according to the plan in
between investment stages. This finally makes the increase of investment stages affect
results only through a better understanding of the uncertainty of the parameters.
The process is thus as follows:

Stage 0 Investment costs for period 1 become known and capacity is built, capacity
building plans until the next investment stage are made. These are represented
by state variable pIplanned

g0m , being the capacity of generator g that is going to be
built at stage m, as decided at stage 0. No operating decisions are made.

Stage t Operating costs for period t become known and operating decisions for period
t are made. If stage t is an investment stage, capacity-building plans until
the next investment stage are made. These again are represented by pIplanned

gtm ,
where g and m are as before, and t details during which stage the capacity
plans are valid. This plan is then passed onto the next stage as a state variable.
If t is not an investment stage, capacity is built according to plan pIplanned

gtt , and
the plans are passed forward as a state variable.

Stage T Operating costs for a period T become known and operating decisions for
period T are made

Model 3 is illustrated in Figure 4, with a similar notation as before. It can be
implemented by adding the capacity to be built as a state variable as shown in



17

I
t=0

I&O
t=1

I&O
t=2

I&O
t=3

O
t=4

I
t=0

O
t=1

I&O
t=2

O
t=3

O
t=4

I
t=0

O
t=1

O
t=2

O
t=3

O
t=4

Investment plan
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Investment plan
created

Investment plan
created

7.5 years 7.5 years 7.5 years 7.5 years

7.5 years 7.5 years 7.5 years 7.5 years

7.5 years 7.5 years 7.5 years 7.5 years

Capacity built
as planned

Capacity built
as planned

Capacity built
as planned

Capacity built
as planned

Capacity built
as planned

Capacity built
as planned

Capacity built
as planned

Capacity built
as planned

Operating decisions Operating decisions Operating decisions Operating decisions

Operating decisions Operating decisions Operating decisions Operating decisions

Figure 4: Illustrative figure of Model 3 with 1,2 and 4 investment decision stages,
each having 4 capacity building and operational stages
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Equation(8a):

Ct(P Ibuilt
t , ut, ωt) =

G∑︂
g=1

Aatp
I
g˜︁cI

gωt
+

O∑︂
o=1

Ho(
N∑︂

n=1
dUS

no CUS +
G∑︂

g=1
pG

goC
G
g ) (8a)

With decision policy u being restricted by following at each stage t
pIbuilt

gt ⩽ P Imax
gt ∀g (8b)

pIbuilt
gt − Fgotp

G
got ⩾ 0 ∀g, o (8c)∑︂

g∈GN(n)
pG

got +
∑︂

l∈LN(n)
pL

lot = dUS
not + ˜︁dnoωtt ∀n, o (8d)

|pL
lot| ⩽ P Lmax

l ∀l, o (8e)
pI

gt = pIplanned
gtt if (t − 1) ̸≡ 0 mod no/d (8f)

pI
gt, dUS

not, pG
got, pIplanned

gtm ⩾ 0 ∀g, o, t, m (8g)
And the transition function between states being

P Ibuilt
g(t+1) = P Ibuilt

gt + pI
g (8h)

pIplanned
g(t+1)m = pIplanned

gtm if (t − 1) ̸≡ 0 mod no/d∀m

(8i)

4 Case study

4.1 Input data
This case study is based on the 24-node reliability test system (RTS) network as
specified by the IEEE standard [Ordoudis et al., 2016], the location of nodes and
transfer lines between them are described in the article. The existing generating units,
their locations, and capacities are detailed in Table 4.1. Cost of unserved demand,
annualization factor, and initial demand are taken from Domínguez et al. [2021] and
are respectively CUS = 10000, A = 0.097, I0 = 2508MW . The decommissioning
schedule is also taken from Domínguez et al. [2021].

For modeling investment costs, we split the energy production technologies
into two groups that we model separately: mature technologies, which comprise
biomass, onshore wind, and solar photovoltaic (PV); and maturing technologies,
which comprise concentrated solar power (CSP) and offshore wind. The evolution of
costs is characterized by Equations (9) and (10), where ˜︁cISD

ts , ˜︁cISM
ts are the stochastic

coefficients describing the evolution of costs of mature and maturing technologies
respectively and Gmature, Gmaturing are the sets of generators representing mature
and maturing technologies. Table 2 contains initial investment costs for the new
generating units. Note that maximum capacities are 80% larger than in [Domínguez
et al., 2021]. This is due to lower capacity availability assumptions, where the original
paper could not be replicated due to data availability. If this change is not made the
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maximum available capacity is not enough for meeting demand.

