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A B S T R A C T

Emergency response refers to the systematic response to an unexpected, disruptive occurrence such as a
natural disaster. The response aims to mitigate the consequences of the occurrence by providing the affected
region with the necessary supplies. A critical factor for a successful response is its timely execution, but the
unpredictable nature of disasters often prevents quick reactionary measures. Preallocating the supplies before
the disaster takes place allows for a faster response, but requires more overall resources because the time
and place of the disaster are not yet known. This gives rise to a trade-off between how quickly a response
plan is executed and how precisely it targets the affected areas. Aiming to capture the dynamics of this trade-
off, we develop a 𝐾-adjustable robust model, which allows a maximum of 𝐾 second-stage decisions, i.e.,
response plans. This mitigates tractability issues and allows the decision-maker to seamlessly navigate the gap
between the readiness of a proactive yet rigid response and the accuracy of a reactive yet highly adjustable
one. The approaches we consider to solve the 𝐾-adaptable model are twofold: Via a branch-and-bound method
as well as a static robust reformulation in combination with a column-and-constraint generation algorithm. In
a computational study, we compare and contrast the different solution approaches and assess their potential.
1. Introduction

In 2019, a year marked by temperature records and severe, large-
scale wildfires across the globe, disasters related to natural hazards
affected a total of 95 million human lives worldwide, injuring them
and depriving them of their homes and livelihoods (CRED, 2020). In
2021, this total increased to 102 million people (CRED, 2022). In 2022,
the number of affected people reached a staggering 185 million (CRED,
2023). Amid the growing momentum of climate change, it is antic-
ipated to increase even further (CRED & UNISDR, 2020). According
to the 2021 IPCC report, (Masson-Delmotte, Zhai, Pirani, Connors,
Péan, Berger, Caud, Chen, Goldfarb, Gomis, Huang, Leitzell, Lonnoy,
Matthews, Maycock, Waterfield, Yelekçi, Yu, , & Zhou, 2021), the
number of 10-year (that is, once every ten years) heavy precipitation
events is set to at least double, the number of 10-year hot temperature
extremes over land is predicted to more than quadruple, and events
which would have occurred once in fifty years without human influence
are likely to occur up to 40 times in the event of a 4-degree temper-
ature change. On average, 90 percent of the natural hazards which
occurred during the last twenty years were sudden onset events, such
as wildfires, storms or floods (CRED, 2020, 2022, 2023). Due to their
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highly irregular nature, these events are usually met unprepared, and
the response operations are characterized by a challenging combination
of uncertainty, complexity, and urgency. In such situations, a short re-
sponse time is not a matter of money, but rather of life and death. Still,
a swift response is often obstructed due to unreliable data, inefficient
logistics, and, most importantly, a lack of preparation (Van Wassen-
hove, 2006). Preparation allows for shifting the most time-consuming
processes, i.e., decision-making and organizing response actions, to
the time before the contingency, thus allowing for an efficient and
streamlined response (Alem, Bonilla-Londono, Barbosa-Povoa, Relvas,
Ferreira, & Moreno, 2021). The difficulty lies in balancing the prepa-
ration efforts to accommodate the uncertainty: The more rigid the
response, the more efficiently it can be prepared and executed, but the
less accurate it will be with respect to the disaster scenario, which is
not known during the preparations.

Traditional models for optimization under uncertainty are not able
to support this balancing act, because they either fail to model the risk
averseness required in connection to emergency response or correspond
to either one of two extremes. The first extreme is a so-called static
model wherein all decisions are made here and now. This results in
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the same decision behavior regardless of the sequentially discovered
information and corresponds to a response which is preparationally
fficient, but too rigid for practical use. In addition, having to satisfy
ll possible futures simultaneously, static solutions are by definition
ot able to take advantage of the strong geographical correlations
demand being concentrated around the area of impact, as opposed to
venly distributed across a whole region or country) which are typically
resent in the uncertainty connected to natural disasters (Alexander,

1993). The second extreme is a fully adaptable model, which assigns
to every considered possible future a different decision. This results in
a behavior equivalent to making decisions later, when all information
is available. Thus, a corresponding response would be highly accurate
and, due to its flexibility, able to exploit correlations between uncertain
parameters. However, preparing individual plans for possibly infinite
amounts of futures is not financially and organizationally sensible.

By using a 𝐾-adaptable model, our proposed approach can limit
the amount of required preparations while at the same time offering
lexibility and taking advantage of correlations in the uncertainty. A
obust 𝐾-adaptable model partitions the set of possible scenarios into
t most 𝐾 subsets, for each of which it subsequently determines the
ptimal recourse decision in a robust manner, offering a finite amount
f response plans. It thus offers the possibility of navigating between
he two extremes, allowing the decision-makers to exploit the balance
etween efficiency and accuracy according to their own preferences.

The concept of finite adaptability has enjoyed attention in the litera-
ure in both its robust (i.e., optimizing the worst-case) and its stochastic

(i.e., optimizing the expected value) form, mainly due to two reasons.
irstly, the notion of selecting a small number of decision alternatives
o accommodate future uncertainties is more faithful to the human
ecision-making process (Buchheim & Pruente, 2019). Secondly, 𝐾-

adaptable formulations mitigate tractability issues for problems which
are small in some dimensions, such as the dimension of the uncertainty
set (in the robust case) or the number of constraints in which the un-
ertainty is present. Nevertheless, in general, the 𝐾-adaptable problem
s NP-hard even for 𝐾 = 2 (Bertsimas & Caramanis, 2010; Buchheim
 Kurtz, 2017; Malaguti, Monaci, & Pruente, 2022). Aiming to circum-

vent this complexity issue, the literature offers several algorithmic ap-
roaches, especially for the robust version, which due to its risk-averse
ature is the one we consider here. Most existing solution algorithms
re subject to restrictive assumptions such as binary decision vari-
bles (Buchheim & Kurtz, 2018; Ghahtarani, Saif, Ghasemi, & Delage,

2023; Hanasusanto, Kuhn, & Wiesemann, 2015, 2016; Kurtz, 2023), re-
uiring ‘‘not too many good solutions’’ (Arslan, Poss, & Silva, 2022), or
 restriction concerning the number of recourse decisions 𝐾 (Chassein,

Goerigk, Kurtz, & Poss, 2019). Bertsimas and Dunning (2016) as well
as Postek and Hertog (2016) developed algorithms which iteratively
split the uncertainty set, gradually increasing 𝐾 in each iteration. While
computationally tractable due to the procedures’ approximative nature,
as a downside, the exact value of 𝐾 cannot be chosen beforehand. The
number of algorithms in the literature allowing the decision-maker to
fix 𝐾 beforehand without any additional assumptions is remarkably
small. Subramanyam, Gounaris, and Wiesemann (2020) proposed a
ranch-and-bound scheme which solves the 𝐾-adaptable problem to
ptimality for a given 𝐾. In Section 3.2, we describe how their method
an be applied to the pre-allocation problem considered here. Han,

Bandi, and Nohadani (2022) developed a partitioning scheme based on
ranslated orthants, which permits a reformulation of the 𝐾-adaptable
roblem to an equivalent static model with an exponential number of
onstraints. This reformulation is based on the same principle as the

reformulation we make use of in Section 3.3. However, their solution
approach requires an additional bounding assumption to overcome the
exponential number of constraints, whereas our proposed approach is
akin to a column-and-constraint generation method.

