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Abstract
The current system of providing preventative care for coronary heart disease (CHD)
can be seen as unsuccessful as the majority of CHD events occur in the population
that is not receiving preventative treatment. Currently, treatment is administered
based on the patient’s estimated risk of suffering a CHD event. The genetic risk
score has been developed to improve CHD risk stratification. Since the genetic risk
score is more expensive than traditional testing methods, cost-benefit analysis is
needed to evaluate the value of it in preventative care decision making of CHD.

The aim of this study is to use the Decision Programming framework to develop
an optimal decision strategy for allocating preventative care for CHD. This study
develops an optimal testing and treatment strategy with the objective of maximis-
ing net monetary benefit. The problem is solved using the Decision Programming
framework which combines aspects of stochastic programming and decision analysis.
The optimisation problem formulation relies on an influence diagram representa-
tion of the problem. The initial formulation was computationally intractable. In
order to obtain a solution, the problem was decomposed into a set of 101 subproblems.

By analysing and combining the optimal solutions of the subproblems an opti-
mal decision strategy was successfully developed. The optimal strategy is a two-stage
screening process of traditional risk score and genetic risk score testing. The Decision
Programming framework was applicable to the problem because it allowed modeling
endogenous uncertainties, a multi-staged decision strategy and the multiple value
nodes in the influence diagram.
Keywords Decision programming, endogenous uncertainty, influence diagrams,

decision analysis, stochastic programming, mixed integer linear
programming, preventative care allocation
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1 Introduction
Coronary heart disease (CHD) is a type of cardiovascular disease. Its prevalence has
decreased in Finland since the 1960’s due to improvements in lifestyle, preventative
care and treatment methods. Despite this, according to THL (2020), cardiovascular
diseases were still the number one cause of death in Finland in 2018.

Improving the system of providing preventative care for CHD is key in reducing
its prevalence. Statin treatment is a form of preventative care, which reduces levels of
cholesterol in blood vessels. This treatment is provided to patients with a high (20%)
10-year absolute risk of cardiovascular disease. The risk estimate for a patient is
based on the traditional risk score (TRS), which relies heavily on the main traditional
risk factors. However, despite the traditional risk factors being very prevalent in the
population who develop CHD, Weissler (2004) showed that the predictive power of
these risk factors is poor. According to Tikkanen et al. (2013), more than half of
CHD events occur within the population that has not been classified to be at high
risk and thus, are not receiving preventative care.

In response, new tests for predicting a patient’s risk of CHD have been developed.
The genetic risk score (GRS) is one of them. These tests provide more information
and may enable health care providers to detect more patients at high risk and provide
preventative care for them. Thus, more lives are saved. However, all of this incurs
additional costs and an increased workload for the health care system. Thus, it is
essential to develop a decision strategy that yields the most benefit. A decision
strategy in this context is a plan that dictates which patients are tested and treated
and which tests are used. Cost-benefit analysis is used to analyse and develop decision
strategies.

The aim of this thesis is to evaluate if the Decision Programming framework is
suitable for the cost-benefit analysis performed by Hynninen et al. (2019). In their
study, Hynninen et al. (2019) solved for an optimal testing and statin treatment
allocation strategy for CHD using dynamic programming. In this paper, the same
problem will be modeled using the Decision Programming framework, recently
developed by Salo et al. (2019). The strengths of the framework and challenges
presented by using it will be discussed. In the model, the available diagnostic tests
are TRS and GRS and the cost-benefit objective is evaluated as a weighted sum of
testing costs and health outcomes.

The structure of this thesis is as follows. Prior research on developing decision
strategies in health care and cost-benefit analyses of these strategies is reviewed in
Section 2. The thesis continues to describe the methodology of Decision Programming
and the development of the optimisation model in Section 3. The results of the
optimisation are presented in Section 4. Further discussion of the results and the
conclusions that can be drawn from them are described in Section 5.
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2 Literature review
The cost-benefit study by Hynninen et al. (2019) solved for the optimal testing and
statin allocation strategy from the health care system’s perspective. The model
determined which patients should be tested and treated based on their risk of CHD.
Furthermore, it determined the testing strategy that should be used in the risk
stratification. Thus, their model developed a decision strategy and simultaneously
evaluated it in terms of cost-benefit. Previously, these two aspects of preventative
care decision making have not been researched in a study simultaneously. The general
guide of how cost-benefit analyses in this area have been conducted is that a set of
predefined decision strategies is chosen, these strategies are simulated and the results
are compared. The strategies are generally adopted from epidemiological studies
which have researched the effectiveness of the testing methods in risk stratification
or from national health care guidelines.

Therefore, the first section of this literature review focuses on how testing and
treatment strategies have previously been developed. The second section provides
a review of studies that have analysed cost-benefit or cost-effectiveness of decision
strategies in the area of allocating preventative care for cardiovascular diseases.

2.1 Testing and treatment strategy development
One of the first frameworks for medical decision making of whether to treat, test
or not treat was developed by Pauker and Kassirer (1980). This framework pro-
vides an analytical basis for testing and treatment strategies. They developed two
thresholds, the ’testing’ threshold and the ’test-treatment’ threshold. The thresholds
are probability cut-offs and they divide subjects into three groups: if the risk of
disease is below the ’testing’ threshold treatment should be withheld, if it is above the
’test-treatment’ threshold treatment should be given and if the risk falls in between
these thresholds then the diagnostic test should be performed and the treatment
decision made based on its results. The thresholds are visualised in Figure 1. The
framework of Pauker and Kassirer (1980) only considers the patient’s welfare and
does not consider economic aspects.

