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Abstract
The truck and trailer routing problem (TTRP) is a vehicle routing problem in which
a fleet of trucks stationed at a central depot must serve a set of customers. The fleet
includes also a number of trailers that cannot move autonomously but can be pulled
by the trucks. Some customers can only be served by a truck due to accessibility
constraints while other customers may be served by either a truck or a truck-trailer
combined vehicle. A truck can uncouple its trailer and leave it at a customer location
while serving other customers.

We define the TTRP mathematically using a graph that has a node for each
customer as well as the depot. We present two mixed-integer linear programming
formulations based on commodity flow and using three-index indicator variables.
The first, directed, formulation defines the indicator variables for the directed arcs of
the graph while the second, undirected, formulation defines them for the undirected
edges of the graph. We improve the latter formulation with some valid inequalities,
implement it using a branch-and-cut algorithm and study its computational behavior.
The algorithm is able to solve to optimality synthetic problem instances with up to
20 customers.
Keywords vehicle routing problem, truck and trailer routing problem,

branch-and-cut
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Tiivistelmä
Perävaunullisten kuorma-autojen reitittämiseen liittyvä ongelma truck and trailer
routing problem (TTRP) on reititysongelma, jossa keskusvarikolta käsin toimivan
kuorma-autokannan on palveltava asiakasjoukkoa. Autokantaan kuuluu myös usei-
ta perävaunuja, joita kuorma-autot voivat vetää. Joitakin vaikeasti saavutettavia
asiakkaita voidaan palvella vain kuorma-autolla, kun taas muita asiakkaita voidaan
palvella joko kuorma-autolla tai kuorma-auton ja perävaunun muodostamalla ajo-
neuvoyhdistelmällä. Perävaunu voidaan irrottaa kuorma-autosta ja jättää asiakkaan
luo siksi aikaa, kun auto palvelee muita asiakkaita.

Tämä työ määrittää TTRP:n matemaattisesti käyttäen graafia, jonka jokainen
solmu vastaa asiakasta tai varikkoa. Työssä muotoillaan hyödykkeiden virtaukseen
perustuva lineaarinen sekalukuoptimointitehtävä, joka käyttää kolmen indeksin indi-
kaattorimuuttujia. Muotoilusta esitetään kaksi versiota. Ensimmäinen, suunnattu,
muotoilu määrittelee indikaattorimuuttujat jokaiselle graafin suunnatulle kaarelle,
kun taas toinen, suuntaamaton, muotoilu määrittelee ne graafin suuntaamattomille
särmille. Jälkimmäistä muotoilua parannetaan valideilla epäyhtälöillä, toteutetaan
branch-and-cut -algoritmi sen ratkaisemiseksi ja testataan sitä laskennallisesti. Algo-
ritmi löytää optimaalisen ratkaisun keinotekoisiin testiongelmiin, joissa on korkeintaan
20 asiakasta.
Avainsanat reititys, TTRP, kokonaislukuoptimointi
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1 Introduction
The truck and trailer vehicle routing problem (TTRP) is an extension of the classic
vehicle routing problem (VRP), first studied by Dantzig and Ramser (1959). In the
VRP, a fleet of homogeneous vehicles must satisfy the demands of a set of customers.
Each customer’s demand must be satisfied by one visit of a vehicle. The capacity
of each vehicle is limited, therefore a single vehicle can serve only a subset of the
customers. The fleet is stationed at a central depot, where the route taken by each
vehicle must start and end. The objective of VRP is to minimize the total travel
costs of the fleet of vehicles.

In TTRP, each vehicle is a truck that can pull a trailer. All trucks and trailers
have a fixed capacity. Some customers, known as vehicle customers, can be reached
by a full combination vehicle that consists of a truck and a trailer, while others,
known as truck customers, can only be visited by trucks. This could be because
of accessibility constraints such as being situated on a mountain, in an area with
lacking road infrastructure, or in a city center with a ban on large vehicles. The
trucks are allowed to leave their trailer behind at a vehicle customer location while
they serve truck customers.

Figure 1 depicts a solution to a TTRP instance with four truck customers,
16 vehicle customers, two trucks and two trailers. The depot, vehicle customers,
and truck customers are depicted by a gray square, red dots, and blue triangles,
respectively. Solid arrows between two locations denote a path that is traversed
by a full vehicle while dashed arrows denote paths traversed by a truck without a
trailer. Customers are labeled with their demands and paths with the amount of
goods carried in the vehicle along that path.

In this thesis, we formulate TTRP as a mixed-integer linear programming problem
using commodity flows and three-index indicator variables. We present two different
formulations, one using directed and one using undirected indicator variables. The
undirected formulation is improved by adding valid inequalities to it. Finally, we
perform computational experiments with the undirected formulation.

This thesis is organized as follows. Section 2 reviews the existing literature on
the applications of TTRP, problems related to it, and solution methods developed
for it. Section 3 presents the two formulations of TTRP developed by us. Section 4
describes the computational experiments. We give our conclusions in Section 5.

2 Literature review
There is some literature on the real-world applications TTRP and problems closely
related to it. In Semet and Taillard (1993), a heterogeneous fleet of trucks and
trailers supply a Swiss chain of grocery stores, and some stores cannot receive a
shipment that uses a trailer. Gerdessen (1996) mentions two applications: the Dutch
dairy industry delivering dairy products into crowded city centers with trucks while
trailers are parked elsewhere, and the distribution of compound animal feed in rural
areas with narrow roads. Hoff and Løkketangen (2007) discusses milk collection in
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Figure 1: A solution for a TTRP instance with 20 customers.

rural areas of western Norway, where most farms are small and cannot be accessed
by a large combined vehicle. Therefore, a truck will leave its trailer at a parking
place while it collects milk from farms. Caramia and Guerriero (2010b) and Drexl
(2012) are also concerned with milk collection.

There is a variety of vehicle routing problems that incorporate the concept of
using trucks and detachable trailers but differ slightly from the TTRP or extend it
in some way.

In the vehicle routing problem with trailers (VRPT) (Gerdessen (1996)), there is
no clear group of truck customers. Instead, each customer has a maneuvering time
that represents how much longer it takes to visit that customer with a full vehicle
compared to visiting with a truck. Additionally, each trailer is parked exactly once
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and all customers have the same demand.
The capacitated m-ring-star problem (CmRSP) (Baldacci et al. (2007)) forms

sets of rings that pass through customer locations and a central depot, and then
assigns each unvisited customer to a single customer on a ring. In the two-echelon
capacitated vehicle routing problem (2E-CVRP) (Gonzalez-Feliu et al. (2008), Jepsen
et al. (2013)), a central depot uses large capacity vehicles to serve satellite locations
which in turn use small capacity vehicles to serve customers.

In the single truck and trailer routing problem with satellite depots (STTRPSD)
(Villegas et al. (2010)), a single truck-and-trailer combination vehicle serves the
demands of a set of customers. The vehicle must leave its trailer behind at a satellite
depot when visiting customers.

The relaxed truck and trailer routing problem (RTTRP) (Lin et al. (2010)) does
not limit the number of trucks and trailers that can be used. The truck and trailer
routing problem with time windows (TTRPTW) (Lin et al. (2011)) gives each
customer a time window during which it must be served.

