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Abstract

In this thesis, a SIR-model (susceptible-infected-recovered model) is used to com-
pare different non-pharmaceutical intervention policies to deal with the COVID19
epidemic. In the SIR-model, the whole population is compartmentalized into suscep-
tible, infected and recovered populations. Susceptible individuals start as healthy
individuals but are at risk of becoming infected. Infected individuals can infect
susceptible individuals during the infectious period. The new infections occur at
a rate referred as the rate of transmission. Infected individuals become recovered
individuals after the infectious period. The recoveries occur at a rate referred as the
rate of recovery. The rate of transmission and recovery and the intial state of the
population are the only parameters that affect the outcome of the SIR-model. This
simplicity makes for pleasant fitting of the SIR-model curves to data sets. Therefore,
the effects of vaccination are specifically excluded to keep the model simple. The
SIR-model is fitted to data sets from four european countries using sum of least
squares estimation. In addition, using a complementary data set containing a list of
governerment policies of these countries a general understanding of what policies are
the most advantageous is obtained.

The results of this thesis imply that the policies analyzed do reduce the rate of
new infections. In particular policies that reduce physical contacts seem to have a
larger impact. It is also concluded that policies should be sustained for a long time
to make a macroscopic difference in total case count, as the amount of new infections
seems to accelerate whenever the policies are removed.
Keywords SIR-model, COVID19, non-pharmaceutical intervention, sum of least

squares estimation
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Sammandrag
I denna avhandling använder vi SIR-modellen (SIR från engelska ’susceptible-infected-
recovered’) till att jämföra olika icke-farmaceutiska åtgärder för att minska på
spridningen av covid-19 som en strategi för att hindra epidemin. SIR-modellen delar
hela befolkningen in i mottagliga, infekterade och återhämtade grupper. Mottagliga
individer är friska i början men riskerar att bli smittade. Infekterade individer
kan infektera mottagliga individer under infektionsperioden. Hur stor del av de
mottagliga individerna som blir infekterade beror på den infekterade gruppens storlek
samt smittotakten. Infekterade individer återhämtar sig efter infektionsperioden
och blir således återhämtade individer. Enligt SIR-modellen kan dessa individer
sedan inte bli infekterade flera gånger. Hur snabbt återhämtningen sker beror på
återhämtningstakten. Dessa smitto- och återhämtningstakter samt befolkningens
utgångstillstånd i början är de enda parametrarna som påverkar det slutgiltiga
utfallet av SIR-modellen. Den låga mängden parametrar gör det enkelt att göra en
anpassning av SIR-modellen till covid-19 data. Man kan dessutom vidare förenkla
anpassningen genom att enbart anpassa smittotakten. Detta kan man göra med
antagelsen att infektionsperioden är konstant samt om informationen i datan används
som utgångstillstånd. Således utesluter vi också vaccineringens inverkan för att
behålla modellens enkelhet, samt för den orsaken att vaccinering är en farmaceutisk
motåtgärd.

I denna avhandling anpassar vi SIR-modellen på covid-19 data från fyra europe-
iska länder genom minstakvadratsmetoden. Dessutom använder vi skild data som
innehåller listor över genomförda covid-19 åtgärder i dessa länder. Detta gör vi för
att få en form av allmän förståelse för vilka sorters åtgärder som är mest effektiva
för att hindra covid-19-epidemin. Våra resultat tyder på att dessa icke-farmaceutiska
åtgärder minskar på tillväxten av nya infektioner. Särskilt åtgärder som minskar på
fysiska kontakter i befolkningen tycks ha stor inverkan. Vi drar också den slutsatsen
att åtgärderna bör hållas i kraft under en lång tid för att göra en skillnad i mängden
totala infektioner på lång sikt. Detta eftersom tillväxten av nya infektioner verkar
öka på nytt när åtgärderna tas bort.
Nyckelord SIR-modell, covid-19, icke-farmaceutiska åtgärder, minsta

kvadratmetoden
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1 Introduction
The COVID19 pandemic has been an inconvenience to society for over two years and
is still ongoing. Many strategies have been employed to contain the spread of this
disease. Governments have used NPI (non-pharmaceutical intervention) policies to
stop the spread of this virus, such as lockdowns. However, these policies come with
an economic trade-off (Ferguson et al., 2020), (Eichenbaum et al., 2020) and can be
annoying to live with for a population. In this thesis, we assess some of the impact
these policies have on the pandemic. This assessement is done by comparing the
situation of the pandemic in four different countries, more specifically the progression
of the case numbers is of interest.