Figure 1: Visualisation of the ’testing’ and ’test-treatment’ thresholds. Figure
adapted from Pauker and Kassirer (1980).

An example of a medical study where these threshold values were defined for
CHD is the study on the effectiveness of GRS by Tikkanen et al. (2013). They
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tested a hypothesis that a two stage screening process of TRS and then GRS would
improve risk classification for CHD. They found that after performing TRS on all
subjects, performing GRS on the intermediate risk scores (10%-20%) produced a
significant improvement in the classification. They saw that 31% in the intermediate
risk group were correctly reclassified into low- and high-risk categories as a result
of the GRS testing. This improvement in classification enables better preventative
treatment allocation and Tikkanen et al. (2013) estimated that it would prevent one
additional CHD event over 14 years for every 135 people screened. This estimate was
based on the fact that according to current guidelines, patients with a risk greater
than 20% receive preventative statin treatment. Based on their study, the ’testing’
and ’test-treatment’ thresholds for the GRS are 10% and 20%. These values were
determined based on the risk levels for which the GRS provides the most information
gain and the current health care guidelines. The testing strategy developed by
Tikkanen et al. (2013) was used as a reference strategy in the study by Hynninen
et al. (2019).

Hynninen et al. (2019) developed a testing and treatment strategy by optimising
a cost-benefit objective consisting of the health outcomes and testing costs. This
included them determining the ’testing’ and ’test-treatment’ thresholds for TRS and
GRS from the perspective of net monetary benefit (NMB). The threshold values
for GRS were different than the ones found in the study by Tikkanen et al. (2013).
This is due to the different perspectives – pure patient welfare versus NMB – that
the studies were conducted from. For example, the national health care guidelines
for allocating treatment were not considered in the optimisation by Hynninen et al.
(2019). This showcases that the thresholds described by Pauker and Kassirer (1980)
are not absolute for a test for a given disease because the perspective of the study
affects the found threshold values.

2.2 Cost-benefit analysis of decision strategies in the con-
text of cardiovascular diseases

New testing and treatment strategies are evaluated from an economical perspective in
cost-benefit analyses. Cost-benefit analyses often examine a set of decision strategies,
which they compare to find the optimal strategy. These studies often use decision
trees to express the strategies and Markov state-transition models to simulate them.
This approach was adopted by Roberts et al. (2015), Wordsworth et al. (2010) and
Jarmul et al. (2018). The simulation parameters are set based on data from health
records. The results of the simulation are used to compare the strategies.

Roberts et al. (2015) used a decision tree and Markov model methodology to
study the costs and benefits of using coronary artery calcium (CAC) testing for
CHD risk stratification for intermediate risk patients. In their study, they defined
four strategies: treat all, treat according to current guidelines, treat if CAC ≥ 1,
and treat if CAC ≥ 100. They found that if the benefit was measured as CHD
events averted, then the strategy of treating everyone with CAC ≥ 1 is the most
cost-effective. However, if the benefit was measured in quality-adjusted life-years
(QALYs) then the strategy where only patients with CAC ≥ 100 is favoured. The
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reason behind this was that QALYs accounted for patients’ disfavor and possible
disutility due to side-effects of the statin treatment. This showcases the importance
of choosing the measure of benefit intelligently in cost-effectiveness and cost-benefit
analysis.

Wordsworth et al. (2010) performed another cost-effectiveness study using a
decision tree and a Markov model. They compared the cost-effectiveness of genetic
and clinical screening strategies of family members in risk stratification of hypertrophic
cardiomyopathy, which is another type of cardiovascular disease. The genetic testing
strategy was found to be more costly due to more high-risk individuals being detected
and thus accumulated more preventative treatment costs. However, with genetic
testing the estimated life years saved was higher. The genetic testing strategy was
determined to be more cost-effective, meaning that the yielded benefits outweighed
incurred costs. This was determined from the fact that the incremental cost per
life year saved was below the willingness-to-pay threshold. The willingness-to-pay
threshold describes how much society is willing to pay for a life year saved. Whether or
not the the life years have been adjusted with the quality of life depends on the study.
The result of Wordsworth et al. (2010) exemplifies the need for cost-effectiveness
analysis, because comparing the costs and their effects is not always straightforward.
The more expensive strategy might be the more cost-effective one.

Jarmul et al. (2018) performed cost-effectiveness analysis in a similar context
as Hynninen et al. (2019). Jarmul et al. (2018) analysed the value of using a
cardiovascular genetic risk score (cGRS) in targeting statin therapy for primary
prevention of atherosclerotic cardiovascular diseases (ASCVD). Coronary heart
disease is a type of ASCVD. The study focused on individuals at low-to-intermediate
(2,5%-7,5%) risk because based on expert opinion, preventative care in this context
should be allocated to those with a risk ≥ 7,5%. Their model was also a state-
transition Markov model. By changing parameters describing patient profiles and
testing and treatment plans, they were able to compare ASCVD incidence, quality of
life, mortality and costs for the different strategies. The primary measure of benefit
was gained QALYs. They defined four testing and treatment strategies: (1) test
none and treat all, (2) test none and treat none, (3) test all and treat if cGRS is
high, and (4) test all and treat if cGRS is intermediate or high. The authors found
that using cGRS was not cost-effective in allocating statin treatment for people with
low-to-intermediate risk. The shortcoming of this study is that only individuals
at low-to-intermediate risk were studied. Furthermore, the cGRS ’testing’ and
’test-treatment’ thresholds were predefined as 2,5% and 7,5%. It was not explored,
whether 2,5% and 7,5% are the best ’testing’ and ’test-treatment’ thresholds for
cGRS. The study by Hynninen et al. (2019) improved on these aspects.