Despite these developments, to the best of our knowledge, finite
adaptability has never been applied to the subject of emergency re-
ponse. Sabbaghtorkan, Batta, and He (2020) offer a comprehensive
926 
overview of the literature with a focus on the pre-disposition of emer-
gency supplies. They also identify several gaps within the current
research, most notably the need for more research on considering
pre-positioning as a risk mitigation strategy. In addition, most papers
neglect to limit the number of supplies that are available for storage,
thus perhaps not sufficiently motivating the storage network to be
flexible.

As a methodology, the 𝐾-adaptable approach to emergency re-
sponse can address several previously faced issues. Firstly, having a
limited number of plans offers mitigation of the tractability issues sur-
rounding fully adaptable models. 𝐾-adaptable problem formulations,
while theoretically challenging, offer in practice many tractable ways
of obtaining near-optimal solutions.

Secondly, a small set of 𝐾 optional response actions facilitates
he preparation and organization of the response while retaining the
lexibility necessary to prepare for an uncertain event. Since conditions

within a disaster situation are usually highly dependent (for example,
demand for emergency supplies correlates with proximity to the disas-
ter site), only a small amount of flexibility is sufficient for an efficient
response.

Furthermore, being able to choose the number of plans 𝐾 allows
he decision-maker to control the trade-off between efficiency and
ffectiveness of the response, as the larger the number of plans, the
ore targeted and effective, but also complex and resource-intensive

he response becomes.
Lastly, the 𝐾-adaptable approach shifts the time-intensive decision-

making process of the second stage into the first stage, offering a
guaranteed-to-be-feasible distribution plan for the relief items ahead of
time. All of the previously mentioned robust approaches for emergency
response use robustness as a warding measure. They optimize with
respect to the worst case, without actually assuming this case to be
realized, but simply ensuring that a distribution plan can be created
after the actual data are known. None of them explores preemptively
offering this plan, allowing for a rehearsal of the response, for a clear
plan of action ahead of time, and, most importantly, for an improved
response time. Therefore, we posit that 𝐾-adaptability, as a method-
ology for emergency response, provides a new modeling perspective
better aligned with disaster response decision-making.

In light of these qualifications, the contributions of this paper are
s follows.

1. Formulate a 𝐾-adaptable model for the pre-allocation of emer-
gency supplies.

2. Propose a new reformulation and column-and-constraint gener-
ation algorithm for the 𝐾-adaptable model and compare it with
a state-of-the-art algorithm from the literature.

3. Analyze the two algorithms with respect to computational effort
and solution quality.

4. Investigate the potential of 𝐾-adaptability for the application of
emergency response using both synthetic and real-world-based
instances.

The remainder of the paper is structured as follows: In Section 3.1,
we formulate the 𝐾-adaptable pre-allocation problem. Section 3.2 re-
lays a version of the branch-and-bound method proposed by
Subramanyam et al. (2020) adapted to the pre-allocation model. Sec-
tion 3.3 introduces an equivalent reformulation of the pre-allocation
model and a newly proposed column-and-constraint generation (CCG)
solution algorithm based on this reformulation, the Box CCG algorithm.
In Section 4, we study the application of both algorithms to the pre-
llocation model and analyze their performance for both a synthetic
ata set as well as a case study relating to floods in the state of Rio de
aneiro, Brazil. Finally, Section 5 concludes the paper with some final

observations and outlooks.
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2. Background

The most challenging aspect of disaster response is the uncer-
tainty accompanying natural hazards. Due to their irregular nature,
the time, place and severity of the disaster are extremely difficult to
redict (Tippong, Petrovic, & Akbari, 2022). In addition, even after the

disaster has occurred, available information is frequently unreliable,
incomplete, or non-existent. For a successful response management, it
is therefore crucial to consider carefully the integration of this element
of uncertainty.

In general, to account for uncertainty in mathematical programming
models, the literature offers two popular approaches: Stochastic pro-
ramming (Birge & Louveaux, 2011) and robust optimization (Ben-Tal,

El Ghaoui, & Nemirovski, 2009).
The majority of literature on the subject of emergency response

employs stochastic programming (SP) (Caunhye, Nie, & Pokharel, 2012;
Sabbaghtorkan et al., 2020), which uses probability distributions to
epresent uncertain parameters in the model. However, probabilistic
nformation is reliably accurate only for large amounts of data. When
odeling disaster situations, unreliable, incomplete, and non-existent

data may thus compromise the relevance of the model. In addition,
the model-predicted quality of solutions optimized for stochastic per-
formance is only achieved over a similarly large amount of imple-
mentations. As singular occurrences, natural disasters do not meet
this profile. Probability-based solutions are therefore very likely to
fail to achieve the predicted quality in reality. Duran, Gutierrez, and

eskinocak (2011), for example, develop a mixed-integer programming
(MIP) inventory-location model for emergency response supplies, such
s water or medicine. The network is configured to minimize the
verage response time over a set of historical data, optimizing the
ikelihood of a good performance. However, this solution does not offer
ny protection against risk since the dispersion does not need to comply

with any binding constraints such as a certain, short response time. This
illustrates how SP solutions are unable to provide a decisive course of
action in the form of a disaster response prior to the observation of the
uncertain event.

2.1. Robust optimization

A more suitable approach for the purpose of risk aversion is robust
optimization (RO), which measures the quality of a solution by its
performance in the worst of all considered outcomes. In general, RO
does not rely on a probability distribution, but rather on a set of
possible outcomes, the so-called uncertainty set  ⊆ R𝑚, within which
lie all the realizations that the solution must be robust towards. In
its classical form, this framework places all decisions 𝑥 ∈ R𝑛 before
the uncertain event and provides a solution which is feasible for all
scenarios 𝜉 ∈  . For the sake of simplicity, we only consider problems

ith right-hand side uncertainty, but the generalization to constraint
nd objective uncertainty is straightforward (Ben-Tal et al., 2009).