The comparison is conducted with the help of the SIR-model (susceptible-infected-
recovered) (Kermack and McKendrick, 1927), which we use for its simplicity and
previous use in mathematical epidemiology (Brauer, 2017), including recent applica-
tions to COVID19 (Cooper et al., 2020). In the SIR-model, the whole population is
compartmentalized into susceptible, infected and recovered populations. Infected
individuals infect susceptible individuals and remain infectious during a time called
the infectious period. After this period infected individuals become and remain
recovered individuals. The outcome of the SIR-model is completely determined by
the initial state of the population and two parameters that are the rates of recovery
and transmission. In this thesis, the SIR-model is fitted using sum of least squares
estimation with data from the four countries, which gives us insight on changes in
the rate of transmission over time. NPI policies have been known to reduce the rate
of transmission (Ferguson et al., 2020). Therefore inspecting changes to the rate of
transmission allow us to compare the impact of such policies. For clarity, by NPI
policy we mean any prevention strategy for COVID19 that does not involve the use
pharmaceutical substances. For example, lockdowns or mask mandates are included
while the effects of antiviral drugs are excluded from the analysis. In addition, the
relation between the rate of transmission and the policies are compared using a
government response data set from the ECDC. Though, there are some limits with
such an approach because of the general structure of the response data set. Important
policies may be excluded from our analysis for two main reasons. The sources used in
the data set are based of information the governments have made publicly available
on the internet. It is therefore possible that not every policy is listed in the data set.
Furthermore, the policies in the data sets are formatted such that similar policies
are listed as the same, but these policies are not always identical.

The main objective of this thesis, is to have a look on how the COVID19 situation
in the chosen countries relates to the rate of transmission. We also wish to gain insight
into the characteristics of policies that universally reduce the rate of transmission.
The focus is NPI policy so the impact of vaccination is not considered in this thesis,
as it is a pharmaceutical intervention and this would also further complicate the
SIR-model.
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The thesis is structured as follows: Section 2 is a brief introductory discussion of a
few topics relating to mathematical epidemiology. Section 3 is a detailed explanation
of the methodology used in this thesis. Section 4 presents the results using the
methods from the previous section. In Section 5, the results are discussed. Section 6
presents a conclusion.

2 Background
Mathematical modeling in epidemiology can be utilized as a powerful tool that
provides decision makers a way to study disease in a safe environment. Thereby
granting insight into the core dynamics of infectious disease spreading in populations.
An important class of epidemiological models are compartmental models, where
the disease is studied in a population subsetted into compartments. A common
compartmental model in mathematical epidemiology is a SIR-model (Kermack and
McKendrick, 1927). Where the population is compartmentalized such that it consists
of susceptible, infected and recovered individuals. The SIR-model and even more
compartmental models, such as SIRD (SIR-deceased) models, have been used to
accurately model previous pandemics such as the 1918 influenza epidemic, HIV or
Ebola (Brauer, 2017).

Many characteristics of infectious diseases are revealed through mathematical
modeling. Some of these characteristics relate to simple epidemiological metrics.
Since many models can be applied to one disease, it is not too surprising that the
models also relate to each other via epidemiolocial metrics. An important metric
of infectious diseases that characterizes the behaviour of many models, is the basic
reproduction number commonly denoted by R0. The basic reproduction number is
the expected number of new infections resulting from one infected individual and
may have spatiotemporal dependance. For example, using branching processes it
can be found that diseases with a R0 value greater than one are likely to persist for
a long time and may even become endemic, while diseases with R0 less than one
are likely to go extinct. The basic reproduction number relates to the SIR-model as
the ratio between the rates of transmission and recovery of the SIR-model (Brauer,
2017).