This paper replicates the study by Hynninen et al. (2019). In their study, six
testing and treatment strategies were evaluated. However, in contrast to the studies
outlined above, in these strategies the allocation of tests and treatment according to
risk levels was not predefined. The optimal allocation was instead obtained from the
dynamic programming model used in the study. The six strategies were

1. no tests and no treatment (’No treatment’),
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2. using prior risk to allocate treatment (’Treatment optimised’),

3. performing TRS on optimised patient segment and allocating treatment based
on updated risk estimates (‘TRS optimized’),

4. performing GRS on optimised patient segment and allocating treatment based
on updated risk estimates (‘GRS optimized’),

5. performing TRS on optimised patient segment and based on its results per-
forming GRS optimally to allocate treatment (‘TRS & GRS optimized’),

6. performing GRS on optimised patient segment and based on its results per-
forming TRS optimally to allocate treatment (‘GRS & TRS optimized’).

They also used four reference strategies:

7. performing TRS on all patients (’TRS for all’),

8. performing GRS on all patients (’GRS for all’),

9. performing TRS for all patients and then GRS for the ones with an updated
risk estimate between 10%-20% (TRS for all & GRS for 10–20%’),

10. performing TRS and GRS for all patients (‘TRS & GRS for all’).

The strategies of interest 1 - 6 were modeled using a dynamic programming, and
all allocations of tests and treatments were optimised. These optimised strategies
were compared to the reference strategies 7 - 10. The strategies were evaluated based
on expected net monetary benefit. Net monetary benefit is defined as

NMB = Health outcomes · λ − Costs (1)

where the health outcomes are measured in QALYs and λ is the societal willingness-
to-pay threshold. In this study, the willingness-to-pay threshold is assumed to be
50,000 e/QALY. The net monetary benefit was evaluated over a 10-year time horizon.
Hynninen et al. (2019) found the ’TRS & GRS optimized’ strategy to be the optimal
strategy. In the optimal strategy the ’testing’ and ’test-treatment’ thresholds for
TRS were 10% and 59%, and for GRS they were 17% and 22%. The optimal decision
strategy is presented as a flow chart in Figure 2.
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Figure 2: Flow chart representation of the optimal decision strategy from the study
by Hynninen et al. (2019). Figure adapted from Hynninen et al. (2019).

3 Methodology

3.1 Decision Programming
Decision Programming is an optimisation framework which has been developed by
Salo et al. (2019). The framework combines aspects of stochastic programming and
decision analysis. Using this framework, a multi-stage decision problem represented
as an influence diagram can be formulated into a mixed integer linear programming
(MILP) problem. The strengths of the framework include it being applicable to
problems with endogenous uncertainties, meaning that earlier decisions can influence
the conditional probabilities of following uncertain events. The framework also allows
modeling problems with multiple objectives. The Decision Programming framework
has been implemented as a Julia package by Salo et al. (2021). Once a problem
is formulated into a MILP using this framework, it can be solved efficiently using
off-the-shelf commercial solvers.

The objective of Decision Programming is to solve for an optimal decision strategy
Z, which maximises the utility function associated with the problem in question.
In the case of this paper, the utility function is the expected net monetary benefit,
which is defined in Equation (1). In order to describe how a Decision Programming
optimisation problem is structured, several concepts related to influence diagrams,
states and paths will be defined in the following.

The problem formulation relies on an influence diagram representation of the
problem. The influence diagram is an acyclic graph with nodes N = C ∪ D ∪ V ,
where C are chance nodes, D are decision nodes and V are value nodes. Each node
is represented by a number and the set of numbers is {1, ..., |N |}, where |N | denotes
the number of elements in set N . Dependencies between nodes are denoted by a
set of arcs A = {(i, j) | i, j ∈ N}. The nodes are ordered so that i < j for each arc
(i, j) ∈ A and the value nodes are numbered last, so that i < j for all i ∈ C ∪D, j ∈ V .
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The information set I(j) of a node j ∈ N is the collection of its predecessor nodes.
The formal definition of an information set is

I(j) = {i ∈ C ∪ D | (i, j) ∈ A}. (2)
Each chance and decision node j ∈ C ∪ D has a finite set of states Sj. A path is

a sequence of states sj ∈ Sj where each chance and decision node j ∈ C ∪ D has a
specified state. The information state sI(j) of node j is a subpath that includes the
states of the information set I(j). The set of all paths is

S =
∏︂

j∈C∪D

Sj. (3)

For a chance node j ∈ C, the realisation of its state sj has a stochastic dependence
on the realisation of its information state sI(j). To explore this relationship, we define
a random variable Xj which describes the realisation of the state of node j ∈ C ∪ D.
The conditional probability of Xj = sj is

P (Xj = sj | XI(j) = sI(j)) ∀sj ∈ Sj, sI(j) ∈ SI(j). (4)

For a decision node j ∈ D, the probability of Xj = sj is dependent on the local
decision strategy Zj. A local decision strategy is a function Zj : SI(j) → Sj, which
maps each information state sI(j) to a decision (state) sj. In Decision Programming,
the local decision strategies are modeled as binary variables such that

Zj(sI(j)) = sj ⇐⇒ z(sj | sI(j)) = 1 (5)

and otherwise z(sj | sI(j)) = 0. Note that, since local decision strategies are
deterministic functions, P (Xj = sj | XI(j) = sI(j)) = 1 whenever z(sj | sI(j)) = 1. A
decision strategy Z contains a local decision strategy for each decision node j ∈ D. A
decision strategy Z is said to be compatible with a path s if and only if z(sj | sI(j)) = 1
for all j ∈ D. The set of all decision strategies is denoted by Z.