The generalized truck and trailer routing problem (GTTRP) (Drexl (2007), Drexl
(2011)) demands that trailers are parked at specific transshipment locations. Each
transshipment location and customer has a time window, and the vehicles may have
different capacities, accessibility constraints and operating costs. The vehicle routing
problem with trailers and transshipments (VRPTT) (Drexl (2012), Drexl (2014))
extends the GTTRP further by allowing a trailer that has been left at a transshipment
location by one truck to be picked up by another truck.

Since the TTRP is NP-hard, most of the solution methods presented in the
literature are heuristics. The earliest heuristics by Chao (2002) and Scheuerer (2006)
used tabu search. Later methods include mathematical programming and local search
(Caramia and Guerriero (2010a)), simulated annealing (Lin et al. (2010)), and a
metaheuristic using both local search and large neighborhood search (Derigs et al.
(2013)). The hybrid metaheuristic by Villegas et al. (2013) is considered the current
state-of-the art method.

The two-commodity flow formulation of Bartolini and Schneider (2020) is the only
work we are aware of that presents a formulation of the type of TTRP considered in
this thesis and solves it to optimality using an exact algorithm. Some exact solution
methods have been proposed for other problems related to the TTRP. These include
the GTTRP (Drexl (2011)), VRPTT (Drexl (2014)), STTRPSD (Belenguer et al.
(2016)) and TTRPTW (Parragh and Cordeau (2017), Rothenbächer et al. (2018)).

3 Mathematical formulations
This section defines the TTRP formally and presents two mathematical formulations
for it.
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3.1 Problem description and notation
We define the TTRP on an undirected complete graph G = (V, E), where V =
{0, . . . , n} and E = {{i, j}|i, j ∈ V, i < j}. Each node i ∈ {1, . . . , n} represents a
customer with a positive demand qi, and the node 0 represents a depot that stations a
fleet of mt trucks and mr trailers. The capacity of each truck is Qt and the capacity of
each trailer is Qr. A trailer is non-autonomous and must be pulled by a truck. Each
truck can either move on its own without a trailer or pull a single trailer, in which
case it has a capacity Qt + Qr and is known as a full vehicle. Let Vc = {1, . . . , n}
be the set of all customer nodes. It is partitioned into two sets Vv and Vt. Nodes in
Vv = {1, . . . , nv} correspond to nv customers that can be reached by either a truck
or a full vehicle, called vehicle customers. Nodes in Vt = {nv + 1, . . . , n} correspond
to nt truck customers that can only be reached by a truck. Note that the total
amount of customers is n = nv + nt. We define also the set of vehicle customers plus
the depot, V 0

v = {0} ∪ Vv. Each edge {i, j} ∈ E has an associated weight cij that
represents the cost of traversal between i and j with either a truck or a full vehicle.
To simplify notation, we define also the symmetric cost cji = cij. The costs follow
the triangle inequality: cij + cjk ≥ cik ∀i, j, k ∈ V .

The objective of the TTRP problem is to satisfy the demand qi of each customer
i by sending out vehicles from the depot. The total traversal costs of all vehicles are
minimized while the capacities of the vehicles may not be exceeded, and no truck
customer may be served by a full vehicle.

The path of a full vehicle, starting from the depot, visiting vehicle customers and
ending back at the depot, is known as a vehicle route. At any vehicle customer k
along its a route, the full vehicle can decouple its trailer and leave it parked, turning
the full vehicle into a truck without a trailer. The truck can then visit and serve
other customers using its capacity Qt before returning to k, reattaching the trailer
and continuing along its vehicle route. This type of path that uses only the truck
is called a truck route starting at node k. We assume that load can be transferred
between the trailer and the truck while the trailer is parked. Therefore, multiple
truck routes can start at the same vehicle customer k. Truck routes may also start
at the depot.

In addition to the notation introduced before, we will also define sets of directed
arcs of the graph G. Let A = {(i, j)|i, j ∈ V, i ̸= j} be the set of all arcs. The cost
of traversing arc (i, j) ∈ A is cij. Let Av = {(i, j) ∈ A|i, j ∈ Vv} be the set of arcs
between vehicle customers, and let A0

v = {(i, j) ∈ A|i, j ∈ V 0
v } be the set of arcs that

can be traversed by a full vehicle.

3.2 Three-index directed formulation
This section presents a formulation of the TTRP which is an extension of the one-
commodity flow formulation for the capacitated Vehicle Routing Problem (Gavish
and Graves (1978), Gouveia (1995)). We extend the formulation of Gavish and
Graves (1978) by considering two sets of flow variables instead of only one: one set
for flows along vehicle routes and one for flows along truck routes.
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We define the following variables: binary variables ξij that take the value 1 if and
only if a vehicle route uses the arc (i, j) ∈ A0

v, binary variables ζk
ij that take the value

1 if and only if a truck route starting from k ∈ V 0
v uses the arc (i, j) ∈ A, continuous

variables xij and yij specifying the amount of load transferred along an arc (i, j) by
a vehicle route or truck route, respectively, and binary variables vk taking the value
1 if and only if vehicle customer k ∈ Vv is served by a vehicle route.

The TTRP can be formulated as follows:

(F1) min
∑︂

(i,j)∈A0
v

cijξij +
∑︂

k∈V 0
v

∑︂
(i,j)∈A

cijζ
k
ij (1)

subject to
∑︂

(j,i)∈A0
v

ξji = vi, ∀i ∈ Vv (2)
∑︂

k∈V 0
v \{i}

∑︂
(j,i)∈A

ζk
ji = 1 − vi, ∀i ∈ Vv (3)

∑︂
k∈V 0

v

∑︂
(j,i)∈A

ζk
ji = 1, ∀i ∈ Vt (4)

∑︂
(j,i)∈A0

v

ξji =
∑︂

(i,j)∈A0
v

ξij, ∀i ∈ V 0
v (5)

∑︂
(j,i)∈A

ζk
ji =

∑︂
(i,j)∈A

ζk
ij, ∀i ∈ V, k ∈ V 0

v (6)
∑︂

(0,j)∈A0
v

ξ0j ≤ mr, (7)
∑︂

(0,j)∈A0
v

ξ0j +
∑︂

(0,j)∈A

ζ0
0j ≤ mt, (8)

ζk
0j = ζk

j0 = 0, ∀k ∈ Vv, j ∈ Vc (9)
ζk

kj ≤ vk, ∀k ∈ Vv, j ∈ V (10)
xij ≤ (Qt + Qr)ξij, ∀(i, j) ∈ A0

v (11)
yij ≤ Qt

∑︂
k∈V 0

v

ζk
ij, ∀(i, j) ∈ A (12)

