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1 Introduction
Loviisa nuclear power plant (NPP) is operated by Fortum in Loviisa, Finland. The
plant site has two VVER-440 type pressurized light water reactors, each having a
net capacity of 507 MWe. The two units started their commercial production use in
1977 and 1980, and in 2023 the Finnish Government granted Fortum permission to
continue operation of the plant until the end of 2050.

Technical specifications (TS) of a nuclear power plant define allowable conditions for
safe operation of the plant. These limiting conditions for operation (LCOs) include
allowed outage times (AOTs) for different equipment in the plant. Since both the
unavailability of a component and changing operational state of the NPP induce
an increase in risk, the length of the AOT can be considered as an optimization
problem.

A risk-informed evaluation of AOTs defined in TS of Loviisa NPP has been carried
out by Sirén (2013). The evaluation uses a probabilistic risk assessment (PRA)
model of Loviisa NPP. Moreover, the evaluation uses an AOT optimization model
created by Sirén (2007a), which requires a model of realized component repair times
presented by Sirén (2007b). Due to practical reasons, it is not practical to constantly
update TS of a NPP. However, because the PRA model of Loviisa NPP has been
continuously developed and improved and the operating licence of the plant has been
extended, a need for updated risk-informed evaluation of the TS has been recognized
at Fortum (Ronkainen and Sirén, 2023).

The main objective of this study is to update previous component repair time
estimation model by Sirén (2007b), and to verify if the modelling assumptions
used in the previous model are still valid. This is achieved by using more recent
plant maintenance data for model fitting. Another objective is to analyze whether
the realized component repair times at Loviisa NPP have changed as the plant
maintenance procedures and practices have been updated.

The remainder of this study is organized as follows. In Section 2 we define the allowed
outage time, present the history of risk-informed AOT analysis in Loviisa NPP and
briefly review the literature on repair time estimation. In Section 3 we present the
methods and data used in this study. In Section 4, we present results from the repair
time estimation and preliminarily study its effect on the AOT optimization model.
In Sections 5 and 6, we discuss and conclude the findings of this study.
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2 Background

2.1 Allowed outage time
The allowed outage time (AOT) is a time limit defined in the TS for restoring failed
equipment back to operation. If the failure cannot be repaired within AOT, the plant
operational state should be changed such that the LCOs are satisfied — typically
this means that the plant should be driven to a cold shutdown state. According
to the TS of Loviisa NPP, the AOT should only be applied to repairs of randomly
occurring critical failures. However, AOT can also be used for planned maintenance
tasks, if approved by the supervisory authority, and for repair of noncritical failures
that considerably lower the reliability of the component in the long run (Ronkainen,
2023).

For practical reasons, the AOT times used in TS are divided to discrete classes. Most
typical AOT values used are immediate shutdown (2 hours available to prepare for
plant shutdown), 8 h, 24 h, 3 days (72 h) and 3 weeks (504 h). The AOT of a failure
is determined based on the failed component and the failure mode: for example there
can be different AOTs for a valve depending on if it has failed to open or failed to
close. There can also be several AOTs for a single component depending on whether
other systems are available to substitute the failed component. Conversely, if multiple
redundancies of a system are taken down by a common cause failure (CCF), the
AOT can be significantly shorter.

2.2 Risk-informed AOT analysis of Loviisa NPP
Technical specifications of NPPs have traditionally been created based on deter-
ministic analysis (Samanta et al., 1994). However, as more operational experience
of NPPs has become available, some of the requirements specified in the TS have
been found to be unnecessarily restrictive. After the development and application of
probabilistic risk assessment methods for NPPs, a risk-informed approach has been
suggested to be used to evaluate and balance these requirements since the end of
1980s (e.g. Laakso et al., 1991; Mankamo et al., 1992). A risk-informed development
of TS is nowadays also suggested in the Regulatory Guides on nuclear safety and
security (YVL) by Radiation and Nuclear Safety Authority (STUK) in Finland.

The risk-informed analysis of AOTs of Loviisa NPP was started by Kivirinta (2005),
which showed that there were some imbalance between the AOT and the importance
of the corresponding components in the PRA model. Sirén (2007a) developed this
work further and created a method for risk-informed optimization of AOTs. This
work was later used to develop a method for risk-informed evaluation of the TS of
Loviisa NPP (Jänkälä and Sirén, 2008) and later to evaluate the AOTs in 2013 (Sirén,
2013).

