
An Algorithm for Generating Most
Probable Paths in Decision
Programming

Jerry Aunula

School of Science

Bachelor’s thesis
Espoo 27.8.2021

Supervisor

Prof. Ahti Salo

Advisor

M.Sc. (Tech.) Juho Roponen

Copyright © 2021 Jerry Aunula

The document can be stored and made available to the public on the open in-
ternet pages of Aalto University.
All other rights are reserved.

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the bachelor’s thesis

Author Jerry Aunula
Title An Algorithm for Generating Most Probable Paths in Decision Programming
Degree programme Engineering Physics and Mathematics
Major Mathematics and Systems Sciences Code of major SCI3029
Teacher in charge Prof. Ahti Salo
Advisor M.Sc. (Tech.) Juho Roponen
Date 27.8.2021 Number of pages 18+1 Language English
Abstract
Influence diagrams visually represent decision problems. Several methods for solving
these diagrams with multiple decision stages and endo- and exogenous uncertainty
have been presented in the literature. However, exact approaches for Limited Mem-
ory Influence Diagrams (LIMID) and influence diagrams with problem-spanning
constraints are scarce. The Decision Programming framework is a general method
for solving influence diagrams, which works by converting the problem to a Mixed
Integer Linear Programming form, solvable by off-the-shelf solvers. However, Decision
Programming does not scale up for large problems, which limits its applicability. This
thesis develops an algorithm that produces a sub-problem of the original problem to
produce an approximate solution more quickly. We tested the algorithm’s perfor-
mance on Prognostics and Health Management problem concerning the maintenance
optimization of a sensor-turbine system. We found that our algorithm managed this
problem quite well, reducing the problem size by 95% while losing less than 0.5% of
the expected utility.
Keywords Influence diagram, Decision Programming, stochastic programming,

approximation algorithm

Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Tekniikan kandidaatintyön tiivistelmä

Tekijä Jerry Aunula
Työn nimi Algoritmi todennäköisimpien polkujen generoimiseen Decision

Programming -optimointiviitekehykselle
Koulutusohjelma Teknillinen fysiikka ja matematiikka
Pääaine Matematiikka ja systeemitieteet Pääaineen koodi SCI3029
Vastuuopettaja Prof. Ahti Salo
Työn ohjaaja DI Juho Roponen
Päivämäärä 27.8.2021 Sivumäärä 18+1 Kieli Englanti
Tiivistelmä
Vaikutuskaaviot ovat visuaalinen tapa esittää päätösongelmia. Kirjallisuudessa on
esitetty useita tapoja ratkaista vaikutuskaavioita, joissa on ongelman sisäisiä ja
ulkopuolisia rajoitusehtoja sekä useita päätösvaiheita. Ratkaisuja ei kuitenkaan
juurikaan löydy vaikutuskaavioille, joissa edellisiä päätöksiä ei muisteta, tai jotka
sisältävät kokonaisvaltaisia rajoitteita. Decision Programming on yleinen optimointi-
viitekehys, joka on kykenevä ratkaisemaan edellä mainitut ongelmavariantit. Nämä
päätösongelmat voidaan esittää Decision Programmingin avulla MILP-muodossa,
joiden ratkaisuun löytyy monia algoritmeja. Tämä viitekehys ei kuitenkaan skaalaudu
hyvin, joten sillä ei voida ratkaista kovin isoja ongelmia. Tämän kandidaatintyön
tavoitteena oli kehittää approksimatiivinen algoritmi ongelman koon pienentämiseksi,
jotta Decision Programming voi ratkaista ongelman nopeammin. Testasimme algo-
ritmin toimintaa sensori-turbiini-systeemin huoltostrategian optimointiin. Algoritmi
toimi tässä raportoidussa esimerkissä kohtuullisen hyvin, ja pienensi ongelman kokoa
95% menettäen alle 0.5% odotusarvollisesta hyödystä.
Avainsanat Vaikutuskaavio, Decision Programming, stokastinen optimointi,