The path probability of a path s ∈ S is defined as π(s) = P(X1:|s| = s1:|s| | Z),
where |s| is the number of elements in path s. The path probability of s ∈ S is
derived by recursively deriving path probabilities of subpaths of s. The recursion is
formulated as

πk(s) = P (Xk = sk | XI(k) = sI(k))πk−1(s), (6)
where k is the length of the subpath. The subpaths always start from the first node
of path s and the total path probability is π(s) = π|s|(s). The recursion is initialised
by declaring π0(s) = 1.

Note that when the kth node in the subpath is a decision node

πk(s) =

⎧⎨⎩πk−1(s) if Z is compatible with s
0 else.

(7)

This means that if the decision strategy is not compatible with path s, then
πk(s) = 0 for some k by the definition of compatibility. Thus, we can define an
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upper bound p(s) for the path probability π(s) for any s ∈ S as seen in Equation
(8). Notice, that π(s) = p(s), when the decision strategy is compatible with path s.

p(s) =
∏︂
j∈C

P (Xj = sj | XI(j) = sI(j)) (8)

Each value node v ∈ V has a value function Yv : SI(v) → C that maps its
information state to a set of consequences C. The utility function U : C → R
maps these consequences to real values. Thus, the utility of a path is defined as the
aggregated utility over all consequences of the value nodes

U(s) =
∑︂
v∈V

U [Yv(sI(v))]. (9)

In Decision Programming, a problem is formulated as a MILP using the concepts
of states, paths and decision strategies. The optimisation problem is formulated as
follows

max.
∑︂
s∈S

π(s)U(s) (10)

s.t.
∑︂

sj∈Sj

z(sj | sI(j)) = 1, ∀j ∈ D, sI(j) ∈ SI(j) (11)

0 ≤ π(s) ≤ p(s), ∀s ∈ S (12)
π(s) ≤ z(sj | sI(j)), ∀s ∈ S (13)
π(s) ≥ p(s) +

∑︂
j∈D

z(sj | sI(j)) − |D|, ∀s ∈ S (14)

z(sj | sI(j)) ∈ {0, 1}, ∀j ∈ D, sj ∈ Sj, sI(j) ∈ SI(j), (15)

where constraint (11) constrains each local decision strategy to map each information
state to exactly one decision. Constraint (12) limits the path probability between
zero and the upper bound p(s), which is defined in Equation (8). Constraint (13)
ensures that the path probability is zero if the path is incompatible with the decision
strategy. Constraint (14) is called the hard lower bound constraint, which ensures
that π(s) = p(s) if the decision strategy is compatible with the path s, and otherwise
the path probability will be zero by constraint (13). The hard lower bound constraint
is optional for problems where path utilities U(s) ≥ 0 for all s ∈ S. It is needed in
maximisation problems where some U(s) < 0 because it is not enforced that the sum
of all path probabilities must be equal to one and the paths s for which π(s) > 0 and
U(s) < 0 decrease the objective value. Including the hard lower bound constraint
may also enhance solver performance in some problems where U(s) ≥ 0 for all s ∈ S.
Constraint (15) declares the z(sj | sI(j)) variables to be binary variables. Notice that
the solver solves for the path probability variables π(s) and the decision variables
z(sj | sI(j)).

Notice that if the upper bound p(s) is zero for a path s ∈ S, then the path
probability π(s) is also zero according to constraint (12). In this case, the constraints
(12)-(14) become trivial and the path probability π(s) = 0 does not affect the objective
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function value. Therefore, in the problem implementation path probability variables
for which p(s) = 0 are left out of the problem. Naturally, also the constraints
associated with these variables are not declared. By leaving out redundant variables
and constraints, the size of the model becomes smaller, making it less computationally
demanding.

In some decision problems, there are decision combinations which are forbidden
due to real world restrictions. This is for example the case in project portfolio
selection problems as described by Gustafsson and Salo (2005). The objective in
project portfolio selection problems is to manage research and development projects
optimally. This entails a multi-stage decision making process where decisions are
made about initialising and continuing projects. Naturally, there is a restriction that
projects which have not been started cannot be continued. Therefore, the decision
combination of continuing a project after not starting it is forbidden. In Decision
Programming, forbidden decision combinations are implemented using additional
constraints to the problem outlined in Equations (10)-(15). The additional constraint
is defined such that

π(s) ≤ 0, ∀s ∈ F (16)

where F is the set of paths that include forbidden decision strategies. This constraint,
combined with constraint (12), forces the path probabilities of forbidden paths to
zero.

3.2 Constructing the model
The implemented model determines an optimal decision strategy for allocating
preventative care for CHD. The model adopts the perspective of the national health
care system. The data and structure of the problem are the same as what were used
in the study by Hynninen et al. (2019). However, due to the flexibility of Decision
Programming, the strategies (1)-(6) mentioned in the literature review do not need
to be explicitly defined in the model. This is because all of these strategies are within
the feasible solutions of the model and the algorithm solves for the optimal strategy.