˜︁cI
g(t+1) = cI

gt˜︁cISD
ts if g ∈ Gmature (9)˜︁cI

g(t+1) = cI
gt˜︁cISM

ts if g ∈ Gmaturing (10)

We assume that the demand for each operating point o, for each year is given
by Equation(11), such that dN

n captures the share of the total demand going into
the node and as such ∑︁

n∈N dN
n = 1 and is constant over operating points and years,

as was assumed in [Domínguez et al., 2021]. The variable dO
o gives the demand at

each operating point o, modeling the seasonal changes in demand. The operating
points for wind are taken from [Baringo and Conejo, 2013]. Due to challenges in data
availability, solar photovoltaic power (PV) and concentrated solar power (CSP) plants
are assumed to have static availability factors of 25%, as per statistics of U.S Energy
information association [EIA, 2023] and 75% [Domínguez et al., 2021] respectively.
While this decision can influence the absolute numbers of power capacity built, the
purpose of this study is to examine new methodologies for finding optimal strategies
for multi-stage decision problems, and as such does not require rigorous adherence
to real-world scenarios. The term ˜︂dS

ts is the stochastic demand coefficient at stage
t and scenario s. The scenario-generating technique is characterized in the next
section.

For each model, we consider 3 versions with varying numbers of investment stages:
1,2, and 4. For Models 2 and 3, the number of operating stages per investment stage
will be such that the total amount of operating stages will be 4. This way we ensure
that operating points will be similar between all runs and we can better isolate the
effect of uncertainty on the capacity planning.

dno(t+1) = dN
n dO

o dnot
˜︁dS
ts (11)

Location Variable cost Capacity
Unit node (#) $/MWh ( MW )

CCGT1 15 60 600
CCGT2 22 66 600
Nuclear1 21 14 900
Nuclear2 13 16 800

Coal 2 25 500
OnWind1 23 1 750

Table 1: Location, generating capacity and variable cost of existing generating units

4.2 Uncertainty characterization
Now that we have defined most of the model, we are left with the task of characterizing
the stochastic variables: the demand ˜︁dS

ts and the investment cost for mature and
maturing technologies ˜︁cISD

ts , ˜︁cISM
ts in each scenario.
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Location Investment Variable cost Capacity
Unit node (#) cost ($/kW) ($/MWh) (MW)

Biomass1 21 4114 46 630
Biomass2 23 4920 42 720
Biomass3 16 4885 48 630
OnWind2 16 1953 1 1260
OnWind3 15 1820 1 1260
OnWind4 18 1680 1 1350
OffWind 1 6820 2 1800

PV1 13 2165 1 540
PV2 18 2273 1 540
PV3 1 2085 1 450
CSP1 1 8220 3 450
CSP2 7 8320 3 450
CSP3 2 8667 3 360

Table 2: Locations, costs and maximum capacities of units that can be built

While SDDP can also incorporate other methods for uncertainty characterization,
such as objective states [Downward et al., 2020], the scenario method was chosen
since objective states cannot accommodate uncertain parameters in the constraints.

The scenario method relies on modeling the uncertainty as a Markov chain of
discrete nodes and exploits the fact that SDDP can incorporate path dependency
to the nodes by building an approximation of the cost function with respect to the
incoming state variables in each node. Being able to model path-dependency here
is crucial, as we can construct scenarios to be such that eg. if the number of ’high’
and ’low’ demand growth realizations is the same, the total demand will be the same
irrespective of the order of realizations of these scenarios.

The scenario structure was constructed as follows:

• To align with Domínguez et al. [2021] 3 scenarios for demand growth rate
(constant, moderate, and high) and 2 scenarios for investment costs (constant,
decreasing) are used for each stage.

• To further maintain consistency with Domínguez et al. [2021] we choose coeffi-
cients to be such that the expected value for an increase in annual demand is
1%, and the expected value for the yearly decrease in mature and maturing
technologies investment costs to be 0.5% and 1.3% respectively.

• The scenarios are assumed to be equiprobable, independent of past realizations,
and influence variables as described in Equations 9,10, and 11

• Lowest demand growth and investment cost scenarios assume that the respective
variables do not change ˜︁dS

ts, ˜︁cISD
ts , ˜︁cISM

ts = 1

• High and medium demand growth scenarios are chosen to be such that they
form a trinomial tree, meaning ˜︁dS

t(high) = ( ˜︁dS
t(medium))2
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Figure 5: Binomial tree showing possible evolution of investment costs of mature
technologies in first 3 stages

Scenario s ˜︁dS
ts ˜︁cISD

ts ˜︁cISM
ts

1 1.012 1 1
2 1.01 1 1
3 1 1 1
4 1.012 0.974 0.99
5 1.01 0.974 0.99
6 1 0.974 0.99

Table 3: Scenarios and respective yearly changes in stochastic coefficients

From the above points, it follows that investment costs either stay constant or
decrease by a factor of cISD

down and cISM
down for mature and maturing costs respectively.