The risk-informed AOT optimization method by Sirén (2007a) uses a model for
estimating realized repair times of components for each AOT class. The component
repair time estimation model is presented in Sirén (2007b). The model assumes, that
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the realized repair times depend linearly on the AOT. Assumption that the AOT
affects realized repair times is reasonable, as the AOT class of a component sets
requirements for e.g. spare part availability, and generally the data used to fit the
model also backs up the assumption. This assumption is also used to generalize the
model for continuous AOT values.

The AOT optimization model by Sirén (2007a) estimates the risk increase of a given
AOT value by dividing the risk into two parts. These are

1. the risk increase of component unavailability during AOT and

2. the risk increase of plant shutdown due to repair time exceeding AOT.

The sum of these risk increases has a minimum value for some AOT as illustrated in
Figure 1. To calculate these risk increases, from the repair time estimation model we
need three values, which are (Sirén, 2007a)

1. the expected repair time of a component given an AOT,

2. the probability that a repair cannot be completed within the AOT, and

3. the expected repair time given that the repair is completed within the AOT.

These requirements set some limitations to the repair time estimation model. To
keep the model relatively simple and easy to interpret, Sirén (2007b) chooses to
model the repair time as a random variable that follows the exponential distribution.

To assign an optimal AOT for each component, the AOT optimization model by Sirén
(2007a) calculates the expected risk increase of each AOT class for every component.
Thereafter the AOT class with the minimal expected risk increase is selected.

2.3 Component repair time estimation
Usually in parameter estimation for PRA modelling purposes, the focus has been in
estimating component failure rate, i.e. modelling the lifetime of the component, as
it usually has a greater impact on component unavailability. The reason for this is
that generally mean time between critical failures of a component can be measured
in years, whereas mean repair times are measured in hours or days. However, to
estimate the risk increase given that a component has failed, there is a need for a
method to accurately estimate component repair times.

Typical assumptions for estimating a random time in reliability analysis are that the
random times are independent and follow the same probability distribution. Typical
distributions that are used to model random times are lognormal, exponential, Weibull
and gamma distributions (Atwood et al., 2003). However, exponential distribution is
probably the most used distribution to model random times due to its simplicity.
It is used, for example, in the T-book by The TUD Office (2015) simply using the
arithmetic mean for the component repair time estimate.

In recent years, the repairability of failures and repair time estimation have been
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Figure 1: Risk increase as a function of AOT (Sirén, 2007a). The highlighted lines
represent pareto optimal points, where risk cannot be decreased without compromising
plant availability.

studied more extensively. While in traditional PRA models component repairs in an
accident scenario are not considered because of limited time frame, in some long-term
accident scenarios component repairs are possible and they could be incorporated
into corresponding PRA models. For example, in a study by Sparre et al. (2022),
the repair time of failures is investigated by dividing it into repair waiting time and
active repair time. The repair waiting time is then assumed to be 8 h based on
personnel availability and active repair times are estimated using both lognormal and
exponential distributions. While lognormal distribution fits the data better, Sparre
et al. (2022) state that exponential distribution will be preferred in future modelling.

Component repair time should not be confounded with component unavailability time,
which in some cases cannot be directly measured. For example, a fault of a stand-by
component observed in a periodic test may have occurred anywhere in the periodic
test interval. Thus the component latent unavailability time is on average half of the
periodic test interval, and the whole unavailability time is latent unavailability time
and repair time combined.

In this study the component repair time is considered to begin from the failure
observation and to end when the failed component is restored back to operation. An
estimate for mean repair time is calculated by fitting exponential distribution to data
collected from Loviisa NPP using method described in the next section.
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3 Method and data

3.1 Data
The data used in this study is collected from maintenance work orders created at
Loviisa NPP. For every maintenance task performed at the plant, a work order is
created, so they have traditionally been used to estimate plant-spesific component
failure and repair rates. This is also the approach recommended by Atwood et al.
(2003). For each work order, it is considered whether there are LCOs that limit the
AOT of the component. In this study, work orders created between 2006–2022 that
had an LCO were analyzed.

In the dataset, we have approximately 8000 work orders with AOT. However, we
are only interested in component renovations and repairs, and consequently periodic
maintenance and test work orders can be filtered out. Moreover, the AOT can start
either from the start of the repair (renovation of non-critical failure) or immediately
after observing a failure. In the scope of this study, we are only interested in the
latter type of work orders, since the repair time of a random occurring critical failure
should also include the planning of the repair, which is not the case when AOT starts
at the start of the repair. The data is not filtered in any way by the type of the
failed component. Thus, the dataset contains, for example, valves, pumps, blowers,
and measurement devices. With these limitations there are 1050 observations in the
data.