The problem setting is such that the patient is assumed to have a prior risk
estimate. A risk estimate is a prediction of the patient’s chance of having a CHD
event in the next ten years. The risk estimates are grouped into risk levels, which
range from 0% to 100%. The first testing decision is made based on the prior risk
estimate. The first testing decision entails deciding whether TRS or GRS should
be performed or if no testing is needed. If a test is conducted, the risk estimate is
updated and based on the new information, the second testing decision is made. The
second testing decision entails deciding whether further testing should be conducted
or not. The second testing decision is constrained so that the same test which was
conducted in the first stage cannot be repeated. If a second test is conducted, the risk
estimate is updated again. The treatment decision – dictating whether the patient
receives statin therapy or not – is made based on the resulting risk estimate of this
testing process. Note that if no tests are conducted, the treatment decision is made
based on the prior risk estimate.
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The influence diagram representation of this problem setting is seen in Figure
3. The orange circular nodes H, R0, R1, R2 are chance nodes, which represent the
patient’s health and the risk levels of their prior and updated risk estimates. Node
H represents the uncertainty of whether the patient has a CHD event or remains
healthy during the 10 year time frame. Node R0 represents the prior risk level before
any tests are performed. Node H has the prior risk level R0 in its information
set, because in the model, we assume that the prior risk accurately describes the
probability of having a CHD event. The nodes R1 and R2 represent the updated risk
level after the first and second testing decisions, respectively. If a test is conducted,
the risk estimate is updated using Bayesian posterior probability:

Risk estimate = P (CHD | test result) = P (test result | CHD) · P (CHD)
P (test result) (17)

where the conditional probabilities P (test result | CHD) are from the study by
Abraham et al. (2016) and the probability of having a CHD event, denoted by
P (CHD), is the prior risk level R0 or the updated risk level R1, depending on
whether it is the first or second test in question. The denominator P (test result) is
calculated as a sum of the numerator and P (test result | no CHD) · P (no CHD). As
the states of nodes R represent the risk levels, the probability of a state in these
nodes is the probability of the test updating the risk estimate to that level.

In the influence diagram in Figure 3, decision nodes are illustrated by blue squares.
The first and second testing decisions are represented by T1 and T2, respectively.
These decisions determine whether TRS, GRS or no tests should be performed for
the patient. Conducting the same test twice is forbidden. Therefore, all paths where
the same test is repeated in T1 and T2 are included in the set of forbidden paths.
Furthermore, the forbidden paths include all paths where the first testing decision T1
is to not perform testing but then the second testing decision T2 is to perform a test.
This is because the information yielded from performing only one test is not affected
by whether the test is performed in the first or second stage of testing. Therefore,
forbidding the paths where no test is performed in T1 and TRS or GRS is performed
in T2 reduces redundancy in the model without information loss. These forbidden
path dependencies between nodes T1 and T2 are not represented by an arrow in the
influence diagram because the dependence is of a different nature than the other
dependencies represented by arrows.

The final treatment decision is represented by node TD, where the options are
to provide treatment or withhold treatment. The treatment decision is made based
on the updated risk estimate represented by node R2.

There are two value nodes which are used to evaluate the objective function of
the model. The value nodes are denoted by green diamonds in the influence diagram.
Node TC represents the testing costs. The value function of node TC maps the
tests performed – TRS, GRS, TRS & GRS, no tests – to the costs of the tests. The
final node of the influence diagram is node HB, which represents the health benefits
achieved by a given strategy. The information set of node HB includes the nodes H
and TD. The possible information states of node HB are CHD & treatment, CHD
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& no treatment, no CHD & treatment, no CHD & no treatment. The node HB
maps these strategies to health benefit values. The testing costs and health benefit
values were evaluated in the study by Hynninen et al. (2019). The objective function
is the expected net monetary benefit and it is evaluated using the testing costs and
health benefit values as is shown in Equation (1).

Figure 3: Influence digram representation of the problem.

The states of the nodes in the influence diagram are summarised in Table 1.
In the model, the range of risk estimates has been discretised into 101 risk levels
[0%, 1%), [1%, 2%), ..., [99%, 100%), [100%]. For brevity, the states of nodes R0, R1
and R2, representing these risk levels, are referred to by the closed end of the
discretised interval. For example, state 0% = [0%, 1%). Note that the probability
of a state of an R node P (XR = sR) describes the chance of the patient being
at the risk level represented by that state, not their probability of having a CHD
event. For instance, P (XR0 = 1%) describes the probability of an arbitrarily chosen
individual having a 1% risk of having a CHD event in the next ten years. In fact,
the probabilities of the states of the prior risk node R0 describe the population prior
risk distribution.

The testing decision nodes T1 and T2 have states corresponding to the testing
options: TRS, GRS, no test. The treatment decision node TD has states representing
the choices of providing treatment and withholding treatment. Notice, that in the
decision nodes T1, T2 and TD a separate local decision strategy is derived for each
information state 0%, 1%, ..., 100%.

The states of the node H describe whether or not the patient suffers a CHD event
in the 10 year time frame. For the value nodes, the states of TC correspond to the
possible testing combination and the states of HB correspond to the combinations
of health states and treatment options, which determine health benefit outcomes.

The model described above was implemented in the Julia language using the
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DecisionProgramming.jl package. The Gurobi Optimization (2021) solver was used
for the optimisation.

Table 1: The states Sj for each node j ∈ C ∪ D ∪ V in the influence diagram
presentation of the problem.