This is illustrated in the binomial tree shown in Figure 4.2. Demand either stays
constant,increases by dS

up, or increases by (dS
up)2 as illustrated in Figure 4.2. Finally,

when we take into account the expected values for demand growth and investment
growth declines, we can solve for the coefficients, and arrive at the coefficients for
scenarios described in Table 4.2. Note that these are yearly changes in the coefficients
and thus need to be raised to the power of 30/No (where No stands for the number
of operating stages in the model) to get the total change in the stochastic coefficient
between two operating stages.

This way of characterizing uncertainty allows us to reduce the scenario space from
being exponential with respect to the number of stages to being polynomial, with
the number of distinct scenarios per stage being t(2t − 1) = 2t2 − t and the number
of distinct nodes in the model being ∑︁T

t=1(2t2 − t) = O(T 3). This is a considerable
reduction in growth rate compared to the original exponential growth presented in
[Domínguez et al., 2021].
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Figure 6: Trinomial tree showing possible evolution of demand in first 3 stages
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4.3 Hypotheses
Based on the properties of Models 1, 2, and 3, several hypotheses can be formulated:

H1: Model 1, with its limited ability to build capacity except at the beginning
of each period, as well as its tendency to overestimate demand due to only
considering last year’s operating points into consideration will result in higher
investment and operational costs. This model will likely exhibit the largest
decline in costs as the number of stages increases.

H2: Model 2 is expected to result in lower investment and operational costs compared
to Model 1. The decline in costs with an increasing number of stages is expected
to be more moderate compared to Model 1.

H3: Model 3, with its capacity-building plans and ability to build capacity according
to those plans, will likely have the lowest investment costs but higher operational
costs compared to Model 2. The decline in costs as the number of stages
increases is expected to be the smallest among the three models.

H4: As the number of stages increases, the differences in costs between the three
models are expected to decrease. This is because a better understanding of
uncertainty in parameters can be achieved with a higher number of investment
stages. The 4 stage models will have identical solutions, since their problem
formulations reduce to each other when there is only 1 operational stage per 1
investment stage.

5 Results

5.1 Hyper-parameters and convergence
The model was solved with SDDP.jl using the default settings [Dowson and Kapelevich,
2021]. The stopping conditions were that the lower bound converges (does not move
0.001 for 20 iterations) or 20,000 iterations are run, whichever comes first. All of the
models converged with the bound stalling condition. Solving time was 3 hours on
an AMD Ryzen 4000 processor, showing that the scenario reduction technique and
SDDP have reduced the computational complexity significantly from the original
formulation of Domínguez et al. [2021]. For generating result tables 20 000 realizations
of the evolution of demand and investment costs were sampled and solved with the
models.

5.2 Model comparison
Table 4 contains the average total costs for each of the models. In line with H1, model
1 sees the greatest decline in costs with an increase in the number of investment
stages. With 1 investment stage, the total costs were 230% higher compared to the
version with 4 stages.
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Investment stages
1 2 4

Model 1 72643 39542 21971
Model 2 47767 27784 21971
Model 3 23831 22028 21971

Table 4: Average total costs of each model per the number of investment stages

This 230% difference reduces to 117% with 1 investment stage run of model 2.
Hence being able to more granularly model operating points managed to reduce our
optimality loss by roughly 50%. Model 3 with 1 investment stage had only an 8.5%
cost difference to the optimal. The total cost for all of the models with 4 investment
stages is the same. This is expected, as the core difference between Model 1 and
Models 2 and 3 is the fact that Model 2 can handle multiple operating stages per
investment stage, and Model 3 further refines that approach. When there is only
one operating stage per investment stage, models are expected to yield the same
formulation as Model 1 and thus the same result.

Putting the above numbers in perspective - the optimality loss of model 1 with
1 investment stage was influenced by the following: more granular modeling of
operating points caused 49% of the observed effect on total costs, being able to plan
capacity building ahead had a total effect of 47%, and the final 4% were caused by
being able to change plans once observing the uncertainty realization.

As mentioned above, hypothesis 1 was confirmed by the data, with model 1 seeing
by far the greatest absolute costs and greatest decline of costs with an increase in
the number of stages. Hypothesis 2 is also validated by the data with Model 2 seeing
both lower investment and operational costs than Model 1 as shown in Tables 5 and
7. Due to the ability to create capacity-building plans Model 3 manages to build
more capacity than Model 2 while paying less, due to the annualization of costs, as
seen in tables 5, and 6. These tables also support hypothesis 3, as we see model 3
having lower investment costs, but higher operating costs than model 2. Hypothesis
4 is also validated clearly, with all of the models converging to the same solution
when the number of investment stages was equal to 4. Table 8 shows that Model 3
had the lowest unserved demand cost in most cases - not something discussed in our
hypotheses, but an interesting finding for further evaluation.