For 𝑐 ∈ R𝑛 and 𝐴 ∈ R𝑚×𝑛, the so-called static robust problem with
right-hand side uncertainty considered here is
min
𝑥

𝑐𝑇 𝑥 (1a)

s.t. 𝐴𝑥 ≥ 𝜉 ∀ 𝜉 ∈  . (1b)

Static robust problems retain the complexity of their deterministic
version and provide a single solution which is robust towards all
elements in the uncertainty set  . However, because these solutions are
independent of the uncertainty realization, they automatically neglect
any information related to correlations among the uncertain parame-
ters, which, in contrast, we assume to be present here. Consider, for
example, a simple budgeting problem

min
𝑥

𝑥1 + 𝑥2 (2a)
s.t. 𝑥1 ≥ 𝜉1 ∀ 𝜉 ∈  (2b)

927 
𝑥2 ≥ 𝜉2 ∀ 𝜉 ∈  , (2c)

where  = {(𝜉1, 𝜉2) ∈ R2
+ ∣ 𝜉1+𝜉2 ≤ 1}, that is, the uncertain parameters

𝜉1 and 𝜉2 are correlated. The optimal static robust solution must accom-
modate all possibilities for 𝜉 simultaneously and is, therefore, 𝑥 = (1, 1),
even though the corresponding scenario 𝜉 = (1, 1) is not an element of
the uncertainty set. Thus, when using static robust models, the solution
is often overly conservative, as it is in fact robust towards a set much
larger than  (see Fig. 1(a)). The static model accurately reflects the
uncertainty set only if the uncertainties are uncorrelated.

To take advantage of the correlations between the components
ithin the uncertainty set, the model must include a post-disaster
ecision stage, wherein it does not have to ward against all possibil-
ties simultaneously. To this end, Ben-Tal, Goryashko, Guslitzer, and

Nemirovski (2004) have extended the classical robust framework to
accommodate recourse decisions 𝑦(𝜉), 𝜉 ∈  , which are decisions
that are made after the uncertainty has been revealed. They depend
on the realization of the uncertainty 𝜉 ∈  , therefore making them

appings 𝑦 ∶  → R𝑛. This results in a two-stage robust model,
lso referred to as adjustable robust optimization (ARO). Formally, the
ncorporation of recourse decisions into the robust framework gives rise

to the adjustable robust counterpart (ARC), or completely adaptable
problem, where for the variables 𝑥, 𝑦(𝜉) ∈ R𝑛 for all 𝜉 ∈  , and 𝑧 ∈ R,
as well as the parameters 𝑐 , 𝑑 ∈ R𝑛;𝐴, 𝐵 ∈ R𝑚×𝑛 we have

min
𝑥,𝑦,𝑧

𝑧 (3a)

s.t. 𝑐𝑇 𝑥 + 𝑑𝑇 𝑦(𝜉) ≤ 𝑧 ∀ 𝜉 ∈  (3b)

𝐴𝑥 + 𝐵 𝑦(𝜉) ≥ 𝜉 ∀ 𝜉 ∈  . (3c)

The variable 𝑧 ∈ R measures the maximum (worst-case) value of
the objective function with respect to the uncertainty. By choosing
the functions 𝑦 to be constant, one can establish the classical RO
formulation without recourse as a special case of the adjustable one.
As such, the adjustable problem always performs at least as well as
the static problem with respect to the objective value. In the general
case, however, the adjustable solution cannot be guaranteed to perform
better than the static one.

ARO has already seen successful applications in emergency re-
sponse. Safaei, Farsad, and Paydar (2017) developed a robust two-stage
model to optimize the flow of relief commodities in the relief chain,
focusing on uncertainty with respect to candidate suppliers. Ke (2022)
designed a robust two-stage model for reliable emergency logistics for
hazardous materials. Sun, Wang, and Xue (2021) proposed a robust
bi-objective integrated model for facility location, resource allocation,
and casualty transportation planning in order to organize a coor-
dinated treatment of injured people. Aliakbari, Komijan, Tavakkoli-
Moghaddam, and Najafi (2022) used a scenario-based approach to
model relief logistics planning under uncertainty of demand and travel
times. Li and Liu (2023) designed an emergency relief network consid-
ering international cooperation, formulated as a two-stage distribution-
ally robust optimization model and solved with a decomposition-based
algorithm. Wang, Yang, Yang, and Dong (2023) considered two-stage
istributionally robust optimization for disaster relief logistics under
ption contract and demand ambiguity. Avishan, Elyasi, Yanıkoğlu,

Ekici, and Özener (2023) provided an ARO model for humanitarian
elief distribution taking into account uncertain travel times to optimize
outes and service times for visited locations.

Nevertheless, the use of ARO in emergency response faces several
challenges, one of which is computational tractability. While the ARO
approach usually leads to significant improvements in the quality of
the solutions, the sheer number of possible courses of action leads to
tractability issues which often render its employment inoperable in
practice. Caunhye, Zhang, Li, and Nie (2016), for instance, proposed
 two-stage capacitated location-routing model for relief distribution

with transshipment considerations, converting it to a single-stage coun-
terpart that can be solved with off-the-shelf solvers. However, the
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Fig. 1. Uncertainty set enlargement effect for the uncertainty set  in example (2). The solution of the static problem is robust towards the smallest box set containing  .
Increasing the adaptability of the solution mitigates this effect.
problem is NP-hard and remains so even in the equivalent single-stage
formulation. The corresponding experimental studies are therefore lim-
ited to a small illustrative example, which demonstrates the benefits of
planning routing in coordination with other operations.

Thus, ARO does not share one of the most appealing features of its
static counterpart, namely the ability to preserve the computational
complexity of its deterministic counterpart. As a result, the related
literature has focused on resolving this tractability issue. One popular
remedy to the tractability issue consists of limiting the second-stage
variables, which effectively are functions of the uncertainty, to the
space of affine functions. This is referred to as affinely adjustable robust
optimization (AARO) (Ben-Tal et al., 2004) and has been shown to work
well within certain classes of problems (Yanıkoğlu, Gorissen, & den
Hertog, 2019). Ben-Tal, Chung, Mandala, and Yao (2011) make use
of affine decision rules for outbound logistics from the disaster site,
solving a dynamic multi-period emergency response and evacuation
traffic assignment problem with uncertain demand at the source nodes.

However, there are several issues which prevent AARO from serving
as a suitable framework for the preparation of an emergency response.
Firstly, AARO does not accommodate discrete recourse decisions. Since
heavy machinery and the supplies considered for pre-positioning and
transport are usually only available in predefined units, their represen-
tation as integer numbers appears logical. More significantly, however,
an affine decision policy does not allow control over the adjustability
of the solution. It always provides a different second-stage decision for
every single possible realization of the uncertainty, which is naturally
misaligned with human decision-making practice. Preparing the exe-
cution of such a large number of response plans is simply not viable,
especially when we know that no more than one of the plans will be
indeed put into motion.