approksimatiivinen algoritmi

5

Contents
Abstract 3

Abstract (in Finnish) 4

Contents 5

1 Introduction 6

2 Earlier Approaches 6

3 Introduction to Decision Programming 7

4 Methodological Development 9

5 Results 12
5.1 Problem Description . 13
5.2 Computations . 15

6 Conclusion 16

A Proofs 19

6

1 Introduction
Influence diagrams are extensively used in decision analysis to represent multi-stage
decision problems under exogenous and endogenous uncertainty (Diehl and Haimes,
2004; Howard and Matheson, 2005). These diagrams are directed, acyclic graphs,
whose nodes correspond to chance events, decisions, and values. Usually, the goal
of an optimization problem illustrated by an influence diagram is to find a decision
strategy that maximizes the expected value of a utility function over the different
realizations of value nodes. Several approaches for solving influence diagrams have
been presented. The most common include node removals and arc reversals (Shachter,
1986, 1988), and dynamic programming approaches (Tatman and Shachter, 1990).

However, the literature on Limited Memory Influence Diagrams (LIMIDs), in
which the no-forgetting assumption does not hold, is sparse. Furthermore, the well-
established techniques for solving influence diagrams are not able to include some
common risk measures, such as Value at Risk (VaR). To address these challenges, Salo
et al. (2019) develop the Decision Programming framework. This framework uses the
structure of influence diagrams to represent the optimization problem mathematically
and subsequently converts it into a corresponding Mixed Integer Linear Programming
(MILP) problem. The framework is general and helps solve LIMIDs with several
decision stages, multiple objectives, and endogenous uncertainties.

Decision Programming, however, has its drawbacks. As is typical for MILP-
problems, the computational complexity increases roughly exponentially with problem
size. Thus, the existing framework cannot readily handle problems with more than a
few dozen decision and chance nodes. As real-life applications may have hundreds of
nodes, this framework is not well-equipped to solve problems of considerable size in
an acceptable amount of time.

In this thesis, we develop an approximation algorithm for Decision Program-
ming. The algorithm will be used as a pre-solver, decreasing the problem size using
probability and utility considerations. The goal of the research was to increase the
applicability of the Decision Programming framework to solve problems of a larger
scale with reasonable accuracy.

This thesis is structured as follows. Section 2 explores earlier approaches. Section 3
gives an introduction to influence diagrams and the Decision Programming framework.
Section 4 describes the principles of the algorithm. Section 5 studies computational
performance with an illustrative example. Section 6 concludes the thesis, with
Appendix A presenting some proofs.

2 Earlier Approaches
Influence diagrams have been one of the most popular ways of visualizing multi-stage
decision problems for nearly 50 years (see, e.g., Olmsted, 1984; Howard et al., 2006).
As a result, the influence diagram representation has been extensively studied, and
several ways of solving standard influence diagrams have been proposed. The most
widely used of these are using node removals and arc reversals to iteratively simplify

7

the diagram (Olmsted, 1984; Shachter, 1986), and representing the diagram as
a decision tree, solvable by dynamic programming, as described by Tatman and
Shachter (1990).

Nevertheless, there are several situations in which information about earlier
decisions is not available when making later ones. These kinds of influence diagrams
are often called Limited Memory Influence Diagrams (LIMIDs), discussed by, e.g.,
Zhang et al. (1994). For LIMIDs, the well-established approaches of node removals,
arc reversals, and dynamic programming are not applicable. Lauritzen and Nilsson
(2001) present an iterative scheme for updating policies by deriving a junction tree
from the limited memory influence diagram. Hovgaard and Brincker (2016) give an
application example of LIMIDs for protecting against structural damage. Further
approaches are described by Mauá et al. (2012). These approaches, however, are not
equipped for solving problems with constraints spanning across the entire problem,
for example, Conditional Value at Risk (CVaR).