∑︂
(j,i)∈A

yji −
∑︂

(i,j)∈A

yij = qi, ∀i ∈ Vt (13)
∑︂

(j,i)∈A0
v

xji −
∑︂

(i,j)∈A0
v

xij +
∑︂

(j,i)∈A

yji −
∑︂

(i,j)∈A

yij = qi, ∀i ∈ Vv (14)

xj0 = 0, ∀(j, 0) ∈ A0
v (15)

yj0 = 0, ∀(j, 0) ∈ A (16)
yji ≤ Qt(1 − vi), ∀i ∈ Vv, ∀(j, i) ∈ A (17)
ξij ∈ {0, 1}, ∀(i, j) ∈ A0

v (18)
ζk

ij ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ V 0
v (19)

xij ≥ 0, ∀(i, j) ∈ A0
v (20)

yij ≥ 0, ∀(i, j) ∈ A (21)
vi ∈ {0, 1}, ∀i ∈ Vv (22)
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The objective function (1) minimizes the cost of all arcs used by vehicle or truck
routes. Constraints (2) and (3) ensure that each vehicle customer is visited by either
a vehicle route, or a truck route coming from the depot or another vehicle customer.
In a similar fashion, constraints (4) ensure that each truck customer is visited by
exactly one truck route. Constraints (5) state that a vehicle route that arrives at
a customer also leaves that customer. In the case i = 0, constraints (5) impose
that for each vehicle route leaving the depot, another vehicle route returns to it.
Constraints (6) are similar to (5) but concern truck routes: each truck route arriving
at a customer must have a corresponding route leaving that customer, and these
routes must have the same starting point. When i = k, (6) ensure that the number of
truck routes that start from a location is equal to the number of truck routes ending
there. Constraints (7) impose an upper bound on the number of full vehicles used,
(8) on the number of trucks used. Constraints (9) prevent a truck route that starts at
a vehicle customer from visiting the depot. Constraints (10) state that a truck route
can start from a vehicle customer only if that customer is served by a vehicle route.
Constraints (11) and (12) define the capacities of a full vehicle and a truck without a
trailer, respectively. Constraints (13) are flow conservation constraints for the truck
customers. They state that the flow of goods that arrives at a truck customer must
be reduced exactly by the customer’s demand. Constraints (14) are flow conservation
constraints for the vehicle customers. If a vehicle customer is served by a truck route,
then (14) become identical to (13). Otherwise, if the vehicle customer is served by a
vehicle route, then (14) also take into account the flows of the truck routes traversing
it. Constraints (15) and (16) impose boundary conditions for the flows: each full
vehicle or truck that returns to the depot must be empty. Similarly, constraints (17)
state that if a vehicle customer is the starting point of some truck routes, the truck
routes ending at that vehicle customer must have zero flow.

We will now informally show that a solution (ξ, ζ, v, x, y) of (F1) corresponds to
a solution of the TTRP.

We define the following sets of vehicle and truck arcs: Rv = {(i, j) ∈ A0
v|ξij = 1}

and R
k

t = {(i, j) ∈ A|ζk

ij = 1}, ∀k ∈ V 0
v .

According to (2), for each vehicle customer i with vi = 1, there must exist exactly
one arc (j, i) ∈ Rv. On the other hand, (2) and the definition of Rv impose that Rv

cannot contain any arc (j, i) where i is a vehicle customer with vi = 0, or a truck
customer.

Because of (5), for each arc (j, i) ∈ Rv, i ∈ V 0
v , there exists exactly one arc

(i, k) ∈ Rv. Also, if there are no arcs (j, i) ∈ Rv, there can be no arcs (i, k) ∈ Rv.
Together with (2) this means that for each vehicle customer i ∈ Vv with vi = 1, there
is exactly one arc in Rv entering i and one arc leaving i. Moreover, there are no arcs
in Rv that start or end at any truck customer, or vehicle customer i with vi = 0.

Putting these observations together, we see that the arcs in Rv form a collection
of directed cycles that visit vehicle customers i with vi = 1. Each such customer
is visited by exactly one cycle defined by arcs in Rv. The cycles may also visit the
depot, which is the only location where they are allowed to overlap.

We can carry out a similar deduction for the sets R
k
t . From (4) and (6) we see
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that for each truck customer i ∈ Vt there must be exactly one k ∈ V 0
v for which

there are arcs (j, i) ∈ R
k

t and (i, k) ∈ R
k

t . Because of (3), the same holds for vehicle
customers i that have vi = 0. According to (3), arcs of R

k

t can only go through a
vehicle customer i with vi = 1 if i = k. Altogether, arcs of R

k
t form a set of directed

cycles that visit truck customers and vehicle customers that have vi = 0. Each of
those customers is visited by exactly one cycle defined by arcs in R

k

t , for exactly one
value of k. A cycle in R

k
t can also go through the vehicle customer k, and this is the

only node at which two cycles in R
k
t may overlap.

All cycles defined by arcs in R
k
t must visit the vehicle customer k. This is ensured

by constraints (13) and (14). Let V (Rk
t ) be the set of nodes that are incident to arcs

in R
k

t : V (Rk

t ) = {i ∈ V |∃j ∈ V : (i, j) ∈ R
k

t ∨ (j, i) ∈ R
k

t }. For every truck customer
i in V (Rk

t ) the incoming and outgoing flows yji and yij satisfy (13). We have seen
that all the vehicle customers visited by arcs in R

k
t must have vi = 0, which means

they cannot be visited by any arc in Rv. This, together with (11), implies that all
the flow variables xij and xji in (14) are zero, so (14) becomes equivalent to (13).
Because of these constraints, the flow defined by variables yij that goes through a
customer must decrease by the demand of that customer, and since all demands are
greater than zero, each cycle defined by arcs in R

k
t must visit the starting point k

where flow conservation is not enforced.
A similar result can be obtained for Rv by using the vehicle route flows xij . Each

vehicle customer i on a cycle defined by arcs in Rv has vi = 1. Using (17), (14)
becomes ∑︂

(j,i)∈A0
v

xji −
∑︂

(i,j)∈A0
v

xij = qi +
∑︂

(i,j)∈A

yij

which is similar to (13) but with the addition of the term ∑︁
(i,j)∈A yij , which represents

the flow outgoing from customer i on all truck routes defined by arcs in R
i
t. In other

words, the demand of customer i is augmented with the demands of the customers
visited by the truck routes that start from i. Therefore, any cycle defined by the arcs
in Rv must go through the depot where flow conservation is not enforced.

Consider a truck route leaving from a vehicle customer k. We have seen that the
amount of flow leaving k on that route is reduced by qi at every customer i the route
visits. Because of (17), the flow that comes back to k must be 0. This means that
the flow leaving k is equal to the demand of all the customers visited by the route.
According to (12) and because ∑︁

k∈V 0
v

ζ
k

ij ∈ {0, 1}, this flow cannot be larger than
the capacity of the truck.

Using (15) and (11), we get a similar result for xij . In this case, the demand of a
vehicle customer i on a vehicle tour C defined by arcs in Rv is augmented with all
the demands of customers visited by the truck routes going out from i. Therefore,
the flow going out of the depot on C must carry exactly the amount of load that
is demanded by the customers visited by it plus all its truck routes. This amount
cannot be larger than the capacity of the full vehicle because of (11).

Additionally, (7) and (8) limit the number of arcs outgoing from the depot so
that a feasible number of trucks and trailers is used.
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In conclusion, Rv and R
k

t form sets of valid vehicle and truck routes, and the
flows of goods on these routes also behave correctly.

3.3 Three-index undirected formulation
Formulation (F1) contains a very large number of variables, and most of them are
three-index binary variables (ζk

ij). Therefore we can reduce the number of variables
by defining variables ζk

ij and ξij on edges instead of arcs. The flow variables xij and
yij will still be defined on arcs.

In order to use variables defined on edges, we define an extended graph G = (V , E)
which is obtained by introducing duplicate nodes of the depot and the vehicle
customers. In this extended graph, the vehicle routes start at the depot but end
at the duplicate node of the depot, which is called the “ending depot”. Similarly,
all truck routes starting from a vehicle customer must end at the corresponding
duplicate node. In the following, we first introduce the undirected formulation, and
then discuss in detail the reasons for which the extended graph is used.