2.2. 𝐾-Adaptability

A worthwhile response must make efficient use of the available
resources, namely, it must not require a disproportionate amount of
supplies, time, or organizational effort. This can only be achieved
if the number of prepared response plans is limited, resulting in a
finitely adaptable, or 𝐾-adaptable, robust model (Bertsimas & Carama-
nis, 2010).

From a mathematical standpoint, solving a 𝐾-adaptable robust opti-
mization problem corresponds to finding an optimal piecewise constant
recourse function. The function maps elements from the uncertainty set
to the 𝐾 available plans, creating one subset within the uncertainty set
 for each of the plans. It hereby defines a partition of  into multiple
cells, such that all scenarios in one cell share the same second-stage
decision. Now, instead of considering one static problem with the whole
uncertainty set as in Fig. 1(a), the problem represents a collection of
𝐾 static subproblems, thus mitigating conservativeness Fig. 1(b). By
928 
increasing 𝐾, we are able to approximate the completely adaptable
problem, where every scenario is contained in its own singleton subset
with its own second-stage decision Fig. 1(c), and where the uncertainty
enlargement effect does not hold. As a result, the 𝐾-adaptable model is
able to mitigate the conservativeness of the static robust model while
at the same time offering a more straightforward response plan than
the completely adaptable model.

From the completely adaptable formulation (3) we derive the 𝐾-
adaptable formulation by first replacing the recourse function 𝑦 ∶  →
R with 𝑦 ∶  → {𝑦1,… , 𝑦𝐾}. From this, we obtain the partition of 
via the reverse images of the plans 𝑦𝑘, i.e.,

 = 1 ∪⋯ ∪𝐾 , where 𝑦(𝑘) = 𝑦𝑘.

Thus, we obtain the 𝐾-adaptable formulation with variables 1,… ,𝐾 ,
as well as 𝑥, 𝑦1,… , 𝑦𝐾 , 𝑧:

min
𝑥,𝑦,𝑧,1 ,…,𝐾

𝑧 (4a)

s.t. 𝑐𝑇 𝑥 + 𝑑𝑇 𝑦𝑘 ≤ 𝑧 𝑘 = 1,… , 𝐾 (4b)

𝐴𝑥 + 𝐵 𝑦𝑘 ≥ 𝜉𝑘 𝑘 = 1,… , 𝐾 , ∀ 𝜉𝑘 ∈ 𝑘 (4c)

 = 1 ∪⋯ ∪𝐾 . (4d)

In terms of bounds, the static (one-stage) problem (1) corresponds to
the 𝐾-adaptable problem (4) with the additional constraint 𝑦1 = ⋯ =
𝑦𝐾 . For the corresponding optimal objective values 𝑧Static and 𝑧𝐾-adapt,
we therefore have 𝑧Static ≥ 𝑧𝐾-adapt. In the computational study in
Section 4, when estimating the quality of a 𝐾-adaptable solution, we
will accordingly use the static solution as a reference point. Similarly,
we may consider (4) to be a special case of complete adaptability (3),
thus obtaining 𝑧𝐾-adapt ≤ 𝑧CompAdapt.

3. Methodology

3.1. The adjustable pre-allocation model

The setting considered here is as follows. A given amount of supplies
is to be stored at a given set of locations such that in the event of a
disaster, they can be transported quickly and efficiently to the affected
regions, whose demands are not known during the preparation stage.
We model the supply network via a complete bipartite graph with
service nodes 𝑖 = 1,… , 𝑛 and demand nodes 𝑗 = 1,… , 𝑚. The demand 𝜉𝑗
arises at demand node 𝑗 and ought to be satisfied. Unsatisfied demand is
penalized in the objective. In addition, the objective function measures
the cost 𝑐𝑖𝑗 of allocating a supply kit from service node 𝑖 to demand
node 𝑗. This cost can represent various matters, such as the estimated
transportation cost or response time from 𝑖 to 𝑗, depending on the
decision maker’s priorities. All in all, we have the following given data.

• 𝑖 = 1,… , 𝑛 service nodes
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• 𝑗 = 1,… , 𝑚 demand nodes
• 𝑐𝑖𝑗 - cost of allocating one supply unit from 𝑖 to 𝑗
• 𝑝 - penalty per unit of unsatisfied demand
• 𝑟 - total available units of supply
•  - uncertainty set containing different demand scenarios 𝜉

The decision variables concern the amount of supplies 𝑥 ∈ N𝑛 stored at
ach location and the allocation of those supplies to the demand points,
enoted by the variable 𝑦 ∈ N𝑛×𝑚. The formulation aims to minimize
= max 𝑧𝑘, where 𝑧𝑘 is the worst-case objective for the 𝑘th cell in

he partition. In addition to 𝑥 and 𝑦, the formulation includes slack
ariables 𝑠𝑘𝑗 to account for unsatisfied demand, and, most importantly,
he cells of the partition 1,… ,𝐾 ⊂ R, which are variables as well.
he model is as follows.

min
1 ,…,𝐾

min
𝑥,𝑦,𝑠,𝑧

𝑧 (5a)

s.t. 𝑧𝑘 ≤ 𝑧 𝑘 = 1,… , 𝐾 (5b)

𝑝
𝑚
∑

𝑗=1
𝑠𝑘𝑗 +

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝑐𝑖𝑗𝑦

𝑘
𝑖𝑗 ≤ 𝑧𝑘 𝑘 = 1,… , 𝐾 (5c)

𝑚
∑

𝑗=1
𝑦𝑘𝑖𝑗 ≤ 𝑥𝑖 𝑖 = 1,… , 𝑛, 𝑘 = 1,… , 𝐾 (5d)

𝑛
∑

𝑖=1
𝑥𝑖 ≤ 𝑟 (5e)

𝑛
∑

𝑖=1
𝑦𝑘𝑖𝑗 + 𝑠𝑘𝑗 ≥ 𝜉𝑘𝑗 ∀𝜉𝑘𝑗 ∈ 𝑘; 𝑗 = 1,… , 𝑚,

𝑘 = 1,… , 𝐾 (5f)

 = 1 ∪⋯ ∪𝐾 (5g)

𝑥 ∈ N𝑛, 𝑦𝑘 ∈ N𝑛×𝑚, 𝑧 ∈ R; 𝑠𝑘 ∈ N𝑚, 𝑧𝑘 ∈ R ∀𝑘 = 1,… , 𝐾 . (5h)

Constraint (5c) sets 𝑧𝑘, the worst-case objective of cell 𝑘, to be the
sum of transport costs 𝑐𝑖𝑗𝑦𝑘𝑖𝑗 as well as a penalty 𝑝 for every unit of
nsatisfied demand. Constraint (5d) ensures that a supply point only

provides as many supplies as are stored there according to the first-
stage decision 𝑥. Constraint (5e) bounds the aggregated amount of
supplies, and (5f) ensures the satisfaction of 𝜉𝑘𝑗 , the worst-case demand
t demand point 𝑗 in cell 𝑘. Analogously to Han et al. (2022), we

considered adding a constraint 𝑧1 ≤ 𝑧2 ≤ ⋯ ≤ 𝑧𝐾 to eliminate the
symmetry arising from the permutation independence of the subsets,
but preliminary experiments did not conclusively show a computational
benefit in our experimental setting.