One widely used method for incorporating several decision stages to optimization
problems is stochastic programming, as in Zhou et al. (2013). Nevertheless, the realm
of endogenous uncertainty in these problems has been largely unexplored. Some
approaches are proposed by Rubinstein and Shapiro (1993). However, the above
methods are not able to solve multi-stage limited memory problems with multiple
objectives, problem-spanning constraints, and endogenous uncertainty.

The Decision Programming framework developed by Salo et al. (2019) is an exact
solution method for solving LIMIDs, which is general enough to incorporate all the
problem variants discussed above. The only restriction is that each chance and
decision must have a finite set of discrete realizations. Incorporation of continuous
random variables is discussed by Herrala (2020).

The main challenge with decision programming is, however, scalability. As
discussed by Salo et al. (2019), larger real-life problems soon become intractable
with Decision Programming. This thesis addresses this challenge by introducing an
algorithm for pruning paths of a small probability from the problem, significantly
reducing the problem size. We aim to improve the computational time of solving
problems with Decision Programming so that it can be used to provide accurate
results for larger real-life problems.

3 Introduction to Decision Programming
This section summarizes the Decision Programming framework. We closely follow the
notation in Salo et al. (2019) but use a computationally faster problem statement.

An influence diagram is a directed, acyclic network G = (N, A). It has three
types of nodes N = C ∪ D ∪ V : chance nodes C, decision nodes D, and value
nodes V . Chance nodes C correspond to random variables, representing uncertain
events, decision nodes D represent decisions, and value nodes V express consequences
resulting from the realizations of both the random variables of C and decisions made
at D.

8

Figure 1: An example of an influence diagram

Figure 1 shows an example of an influence diagram. Here the circles represent
chance nodes C, squares decision nodes D, and diamonds value nodes V . The
numbers show the indexing of the nodes. This influence diagram could, for example,
depict the decision problem of choosing whether to take an umbrella. Here node 1
would be the weather forecast, 2 the decision to take the umbrella, and 3 the actual
weather. Node 4 could describe the decision maker’s wetness level, while the utility
node 5 would be their mood.

Arcs A = {(i, j) | i, j ∈ N} represent dependencies between nodes. For j ∈
C, D, V , these arcs represent how earlier realizations influence probability distribu-
tions, decisions to be made, and values, respectively. Let us define the information
set of a node j ∈ N as I(j) = {i ∈ N | (i, j) ∈ A}; thus, the nodes i, from which
there is an arc to j. As the network is acyclic, we can index the chance and decision
nodes as C ∪D = {1, 2, ..., n}, where ∀ (i, j) ∈ A : i < j. Furthermore, let us index
the value nodes as V = {n + 1, n + 2, ..., n + |V |}.

All nodes j ∈ C ∪D have a finite number of discrete states sj ∈ Sj . For a chance
node, these states represent the possible realizations of random variables, and for
a decision node, the decision alternatives. Let us denote by Xj the random and
decision variables governing the realization of states. A path s = (s1, s2, ..., sn) is
defined as a sequence of states sj ∈ Sj. Thus, a path is a combination of states
of all the chance and decision nodes. A given state k of node j is denoted by sjk.
Furthermore, for any subset of nodes J ⊆ C ∪D, we denote by sJ ∈ SJ a subpath,
for which the states of nodes J are set.

Let also Z = (Z1, ..., Zn) ∈ Z, where Zj : sI(j) ↦→ sj, be a decision strategy; each
Zj maps every possible information state I(j) of node j ∈ D to a decision, i.e., a
state. Here Z is the set of all decision strategies. A decision strategy Z is compatible
with a path s, if it maps every possible information state of nodes j ∈ D to a decision,
which is also included in s. Furthermore, let z(sj | sI(j)) ∈ {0, 1} be a binary variable,
whose value shows whether the decision strategy is (1), or is not (0), compatible at
node j. In other words, Zj(sI(j)) = sj ⇐⇒ z(sj | sI(j)) = 1.