We introduce some additional notation because of the duplication. For each
i ∈ V 0

v we have a duplicate i′ = i + n + 1. Particularly, 0′ = n + 1 is the duplicate of
the depot. We call the original depot the starting depot and its duplicate node the
ending depot. Let V v = {i′|i ∈ Vv} be the set of duplicate vehicle customers and˜︁Vv = {0} ∪ Vv ∪ {n + 1} be the set of all nodes that can be visited by a full vehicle.
Now, V = {0} ∪ Vv ∪ Vt ∪ {n + 1} ∪ V v = {0, . . . , nv + n + 1} is the set of all vertices
in the extended graph.

Next, we define the set E = {{i, j}|i, j ∈ V , i < j} \ {{i, j}|i ∈ V 0
v , i′ = j} \

{{0, j}|j ∈ V v} \ {{i, j}|i, j ∈ V v ∪ {n + 1}} containing all edges of the extended
graph. Edges between two duplicate nodes, edges between the depot and a duplicate
vehicle customer, and edges between a node and its duplicate are not included in
this set since they will never be traversed by a vehicle in our model. We define also
the set Ev = {{i, j} ∈ E|i, j ∈ Vv} containing all edges between vehicle customers,
and the set ˜︁Ev = {{i, j} ∈ E|i, j ∈ ˜︁Vv} containing all edges that can be used by a
full vehicle.

We define additional sets of arcs similarly: A = {(i, j), (j, i)|{i, j} ∈ E} is the set
of all arcs and ˜︁Av = {(i, j) ∈ A|i, j ∈ ˜︁Vv} the set of all arcs that can be traversed by
a full vehicle.

Let δ(i) = {{j, k} ∈ E|i = j ∨ i = k}, ˜︁δv(i) = δ(i) ∩ ˜︁Ev, and δ(i) = δ(i) ∩ E be
the sets of edges of E, ˜︁Ev, and E, respectively, that are incident to node i ∈ V . If
l = {i, j}, we use the notation ξl = ξij and ζk

l = ζk
ij.

We extend the costs cij to the extended graph. For the edge {i, j} ∈ E where
i ∈ V and j ∈ V v ∪ {n + 1}, we set cij = cil, where l′ = j.

The variables ζk
ij and ξij are now defined on edges, but retain their previous

meaning: ξij is equal to one if and only if the edge {i, j} ∈ ˜︁Ev is used in a vehicle
route. ζk

ij is equal to one if and only if the edge {i, j} ∈ E is used in a truck route
that starts from k ∈ V 0

v . We also introduce additional binary variables sk
i , i ∈ Vc,

k ∈ V 0
v , that have the value 1 if and only if the customer i is served by a truck route
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that starts from the node k. For vehicle customers i that are served by vehicle routes,
we have si

i = 1.
The undirected formulation is the following:

(F2) min
∑︂

{i,j}∈ ˜︁Ev

cijξij +
∑︂

k∈Vv

∑︂
{i,j}∈E

cijζ
k
ij (23)

subject to
∑︂

l∈˜︁δv(i)

ξl = 2vi, ∀i ∈ Vv (24)

∑︂
k∈V 0

v \{i}

∑︂
l∈δ(i)

ζk
l = 2(1 − vi), ∀i ∈ Vv (25)

∑︂
k∈V 0

v

sk
i = 1, ∀i ∈ Vc, (26)

∑︂
l∈δ(i)

ζk
l = 2sk

i , ∀i ∈ Vc, k ∈ V 0
v \ {i} (27)

∑︂
{0,j}∈ ˜︁Ev

ξ0j =
∑︂

{j,n+1}∈ ˜︁Ev

ξj(n+1), (28)

∑︂
l∈δ(i)

ζ i
l =

∑︂
l∈δ(i′)

ζ i
l , ∀i ∈ V 0

v (29)

∑︂
{0,j}∈ ˜︁Ev

ξ0j ≤ mr, (30)

∑︂
{0,j}∈ ˜︁Ev

ξ0j +
∑︂

{0,j}∈E

ζ0
0j ≤ mt, (31)

ζ i
l ≤ vi, ∀i ∈ Vv, l ∈ δ(i) (32)

xij ≤ (Qt + Qr)ξij, ∀{i, j} ∈ ˜︁Ev (33)
xji ≤ (Qt + Qr)ξij, ∀{i, j} ∈ ˜︁Ev (34)
yij ≤ Qt

∑︂
k∈V 0

v

ζk
ij, ∀{i, j} ∈ E (35)

yji ≤ Qt

∑︂
k∈V 0

v

ζk
ij, ∀{i, j} ∈ E (36)

∑︂
(j,i)∈A

yji −
∑︂

(i,j)∈A

yij = qi, ∀i ∈ Vt (37)

∑︂
(j,i)∈ ˜︁Av

xji −
∑︂

(i,j)∈ ˜︁Av

xij +
∑︂

(j,i)∈A

yji −
∑︂

(i,j)∈A

yij = qi, ∀i ∈ Vv (38)

xj(n+1) = 0, ∀(j, n + 1) ∈ ˜︁Av (39)
yji′ = 0, ∀i ∈ V 0

v , (j, i′) ∈ A (40)
ζk

0j = 0, ∀{0, j} ∈ E, k ∈ Vv (41)
ζk

ij = 0, ∀{i, j} ∈ E, k ∈ V 0
v , j ∈ V v ∪ {n + 1}, j ̸= k′ (42)

ξij ∈ {0, 1}, ∀{i, j} ∈ ˜︁Ev (43)
ζk

ij ∈ {0, 1}, ∀{i, j} ∈ E, k ∈ V 0
v (44)

xij ≥ 0, ∀(i, j) ∈ ˜︁Av (45)
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yij ≥ 0, ∀(i, j) ∈ A (46)
vi ∈ {0, 1}, ∀i ∈ Vv (47)
sk

i ∈ {0, 1}, ∀i ∈ Vc, k ∈ V 0
v (48)

The objective function (23) minimizes the total cost of edges used in the solution.
Constraints (24) state that the degree of a vehicle customer with respect to vehicle
routes is either 0 or 2, depending on whether it is served by a vehicle route or
not. Equations (25) enforce a similar constraint with respect to the truck routes.
Constraints (26) state that each customer must be served by either a vehicle route or
a truck route. Constraints (27) ensure that a truck route goes through a customer
if and only if the customer is served by that truck route. Constraints (28) impose
that the number of vehicle routes that leave the starting depot must be equal to the
number of vehicle routes that arrive at the ending depot. Constraints (29) define
a similar constraint for the truck routes, imposing that the number of truck routes
that leave a vehicle customer or the depot must be equal to the number of truck
routes that end at its duplicate node. Constraints (30) and (31) limit the number of
trailers and trucks used, respectively. Constraints (32) ensure that truck routes can
only begin at vehicle customers that are served by a vehicle route. Equations (33)
and (34) are capacity constraints for vehicle routes, (35) and (36) for truck routes.
Equations (37) and (38) are flow conservation constraints for truck customers and
vehicle customers, respectively. Constraints (39) state that no flow can enter the
ending depot and (40) state the same for duplicated vehicle customers. Constraints
(41) prevent truck routes that start at a vehicle customer from visiting the depot, and
(42) allow truck routes to arrive at a duplicate vehicle customer only if they originate
from the corresponding vehicle customer. Finally, (43)–(48) define the domains of
the decision variables.