Mathematical epidemiology has recently been applied to COVID19 research. In
Bertozzi et al. (2020), a general understanding of the challenges of COVID19 modeling
are obtained using three different models. An exponential growth model, a branching
process model and a SIR-model were fit to COVID19 data. They suggest that the
different models could be combined for forecasting together. The models would be
combined such that one transitions from one model to another during different stages
of the epidemic. A key problem in COVID19 modeling is the importance of testing
rates, which are tests performed per population. Lower testing rates may increase
the amount of outliers in the data, which causes volatility in parameter estimation
such that the models become unreliable. A SIR-model approach, similar to what
we analyze in this thesis, was used in Cooper et al. (2020) to gain insight into early
dynamics of the pandemic. Another example of SIR-model application to COVID19
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introduced by You et al. (2020), where the SIR-model was used in conjunciton with
an exponential growth model. In You et al. (2020), the basic reproduction number
in different regions of China was estimated along with other epidemiological metrics.
For example the infectious period, which is the time period one remains infected,
was estimated to be two weeks long. The basic reproduction number of COVID19 is
highly variable and has been commonly found to be reduced by NPI policies, such as
lockdowns (Ferguson et al., 2020), (Bertozzi et al., 2020), (You et al., 2020), (Cooper
et al., 2020). Moreover, such policies need be sustained over a longer period of time,
as epidemics return to growth phases whenever the policies are removed (Bertozzi
et al., 2020).

In this thesis, a SIR model will be used to analyze the COVID19 situation in four
european countries. For each of the countries we estimate the rate of transmission.
Which relates to how easily new infections are transmitted. The estimated rates of
transmission are then used to compare the COVID19 response in the countries. In
addition, using a list of implemented policies in the countries should provide insight
into general characteristics of efficient NPI policies.

3 Methods
In this thesis we fit the SIR-model to the COVID19 (case)data of Finland, France,
Italy and Sweden, using done by sum of least squares estimation. In this section, the
methods are discussed in detail.

3.1 SIR-model
In the SIR-model (Kermack and McKendrick, 1927), the total population is com-
partmentalized into three compartments, the susceptible-, infected- and recovered
population. We assume that the total population remains fixed. The susceptible
population represent the currently healthy, but able to be infected individuals. The
infected population represents the infected individuals. Some proportion of sus-
ceptible individuals in contact with infected individuals will become infected. The
recovered population consists of individuals who were previously infected but then
recovered (or deceased). At each consecutive point of time, a proportion of the
infected population recovers from the infection. It is assumed that an individual
cannot become infected twice. It is also assumed that the population is so large that
the contact mixing is homogeneous. That is, there are no specific intricate rules for
who can contact whom and an infected individual is guaranteed to infect that certain
fraction of susceptible individuals. Here, we include deceased individuals in the
recovered population for simplicity. Lastly, since the disease is airborne we assume
a density dependence, where a larger amount of possible contacts in a population
increase risk of transmission. The SIR-model is thus given by the following system
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of differential equations:

dS

dt
(t) = −β

S(t)I(t)
N

, (1)

dI

dt
(t) = β

S(t)I(t)
N

− γI(t), (2)
dR

dt
(t) = γI(t), (3)

where at any given time t, N is the total population, S(t) is the susceptible population,
I(t) is the infected population and R(t) is the recovered population. The rate of
transmission β is the rate of new infections per infected in contact with a susceptible
individual. The recovery rate γ is the rate at which infected individuals become
recovered. Here we assume constant rate of recovery. If D is the total time during
which an infected individual is able to infect susceptible individuals, the rate of
recovery is given by γ = 1

D
and by the results of You et al. (2020) D is set to two

weeks (14 days).
We assume that NPI policies affect the rate of contacts an infected individual has

as well as the risk of an infection per contact. Therefore, β should vary with time
especially when policies change. For simplicity, we assume that β remains constant
during consecutive time intervals (with varying lengths), depending on what policies
are in effect during those time intervals.