9

Assuming a compatible decision strategy, the probability of a subpath sk, which
consists of nodes 1, ..., k, can be expressed as

p(sk) =
∏︂
i∈C
i≤k

P(Xi = si |XI(j) = sI(j)), (1)

with p(s) being the probability of a full path. Let us, for simplicity, assume that
there is a single value node v ∈ V . Thus, the utility gained with path s can be
denoted by U(s), assuming that a well-defined function maps the information set of
the value node to a set of consequences. Here, the utility function is constructed to
map to the unit interval [0, 1].

What follows is a computationally improved version of Decision Programming.
We shall define C and D as

C = C ∪ {k ∈ C ∪D | ∃ j ∈ C : k ∈ I(j)}
D = D ∪ {k ∈ C ∪D | ∃ j ∈ D : k ∈ I(j)}.

Thus, C is the union of all chance nodes and their information sets; D is a similar
union for decision nodes. Furthermore, let SC consist of all subpaths sC = (si1 , ..., si

C
),

such that ik ∈ C ∀ k = 1, ..., |C|; thus, the set of subpaths consisting only of the
nodes in C. Sets of subpaths SD and SV are defined similarly. Let x(sD) ∈ {0, 1}
be a binary decision variable, whose value is 1, if and only if the decision strategy
is compatible at every node j ∈ D; 0 otherwise. Using equation 1, we define
p(sC) = ∏︁

i∈C p(si|sI(i)) = p(s). Now, the improved Decision Programming MILP-
formulation may be written as:

max
Z∈Z

∑︂
s∈S

x(sD)p(sC)U(sV) (2)

subject to
∑︂

sj∈Sj

z(sj | sI(j)) = 1 ∀j ∈ D, sI(j) ∈ SI(j) (3)

1−
[︂
|D| −

∑︂
j∈D

z(sj|sI(j))
]︂
≤ x(sD) ≤ 1

|D|
∑︂
j∈D

z(sj|sI(j)), ∀sD ∈ SD (4)

z(sj | sI(j)) ∈ {0, 1}, ∀j ∈ D, sj ∈ Sj, sI(j) ∈ SI(j) (5)
x(sD) ∈ {0, 1}, ∀sD ∈ SD. (6)

Here, (2) is the expected value of utility to be maximized, constraints (3) and (4)
enforce the decision strategies to be compatible, while (5) and (6) give the range for
variables x and z.

4 Methodological Development
This section develops the mathematical foundations of our algorithm. This devel-
opment assumes that the influence diagram has a single value node. However, this

10

algorithm can easily be adapted to problems concerning multiple value nodes. We
begin by making some definitions concerning utility:

U(sJ) = max
s′∈SI(v)\J

U(s′ ∪ sJ∩I(v)) (7)

Thus, U(sJ) is the maximum amount of utility that can be achieved when the
states of nodes J are set to sJ . Let also p(sJ) be the path probability of the subpath
sJ = (s1, ..., s|J |), calculated as in equation (1); here J = {1, ..., k}. Furthermore, let
us define the upper bound for the effect of paths starting with sJ as

EU(sJ) = p(sJ)U(sJ).

Let SJ = {sJ1 , sJ2 , ..., sJm |∄ s : sJk
, sJl

⊆ s} be a mutually exclusive set of
subpaths. Thus, the nodes which are set might be the same, as long as the states differ.
Furthermore, let SJ =

{︂
s′ ∈ S | ∃ k : s′

Jk
= sJk

}︂
be the set of full path extensions of

the subpaths in SJ . Now we can make the following definition:

E∗
U(SJ) = max

Z∈Z

∑︂
s∈S\SJ

x(sD)p(sC)U(sV)

Thus, E∗
U(SJ) is the optimal solution to the optimization problem considering only

the paths that are not extensions of sJk
∈ SJ .Furthermore, we denote the optimal

solution to the original optimization problem as E∗
U .