For the uncertainty set, we assume for each demand node 𝑗 =
1,… , 𝑚 location coordinates 𝑙𝑗 ∈ R2 as well as a node-specific demand
ound 𝐷𝑗 ∈ N, which represents the quantity at risk at the correspond-

ing demand point 𝑗, such as the maximum number of people susceptible
to the emergency in the location represented by 𝑗. Additionally, 𝑏 ∈ N
represents a bound for the aggregated demand over all nodes. Thus, for
some 𝛼 ∈ R the definition is as follows.

 = {𝜉 ∈ R𝑚 ∶ |𝜉𝑗 − 𝜉𝑗′ | ≤ 𝛼 || 𝑙𝑗 − 𝑙𝑗′ ||∞, 1 ≤ 𝑗 , 𝑗′ ≤ 𝑚, (6a)

0 ≤ 𝜉𝑗 ≤ 𝐷𝑗 (6b)
𝑚
∑

𝑗=1
𝜉𝑗 ≤ 𝑏}. (6c)

Constraint (6a) ensures that closely located demand points share similar
emands, which introduces the notion of locality to the emergency. The
arameter 𝛼 hereby scales location distance to demand distance. Con-

straint (6b) ensures that demands are nonnegative and bounded above
by the quantity at risk 𝐷𝑗 , 𝑗 = 1,… , 𝑚. Finally, constraint (6c) bounds
the aggregated demand to the given value 𝑏. This excludes scenarios
wherein all demand points are maximally affected. The complexity of
problem (5) lies within constraint (5g), which ensures that the cells
1,… ,𝐾 form a cover of the uncertainty set  . This constraint pre-
vents the direct use of an off-the-shelf optimization solver, motivating

the development of tailored solution methods.
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3.2. Branch-and-bound method

The algorithm was originally proposed by Subramanyam et al.
(2020). The main idea is to circumvent the complexity stemming from
constraint (5g) by solving the model for a predefined partition 𝜏 of
the uncertainty set  . This partition is iteratively constructed, starting
with 𝐾 empty sets, which are to form the partition. After solving the
𝐾-adaptable problem (5a)–(5f),(5h) for this empty partition, that is,
without uncertain constraints (5f), the algorithm obtains the corre-
sponding solution (𝑧, 𝑥, 𝑦, 𝑠). With this solution, the separation problem
7) calculates the maximal violation in the set of uncertain constraints.

To this end, the separation problem contains a binary variable 𝑣𝑘𝑗 ∈
0, 1} indicating for each plan 𝑘 = 1,… , 𝐾 in which constraint 𝑗 ∈
1,… , 𝑚 the maximum violation occurs. The continuous variable 𝜁 ∈ R
then assumes the smallest of these 𝐾 violations, because only one of the
𝐾 plans must be feasible. For 𝑀 ∈ R sufficiently large, the separation
problem is
max
𝜁 ,𝜉 ,𝑣 𝜁 (7a)

s.t. 𝜉 ∈  (7b)
𝑚
∑

𝑗=1
𝑣𝑘𝑗 = 1 ∀𝑘 = 1,… , 𝐾

(7c)

𝜁 +
𝑛
∑

𝑖=1
𝑦𝑘𝑖𝑗 + 𝑠𝑘𝑗 +𝑀 𝑣𝑘𝑗 ≤ 𝑀 + 𝜉𝑗 ∀𝑗 = 1,… , 𝑚, ∀𝑘 = 1,… , 𝐾

(7d)
𝑣𝑘𝑗 ∈ {0, 1} ∀𝑗 = 1,… , 𝑚, ∀𝑘 = 1,… , 𝐾 .

(7e)

If 𝜁 > 0, a violation has been identified, and the algorithm proceeds
to branch. The scenario 𝜉 leading to the violation, obtained from the
separation problem (7), must be added to one of the sets in 𝜏, giving
rise to 𝐾 branches (one for each subset in the partition).

Algorithm 1 Branch-and-Bound Method (Subramanyam et al., 2020).

1. Initialize node set  = {𝜏0}, where 𝜏0 = ( 0
1 ,… , 0

𝐾 ) with  0
𝑘 =

∅, ∀𝑘 = 1,… , 𝐾. Set as incumbent solution (𝜃 , 𝑥, 𝑦) = (∞, ∅, ∅).
2. Check convergence: If  ≠ ∅, continue to step 3. Otherwise,

if 𝜃 = ∞, declare infeasibility, and if 𝜃 < ∞, then (𝑥, 𝑦) is an
optimal solution.

3. Select a node 𝜏 = (1,… ,𝐾 ) ∈  and remove it from  .
4. For partition 𝜏, solve the 𝐾-adaptable problem (5a)–(5f), (5h)

and let (𝑧, 𝑥, 𝑦) be an optimal solution. If 𝑧 > 𝜃, go to step 2.
5. Solve the separation problem (7), obtaining (𝜁 , 𝜉). If 𝜁 ≤ 0, set

(𝜃 , 𝑥, 𝑦) = (𝑧, 𝑥, 𝑦) and go to step 2, otherwise go to step 6.
6. Add the following 𝐾 nodes to  : 𝜏𝑘 = {1,… ,𝑘∪ {𝜉},… ,𝐾}

for each 𝑘 = 1,… , 𝐾. Go to step 3.

Subramanyam et al. (2020) provide proof that the algorithm, in
general, converges asymptotically. Furthermore, since the number of
subsets 𝐾 is decided beforehand and maintained throughout the al-
orithm, it is entirely in the hands of the decision-maker. However,
ecause 𝐾 also determines the number of branches, the tree grows

very quickly for large 𝐾, which may cause computational problems
n practice. This problem is mitigated by the fact that in the context

we consider here, small 𝐾 values lead to simpler responses and are
therefore preferable.