As we compare populations of varying size it is reasonable to scale the total
population to unity. Normalized variables are obtained by dividing each variable
by the total population N , and they are denoted by lower case letters s, i, r for
S, I, R, respectively. For easier computing, the differential equations are transformed
into difference equations, such that each differentiation with respect to time is
swapped with consequtive differences ∆x(t) = x(t) − x(t − 1). Using a difference
equation in lieu of a differential equation may lead to somewhat different results. This
should be macroscopically insignificant, as every ordinary differential equation has a
corresponding difference equation that behaves as a good enough approximation by
a theorem by Mickens (1988). By macroscopic insignificance mean the general shape
of the variable curves obtained using the equations as well as the size scales of the
variables. For example, while similarly sized, graphically the solutions of differential
equations are smoother than the solutions of the corresponding difference equations.
A system of difference equations simplifies calculation, as each variable can now be
calculated recursively. The SIR-model that is used here is then given by the following
system of equations:

∆s(t + 1) = −βs(t)i(t), (4)
∆i(t + 1) = βs(t)i(t) − γi(t), (5)
∆r(t + 1) = γi(t), (6)

where s, i, r are the susceptible-, infected- and recovered proportions of the population.
It should be noted that t is in weeks. This is important when comparing results
from other papers, which can be done using the relation between the SIR-model
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parameters and the basic reproduction number: R0 = β
γ

. For example, if β = 7
2

when time is in weeks then R0 =
7
2
1
2

= 7, as γ is constant γ = 1
2 . To convert β when

time is in days the relation β = R0 · γ is used: β = 7 · 1
14 = 1

2 (since γ = 1
14 when t is

in days).

3.2 Data and estimation
The two data sets that are used, are obtained from the ECDC website
(https://www.ecdc.europa.eu/en). One data set contains weekly case numbers and
other COVID19 related information ECDC (2021a). The other data set is a govern-
ment response data set, which contains lists of policies enacted in countries in the
EU ECDC (2021b). We choose to use the data of Finland, France, Italy and Sweden.
The rate of transmission for each respective country is then estimated.
For estimation, the infected proportion of the population i(t) needs to be determined
at each time point, as it is not explicitly included in the data set. Since we assume
that an infected individuals recovers after the time D, the recovered proportion of
the population is the cumulative cases after lag D. Therefore, r(t) is given by the
following equation:

r(t) =
t−D∑︂
j=0

∆i(j) = c(t − D), (7)

r(t) = 0, when t < D, (8)

where c(t) is the cumulative infected proportion of the population. Where the
aforementioned proportion are the cumulative cases per total population c(t) =

∑︁
I(t)

N
.

The infected proportion of the population is then simply the proportion of cumulative
cases substracted by the recovered proportion of the population, which is obtained
from the following equation:

i(t) = c(t) − r(t). (9)

We divide the total time period into smaller somewhat arbitrary consecutive time
intervals. The time intervals are chosen such that the model fit becomes somewhat
realistic. This is determined mostly visually based on the shape of the curves, but
also such that policy changes are accounted for. In other words, whenever a lot of
policies changes occur, a new time interval begins. This is also somewhat arbitrary
as sometimes policies come into effect at different weeks and then they overlap. The
time intervals are chosen from the time before vaccinations start, which is 2020 week
52 for the EU, as the effects of vaccination is excluded from our analysis. This leaves
us with a total of 52 data points of weekly cases per country in consideration.
For the sum of least squares estimation a loss function l is used defined by the
following equation:

l(β̂) =
∑︂

t

(i(t) − î(t))2. (10)

The estimated infected proportion of the population is fitted using sum of least
squares approximation. The objective is to minimize the loss function l (10) where

https://www.ecdc.europa.eu/en
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the sum is over all of the 52 entries, i(t) is the known infected proportion of the
population (obtained from the data) and î(t) is the fitted infectded proportion of the
population. The β estimate is obtained starting with an initial guess for β̂, a step is
taken either in a positive or negative direction. The chosen step is determined by
comparing whichever of the steps has the lowest sum of squares. If the step taken
results in a larger sum of squares, the step is divided by 10. The last step is repeated
many times until a step that lowers the sum of squares is obtained. This is iterated
until a small enough sum of square is obtained, or if no further progress is made for
many iterations. For our purposes a small enough sum of squares is 10−10 and 300
iterations is the highest amount of iterations. These numbers are arbitrarily chosen.
Here we assume that the human eye shouldn’t be able to spot the difference between
any two results produced using such numbers with the above methods.
The same sum of least squares estimination procedure that was described above is
given using shorter symbolic notation by the following equations:

β̂
+ = βn̂ + d, (11)

β̂
− = βn̂ − d, (12)

β̂n+1 = argminβ̂({l(β̂+), l(β̂−)}), (13)

where d is the stepsize, β̂
+ and β̂

− are the estimates used to compare the sum of
squares and βn is the n:th iteration. For each new time interval, the initial value of
î(t0) is set to the value of i(t0) at the beginning of that interval (at t = t0). Estimation
is then done for each interval. The estimation procedure is implemented using the
R-language (code given in Appendix A).
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4 Results
The countries chosen for SIR-model fitting were Finland, France, Italy and Sweden.
For of each country the rate of transmission was estimated during different consecutive
time intervals. The smallest time intervals were 3 weeks long while the largest were up
to 12 weeks long. The intervals were chosen based of two criteria. The time intervals
were chosen such that they match visual changes in the growth rate of the curves. In
addition, the time intervals were also chosen such that as little policy change occurs
within the time intervals. The earliest time points start when the infected population
is larger than one. In other words, the period before the first recorded infections is
skipped. In Table 1 the estimated values of the rate of transmission are presented.
There should be caution when comparing β̂ between the countries as the intervals
vary by country.

Table 1: Estimated rate of transmission β̂ of different countries at varying time
intervals

Finland France Italy Sweden
Interval β̂ Interval β̂ Interval β̂ Interval β̂
5-12 1.900 9-13 3.679 5-12 3.553 10-16 1.353
13-15 0.900 14-25 0.300 13-17 0.380 17-22 0.500
16-19 0.400 26-38 0.800 18-20 0.200 23-25 0.693
20-30 0.200 39-41 0.611 21-27 0.200 26-32 0.205
31-41 0.841 42-45 0.852 28-33 0.700 33-35 0.400
42-45 0.500 46-49 0.144 34-39 0.735 36-46 0.869
46-52 0.774 50-52 0.354 40-43 1.348 47-52 0.588
- - - - 44-46 0.789 - -
- - - - 47-52 0.341 - -

In the following subsections, figures of the estimated SIR-model are presented.
In addition, the policies of the ECDC government response data set are listed for
each country.

4.1 Finland
Figure 1 shows the COVID19 epidemic in Finland visualized alongside with the
estimated infected proportion of the population. Figure 2 is a list of policies imple-
mented in Finland. Note that the structure of the data set containing this list may
exclude or simplify some policies.
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Figure 1: Weekly Finnish COVID19 infected proportion of population data alongside
with the SIR-model estimate. The chosen time intervals are marked with gray vertical
lines for clarity.

Figure 2: Finnish government policies listed in the ECDC government response data
set, where NA entries are in still in effect at the time of writing.

During the weeks 11-12 the first policies(Figure 2) are implemented After week 16
weekly infections decrease and remain stable between weeks 25-30. During this time
a lot of policies are removed (weeks 22-27). Then, after week 31 weekly infections
increase but starts to stagnate during weeks 42-45. This is again followed by an
increase in growth until it peaks during week 49, followed up by a decrease again.

4.2 France
Figure 3 shows the COVID19 epidemic in France visualized alongside with the esti-
mated infected proportion of the population. Figure 4 is a list of policies implemented
in France. Note that the structure of the data set containing this list may exclude or
simplify some policies.

In France, the first policies were implemented during the weeks 9-12 and sustained
until the weeks 19-28. The weekly infections decrease during week 15 and remains
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Figure 3: Weekly French COVID19 infected proportion of population data alongside
with the SIR-model estimate. The chosen intervals are marked with gray vertical
lines for clarity.

Figure 4: French government policies listed in the ECDC government response data
set, where NA entries are in still in effect at the time of writing.

somewhat constant between weeks 18-30. The weekly infections start to increase
after week 31 then peaking during week 45. During the weeks 42-44 and 48 more
strict policies are reimplemented. This seems to be followed by a rapid decrease in
weekly infections after week 45.