Now, the applicability of our algorithm builds on the following theorem:

Theorem 1. Solving the optimization problem with only the paths not starting with
sJk
∈ SJ gives the following interval approximation for the optimal solution of the

original problem:

E∗
U =

[︄
E∗

U(SJ) , E∗
U(SJ) +

m∑︂
k=1

EU(sJk
)
]︄

.

Thus, the true optimum will be inside this interval.

Proof. See Appendix A.

Let us still make a few more definitions. First, we shall define Sε as follows:

Sε = {s ∈ S | p(s) > ε}.

Thus, a path belongs in Sε if and only if its path probability is greater than ε. We
will hereafter call Sε as the set of significant paths, and correspondingly a path s as
significant, if s ∈ Sε.

Furthermore, let δ be the upper bound on the effect on expected utility of taking
only paths in Sε into account. Using the notation from before, Sε = S \ SJ . Thus,
using Theorem 1, this effect can be written as

δ =
∑︂
s/∈Sε

EU(s). (8)

11

Finally, let nj be the number of states for node j. With these definitions, we can
begin the development of our algorithm.

We first form a tree structure of all the possible paths of the problem. As subpath
probability cannot increase with path length, we can employ a depth-first search
algorithm on the obtained decision tree. If, at any point, p(sJ) ≤ ε, we abandon
all the paths starting with sJ , as their total probability is at most ε. Here we will
update δ iteratively, for every subpath sJ we abandon, according to (8). If we arrive
at the last node j = n with a path such that p(s) > ε, we will add it to the set of
significant paths Sε. When the algorithm has explored the whole tree, it will return
the set of significant paths, Sε, and the upper bound for the loss of expected utility,
δ.

Figure 2: Tree representation of a decision problem

Figure 2 shows a tree representation of the problem depicted by the influence
diagram in Figure 1. In this problem, the states for each node are:

12

S1 = {0, 1}
S2 = {0, 1}
S3 = {0, 1, 2}
S4 = {0, 1},

with ε = 0.02. As described previously, the algorithm performs a depth-first search,
while pruning the rest of subpaths, whose probability does not exceed ε. The pruned
subpaths are depicted by the red arrows.

The approximation algorithm is now given by the following pseudocode.

1: procedure Pre-solver ▷
2: j ← 0 ▷ Index of the current node, j ∈ C ∪D
3: g[l]← nl, l = 1, ..., n ▷ Vector of amount of states for each node
4: k[l]← 1, l = 1, ..., n + 1 ▷ k(l) shows the state of node l we are currently on
5: Sε ← ∅ ▷ The set of significant paths
6: sJ ← ∅ ▷ The set of node states which are set
7: δ ← 0 ▷ The amount of expected utility lost at most
8: q ← 1 ▷ Probability of current path
9: while j > 0 ∨ k[1] ≤ g[1] do

10: if j = n ∨ k[j + 1] > g[j + 1] ∨ q ≤ ε then
11: if q ≤ ε then ▷ Probability of path low
12: δ ← δ + qU(sJ) ▷ Increase the max. missed utility counter
13: else
14: if j = n then ▷ At last node
15: Sε ← Sε ∪ sJ ▷ Append path to set of paths
16: sJ ← sJ \ sjk[j] ▷ Substract node from path
17: if j ∈ C then ▷ Current node is a chance node
18: q ← q/p(sjk[j] |SI(j)) ▷ Update probability
19: k[j]← k[j] + 1 ▷ Increase state counter
20: j ← j − 1 ▷ Move up a node
21: k[l]← 1, l = j + 2, ..., n + 1 ▷ Initialize nodes down the tree again
22: else
23: j ← j + 1 ▷ Move down a node
24: sJ ← sJ ∪ sjk[j] ▷ Append current node state to path
25: if j ∈ C then ▷ Current node is a chance node
26: q ← q · p(sjk[j] |SI(j)) ▷ Update probability
27: return (Sε, δ)

5 Results
The computational example of this thesis comes from a prognostics problem in
Mancuso et al. (2021). We first overview the model described in the paper and then

13

present the results of pruning paths with our algorithm. Finally, we discuss the
relevance of the algorithm.