3.4 Analysis of the undirected formulation
Defining the binary variables on edges instead of arcs raises the problem of modeling
the fact that some edges can be traversed twice. Consider an edge {0, j} ∈ E, j ∈ Vv.
This edge is traversed twice in a vehicle route if j is the only customer that is
visited by the route. Yet, if the variable associated with this edge is binary, the
edge is counted only once when calculating the degree of j. Therefore j violates the
constraint that the degree of a customer node must be two. This problem occurs
also for edges that are used in a truck route that serves only one customer.

A straightforward approach for dealing with edges that are traversed twice would
be to use variables that can also take the value two on those edges that can be used
twice. To be more precise, the definitions of the variables ξij and ζk

ij would be

ξij ∈ {0, 1}, ∀i, j ∈ Vv (49)
ξ0j ∈ {0, 1, 2}, ∀j ∈ Vv (50)
ζk

ij ∈ {0, 1}, ∀k ∈ V 0
v , {i, j} ∈ E, k ̸= i, j (51)

ζk
l ∈ {0, 1, 2}, ∀k ∈ V 0

v , l ∈ δ(k) (52)
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In this case, (49) define variables ξ for edges that are not adjacent to the depot,
while (50) define variables ξ for edges that are adjacent to the depot and therefore
might need to take the value 2. Similarly, (52) define variables ζ for edges with one
endpoint which is the origin of a truck route, and (51) define them for the remaining
edges.

This simple way of modeling single customer routes is however incorrect in our case,
that is, if variables ξ and ζ are defined on edges and (F1) is changed accordingly by
replacing constraints (18)–(19) with (49)–(52), the resulting formulation is incorrect.
Specifically, is admits integer solutions which are infeasible as they contain vehicle or
truck routes that start from the depot, or a vehicle customer, but do not return back
to it. This is shown in Figure 2, which depicts a solution given by the formulation
for an instance with seven vehicle customers and three truck customers. The fleet
consists of three trucks of capacity 50 and two trailers of capacity 50. In Figure 2,
the depot is represented as a gray square, vehicle customers as red dots and truck
customers as blue triangles. Edges that are part of a vehicle route are drawn as solid
lines and edges that are part of a truck route as dashed lines. Customers and edges
are labeled with their demands and flows, respectively.

From Figure 2, we see that two routes can start at the depot, meet at a customer
and end there. Note that both routes service the last customer, which violates the
rules of the TTRP. This incorrect solution satisfies all customer degree constraints,
vehicle capacity constraints and flow conservation constraints. The binary edge
variables contain no information about the direction of the flows on those edges,
which makes this configuration possible.

This is the reason we use the extended graph G in (F2). In this graph we
enforce that each route starting at the depot, or a vehicle customer, must end at
the corresponding duplicate. In this way the edge between the starting node and
the first visited customer is always distinct from the one between the last customer
visited and the duplicate of the starting node. Therefore the degree of a customer
that is the only one visited by a route is also two.

On the other hand, if duplication of the depot and vehicle customers is used, each
route is represented as a path starting from a node i and ending at the corresponding
duplicate i′, therefore infeasible solutions as that shown in Figure 2 are easily
prevented by imposing that the number of edges incident with i is equal to the
number of edges incident with its duplicate i′. Formulation (F2) enforces this with
equations (28) and (29).

It is worth mentioning that (F2) allows solutions where two opposite flows yij and
yji or xij and xji are non-zero at the same time. This is however not a major issue,
and the formulation (F2) remains correct because any feasible solution (ξ, ζ, v, s, x, y)
where two non-zero opposite flows exist on edge {i, j} can be transformed into
an equivalent solution (ξ, ζ, v, s, x′, y′) with the same cost where only one of the
corresponding arcs (i, j) and (j, i) has positive flow. We obtain the equivalent flows
x′ and y′ by setting

x′
ij = xij − xji, ∀(i, j) ∈ ˜︁Av, xij ≥ xji (53)

x′
ji = 0, ∀(i, j) ∈ ˜︁Av, xij ≥ xji (54)



17

rs

b
5

b21

b10

b 19

b 15

b10

b 17

u29

u10

u9

48

0
27

17

47
50

13

8

32

2

21

12

Figure 2: An incorrect solution for a TTRP instance.

y′
ij = yij − yji, ∀(i, j) ∈ A, yij ≥ yji (55)

y′
ji = 0, ∀(i, j) ∈ A, yij ≥ yji (56)

Finally, Table 1 shows the numbers of different variables in formulations (F1) and
(F2) with respect to the number of customers n and number of vehicle customers nv.
As n and nv grow, the total variable count of (F1) is approximately nvn2, while that
of (F2) is approximately 1

2nvn2 + n2
vn. Therefore (F2) reduces the variable count of

(F1) only when nv < 1
2n. If more than half of the customers are vehicle customers,

(F2) has more variables than (F1).
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Table 1: Variable counts of the two TTRP formulations
Variable (F1) (F2)

ξ nv(nv + 1) 1
2 nv(nv + 1) + nv

ζ (nv + 1)n(n + 1) (nv + 1)( 1
2 n(n + 1) + nv(n − 1) + n)

v nv nv

s – n(nv + 1)
x nv(nv + 1) nv(nv + 1) + 2nv

y n(n + 1) n(n + 1) + 2nv(n − 1) + 2n

Total (nv + 2)(n2 + n) + 2n2
v + 3nv (nv + 3)( 1

2 n2 + nv(n − 1) + 3
2 n)

+n(nv + 1) + 3
2 n2

v + 11
2 nv

3.5 Improvements to the undirected formulation
The LP relaxation of formulation (F2) can be strengthened by a simple observation:
if an arc (i, j) is used in a solution, the flow going over that arc must be at least qj

and at most Q − qi, where Q is the capacity limit of the flow. This is a well-known
way of strengthening the flow bounds originally proposed by Gavish (1982). In our
case, however, this strengthening is less straightforward due to the fact that (F2)
is defined on an undirected graph, and there are both vehicle and truck routes. To
simplify notation, we define the demands qi = 0 ∀i ∈ {0} ∪ V v ∪ {n + 1}.

We impose upper bounds for the flows by replacing (33)–(36) with

xij ≤ (Qt + Qr − qi)ξij, ∀{i, j} ∈ ˜︁Ev (57)
xji ≤ (Qt + Qr − qj)ξij, ∀{i, j} ∈ ˜︁Ev (58)
yij ≤ (Qt − qi)

∑︂
k∈V 0

v

ζk
ij, ∀{i, j} ∈ E, i ∈ Vt (59)

yji ≤ (Qt − qj)
∑︂

k∈V 0
v

ζk
ij, ∀{i, j} ∈ E, j ∈ Vt (60)

yij ≤ Qtζ
i
ij + (Qt − qi)

∑︂
k∈V 0

v \{i}
ζk

ij, ∀{i, j} ∈ E, i ∈ V 0
v (61)

yji ≤ Qtζ
j
ij + (Qt − qj)

∑︂
k∈V 0

v \{j}
ζk

ij, ∀{i, j} ∈ E, j ∈ V 0
v (62)

Furthermore, we add the lower bounds

xij + xji ≥ min(qi, qj)ξij, ∀{i, j} ∈ ˜︁Ev (63)
x0j ≥ qjξ0j, ∀{0, j} ∈ ˜︁Ev (64)
yij + yji ≥ min(qi, qj)