Node States
R0 {0%, 1%, 2%, ..., 99%, 100%}
H {CHD, no CHD}
T1 {TRS, GRS, no test}
R1 {0%, 1%, 2%, ..., 99%, 100%}
T2 {TRS, GRS, no test}
R2 {0%, 1%, 2%, ..., 99%, 100%}
TD {treatment, no treatment}
TC {TRS, GRS, TRS & GRS, no tests}
HB {CHD & treatment, CHD & no treatment,

no CHD & treatment, no CHD & no treatment}

3.2.1 Model inputs

The model parameters for this problem were derived in the studies by Hynninen
et al. (2019) and Abraham et al. (2016). Specifically, the values they derived for the
population risk distribution, the conditional probabilities of the TRS and GRS test
results, the costs of tests and the health benefit outcomes were used.

The probabilities of the states of node R0, which represent the prior risk levels,
were set in accordance with the population risk distribution. Setting the probabilities
of nodes R1 and R2 required calculating the probabilities of moving from one risk
level to another when a given test is performed. In order to do this, the updated risk
estimates were calculated for all possible test results of a given test, for a given prior
risk level and state of health – the two health states are that the patient either has a
CHD event or not. Equation (17) shows the formula for this update for a single test
result when the patient is assumed to have a CHD event. These risk estimates were
grouped into risk levels 0%,..., 100% and the probabilities of a risk estimate being
updated to each risk level was calculated. The probabilities of these risk levels were
used as the probabilities of the states of nodes R1 and R2 when the information
state corresponds to the given prior risk level, testing decision and state of health.

The values of node TC, representing the testing costs, were inserted into the
model as QALYs, so that they had the same unit as the health benefits. The testing
costs incurred by the possible testing strategies are seen in Table 2. The health
benefits corresponding to each information state of node HB are seen in Table 3.
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Table 2: The values corresponding to the possible information states of node TC.
The testing costs were evaluated by Hynninen et al. (2019).

Testing strategy Value (QALY) Value (e)
TRS −3.4645 · 10−3 -173.225
GRS −4.0000 · 10−3 -200
TRS & GRS −7.4645 · 10−3 -373.225
no tests 0 0

Table 3: The values corresponding to the possible information states of node HB.
The health benefits were evaluated by Hynninen et al. (2019).

Health and treatment strategy Value (QALY)
CHD & treatment 6.90
CHD & no treatment 6.65
no CHD & treatment 7.65
no CHD & no treatment 7.70

3.2.2 Model simplification and adjustment

The model described above was found to be computationally intractable due the over
450 000 paths with nonzero probabilities, a large number of which had very small
probabilities. To solve the first issue, the model was reduced so that it modeled the
problem for only one prior risk level at a time. This modification was executed by
changing the chance node R0 to a deterministic node. In practice, this meant setting
the probability of all states of node R0 to zero, with the exception of the chosen
prior risk level i:

P (XR0 = sR0) =

⎧⎨⎩0 ∀sR0 ̸= i

1 sR0 = i.
(18)

This reduced the number of paths with nonzero path probabilities significantly,
because it set all paths starting from the 100 states sR0 ̸= i to zero. For example, in
the model with the prior risk level set to 9%, there were only 10 778 paths with nonzero
path probabilities. The model was run for all prior risk levels i = 0%, 1%, ..., 100%
in order to find the optimal decision strategy for each subproblem. These strategies
were analysed and combined into a general strategy for the full original problem.
The objective values of the subproblems were weighted according to the population
risk distribution in order to obtain the expected net monetary benefit for the full
problem.

The second issue was that approximately half of the nonzero path probabilities
were very small (<1e-6). This caused numerical issues in the solver and the problem
did not converge to an optimal solution. To mitigate this issue, the path probabilities
were scaled by a factor α > 0. In practice, this meant scaling the constraints (12)-(14)
of the optimisation problem by α as seen in Equations (19)-(21). The value of α was
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set to 100, 1000 or 10000, depending on the prior risk level for which the model was
being solved.

0 ≤ π(s) ≤ α p(s), ∀s ∈ S (19)
π(s) ≤ α z(sj | sI(j)), ∀s ∈ S (20)
π(s) ≥ α ( p(s) +

∑︂
j∈D

z(sj | sI(j)) − |D| ), ∀s ∈ S (21)

(22)

4 Results
An optimal decision strategy for allocating preventative care was found using the
Decision Programming framework. The results are in line with the results found by
Hynninen et al. (2019) using dynamic programming. However, small differences are
found in the ’testing’, ’test-treatment’ and treatment thresholds between the results.
Furthermore, the expected monetary benefit found using Decision Programming is
larger by a small margin. Notice that the notation introduced in the Section 3.2.
will be used in the following. Specifically, the intervals [0%, 1%), [1%, 2%), ..., [100%]
will be referred to by risk levels 0%, 1%,..., 100%.

The optimal strategy is to perform a two stage screening process using the TRS
and GRS testing methods. The optimal strategy in the first testing stage, represented
by node T1, is to perform TRS testing for patients with a prior risk between 8% and
60%. No testing should be performed for patients with a prior risk less than 8% or
above 60%. The optimal strategy in the second testing stage, represented by node T2,
is to perform further GRS testing for patients with updated risk estimates greater
than 15% and less than or equal to 21%. No further testing should be performed for
patients with updated risk estimates of less than 15% or greater than 21%. These
results are summarised in Table 4.