5.1 Problem Description

Figure 3: Influence diagram of turbine inspection and maintenance

14

The case study in question consists of a gas turbine equipped with a Prognostics and
Health Management (PMH) solution. The turbine has several sensors monitoring
the state of various components of the turbine. In addition, the system has sensor
validation algorithms monitoring the state of both the sensors and the turbine. We
assume that global data from the validation algorithms are available; thus, we have
single condition estimates for the turbine and the sensors.

An influence diagram of the system described above is shown in Figure 3. Here,
the letters outside the nodes denote the indexing of the nodes. As previously, circles
represent chance nodes, squares decision nodes, and the diamond is the value node.

The first node of the graph, sH ∈ {0, 4000, 8000, 12000...}, is referred to as fired
hours. The chance node sH is deterministic, where probability is one for its current
state. Both the states of the sensor and the turbine,

sSS, sT S ∈ {Excellent, Good, Fair, Poor, Failing},

depend on the value of sH ; the probability of the turbine and the sensor being in a
worse state grows with fired hours. Now, the PHM solution uses machine learning
to come up with predictions for the actual sensor and turbine states, sSE and sT E.
The sensor state estimate depends on the turbine state as well as the actual sensor
state. This estimate, in turn, influences the turbine state estimate combined with
the actual state of the turbine. The estimates have the same discretization as the
sensor and turbine states.

Now, these state estimates influence the inspection decision:

sID ∈ {None, SensorCheck, ConditionMonitoring}.

SensorCheck implies the detection of faulty sensors and ConditionMonitoring their
repair. The inspection decision and previous estimates lead to condition results

sSR, sT R ∈ {Excellent, Good, Fair, Poor, Failing}.

If sID = None, sSR = sSE and sT R = sT E. If the inspection decision is a sensor
check, the sensor condition results are correct with a high probability, and the turbine
condition results depend on the sensor condition results. Finally, if the inspection is
condition monitoring, both the sensor and turbine condition are correct with a high
probability, governed by the problem-specific parameters.

Now, based on sT R and sSR we have a Maintenance Decision to make:

sMD = {None, Level1, Level2}.

A Level1 maintenance decision returns the state of the turbine to 4000 fired hours
earlier, while a Level2 maintenance restores the system to practically 0 hours of
operation. Thus, the node sH is not the time the system has been operating, but a
combination of operation time and the maintenance decisions made.

Finally, the maintenance decision made with the actual turbine state effect turbine
flow sT F , which has the same discretization as the other state nodes. The final utility
depends on the quality of turbine flow together with the costs of the inspection and
maintenance measures. The goal of this model is to maximize the expected utility of
the system.

15

5.2 Computations
For one set value of fired hours, the system depicted in the previous subsection has
a total of |S| = 57 · 32 = 703125 paths. The Decision Programming Framework
took roughly 26 hours to solve this problem. We began the analysis by setting
ε = 0; thus, pruning only the paths with probability zero and arriving at an exact
answer. This process yielded |Sε| = 78415. Thus, the problem size was pruned by
nearly 89%. This computation took our algorithm roughly 30 seconds. As solving a
MILP-problem is NP-hard, the widely accepted assumption P ̸= NP means that
the problem generally scales worse than linearly. This means that this reduction
in problem size leads to more than a 90% reduction in computation time. This
reduction is 3 orders of magnitude larger than the time taken by our algorithm
(0.9·26h

30s
≈ 3 · 103). Furthermore, our algorithm also scales linearly with the number of

paths, which means that this effect is amplified with a larger problem size.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Number of paths (share of maximum)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

L
o

s
t

u
ti
lit

y
 a

t
m

o
s
t

(s
h

a
re

 o
f

m
a

x
im

u
m

)

Lost utility as a function of number of paths

Figure 4: U as a function of |Sε|

The graph in Figure 4 shows results of further pruning. Here we pruned the
problem by setting different values of ε and plotting the subsequent maximum utility
loss U as a function of the number of paths. Here the maximum utility lost at most
is the optimum found by Decision Programming, while the maximum number of
paths is after pruning 0-probability paths, i.e., 78415.