For each work order in the dataset, the AOT that is defined by the TS is known.
The realized repair time of each work order is also available in the dataset. From
these repair times, the expected repair time given the AOT can be estimated.

Some studies (e.g. Himanen et al., 2008) suggest screening out observations with
short, less than one hour realized repair times. However, in this study no justification
for such approach was found.

3.2 Estimation method
The model and data used in the AOT optimization of Loviisa NPP sets specific
conditions for the estimation of realized repair times. In this section we present the
method used in this study, which is a similar approach to the one used by Sirén
(2007b).

Let n denote the number of observations, that is, the number of work orders in the
analysis. If we order the observations in decreasing order by the realized repair time,
we can let Ti, i ∈ {1, 2, . . . n} denote the realized repair time of observation i. We
assume that the repair times are exponentially distributed such that

Ti ∼ Exp(µ),

where µ is the repair intensity of the exponential distribution. The expected value
for the realized repair time is E[Ti] = 1/µ.
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The maximum likelihood estimate for parameter µ is the inverse of arithmetic mean
of realized repair times, that is

µ̂ = 1
MTTR =

(︄∑︁n
i=1 Ti

n

)︄−1

,

where MTTR stands for mean time to repair. However, this is not a suitable approach
due to the nature of the data. If a repair cannot be executed within the AOT, the
realized repair time will probably not have the same repair intensity anymore. This is
because the plant either has to be driven into safer operation state or the supervisory
authority grants a permission to extend repair time over AOT. Thus, when taking
observations that exceed AOT into the average, the estimate for repair intensity is
too low. However, if we only consider mean repair time of observations that are
repaired within AOT (denoted by MTTRTi<AOT), the estimate for repair intensity is
too high.

We can mitigate these biases by giving each observation i a cumulative probability
pi = P (X ≤ Ti) such that

pi = n − i + 0.5
n

.

That way pi is the probability that a random repair time is shorter than Ti. If the
realized repair times are exponentially distributed, from the cumulative distribution
function (CDF) of the exponential distribution (Atwood et al., 2003) we have

pi = 1 − e−µTi ,

from which by solving for Ti we have

Ti = −ln(1 − pi)µ−1.

Thus points (−ln(1 − pi), Ti) should lie on a straight line through the origin with a
slope of µ−1 . We can then use least squares regression to find this slope. However,
in this approach we only fit the line through points where Ti < AOT; that way the
observations where AOT is exceeded only affect the cumulative probabilities pi and
our estimate for µ corresponds to situation where the realized repair times exceeding
AOT would follow same distribution as other observations.
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4 Results

4.1 Estimates for realized repair times
The estimation method described in Section 3.2 was used to fit exponential distri-
butions to the work order data from Loviisa NPP. The fitting was done in three
parts: first, exponential distributions were fitted for the whole dataset from 2006
to 2022, and then for two time periods of 2006–2012 and 2013–2022 that contain
roughly same amount of work orders. The AOTs for which the estimation was done
were selected to be 8 h, 24 h, 72 h and 504 h, since these are the most common in
the data and cover about 95% of all work orders. For these also the arithmetic mean
repair times were calculated. Results of these estimations are presented in Table 1.

From values in Table 1, it can be seen that the AOT of a component generally seems
to have an effect on the realized repair times. Furthermore, it can be seen that
fitting exponential distribution generally seems to give an estimate between MTTR
and MTTRTi<AOT, as hypothesized in Section 3.2. However, this does not seem to
be the case for the long 504 h AOT, where the exponential distribution seems to
overestimate the realized repair time.

To analyze the exception in 504 h AOT class. we plot the exponential distribution
fits presented in Figure 2. In this figure the fits for other AOT classes seem to follow
the data pretty neatly, but the fit for the AOT class of 504 h is not as good. One
possible explanation for this is that there are numerous possible fault types for the
components. For example, a fault of a pump that has AOT of 504 h can be a blown
fuse, which is reasonably quick to repair, or it can be a more severe fault that requires

Table 1: Results of realized repair time estimations for different AOTs and time
periods.