3.3. Box CCG algorithm

Most existing solution algorithms, such as Bertsimas and Dunning
(2016), Postek and Hertog (2016) and Subramanyam et al. (2020) rely
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Fig. 2. Partitioning and parameterization of box sets. For every subset 𝑘 , 𝑘 = 1,… , 𝐾
of the partition, box(𝑘) denotes the smallest box set containing 𝑘. The subset 𝑘 is
hen parameterized by the worst-case scenario 𝜉𝑘 found in box(𝑘).

on pre-fixed partitions, which are iteratively improved or adapted in
rder to approximate the optimal partition. Consequently, the model
s unable to shape the partition to accommodate better solutions.

This motivates us to explore an approach which does not rely on
re-fixed partitions but instead integrates the partition parameters as
roblem variables to be optimized. To this end, we must find a class of
artitions which is parameterizable and able to represent any optimal
artitioning.

We depart from the results in Bertsimas and Caramanis (2010),
which show that solving a static robust problem with uncertainty set
 is equivalent to solving the problem with the smallest box set
containing  as uncertainty set. This extends to the 𝐾-adaptable case:
Every second-stage decision is robust with respect to the smallest box
et containing the corresponding subset in the partition (see Fig. 2).

Consequently, every solution to the problem has a corresponding box-
artitioning. We may thus partition, without loss of generality, directly
sing box-shaped subsets.

The parameterization of the box partitioning retains only the infor-
mation relevant to the solution of the problem: Its worst-case scenarios
𝜉𝑘. If these scenarios satisfy demand constraints, then all other sce-
narios in the corresponding box (which are dominated by the worst
case) are also satisfied, as illustrated in Fig. 2. Note that the partitions
derived in this way are not true partitions, as they may overlap. This,
however, does not pose a problem, as having several feasible policies
nstead of one for every uncertain scenario does not violate feasibility.
ontrarily, the difficulty in this approach is to make sure that the whole
ncertainty set is covered by the ensuing boxes.

To obtain a formulation, we replace the partition variables 𝑘 in
problem (5) by their worst-case scenario as follows. We introduce for
every 𝑘 = 1,… , 𝐾, a variable 𝜉𝑘 ∈ R𝑚

+ representing the worst-case
scenario associated with 𝑘 (note that previously, 𝜉 was merely a
parameter). To make sure that the implicit boxes ensuing from these
cenarios cover the whole uncertainty set, we add binary variables
𝑘
𝑢 ∈ {0, 1} for all 𝑢 ∈  , 𝑘 = 1,… , 𝐾, indicating whether scenario 𝑢
s covered by the box of 𝜉𝑘. Thus, the box reformulation is

min
𝜉𝑘 , 𝑘=1,…, 𝐾 min

𝑥,𝑦,𝑠,𝑧
𝑧 (8a)

s.t. 𝑧𝑘 ≤ 𝑧 𝑘 = 1,… , 𝐾 (8b)

𝑝
𝑚
∑

𝑗=1
𝑠𝑘𝑗 +

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝑐𝑖𝑗𝑦

𝑘
𝑖𝑗 ≤ 𝑧𝑘 𝑘 = 1,… , 𝐾 (8c)

𝑚
∑

𝑗=1
𝑦𝑘𝑖𝑗 ≤ 𝑥𝑖 𝑖 = 1,… , 𝑛, 𝑘 = 1,… , 𝐾
(8d)

930 
𝑛
∑

𝑖=1
𝑥𝑖 ≤ 𝑟 (8e)

𝑛
∑

𝑖=1
𝑦𝑘𝑖𝑗 + 𝑠𝑘𝑗 ≥ 𝜉𝑘𝑗 ∀𝑗 = 1,… , 𝑚, 𝑘 = 1,… , 𝐾

(8f)
𝑢𝑗𝑣

𝑘
𝑢 ≤ 𝜉𝑘𝑗 ∀𝑗 = 1,… , 𝑚,

𝑘 = 1,… , 𝐾 , 𝑢 ∈  (8g)
𝐾
∑

𝑘=1
𝑣𝑘𝑢 ≥ 1 ∀𝑢 ∈  (8h)

𝑥 ∈ N𝑛, 𝑦𝑘 ∈ N𝑛×𝑚, 𝑠𝑘 ∈ N𝑚, 𝜉𝑘𝑗 ∈ R+,

𝑣𝑘𝑢 ∈ {0, 1}, 𝑧, 𝑧𝑘 ∈ R ∀𝑘 = 1,… , 𝐾 . (8i)

The feasibility of (8) requires that every 𝑢 must be covered by at
least one scenario, which is ensured by constraints (8g)–(8h). Con-
sequently, we obtain an equivalent reformulation of the 𝐾-adaptable
re-allocation problem.

Theorem 1. The 𝐾-adaptable problem (5) and the box reformulation (8)
are equivalent.

Proof. Because constraints (5b)–(5e) and (8b)–(8e) as well as the
bjective functions are the same, we only need to show that (5f)–(5g),
n the following referred to as (A), are equivalent to (8f)–(8h), referred
o as (B). For this purpose, let (𝑥, 𝑦, 𝑠,1,… ,𝐾 ) be a feasible solution
or (A). For all 𝑘 = 1,… , 𝐾 and 𝑢 ∈  , we set 𝑣𝑘𝑢 = 1 if 𝑢 ∈ 𝑘
nd 𝑣𝑘𝑢 = 0, otherwise. Now (5f) implies ∑𝑛

𝑖=1 𝑦
𝑘
𝑖𝑗 + 𝑠𝑘𝑗 ≥ 𝑢𝑗𝑣𝑘𝑢 for all

𝑗 = 1,… , 𝑚 and 𝑘 = 1,… , 𝐾 and therefore (8f)–(8g) hold. Furthermore,
(5g) implies (8h). Thus, (𝑥, 𝑦, 𝑠) is feasible for (B).

Conversely, let (𝑥, 𝑦, 𝑠, 𝑣) be feasible for (B). We define 𝑘 = {𝑢 ∈
 ∣ 𝑣𝑘𝑢 = 1} for all 𝑘 = 1,… , 𝐾. Then (8f)–(8g) implies (5f), and (8h)
implies (5g). Therefore, (𝑥, 𝑦, 𝑠) is feasible for (A). □

The reformulation of the 𝐾-adaptable problem presented here is
ailored to the pre-allocation problem with right-hand-side uncertainty

presented in Section 3.1. Han et al. (2022) offer a set-based refor-
mulation originating from the same principle but catered towards
istributionally robust programs, referring to the box-shaped subsets
s translated orthants. Demonstrating that their reformulation is hard
o solve due to an exponential number of constraints needed to make
ure the orthants cover the whole uncertainty set, they devise several
pproximative algorithms referred to as orthant-based policies.