It is noticed from Table 4 that for the updated risk level sR1 = 15%, the optimal
strategy in the second testing stage is inconsistent between the described subproblems.
This means that the updated risk estimates, which are grouped into risk level 15%
in node R1 do not lead to the same testing decision in node T2. For some of the
risk estimates the optimal strategy is to perform GRS and for some to not perform
further testing. This inconsistency results from the decision strategies across the 101
subproblems not being interrelated. To obtain a more precise ’testing’ threshold for
GRS the updated risk estimates, which lead to the inconsistency, were examined.
These risk estimates, the prior risk levels sR0 before TRS testing and the optimal
strategies for T2 are shown in Table 5. It is seen that the largest risk estimate, for
which no testing is performed is 15.29% and the smallest risk estimate, for which
GRS is performed is 15.48%. Therefore, it is concluded that the ’testing’ threshold
for GRS is between these values. Since, it is not possible to determine the exact
threshold, the mean of these two values 15.39% will be reported as the threshold.
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Table 4: The optimal local decision strategies for decision nodes T1, T2 and TD.
Information state T1 T2 TD
0% - 7% no test no test no treatment
8% - 14% TRS no test no treatment
15% TRS no test & GRS no treatment
16% - 17% TRS GRS no treatment
18% TRS GRS no treatment & treatment
19% - 21% TRS GRS treatment
22% - 60 % TRS no test treatment
61% - 100 % no test no test treatment

Table 5: The risk estimates for which the optimal testing decision in node T2 is
inconsistent.

Information state sR0 Risk estimate after TRS Optimal strategy in T2
20% 15.02% no test
11% 15.21% no test
40% 15.29% no test
10% 15.48% GRS
15% 15.74% GRS
21% 15.82% GRS
41% 15.84% GRS
18% 15.90% GRS

The optimal strategy for the treatment decision, represented by node TD, is
to not treat patients with risk estimates below 18% and to treat patients with risk
estimates above 18%. The decision strategy is inconsistent for the risk level 18%.
This is due to the same reason that was discussed above in the case of testing
decision T2 for risk level 15%. However, in this case the exact threshold value can
be extrapolated based on the health benefit outcomes of treatment strategies and
health states. The threshold is found at the point where the expected health benefit
is unaffected by whether the patient is treated or not. The expected health benefits
with and without treatment are

E[treatment] = p · HB T & CHD + (1 − p) · HB T & no CHD (23)
E[no treatment] = p · HB no T & CHD + (1 − p) · HB no T & no CHD (24)

where p is the probability value of the treatment threshold and HB are health
benefit values corresponding to different treatment strategies and health states. For
conciseness, treatment has been abbreviated with ’T’ and no treatment with ’no T’
in the indexing of the health benefit values. The health benefit values are found in
Table 3. Setting the Equations (23) and (24) equal to each other and solving for the
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threshold p gives Equation (25). Using the values found in Table 3, we find that the
treatment threshold is p = 18.63%.

p = HBno T & no CHD − HBT & no CHD

HBT & CHD − HBT & no CHD − HBno T & CHD + HBno T & no CHD
. (25)

Based on the results in Table 4 and the analysis of the inconsistent strategies,
the optimal strategy can be summarised in a flow chart. The flow chart is shown in
Figure 4.

Figure 4: Flow chart representation of the optimal decision strategy for allocating
preventative care of CHD.

The optimal strategy seen in Figure 4 is very similar to the strategy found by
Hynninen et al. (2019) in Figure 2. The threshold values differ in the strategies by at
most 2 risk levels. The strategy found using Decision Programming suggests testing
more patients than the strategy found using dynamic programming. Furthermore,
the Decision Programming solution suggests treating 0.37% more patients. Despite
the Decision Programming strategy administering more tests and more treatment,
the expected NMB from the strategy is higher. The threshold values and the expected
NMB from both models are show in Table 6. The objective value is shown in QALYs
and in euros merely for convenience.

The differences in the results are most probably due to how the range of risk
estimates was discretised, the inconsistent strategies among the 101 subproblems and
numerical issues. In the dynamic programming model, the range of risk estimates
[0%, 100%] was discretised by rounding the values to the nearest percentage. However,
in the Decision Programming model, the values were grouped into risk levels by
rounding down to the nearest percent as described in Section 3.2. The different
methods of discretisation may have affected the threshold values for the testing and
treatment decisions because the underlying groups of risk estimates used to determine
the threshold values were different.

Furthermore, since the Decision Programming model was solved as 101 smaller
models, inconsistencies were noticed in the optimal decision strategies of the smaller



21

models. This was the case when the information state of testing decision node
T2 was 15% and when the information state of treatment decision node TD was
18%. Resolving these inconsistencies lead to the optimal strategy of the Decision
Programming model being more intricate compared the strategy found using dynamic
programming. This may partly explain why the Decision Programming model
produced a higher expected NMB.

Finally, a challenge in Decision Programming, is that the path probabilities may
become very small. Due to this, the integer feasibility tolerance of the solver and
the scale factor α had to be adjusted for each model in order for the solution to
converge. This leads to issues with numerical accuracy and may cause numerical
inconsistencies between the results found in this paper compared to the ones found
by Hynninen et al. (2019).

Table 6: The results of the Decision Programming model and of the Dynamic
Programming model by Hynninen et al. (2019).