AOT
Time period Parameter 8 h 24 h 72 h 504 h

Whole dataset

n 67 35 522 368
µ−1 4.29 15.16 23.00 105.33
MTTR 6.94 27.20 50.46 95.35
MTTRTi<AOT 4.09 9.72 20.32 86.70

2006–2012

n 22 23 260 162
µ−1 4.81 12.84 28.43 141.81
MTTR 11.31 27.44 46.19 133.48
MTTRTi<AOT 3.89 8.40 25.13 127.79

2013–2022

n 45 12 262 206
µ−1 3.95 17.52 17.21 67.39
MTTR 4.80 23.73 54.70 65.32
MTTRTi<AOT 4.18 12.09 15.69 54.47
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isolating the pump from the process, building scaffolds or waiting for spare parts.
Thus the repair intensity for all fault types may not be the same. However, the
exponential distribution seems to fit the data well enough that the usage of it can be
justified. The plots also suggest that the repairs that exceed AOT clearly follow a
different distribution, which justifies the proposed estimation method. Plots similar
to Figure 2 for the different data periods are presented in Appendix A.

In Table 1, the realized repair times seem to have shortened on the latter time period.
This is especially noticeable in longer AOTs of 72 h and 504 h. One explanation for
this change is that realized repair times for the 72 h AOT are nowadays monitored
and they affect employee incentives if the mean repair time in a calendar year is under
15 hours (Rinkinen, V. and Kirkinen, A-P., 2023). Presently the TS of Loviisa NPP
also require that all repairs have to be started without delay and to be completed as
fast as possible.

From the values in Table 1 and the plots in Figure 2 and Appendix A, we conclude
that estimates are uncertain for the 24 h AOT class due to the small number of
observations. For example, in the newer data period our estimate for repair time of
components with 24 h AOT is longer than for components with 72 h AOT. This can
also result from the fact, that most of the components in the data with 24 h AOT
are containment isolation valves, which may require longer repair times.

4.2 Continuous AOT model
From the estimates for realized repair times, we next generalize the model for a
continuous AOT, as required by the AOT optimization model (Sirén, 2013). We
assume, as described in Section 3.2, that the component repair time depends linearly
on AOT. This allows us to estimate the realized repair time of arbitrary AOT by
fitting a linear model to the estimates of repair time for each AOT class.

Since the data suggests that there is a significant change in the realized component
repair times between the two analyzed time periods, to get a contemporary model
only the data from 2013–2022 is used in the linear model. By using data from Table
1 and simple linear regression, we estimate the exponential distribution parameter µ
for continuous AOT to be

µ = 1
0.12 · AOT + 8.8 .

A plot of the fitted model is presented in Figure 3. The coefficient of determination
of the model is about R2 ≈ 0.97, which indicates a good fit, even though there are
only a few data points. This indicates a clear relation between AOT and realized
repair time.

We compare this new relation to the previous estimate used in Sirén (2013), which is

µ−1 = 0.15 · AOT + 2.5.

The term dependent of AOT is about 20% smaller in the new estimate, which reflects
that the change in realized repair times is larger in the longer AOT classes. The
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Figure 2: Exponential distribution fits to the whole dataset for each AOT class. In
the left pane there are plots of points (−ln(1 − pi), Ti) and the fitted linear model,
highlighting the points that are used for the fitting. In the right, there are empirical
distribution functions plotted from the data, along with CDF of the exponential
distribution with the fitted parameter µ.
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Figure 3: Linear regression model fitted to the estimated repair times for each AOT
class.

constant term has increased from 2.5 hours to about 8.8 hours. However, this can be
somewhat expected, because the old repair time model had an identified weakness in
that it appears to have predicted too optimistic repair times for shorter AOT classes.
The difference in the constant term can also result from including all component
types in the data.

4.3 Preliminary analysis on effects of the new repair time
model

The effects of the new parameters for the continuous AOT model were tested by
inputting the formula into the AOT optimization model by Sirén (2013). The results
of this test are in Table 2. In the table, AOT class of 2 hours is used to describe the
AOT class for immediate shutdown, as described in Section 2.1. Similarly, AOT class
of 8200 h is used to describe unrestricted AOT, i.e. that the component repair can wait
for the yearly refuelling outage. Furthermore, P (Ti < AOT) denotes the probability
that the repair time is shorter than AOT, E[Ti|Ti < AOT] denotes the expected
repair time given that the repair is completed within AOT and #Components denotes
the number of components assigned to the AOT class by the model with the method
in Section 2.2.

The results in Table 2 suggest that, in general, the model tends to assign more
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Table 2: Effects of new realized repair time model on the AOT optimization model.