Alternatively, to solve (8), we devise an exact approach using
column-and-constraint generation (CCG). To handle the semi-infinite
constraint (8g), we define as main problem the following relaxation of
8), where  𝑡 is a finite subset of  with | 𝑡

| ≤ 𝑡 ∈ N:

min
𝜉𝑘 ,𝑘=1,…, 𝐾 min

𝑥,𝑦,𝑠,𝑧
𝑧 (9a)

s.t. 𝑧𝑘 ≤ 𝑧 𝑘 = 1,… , 𝐾 (9b)

𝑝
𝑚
∑

𝑗=1
𝑠𝑘𝑗 +

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝑐𝑖𝑗𝑦

𝑘
𝑖𝑗 ≤ 𝑧𝑘 𝑘 = 1,… , 𝐾 (9c)

𝑚
∑

𝑗=1
𝑦𝑘𝑖𝑗 ≤ 𝑥𝑖 𝑖 = 1,… , 𝑛, 𝑘 = 1,… , 𝐾

(9d)
𝑛
∑

𝑖=1
𝑥𝑖 ≤ 𝑟 (9e)

𝑛
∑

𝑖=1
𝑦𝑘𝑖𝑗 + 𝑠𝑘𝑗 ≥ 𝜉𝑘𝑗 ∀𝑗 = 1,… , 𝑚, 𝑘 = 1,… , 𝐾

(9f)
𝑢 𝑣𝑘 ≤ 𝜉𝑘 ∀𝑗 = 1,… , 𝑚,
𝑗 𝑢 𝑗
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𝑘 = 1,… , 𝐾 , 𝑢 ∈  𝑡 (9g)
𝐾
∑

𝑘=1
𝑣𝑘𝑢 ≥ 1 ∀𝑢 ∈  𝑡 (9h)

𝑥 ∈ N𝑛, 𝑦𝑘 ∈ N𝑛×𝑚, 𝑠𝑘 ∈ N𝑚, 𝜉𝑘𝑗 ∈ R+,

𝑣𝑘𝑢 ∈ {0, 1}, 𝑧, 𝑧𝑘 ∈ R ∀𝑘 = 1,… , 𝐾 . (9i)

Problem (9) is a mixed-integer linear program with a finite number
of variables and constraints. Starting with 𝑡 = 0 and  0 = ∅, we
obtain an optimal solution (𝑥∗, 𝑦∗, 𝑠∗, 𝜉∗) for the main problem. To
evaluate the feasibility of this solution for the complete problem (8),
we use the separation problem (7) from the branch-and-bound scheme
in Section 3.2. Replacing ∑𝑛

𝑖=1 𝑦
𝑘
𝑖𝑗 + 𝑠𝑘𝑗 by the worst-case scenarios (𝜉∗)𝑘𝑗

n (7), we obtain the following separation problem:

max
𝜁 ,𝑢,𝑤 𝜁 (10a)

s.t. 𝑢 ∈  (10b)
𝑚
∑

𝑗=1
𝑤𝑘

𝑗 = 1 ∀𝑘 = 1,… , 𝐾 (10c)

𝜁 +𝑀 𝑤𝑘
𝑗 ≤ 𝑀 + 𝑢𝑗 − 𝜉𝑘𝑗 ∀𝑗 = 1,… , 𝑚,∀𝑘 = 1,… , 𝐾 (10d)

𝑤𝑘
𝑗 ∈ {0, 1} ∀𝑗 = 1,… , 𝑚,∀𝑘 = 1,… , 𝐾 . (10e)

If 𝜁 ≤ 0, then no constraint violation is occurring. Otherwise, we
obtain a scenario 𝑢𝑡 ∈  which is not in any box set of the partition
represented by (𝜉∗)𝑘, 𝑘 = 1,… , 𝐾. Setting  𝑡+1 =  𝑡 ∪ {𝑢𝑡}, we resolve
the main problem and repeat the procedure until a stopping criterion
has been reached, giving rise to the Box CCG algorithm (see algorithm
2).

Algorithm 2 Box CCG Algorithm.

1. Initialize 𝑡 = 0 and  0 = ∅.
2. Solve the main problem (9) for  𝑡, obtaining a collection of

worst-case scenarios 𝜉1,… , 𝜉𝑘.
3. Solve the separation problem (10) for the obtained worst-case

scenarios, obtaining the maximum violation 𝜁 and corresponding
scenario 𝑢𝑡 ∈  .

4. If a violation occurred, i.e., 𝜁 > 0, set 𝑡 = 𝑡 + 1 as well as
 𝑡+1 =  𝑡 ∪ {𝑢𝑡} and go to step 2. Otherwise, return the current
solution.

This formulation accommodates the right-hand-side uncertainty of
he supply pre-allocation problem, however, the extension to the gen-

eral case is straightforward. The Box CCG algorithm is comparable
to the branch-and-bound method (algorithm 1) by relating the binary
ariables 𝑣𝑘𝑢 to the branching decisions: If 𝑣𝑘𝑢 = 1, then scenario 𝑢 is

added to subset 𝑘. Instead of fixing the 𝑣𝑘𝑢 to different combinations
and solving the problem for each combination as the branch-and-
bound method does, the Box CCG algorithm integrates the combination
decision, that is, the decision which scenarios belong to which sub-
set of the partition, into the MIP formulation. It thereby allows for
an implicit representation of all possible combinations of 𝑣𝑘𝑢 within
the MIP formulation to avoid explicitly and exhaustively exploring
them all. Theorem 2 states that, similarly to the branch-and-bound

ethod (Subramanyam et al., 2020, Theorem 2), algorithm 2 enjoys
symptotic convergence in general.

Theorem 2. The Box CCG algorithm (algorithm 2) converges asymp-
totically towards a feasible, optimal solution to the 𝐾-adaptable supply
re-allocation problem.

Proof. Let  𝓁 ,𝓁 = 0, 1,…, be the sequence of subsets of  generated
by the algorithm. We denote by 𝜉𝓁 the sequence of corresponding
931 
optimal box-corners from the scenario-based 𝐾-adaptability problem in
step 2, and by 𝑢𝓁 the sequence of optimal uncovered scenarios from the
separation problem in step 3, respectively. Since the feasible sets for 𝜉
and 𝑢 are compact (bounded below by 0, and due to the minimization,
 sufficiently large upper bound can be introduced without loss of

generality), the Bolzano–Weierstrass theorem (Bartle & Sherbert, 1994)
implies that 𝜉𝓁 and 𝑢𝓁 each have at least one accumulation point 𝜉 and
𝑢̂, respectively.

We first show that the solution (𝑥̂, 𝑦̂, ̂𝑠) to the 𝐾-adaptable problem
obtained together with 𝜉 is optimal. As ̂ , the subset corresponding
to this solution, satisfies ̂ ⊆  , the main problem is a relaxation of
the complete problem (8) and any solution optimal for the relaxation
is therefore by definition optimal to the complete problem.