4.3 Italy
Figure 5 shows the COVID19 epidemic in Italy visualized alongside with the estimated
infected proportion of the population. Figure 6 is a list of policies implemented in
Italy. Note that the structure of the data set containing this list may exclude or
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simplify some policies.

Figure 5: Weekly Italian COVID19 infected proportion of population data alongside
with the SIR-model estimate. The chosen intervals are marked with gray vertical
lines for clarity.

Figure 6: Italian government policies listed in the ECDC government response data
set, where NA entries are in still in effect at the time of writing.

Policies in Italy (Figure 6) are implemented during the weeks 10-11. The weekly
infections decrease initially during the weeks 13-21 and remains somewhat constant
until week 34. During the weeks 24-25 many of the implemented policies are changed
into partial versions or even removed. After the weeks 24-25 the weekly infections
slowly start to increase. During weeks 38-39 further removal or change of policies
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occurs and the increase in weekly infections accelerates until a peak is reached week
48. During weeks 43-44 the policies are reimplemented and a rapid decrease in weekly
infections occurs.

4.4 Sweden
Figure 7 shows the COVID19 epidemic in Sweden visualized alongside with the
estimated infected proportion of the population. Figure 8 is a list of policies imple-
mented in Sweden. Note that the structure of the data set containing this list may
exclude or simplify some policies.

Figure 7: Weekly Swedish COVID19 infected proportion of population data alongside
with the SIR-model estimate. The chosen intervals are marked with gray vertical
lines for clarity.

Figure 8: Swedish government policies listed in the ECDC government response data
set, where NA entries are in still in effect at the time of writing.

Some policies (Figure 8) are implemented in sweden during weeks 11-14, but
notably less policies are listed than in the other countries.The weekly infections
increase in the beginning but then stagnate during the weeks 17-21. During the
weeks 27-28 more policies are implemented. A decrease in weekly infections occurs
after week 26. This is then followed by stagnation in weekly infections until week 36
when weekly infections start to increase. The weekly infections slow down but are
still increasing during the weeks 48-52.
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5 Discussion
Based on the results presented in Section 4, a lot of similarities can be observed
between the countries. The countries seem to reach similar infected proportions
(Figures 1, 3, 5, 7) with the exception of Finland. An explanation for this could
be that perhaps the policies were implemented fast enough to contain the epidemic.
Cultural differences could be another explanation or also that government policies
need not be the only reason for a reduction in the amount of new infections. For
instance, public knowledge and fear of the virus might alter the behaviour of the
population such that the amount of new infections reduces. In each of the chosen
countries, the growth of the infected proportion of the population behaves in a
somewhat cyclical manner. Starting with an exponential growth phase, a peak is
reached. Then stagnation follows, until the next exponential growth phase starts.
The growth phase seems to stagnate whenever policies are introduced, which is also
seen in the estimated rate of transmission (Table 1). For example, when the countries
implement policies during weeks 10-14 a decrease in the rate of transmission is
observed. We also observe that the rate of transmission starts to increase whenever
policies are removed or changed into milder versions, which seems to occur during
weeks 30-40.

Based on the estimation results and the ECDC government response data sets
(Figures 2, 4, 6, 8) it does seem that in general policies that reduce physical contacts,
such as lockdowns, are the most effective at reducing the amount of new infections
and the rate of transmission. Though, it should again be noted that because of
the ECDC table format, some policies with high impact may be excluded. More
complicated policies, such as targeted lockdowns are predicted to have high impact
(Acemoglu et al., 2020). For example, regional lockdowns could have substantial
impact on the pandemic (Roux et al., 2021), (Rossa et al., 2020).

Testing rates were not accounted for estimation, which may explain some weirdness.
For instance, there are no recorded infections in the Swedish data set before week
10. But around week 10, Sweden has a larger infected proportion of the population
with a smaller rate of transmission than Finland, while Finland has a lower infected
proportion of the population.

The economic situations in the countries have not been taken into consideration
in this thesis, which is a major limitation. If harsh restrictive policies reduce the
rate of transmission, the COVID19 pandemic could be trivially stopped by having
the whole population quarantined. However, such policies may be harmful to the
economy (Ferguson et al., 2020), (Eichenbaum et al., 2020). The SIR-model has also
been previously used to predict economic outcomes of policies. For example, Toda
(2020) combined the SIR-model with an asset pricing model to predict the impact of
policies on stock prices.