We can see from the graph that by further pruning 20% of the remaining paths, the
maximum lost utility is less than a tenth of a percent of the optimum. This percentage
would be considered an acceptable amount lost, as the model’s assumptions have
some inaccuracies.

16

Furthermore, by pruning 60% of these paths, we lose at most 0.5% of expected
utility. Pruning more than this is probably not worth it, as the lost utility grows
roughly exponentially with the number of paths we prune.

In the context of this particular problem, the results are promising. By reducing
the problem size by more than 95%, we arrive at an approximation at most 0.5%
away from the optimum.

6 Conclusion
Decision Programming is an optimization framework capable of solving various kinds
of problems. The framework, however, does not scale well with problem size. The goal
of this research was to introduce an algorithm for generating the most probable paths
in a decision problem so that Decision Programming can arrive at an approximate
solution faster.

The performance of the algorithm was tested on a Prognostics and Health
Management problem. It pruned 90% of the number of paths without any loss of
accuracy and 96% with less than 0.5% loss in expected utility. Furthermore, the
computation time of our algorithm was more than three orders of magnitude less
than The Decision Programming framework took solving the original problem. As
the solving process in this problem scales worse than linearly, this is a good result.

There are, however, several limitations in our study. First, this example is not
indicative of performance in other problems. Our algorithm generally performs better
as the variance of the probabilities of the problem grows. Thus, in other problems,
our algorithm may not reduce the problem size, and its usage may thus not be
worthwhile. Furthermore, the exact computational advantage of the algorithm, even
in this particular problem, cannot be assessed without solving the pruned problem
with Decision Programming.

Further research should focus primarily on the issues mentioned above: testing the
algorithm’s performance across a variety of problems and implementing it to be a part
of the Decision Programming framework. Furthermore, the code can be optimized in
several ways. First, the probability transitions can be ordered, allowing for faster
pruning from the same node level. Second, the algorithm can be supplemented with
further heuristics to prune out decision and chance nodes. Lastly, the algorithm and
Decision Programming might be improved by dividing the problem into parts and
using dynamic programming, when applicable, to speed up the computations.

17

References
Michael Diehl and Yacov Y Haimes. Influence diagrams with multiple objectives

and tradeoff analysis. IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, 34(3):293–304, 2004.

Olli Herrala. An efficient strategy for solving stochastic programming problems
under endogenous and exogenous uncertainties. Master’s thesis. 2020. URL
http://urn.fi/URN:NBN:fi:aalto-202003222575.

Mads K Hovgaard and Rune Brincker. Limited memory influence diagrams for
structural damage detection decision-making. Journal of Civil Structural Health
Monitoring, 6(2):205–215, 2016.

Ronald A Howard and James E Matheson. Influence diagrams. Decision Analysis, 2
(3):127–143, 2005.

Ronald A Howard, James E Matheson, Miley W Merkhofer, Allen C Miller, and
D Warner North. Comment on influence diagram retrospective. Decision Analysis,
3(2):117–119, 2006.

Steffen L Lauritzen and Dennis Nilsson. Representing and solving decision problems
with limited information. Management Science, 47(9):1235–1251, 2001.

Alessandro Mancuso, Michele Compare, Ahti Salo, and Enrico Zio. Optimal
prognostics and health management-driven inspection and maintenance strategies
for industrial systems. Reliability Engineering & System Safety, 210:107536, 2021.