Investment stages
1 2 4

Model 1 62890 28235 12385
Model 2 35204 18069 12385
Model 3 13966 12304 12385

Table 5: Average investment costs of each model per the number of investment stages
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Investment stages
1 2 4

Model 1 5373 4198 3884
Model 2 3460 3889 3884
Model 3 4643 4170 3884

Table 6: Average capacity build in each model per the number of investment stages

Investment stages
1 2 4

Model 1 8726 11307 9269
Model 2 8849 8863 9269
Model 3 9191 9398 9269

Table 7: Average operating costs of each model per the number of investment stages

Investment stages
1 2 4

Model 1 1027 0 317
Model 2 3714 852 317
Model 3 674 533 317

Table 8: Average unserved demand costs of each model per the number of investment
stages

5.3 Limitations
While the initial hypotheses are confirmed, there are caveats, as with any study. First
of all, the reference point for optimal costs was a model with 4 stages. The real loss of
optimality is likely higher and could be further reduced by increasing the number of
stages. Also, while better modeling of operating points (models 2 and 3) allowed for a
great reduction in total cost, the final solution was a relatively coarse approximation
of real-life capacity planning. For example, all models had the fundamental flaw
that the last year’s demand for a stage is assumed to be representative of the whole
period, which leads to higher total demand than in reality.

Furthermore, the relative magnitudes of the impact of uncertainty, operation
point modeling, and capacity building plans might change in a different electric grid
configuration or uncertainty characterization. For example, if the uncertainty of
demand or investment costs was higher, the effect of uncertainty on total costs could
be more than the 4% in this case study.

6 Conclusions
This thesis aimed to shed light on how sensitive are different problem formulations to
the number of investment stages in multi-stage capacity expansion problems. Three
different models with varying amounts of investment stages were created: one model
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using the classical formulation, one having enhanced operating point modeling, and
the last one introducing capacity-building plans.

These models were combined with a custom scenario-generating technique to
reduce computational complexity and solved with SDDP.jl to test four hypotheses: the
simple model has the largest loss of optimality when the number of investment stages
is decreased; the model with enhanced operating points results in lower investment
and operating costs than standard model; model 3 sees lower total costs, with lower
investment costs, but higher total costs than model 2. The final hypothesis was that
the difference between solutions decreases as the number of stages increases. All of
these hypotheses were supported by the results.

The results showed that the ability to accurately model operating points and plan
capacity building within an investment stage the most effect on solution accuracy,
with the realization of uncertainty being a relatively small factor. This suggests that
enhancing operating point modeling could be a potential avenue for further research.
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7 Appendix

7.1 Notation
1. Indices and sets

t stages, indexed from 0 to T

l transmission lines, indexed from 1 to L

n nodes, indexed from 1 to N

g generators, indexed from 1 to G

o operating points, indexed from 1 to O

GN(n) set of generators located at node n

LN(n) set of transmission lines having a connection to node n

Gmature, Gmaturing Sets of generators representing mature and maturing technologies respectively

Ωt Discrete and finite set of scenarios at stage t. A single scenario represented by
ωt

2. Helping variables

Ct Total costs at staget

CI
t Investment costs at staget

CO
t Operating costs at staget

3. Unused variables (General formulation of capacity expansion)
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˜︁ξt Concatenated realizations of all random variables up to stage t

4. SDDP State variables

P IBuilt
gt Capacity of generator g at staget, can be increased through pI

gt

pIplanned
gtm Capacity of generator g to be built at stage m as per plans valid at stage t

5. SDDP Decision variables

pI
gt Power capacity to be built of generator g at stage t

dUS
not Amount of unserved demand at node n, operating point o and time t

pG
got Power generated at unit g, at operating point o, at timet

pL
lot Power running through transmission line l at operating point o and stage t

6. Parameters

P Lmax
l Maximum transmission capacity of line l

P Imax
gt Maximum amount of power capacity that can be built for generator g at timet

CUS Cost per MW of unserved demand

Ho Number of hours in operating point o

at Years left in planning horizon at stage t

CG
gt Cost to generate one megawatt of capacity from generator g at time t

Fgot Availability factor of generator g at operating point o and time t

A Annualization factor

no/d Amount of operating stages per investment stage

7. Stochastic parameters

cI
gωt Cost to build one megawatt of capacity for generator g at stage t in scenario ω

dnoωt Demand at node n, operating point o, scenario ω and time t
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