The SIR-model seems to fit well to the data. At least, with the assumption that
the rate of transmission changes during different time intervals. This further suggests
that having the rate of transmission vary not only for certain time intervals but also
during every point of time improves accuracy of the fit. While the estimations in this
thesis are used for comparison, the SIR-model can also be used for forecasting the
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COVID19 epidemic. This has been previously explored, e.g., in Batista (2020) where
a SIR-model was used for COVID19 forecasting. Forecasts using the SIR-model
used in this thesis can be done by estimating the rate of transmission every time a
new data entry is available. A forecast can then be calculated recursively with the
SIR-model (4)-(6), using the latest data as the initial state.

6 Conclusion
In this thesis, we assesed NPI policies for COVID19 containment strategy. This
was done using a SIR-model. The SIR-model was fit using sum of least squares
estimation with data from four different countries. This allowed comparison between
policies that reduce the spread of the COVID19 disease. Furthermore, an inspection
of these policies was made using a government response data set, containing a list of
policies implemented in the countries.

There were some limitations with our approach. The government response data set
is really general and perhaps too simple, which may exclude policies with substantial
impact, such as regional lockdowns. Most of the listed policies are also implemented
at the same time. This makes it hard if not impossible to determine the impact of a
single policy using the government response data set. Another problem was lack of
consideration for the testing rates, which may have a substantial effect on estimation.
The economic impact of these policies was also not considered. Decision makers need
to assess the economic trade-offs of more harsher policies.

Overall, based on our findings and with the limitations in mind we conclude
that a SIR-model can be fitted well to COVID19 data. In addition, it was also
observed that for more accurate fittings the rate of transmission should vary with
time. Our results also hint that NPI policies do reduce the rate of transmission.
In particular the seemingly most effective policies are those that minimize physical
contacts. The SIR-model used in this thesis did not account for vaccination, which
is currently ongoing and could be accounted for to improve the model. For similar
application of the SIR-model in the future, we suggest consideration for vaccination
and economic trade-offs. Finally, for assessment of policies, we recommend the use
of more thorough documentation of implemented policies.
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Appendix A R code

getData<-function(country,x0,xfin){
serialtime = 2 # (infectious time) 2 weeks forall

ecdc.data <- read.csv(file="ecdc1.csv",header=TRUE)

ecdc.data<- subset(ecdc.data, ecdc.data$ï..country==country)
ecdc.data<-subset(ecdc.data, ecdc.data$indicator=="cases")

N<-median(ecdc.data$population)
dI<-ecdc.data$weekly_count[1:52]

myint<-x0:xfin

C<-1:length(dI) #calculate cumulative cases
for(i in 1:length(dI)){

C[i]<-sum(dI[1:i])
}

dR<-1:length(dI) #calculate daily recoveries
for(i in 1:length(dI)){

if(i-serialtime<=0){
dR[i]=0

}else{
dR[i]<-dI[i-serialtime]

}
}

R<-dR #calculate recovered population
for(i in 1:length(dR)){

R[i]<-sum(dR[1:i])
}

S<-N-C
I<-C-R

rm(i) # i was used in for loops, removed in case of errors
#normalize
s<-S[myint]/N
i<-I[myint]/N
r<-R[myint]/N
return(cbind(s,i,r,N))

}



22

sir <- function(beta,gamma,s,i,r){
#calculate the SIR variables, starting from initial states of
#s,i,r
x<-s
y<-i
z<-r

for(t in 2:length(i)){
x[t]=x[t-1]-beta*x[t-1]*y[t-1]
y[t]=y[t-1]+beta*x[t-1]*y[t-1]-gamma*y[t-1]
z[t]=z[t-1]+gamma*y[t-1]

}
return(list(x,y,z))

}

loss <- function(S,s){
l = sum( (S-s)^2 )
return(l)