Decision Programming Dynamic Programming
TRS ’testing’ threshold 8 % 10 %
TRS ’test-treatment’ threshold 60% 59 %
GRS ’testing’ threshold 15.39% 17 %
GRS ’test-treatment’ threshold 22% 22%
Treatment threshold 18.63% 19 %
Objective (QALY) 7.59579 7.59572
NMB (e) 379 790 379 786

5 Discussion and conclusions
An optimal decision strategy for allocating preventative care of CHD was successfully
obtained using the Decision Programming framework. The fact that problems with
endogenous uncertainty can be modeled using Decision Programming was valuable
when modeling this specific problem. This is because the updated risk estimates of a
patient are affected by the testing decisions. Furthermore, Decision Programming
being applicable to multi-stage decision problems allowed the problem to be modeled
in an intuitive way. The testing decisions were represented by two decision nodes,
which enabled all possible testing strategies using TRS, GRS or no tests, to be
modeled in a way that corresponds to the real life setting of the problem. The third
decision node represented the treatment decision, which is made based on the updated
risk estimate evaluated in the testing process. Lastly, it was useful that Decision
Programming can be applied to problems with several value nodes. In this specific
problem, the two value nodes represented the two outcomes that determine NMB –
the testing costs and the health benefits. Since these two measures were affected by
different decisions – the testing costs were determined by the testing decisions and
the health benefits by the treatment decision – it was useful and intuitive that they
could be represented by two separate value nodes.
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A significant strength of Decision Programming compared to other methods used
in cost-benefit analyses is that the explored decision strategies do not need to be
predetermined. Furthermore, the decision strategy is optimised using stochastic
programming instead of simulation. In earlier studies, similar problems have been
modeled using Markov models simulating a set of predefined strategies. In Decision
Programming, given the decision options for each decision node, the model generates
all possible decision strategies as paths. Then the best feasible strategy is found using
linear programming. This allows more strategies to be explored simultaneously. This
was especially valuable when modeling this specific problem because the threshold
values for testing and treatment decisions are not fixed before the optimisation.
Notice that despite this flexibility in the method, the Decision Programming solution
was in line with the two-stage screening strategy developed by Hynninen et al. (2019)
using dynamic programming.

Some challenges arose when the Decision Programming framework was used to
optimise this specific problem. A challenge associated with exploring all possible
strategies simultaneously was that the number of paths was very large and thus, the
number of path probability variables made the model computationally demanding.
The number of paths was large because it is the product of the states over all nodes
as seen in Equation (3). Therefore, having nodes with a large number of states –
for instance the R nodes with 101 states each – makes the number of paths very
large, in this case over 37 million. The number of decision variables was also large
because the R nodes, representing the prior and updated risk estimates, formed
the information sets of the decision nodes. As a result, the problem was very large
and computationally intractable. Therefore, the model was simplified into smaller
subproblems by making the prior risk node R0 deterministic. This meant that node
R0 represented only one given risk level and therefore, the model represented the
problem for an individual patient instead of the whole population. This modification
did not change the number of paths that the subproblems considered when generating
the path probability variables. However, since a significantly larger part of the path
probabilities were zero, the solver was able to find the optimal solution. Of course,
working with 101 subproblems created a challenge in itself, because the parameters
of each of the 101 models had to be configured separately and the computing time for
many of the subproblems was considerable. In addition, the results of the subproblems
had to be processed to find the optimal decision strategy for the original problem.

Another challenge, which arose was that a considerable number of the nonzero path
probabilities were very small and caused issues for the solver. The path probabilities
are small because they correspond to the product of the probabilities of the states in
the path as seen in Equation (8). In this problem, the probabilities of many states
were small, because they described the distribution of risk on the range 0%-100%,
where some extreme values were very unlikely. In response to this issue, the solver
parameters such as integer feasibility tolerance were adjusted. This however did not
solve the problem. Thus, the Decision Programming Julia package was modified so
that the probabilities could be scaled by a factor α. Scaling the path probabilities
by values α ∈ {100, 1000, 10000} increased them so that the solver was able to find a
solution.
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A possible improvement is reducing the number of paths by removing the de-
terministic R0 node from the models of the subproblems. This would decrease the
number of paths in the model by a factor of 101. This way, adding the variables to
the model would take considerably less time. This would also reduce the degeneracy
in the model, because there would be less paths with zero path probabilities for
which the decisions have no effect on the objective function value. Making this
modification was decided against because the model would have been a less intuitive
representation of the real life problem as the prior risk estimate would not have been
represented in it. This modification would not have significantly affected the solution
time, because current solvers have presolving capabilities that deal with variables set
to zero.

This specific problem could also be explored as a multi-objective optimisation
problem using Decision Programming. The two objectives would be reducing testing
costs and gaining health benefits. In Decision Programming multiple objectives are
represented with multiple value nodes. Since the testing costs and health benefits
are already represented as separate value nodes, the problem’s influence diagram
representation would not need to be modified. With this problem structure, the pareto
optimal strategies can be generated using multi-objective optimisation methods. In
this specific problem, a strategy Z is pareto optimal if no other feasible strategy has
smaller testing costs and greater or equal health benefits, or greater health benefits
and smaller or equal testing costs. It would be interesting to explore possible other
pareto optimal strategies of this problem, because given the context of the problem,
a more preferred strategy may be found. For example, if another pareto optimal
strategy exists where greater health benefits are achieved by administering more
tests this could be considered a better strategy. This is because people tend to
prefer having more tests conducted as opposed to taking unnecessary medication.
Furthermore, the adherence to prescribed medication may increase if the patient
feels that the medication is more necessary as a result of the additional testing.

In conclusion, the Decision Programming framework was successfully applied
in optimising a decision strategy for allocating preventative care for CHD. The
properties of the framework allowed the problem to be modeled in a way that
was well rooted in its real life setting. Its connection to the influence diagram
representation of the problem makes the framework intuitive. The model was found
to be computationally demanding, but breaking it down into subproblems and making
some modifications to the optimisation problem formulation made it possible to
obtain the solution.
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