∑︂
k∈V 0

v

ζk
ij, ∀(i, j) ∈ E, i, j ∈ Vt (65)

yij + yji ≥ qjζ
i
ij + min(qi, qj)

∑︂
k∈V 0

v \{i}
ζk

ij, ∀{i, j} ∈ E, i ∈ V 0
v , j ∈ Vt (66)

yij + yji ≥ qiζ
j
ij + min(qi, qj)

∑︂
k∈V 0

v \{j}
ζk

ij, ∀{i, j} ∈ E, j ∈ V 0
v , i ∈ Vt (67)

yij + yji ≥ qjζ
i
ij + qiζ

j
ij + min(qi, qj)

∑︂
k∈V 0

v \{i,j}
ζk

ij, ∀{i, j} ∈ E, i, j ∈ V 0
v (68)
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Inequalities (57) and (58) impose that a flow that leaves a node on a vehicle route
has been reduced by the demand of that node. Inequalities (59) and (60) impose
similar limits for truck route flows that leave truck customers. Inequalities (61) and
(62) extend (59) and (60) to vehicle customers, with the addition that the flow that
leaves node i on a truck route can use the full capacity Qt if i is the starting node of
that truck route.

Inequalities (63) state that if the edge {i, j} is used in a vehicle route, the flow
on it must satisfy at least the smaller of the demands of its endpoints. Since the
variable ξij does not tell us which way the flow is going, we must constrain both xij

and xji simultaneously, and cannot tell which of the two demands must be satisfied,
forcing us the use their minimum. Inequalities (64) cover the special case where
the edge is incident to the depot. In this case, we know that the flow is going out
from the depot. Inequalities (65) translate (63) to truck routes between two truck
customers. Inequalities (66) and (67) extend (65) to the case where one of the nodes
i and j can be the starting point of a truck route. If a truck route starts from i and
uses the edge {i, j}, the flow yij is equal to at least the demand qj. Inequalities (68)
cover the case where both i and j are potential truck route starting points.

4 Computational experiments

4.1 Test instances
The test instances we use are derived from the 21 instances of Chao (2002). Since
the original instances have too many customers for our solution method, they were
reduced in size by choosing subsets of vehicle and truck customers. This resulted in
79 instances with the number of customers varying between 10 and 30. For more
information on the size reduction process, see Bartolini and Schneider (2020).

Table 2 lists the properties of the test instances. It lists the identifier of the
instance, the number of customers (n), the number of truck customers (nt), the ratio
of truck customers to all customers (nt

n
), the number of available trucks (mt), the

number of available trailers (mr), the truck capacity (Qt), the trailer capacity (Qr),
the combined demand of all customers (∑︁

i∈Vc
qi), the ratio of total demand to total

capacity (
∑︁

i∈Vc
qi

mtQt+mrQr
), the combined demand of truck customers (∑︁

i∈Vt
qi), and the

ratio of truck customer demand to total truck capacity (
∑︁

i∈Vt
qi

mtQt
). Note that the

last ratio can be greater than one since each truck is allowed to refill to capacity by
transferring load from its trailer between truck routes.

Table 2: Dimensions of the test instances.

Name n nt
nt

n mt mr Qt Qr

∑︁
i∈Vc

qi
demand
capacity

∑︁
i∈Vt

qi truck demand
capacity

10-01-0-A 10 3 0.3 1 1 50 150 145 0.725 48 0.96
10-01-0-B 10 3 0.3 3 2 50 50 145 0.58 48 0.32
10-01-0-C 10 3 0.3 4 4 30 30 145 0.604 48 0.4
10-01-1-A 10 2 0.2 1 1 50 150 133 0.665 30 0.6
10-01-1-B 10 2 0.2 3 2 50 50 133 0.532 30 0.2
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10-01-1-C 10 2 0.2 4 4 30 30 133 0.554 30 0.25
10-02-0-A 10 4 0.4 1 1 50 150 145 0.725 69 1.38
10-02-0-B 10 4 0.4 3 2 50 50 145 0.58 69 0.46
10-02-0-C 10 4 0.4 4 4 30 30 145 0.604 69 0.575
10-02-1-A 10 4 0.4 1 1 50 150 133 0.665 52 1.04
10-02-1-B 10 4 0.4 3 2 50 50 133 0.532 52 0.347
10-02-1-C 10 4 0.4 4 4 30 30 133 0.554 52 0.433
10-03-0-A 10 7 0.7 1 1 50 150 145 0.725 113 2.26
10-03-0-B 10 7 0.7 3 2 50 50 145 0.58 113 0.753
10-03-0-C 10 7 0.7 4 4 30 30 145 0.604 113 0.942
10-03-1-A 10 8 0.8 1 1 50 150 133 0.665 109 2.18
10-03-1-B 10 8 0.8 3 2 50 50 133 0.532 109 0.727
10-03-1-C 10 8 0.8 4 4 30 30 133 0.554 109 0.908
15-10-0-A 15 5 0.333 1 1 50 350 208 0.52 71 1.42
15-10-0-B 15 5 0.333 3 3 100 50 208 0.462 71 0.237
15-10-0-C 15 5 0.333 6 2 50 50 208 0.52 71 0.237
15-10-1-A 15 3 0.2 1 1 50 350 220 0.55 34 0.68
15-10-1-B 15 3 0.2 3 3 100 50 220 0.489 34 0.113
15-10-1-C 15 5 0.333 6 2 50 50 208 0.52 71 0.237
15-11-0-A 15 9 0.6 1 1 50 350 208 0.52 136 2.72
15-11-0-B 15 9 0.6 3 3 100 50 208 0.462 136 0.453
15-11-0-C 15 9 0.6 6 2 50 50 208 0.52 136 0.453
15-11-1-A 15 6 0.4 1 1 50 350 220 0.55 82 1.64
15-11-1-B 15 6 0.4 3 3 100 50 220 0.489 82 0.273
15-11-1-C 15 6 0.4 6 2 50 50 220 0.55 82 0.273
15-12-0-A 15 9 0.6 1 1 50 350 196 0.49 133 2.66
15-12-0-B 15 9 0.6 3 3 100 50 196 0.436 133 0.443
15-12-0-C 15 9 0.6 6 2 50 50 196 0.49 133 0.443
15-12-1-A 15 11 0.733 1 1 50 350 308 0.77 200 4
15-12-1-B 15 11 0.733 3 3 100 50 308 0.684 200 0.667
15-12-1-C 15 11 0.733 6 2 50 50 308 0.77 200 0.667
20-07-0-A 20 14 0.7 1 1 100 300 276 0.69 200 2
20-07-0-B 20 14 0.7 3 3 100 100 276 0.46 200 0.667
20-07-0-C 20 14 0.7 2 2 100 100 276 0.69 200 1
20-07-0-D 20 14 0.7 5 3 50 50 276 0.69 200 0.8
20-07-1-A 20 13 0.65 1 1 100 300 307 0.767 193 1.93
20-07-1-B 20 13 0.65 3 3 100 100 307 0.512 193 0.643
20-07-1-C 20 13 0.65 2 2 100 100 307 0.767 193 0.965
20-07-1-D 20 13 0.65 5 3 50 50 307 0.767 193 0.772
20-08-0-A 20 2 0.1 1 1 100 300 276 0.69 49 0.49
20-08-0-B 20 2 0.1 3 3 100 50 276 0.613 49 0.163
20-08-0-C 20 2 0.1 2 2 100 50 276 0.92 49 0.245
20-08-0-D 20 2 0.1 5 3 50 50 276 0.69 49 0.196
20-08-1-A 20 4 0.2 1 1 100 300 276 0.69 54 0.54
20-08-1-B 20 4 0.2 3 3 100 50 276 0.613 54 0.18
20-08-1-C 20 4 0.2 2 2 100 50 276 0.92 54 0.27
20-08-1-D 20 4 0.2 5 3 50 50 276 0.69 54 0.216
20-09-0-A 20 9 0.45 1 1 100 300 276 0.69 139 1.39
20-09-0-B 20 9 0.45 3 3 100 100 276 0.46 139 0.463
20-09-0-C 20 9 0.45 2 2 100 50 276 0.92 139 0.695
20-09-0-D 20 9 0.45 5 3 50 50 276 0.69 139 0.556
20-09-1-A 20 8 0.4 1 1 100 300 276 0.69 106 1.06
20-09-1-B 20 8 0.4 3 3 100 100 276 0.46 106 0.353
20-09-1-C 20 8 0.4 2 2 100 50 276 0.92 106 0.53
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20-09-1-D 20 8 0.4 5 3 50 50 276 0.69 106 0.424
30-10-0-A 30 6 0.2 1 1 100 600 404 0.577 79 0.79
30-10-0-B 30 6 0.2 3 3 100 100 404 0.673 79 0.263
30-10-0-D 30 6 0.2 5 3 75 75 404 0.673 79 0.211
30-10-1-A 30 7 0.233 1 1 100 600 528 0.754 120 1.2
30-10-1-B 30 7 0.233 3 3 100 100 528 0.88 120 0.4
30-10-1-C 30 7 0.233 4 4 100 50 528 0.88 120 0.3
30-11-0-A 30 16 0.533 1 1 100 600 404 0.577 254 2.54
30-11-0-B 30 16 0.533 3 3 100 100 404 0.673 254 0.847
30-11-0-D 30 16 0.533 5 3 75 75 404 0.673 254 0.677
30-11-1-A 30 15 0.5 1 1 100 600 528 0.754 242 2.42
30-11-1-B 30 15 0.5 3 3 100 100 528 0.88 242 0.807
30-11-1-C 30 15 0.5 4 4 100 50 528 0.88 242 0.605
30-12-0-A 30 19 0.633 1 1 100 600 404 0.577 270 2.7
30-12-0-B 30 19 0.633 3 3 100 100 404 0.673 270 0.9
30-12-0-D 30 19 0.633 5 3 75 75 404 0.673 270 0.72
30-12-1-A 30 23 0.767 1 1 100 600 528 0.754 376 3.76
30-12-1-B 30 23 0.767 3 3 100 100 528 0.88 376 1.25
30-12-1-C 30 23 0.767 4 4 100 50 528 0.88 376 0.94
30-12-1-D 30 23 0.767 5 3 75 75 528 0.88 376 1