Denis Deratani Mauá, Cassio Polpo De Campos, and Marco Zaffalon. Solving limited
memory influence diagrams. Journal of Artificial Intelligence Research, 44:97–140,
2012.

Scott Mostyn Olmsted. On Representing and Solving Decision Problems. PhD
thesis, Stanford University, 1984.

Reuven Y Rubinstein and Alexander Shapiro. Discrete event systems: Sensitivity
analysis and stochastic optimization by the score function method, volume 13.
Wiley, 1993.

Ahti Salo, Juho Andelmin, and Fabricio Oliveira. Decision programming for multi-
stage optimization under uncertainty. arXiv preprint arXiv:1910.09196, 2019.

Ross D Shachter. Evaluating influence diagrams. Operations Research, 34(6):
871–882, 1986.

Ross D Shachter. Probabilistic inference and influence diagrams. Operations
Research, 36(4):589–604, 1988.

http://urn.fi/URN:NBN:fi:aalto-202003222575

18

Joseph A Tatman and Ross D Shachter. Dynamic programming and influence
diagrams. IEEE transactions on Systems, Man, and Cybernetics, 20(2):365–379,
1990.

Nevin Lianwen Zhang, Runping Qi, and David Poole. A computational theory of
decision networks. International Journal of Approximate Reasoning, 11(2):83–158,
1994.

Yang Zhou, Guo H Huang, and Boting Yang. Water resources management under
multi-parameter interactions: A factorial multi-stage stochastic programming
approach. Omega, 41(3):559–573, 2013.

19

A Proofs
Proof of Theorem 1.

Let sJ ∈ SJ . We shall denote by S(sJ) the paths which are full path extensions
of sJ . We can partition the sum in (2) based on whether the path is an extension of
sJ :

∑︂
s∈S

x(sD)p(sC)U(sV) =
∑︂

s∈S\S(sJ)

x(sD)p(sC)U(sV) +
∑︂

s∈S(sJ)

x(sD)p(sC)U(sV). (A1)

We shall seek an upper bound for the second term in (A1).
First, (6) gives x(sD) ≤ 1. As all paths in the second term are full path extensions

of sJ , definition (7) implies U(sV) ≤ U(sJ). Finally, we can write the probability of
any path as

∏︂
i∈C

p(si|sI(i)) =
∏︂
i∈C
i≤j

p(si|sI(i))
∏︂
i∈C
i>j

p(si|sI(i)).

As the states for nodes J are fixed, the first product is just equal to p(sJ). With
the preceding remarks, we arrive at the following upper bound:

∑︂
s∈S(sJ)

x(sD)p(sC)U(sV) ≤
∑︂

s∈S(sJ)

p(sC)U(sV) ≤ U(sJ)
∑︂

s∈S(sJ)

p(sC)

= U(sJ)p(sJ)
∑︂

s∈S(sJ)

∏︂
i∈C
i>j

p(si|sI(i)) = p(sJ)U(sJ),

where the last equality follows from the fact that the paths are mutually exclusive
and commonly exhaustive, i.e., the sum of their probabilities is 1.

Furthermore, as the summands are all contributions to the expected value of the
utility, which is scaled to the unit interval, they are all non-negative. Thus, a lower
bound for the second term is just 0.

As all full paths are mutually exclusive, the following contributions for each
sJ ∈ SJ can be summed together. Here we take the first term in (A1) to exclude
full paths starting with all sJ ∈ SJ . Thus, we arrive at the following interval
approximation for the expected utility:

E∗
U =

[︄
E∗

U(SJ) , E∗
U(SJ) +

m∑︂
k=1

EU(sJk
)
]︄

.

	Abstract
	Abstract (in Finnish)
	Contents
	1 Introduction
	2 Earlier Approaches
	3 Introduction to Decision Programming
	4 Methodological Development
	5 Results
	5.1 Problem Description
	5.2 Computations

	6 Conclusion
	A Proofs