}

estimateSIR<-function(s,i,r){

k=0 #iteration count
stop=F #stops the loop
g=1/2 #gamma, 1/2weeks

bub = 7 #upper and lower limits of beta
blb = 0

b=1 #initial beta guess

l=100 #high initial loss function value

h=1/10000 #a really small number
stepsize = 1/10 #default stepsize
maxiter=1000 #max iterations
myls = 1:maxiter #store l
mybs = 1:maxiter #store betas
improvelimit<-h^6 #small number

while(k<maxiter & !stop){
sir.temp <- sir(b,g,s,i,r)
i.e<-unlist(sir.temp[2])
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l.prev<-l
l<-loss(i,i.e)

if(log(l)< -20){ #stop if l small
stop=T
message("Done, b=",b)
break

}

if(abs(l-l.prev)< improvelimit){ #stop if nothing improves
stop=T
message("Cant improve, b=",b)
break

}

step=stepsize
stepcounter=0
while(b+step>bub | b-step<blb){

#modify stepsize to stay
#within bounds
step=step/10
stepcounter=stepcounter+1
if(stepcounter>100){

stop=TRUE
message("Out of bounds")
break

}
}
stepcounter=0

#using + or - stepsize calculate the i variable
sir.p=sir(b+step,g,s,i,r)
sir.m=sir(b-step,g,s,i,r)

#then loss function value
l.plus<- loss(i, (unlist(sir.p[2])))
l.minus<- loss(i, (unlist(sir.m[2])))
while(l.plus>l & l.minus>l){

#make sure the next point is within bounds

sir.p=sir(b+step,g,s,i,r)
sir.m=sir(b-step,g,s,i,r)
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stepcounter=stepcounter+1
step=step/10
l.plus<- loss(i, (unlist(sir.p[2])))
l.minus<- loss(i, (unlist(sir.m[2])))

if(stepcounter>30){
message("error")
stop=T
break

}
}

k=k+1
#store betas and l for debugging
mybs[k]<-b
myls[k]<-l

if(l.plus>=l.minus){
b=b-step

}else{
b=b+step

}

}
mybs<-mybs[1:k]
myls<-myls[1:k]

#return variables as a matrix
sir.temp<-sir(b,g,s,i,r)
s.e<-unlist(sir.temp[1])
i.e<-unlist(sir.temp[2])
r.e<-unlist(sir.temp[3])

return(cbind(s.e,i.e,r.e,b))
}

estimateCountry <- function(country,intervals){
#run estimation for a specific country
#produces plots and the i variable of that country
#as well as betas list

x0=1
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xfin=52

SIR<-getData(country,x0,xfin)
i<-SIR[,2]
N<-SIR[1,4]

intslen<-length(intervals)
bs<- NA
is<-NA

for(j in 2:(unlist(intervals[1])[1]-1)){
is<-append(is,NA)

}

for(j in (intervals)){
x0<-unlist(j)[1]
xfin<-unlist(j)[length(j)]
SIR<-getData(country,x0,xfin)
estimate<-estimateSIR(SIR[,1],SIR[,2],SIR[,3])

bs<-append(bs,estimate[1,4])
is<-append(is,estimate[,2])

}

plot(i, xaxt="n", main=paste("Infected proportion of the population in"
,country),xlab="Week (2020)",pch=4)

for(j in 1:length(intervals)){
abline(v=unlist(intervals[j])[1], col="gray")

}

lines(is,col="red", lwd=1)
legend("topleft",legend=c("Original", "Estimate")

,col=c("black","red"), pch=c(4,NA),lwd=c(NA,1))
axis(side=1,at=seq(from=1,to=52,by=1))

return(is)
}

#Store interval list for estimations
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#ITA
iintervals<-list(5:12,

13:17,
18:20,
21:27,
28:33,
34:39,
40:43,
44:46,
47:52

)

#FIN
fintervals<-list(

5:12,
13:15,
16:19,
20:30,
31:41,
42:45,
46:49,
50:52

)

#FRA
frintervals<-list(

9:13,
14:25,
26:38,
39:41,
42:45,
46:49,
50:52

)

#SWE
sintervals<-list(

10:16,
17:22,
23:25,
26:32,
33:35,
36:46,
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47:52
)

estimateCountry("Finland",fintervals)
estimateCountry("France",frintervals)
estimateCountry("Italy", iintervals)
estimateCountry("Sweden", sintervals)
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