4.2 Results
We solved the formulation (F2) with IBM ILOG CPLEX version 12.5, called from
C++. We used the CPLEX branch-and-cut algorithm with default settings and
added the valid inequalities described in Section 3.5. We ran the experiments on a
computer running Windows 7 with a 3.2GHz CPU and 8GB RAM.

We ran the branch-and-cut algorithm for each instance, terminating it once
optimality was reached or 2 hours had elapsed. Table 3 lists the results of the
experiments on each test instance. The column LB0 reports the initial lower bound
of the objective function given by an LP relaxation at the root node of the branch-
and-cut algorithm. LB1 is the lower bound after the addition of the valid inequalities,
LBend is the lower bound at termination and UB is the best upper bound. The
ratios of LB0, LB1, and LBend to UB are also listed, denoted by %LB0, %LB1, and
%LBend, respectively. In the cases where the ratio %LBend is 100.0, the solution
that corresponds to UB is optimal, and UB is listed in bold. Finally, the table
reports the running time of the algorithm (in seconds) and the number of nodes in
the branch-and-cut tree.

The algorithm solves to optimality all instances with 10 and 15 customer, 17 of
24 instances with 20 customers, and no instances with 30 customers.

The average optimality gap for 20-customer instances is approximately 26.8%
at the root node without the valid inequalities, 15.7% with them, and 1.9% at
termination. The average optimality gaps for 30-customer instances are 33.3% at the
root node without the valid inequalities, 23.5% with them, and 15.0% at termination.

Our formulation performs worse than the more sophisticated two-commodity flow
approach of Bartolini and Schneider (2020), which solves most 30-customer instances
within two hours. On the other hand, our method can solve larger problems than
the VRPTT solution algorithms of Drexl (2014), which solve instances with up to 16
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locations. This is unsurprising since the VRPTT is considerably more general and
complicated than the TTRP.

Table 3: Results of the computational experiments.

Name LB0 %LB0 LB1 %LB1 LBend %LBend UB time nodes

10-01-0-A 126.651 66.8 148.633 78.4 189.665 100.0 189.665 4.992 2118
10-01-0-B 135.177 70.3 157.742 82.0 192.349 100.0 192.349 8.314 5687
10-01-0-C 158.508 75.5 179.120 85.3 210.045 100.0 210.045 2.106 1859
10-01-1-A 167.544 80.9 195.869 94.6 207.029 100.0 207.029 1.575 395
10-01-1-B 172.486 84.7 195.839 96.2 203.609 100.0 203.609 0.889 109
10-01-1-C 194.467 76.1 207.041 81.1 255.408 100.0 255.408 16.629 9493
10-02-0-A 126.651 60.3 154.186 73.4 209.975 100.0 209.975 2.698 3417
10-02-0-B 135.476 69.9 162.246 83.7 193.786 100.0 193.786 5.023 3167
10-02-0-C 162.367 71.3 193.876 85.1 227.764 100.0 227.764 2.464 2077
10-02-1-A 182.242 67.9 210.506 78.5 268.279 100.0 268.279 4.617 3711
10-02-1-B 181.583 78.7 199.670 86.5 230.870 100.0 230.870 2.371 2854
10-02-1-C 209.580 73.2 226.563 79.1 286.308 100.0 286.308 12.495 8581
10-03-0-A 137.030 54.5 215.682 85.7 251.619 100.0 251.619 1.669 4201
10-03-0-B 143.880 72.0 171.237 85.7 199.911 100.0 199.911 2.527 2970
10-03-0-C 175.840 69.9 216.662 86.1 251.724 100.0 251.724 0.951 672
10-03-1-A 186.358 57.4 315.852 97.3 324.504 100.0 324.504 0.452 458
10-03-1-B 185.738 72.0 207.348 80.4 258.026 100.0 258.026 4.04 7096
10-03-1-C 220.778 68.1 278.069 85.8 323.984 100.0 323.984 149.7 2621