AOT µ−1 P (Ti < AOT) E[Ti|Ti < AOT] #Components

Old model

2 h 2.8 0.510 0.9 3
8 h 3.7 0.885 2.7 115

72 h 13.3 0.996 13.0 1677
504 h 78.1 0.998 77.3 521

8200 h 1232.5 0.999 1221.9 4956

New model

2 h 9.0 0.198 1.0 4
8 h 9.7 0.559 3.5 38

72 h 17.2 0.984 16.1 1221
504 h 67.6 0.999 67.3 1053

8200 h 965.7 1.000 964.1 4956

components to the longer AOT classes with the new realized repair time model. This
suggests that there are possibilities to give longer AOT classes for some components
to reduce the risk induced by unnecessary plant shutdowns. This is plausible, as
shortening the expected component repair time also reduces the expected risk increase
of the repair.

However, as the optimization model by Sirén (2013) uses risk measures from a 10 year
old PRA model, these results should only be seen as indicative. More research should
be conducted by updating the AOT optimization model with importance measures
from the newer PRA model. Also, the model for unscheduled plant shutdowns is
under development, so it should be incorporated to the AOT optimization model
after new results are available.
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5 Discussion
The results in Section 4 indicate that the selected model seems reasonable for
estimating component repair times for a given AOT. There is a clear dependence
between AOT of a repair and the realized repair time. While the amount of data
collected at Loviisa NPP continues to grow every year, the number of observations
in 8 h and 24 h AOT classes are very low compared to 3 day and 3 week AOTs.
However, by using the linear model for a continuous AOT, we can use data from
the more common AOT classes to predict repair times of shorter AOTs. The model
gives a realistic minimum estimated repair time of about 9 hours.

We also test our assumption of AOT affecting the repair rate by fitting exponential
distribution to data from all AOT classes. A plot of such fit for the 2013–2022 data
is shown in Figure 4. Clearly, the plot shows that that the exponential distribution
does not fit the data as well as when fitted to data from single AOT.

In the newer data, the realized repair times have shortened compared to data between
2006–2012. However, the fact that mean realized repair time of 72 h AOT class affects
employee incentives probably adds some bias to the data. It could be considered
whether the 72 h class should be analyzed separately from other AOT classes. However,
as that AOT class has most work orders, it would reduce the amount of data for
fitting the linear model for continuous AOT.

To increase the accuracy of the repair time model model for a given component,
we could consider the type of the component. This would require fitting different
models for different types of components, such as pumps, valves, blowers, and
switches. This was studied by Sirén (2007b), and some differences between repair
time estimates of different component types were found. However, there is also a trade-
off between modeling accuracy and data availability, which is why the component
type information is not used in the AOT optimization model. That is also why in
this study all component types were selected for the model fitting.

Generally, exponential distribution seems to fit the data pretty well. While other
probability distributions such as Weibull or lognormal distributions could produce
better fits, they are not that easy to incorporate into the model as the generalization
for continuous AOT is not trivial for distributions with two or more parameters.

If we would consider discrete AOT classes without extending the model for a con-
tinuous AOT, we would not have to make any assumptions about the underlying
probability distribution. That is because all the parameters used in the AOT op-
timization model in Section 2.2 could then be estimated directly from the data.
However, with AOT classes that only have a few observed failures, this approach is
more prone to random errors. This topic could be studied more in the future as the
risk-informed assessment of the TS of Loviisa NPP is continued.

Other uses of the repair time estimation model in addition to AOT optimization
could also be investigated. For example, the model could be used to incorporate
component repairs into PRA modelling using for example the I&AB (Initiators and
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Figure 4: Exponential distribution fitted to all AOT classes of the 2013–2022 data.

All Barriers) quantification method proposed by Bouissou and Hernu (2016).
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6 Conclusion
This special assignment study updated a component repair time estimation model
used to optimize allowed outage times of the TS of Loviisa NPP by using new plant
data. The results show that generally the repair times of components have shortened
during the past decade due to changes in maintenance practices, but the AOT of a
component still affects its repair time. Preliminary testing with AOT optimization
model indicates that shorter realized repair times justify the assignment of longer
AOTs for a larger number of components.

This study is a part of the continual process of risk-informed evaluation of the TS of
Loviisa NPP. As there have been safety-improving plant modifications in Loviisa
and the PRA model of the plant has been developed significantly since the last risk-
informed evaluation, these changes should be incorporated to the AOT optimization
model to get a timely assessment of the TS.
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A Plots of exponential distribution fits to the data
Plots of exponential distribution fits to the data for the data period 2006–2012 are
in Figure A1 and similarly for the data period 2013–2022 in Figure A2.
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Figure A1: Exponential distribution fits to the data from 2006 to 2012.
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Figure A2: Exponential distribution fits to the data from 2013 to 2022.
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