Average 70.5 84.7 100.0 4.184

15-10-0-A 197.001 66.4 237.647 80.1 296.643 100.0 296.643 30.466 7418
15-10-0-B 215.619 72.0 246.082 82.2 299.330 100.0 299.330 534.909 124707
15-10-0-C 240.078 69.8 280.636 81.5 344.165 100.0 344.165 504.943 118600
15-10-1-A 179.527 68.8 234.385 89.9 260.813 100.0 260.813 20.966 3056
15-10-1-B 195.491 72.6 238.947 88.7 269.447 100.0 269.447 45.442 8877
15-10-1-C 240.078 69.8 280.636 81.5 344.165 100.0 344.165 496.268 118600
15-11-0-A 202.840 61.1 254.057 76.5 332.251 100.0 332.251 11.388 3989
15-11-0-B 221.299 72.0 253.466 82.4 307.505 100.0 307.505 150.197 59965
15-11-0-C 251.895 69.0 284.716 78.0 364.916 100.0 364.916 195.561 86423
15-11-1-A 181.253 63.4 236.236 82.6 285.986 100.0 285.986 47.377 10300
15-11-1-B 196.911 71.2 243.551 88.0 276.654 100.0 276.654 67.126 16676
15-11-1-C 215.133 69.2 262.506 84.4 311.042 100.0 311.042 117.577 26298
15-12-0-A 196.679 53.1 233.775 63.1 370.570 100.0 370.570 1901.49 1134028
15-12-0-B 207.015 80.2 227.881 88.3 258.041 100.0 258.041 36.098 15228
15-12-0-C 234.367 72.1 258.754 79.6 325.088 100.0 325.088 1439.1 533345
15-12-1-A 278.953 56.7 341.425 69.4 491.892 100.0 491.892 946.484 455860
15-12-1-B 251.440 73.4 292.497 85.4 342.470 100.0 342.470 15.631 9297
15-12-1-C 320.238 71.8 366.453 82.2 445.785 100.0 445.785 306.634 138727

Average 68.5 81.3 100.0 381.537

20-07-0-A 256.669 64.2 286.489 71.6 385.739 96.4 400.033 7200.08 1218470
20-07-0-B 285.259 80.7 305.712 86.5 353.604 100.0 353.604 681.19 198598
20-07-0-C 285.303 75.7 311.670 82.7 376.703 100.0 376.703 2797.29 527369
20-07-0-D 363.135 74.5 392.409 80.5 431.219 88.4 487.697 7200.71 5771695
20-07-1-A 271.555 67.5 306.356 76.2 402.183 100.0 402.183 1233.76 274203
20-07-1-B 275.130 74.6 301.753 81.8 368.954 100.0 368.954 585.625 126694
20-07-1-C 284.662 68.3 350.510 84.1 416.677 100.0 416.677 489.497 108573
20-07-1-D 339.697 76.5 372.663 83.9 443.943 100.0 443.943 4097.74 813981
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20-08-0-A 234.082 83.1 256.889 91.2 281.536 100.0 281.536 62.228 3458
20-08-0-B 265.465 81.9 281.505 86.8 324.324 100.0 324.324 579.525 45096
20-08-0-C 265.465 81.9 280.421 86.5 324.324 100.0 324.324 526.001 35237
20-08-0-D 296.704 79.6 305.953 82.1 372.736 100.0 372.736 1950.61 105357
20-08-1-A 193.287 67.2 254.932 88.6 287.572 100.0 287.572 185.687 19972
20-08-1-B 218.670 71.4 274.183 89.5 306.330 100.0 306.330 429.733 35108
20-08-1-C 218.670 71.4 274.406 89.6 306.330 100.0 306.330 93.568 5268
20-08-1-D 244.091 71.4 299.948 87.8 341.730 100.0 341.730 474.256 33038
20-09-0-A 244.728 67.0 286.420 78.4 334.452 91.5 365.507 7200.11 1208946
20-09-0-B 271.927 77.6 293.575 83.7 330.532 94.3 350.562 7201.28 793583
20-09-0-C 289.524 73.1 312.594 79.0 378.872 95.7 395.872 7201.38 589184
20-09-0-D 332.228 73.8 359.583 79.9 415.112 92.3 449.896 7201.88 754450
20-09-1-A 194.641 67.7 259.012 90.1 287.572 100.0 287.572 64.693 12758
20-09-1-B 209.253 70.9 274.132 92.9 295.027 100.0 295.027 65.067 9662
20-09-1-C 219.045 69.9 277.112 88.4 313.536 100.0 313.536 329.425 43725
20-09-1-D 249.668 66.7 307.006 82.0 361.021 96.4 374.545 7201.53 782504

Average 73.2 84.3 98.1 2710.54

30-10-0-A 275.924 73.4 317.421 84.4 345.327 91.8 375.977 7200.6 86534
30-10-0-B 300.494 74.1 347.605 85.7 357.892 88.3 405.487 7205.23 471721
30-10-0-D 315.957 75.6 348.860 83.5 385.772 92.3 417.862 7202.73 141884
30-10-1-A 267.288 68.0 323.446 82.3 349.086 88.8 392.945 7201.1 99120
30-10-1-B 299.676 67.9 347.728 78.7 384.537 87.1 441.584 7205.54 149745
30-10-1-C 321.210 63.8 371.152 73.7 383.364 76.2 503.270 7200.22 523744
30-11-0-A 281.095 67.5 331.543 79.6 383.030 91.9 416.736 7200.43 178917
30-11-0-B 313.922 67.4 353.645 76.0 367.895 79.0 465.559 7200.11 953236
30-11-0-D 336.148 70.5 369.986 77.6 389.126 81.6 476.769 7200.13 989450
30-11-1-A 276.319 63.3 330.324 75.7 371.335 85.1 436.489 7200.15 1078106
30-11-1-B 313.459 67.6 370.304 79.9 414.258 89.4 463.598 7205.01 265633
30-11-1-C 333.353 61.3 385.848 71.0 396.829 73.0 543.826 7200.16 844375
30-12-0-A 285.590 65.2 330.455 75.4 406.124 92.7 438.055 7202.88 315159
30-12-0-B 322.575 71.5 356.680 79.1 381.031 84.5 451.118 7200.13 1231159
30-12-0-D 346.288 72.7 379.260 79.6 436.531 91.6 476.402 7203.5 358332
30-12-1-A 303.247 56.2 362.338 67.2 455.641 84.5 539.163 7203.64 787476
30-12-1-B 375.052 57.6 432.134 66.4 507.325 78.0 650.586 7200.08 1961982
30-12-1-C 395.449 57.9 440.896 64.5 489.937 71.7 683.429 7200.08 1843480
30-12-1-D 396.097 65.3 442.489 73.0 532.888 87.9 606.417 7207.2 598467

Average 66.7 76.5 85.0 7202.05

5 Conclusions
We developed a one-commodity flow mixed-integer linear programming formulation
of the truck and trailer routing problem (TTRP). This formulation contains a large
amount of three-index indicator variables that are defined for directed arcs between
locations. We attempted to reduce the number of variables by developing a second
formulation in which the indicator are instead defined for undirected edges. In
cases where vehicle customers are a minority of all customers, the latter, undirected,
formulation contains fewer variables than the former, directed, formulation. We
discussed the rationale behind the undirected formulation and introduced a set of
valid inequalities to strengthen its linear programming relaxations.
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We implemented a branch-and-cut algorithm to solve the undirected formulation.
We evaluated the computational performance of the algorithm using a set of test
instances. The algorithm can solve to optimality problems with up to 20 customers.

The performance of our solution method could be improved by using the directed
formulation when the majority of customers are vehicle customers, which increases
the number of variables in the undirected formulation. Further, more types of valid
inequalities could be developed for both formulations.
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