Now, it remains to be shown that every accumulation point 𝜉 of
he sequence 𝜉𝓁 corresponds to a feasible partition of the uncertainty
et, that is, for all 𝜉 ∈  exists 𝑘 ∈ {1,… , 𝐾} such that 𝜉 ≤ 𝜉𝑘. By
ossibly going over to subsequences, we can without loss of generality
ssume that the two sequences 𝜉𝓁 and 𝑢𝓁 converge themselves to 𝜉
nd 𝑢̂, respectively. By continuity of the separation problem (10), and

denoting with 𝑆(𝜉 , 𝑢) the value of the separation problem for 𝜉 = 𝜉 and
𝑢 = 𝑢, we have

𝑆(𝜉 , ̂𝑢) = 𝑆( lim
𝓁→∞

𝜉𝓁+1, lim
𝓁→∞

𝑢𝓁) = lim
𝓁→∞

𝑆(𝜉𝓁+1, 𝑢𝓁). (11)

Now, because 𝑢𝓁 ∈  𝓁+1 according to step 4, we have 𝑆(𝜉𝓁+1, 𝑢𝓁) < 0,
and therefore

𝑆(𝜉 , ̂𝑢) = lim
𝓁→∞

𝑆(𝜉𝓁+1, 𝑢𝓁) < 0. (12)

Consequentially, 𝜉 corresponds to a feasible partition of  , which
oncludes the proof. □

3.4. Observable objectives

Being robust optimization methods, all of the previously discussed
modeling and solution approaches return as the objective value that
of the scenario 𝜉𝑘, which dominates all worst-case scenarios together
as the corner of the smallest box set within which  is contained.
This scenario is, as illustrated in example (2), not necessarily within
the uncertainty set and therefore does not reflect the performance of
he solution in reality. Given second-stage decisions 𝑦𝑘 ∈ N𝑛×𝑚, 𝑘 =
1,… , 𝐾, we can instead calculate the true worst-stage cost, that is,
the upper bound for the actually realized cost, by solving the robust
bilevel programming problem (13) (for more information about bilevel
ptimization under uncertainty, see e.g., Beck, Ljubić, & Schmidt,

2023). Within the problem, the upper level maximizes over all possible
demand scenarios 𝜉 ∈  the true response cost 𝜃 ∈ R, which is
determined by the lower level. For each plan 𝑘 = 1,… , 𝐾 and the
scenario 𝜉 provided by the upper level, the lower level calculates the
(nonnegative) unsatisfied demand 𝑠𝑘 ∈ R𝑚

+ as well as the cost 𝑧𝑘 ∈
R of plan 𝑘 for this scenario, which is to be minimized. The lower-
level variable 𝜃 is then maximized to assume the smallest of the 𝑧𝑘,
as in reality, the most advantageous plan will be implemented, thus
determining the truly observed cost in scenario 𝜉. The small weight
 > 0 in the lower-level objective ensures that the model prioritizes the
inimization of 𝑧𝑘 over the maximization of 𝜃. The problem is posed

as follows.

max
𝜉

𝜃 (13a)

s.t. 𝜉 ∈  (13b)

(𝜃 , 𝑧, 𝑠) ∈ 𝑍(𝜉), (13c)

where

𝑍(𝜉) = argmin
𝐾
∑

𝑧𝑘 − 𝜀𝜃 (13d)

𝜃 ,𝑧,𝑠 𝑘=1
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Fig. 3. Distribution of runtimes in seconds over all instances for 𝐾 = 1, 2, 3.
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s.t. 𝑧𝑘 = 𝑝
𝑚
∑

𝑗=1
𝑠𝑘𝑗 +

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝑐𝑖𝑗𝑦𝑖𝑗𝑘 ∀𝑘 = 1,… , 𝐾

(13e)
𝜃 ≤ 𝑧𝑘 ∀𝑘 = 1,… , 𝐾

(13f)

𝑠𝑘𝑗 ≥ 𝜉𝑗 −
𝑛
∑

𝑖=1
𝑦𝑘𝑖𝑗 ∀𝑗 = 1,… , 𝑚, 𝑘 = 1,… , 𝐾

(13g)

𝑠 ∈ R𝑚×𝐾
+ , 𝑧 ∈ R𝐾 , 𝜃 ∈ R. (13h)

4. Computational study

In this section, we analyze the algorithms presented in Section 3
concerning computational performance and practical applicability. Ini-
tially, we implemented three algorithms for the solution process: The
ranch-and-bound algorithm (in the following referred to as BB) from
ection 3.2, the Box CCG algorithm (hereafter referred to as Box)

from 2, as well as the partition-and-bound-method from (Bertsimas &
Dunning, 2016) (see Appendix A). However, the lack of control over

in this method prevented a meaningful comparison to the remaining
wo methods, leading us to omit the results for conciseness. We shall

therefore in the following compare BB and Box, using the static robust
solution as a benchmark. To this end, the algorithms are implemented
in Julia (Bezanson, Edelman, Karpinski, & Shah, 2017, v1.9.3) using
uMP (Lubin, Dowson, Dias Garcia, Huchette, Legat, & Vielma, 2023,

v1.16) in combination with Gurobi (Gurobi Optimization, LLC, 2023
v10.0.0), and observable objectives are calculated using BilevelJuMP
Dias Garcia, Bodin, & Street, 2022, v0.6.2). All instances were solved

on the Triton computing cluster, which is maintained by the Aalto
Science-IT project. The Julia code as well as the problem data are
vailable at Weller (2024).

4.1. Synthetic dataset

In this experiment, the 𝐾-adaptable framework was applied to a
ollection of randomly generated instances of the pre-allocation prob-
em. We generated 50 instances each for 𝑛 = 4, 6, 8, 𝑚 = 10, 15, 20 and
𝑐 = 0.1, 0.3 (resulting in 18 × 50 = 900 instances in total), where 𝑝𝑐
epresents the percentage of affliction, which is used to calculate the
ggregated supply bound 𝑟 = 𝑝𝑐 ⋅

∑𝑚
𝑗=1 𝐷𝑗 as well as the aggregated

emand bound, set to the same value 𝑏 = 𝑝𝑐 ⋅
∑𝑚

𝑗=1 𝐷𝑗 . This means we
assume to have enough supplies to, in theory, cover all demand. The
demand bounds 𝐷𝑗 , 𝑗 = 1,… , 𝑚 are randomly generated integers from
the interval [1,100] and the transportation costs 𝑐 correspond to the
Euclidian distances between the randomly generated locations of the
932 
Table 1
Number of instances solved to optimality for different methods and values of 𝐾.

method 𝐾 = 1 𝐾 = 2 𝐾 = 3, 4, 5
both 900 401 75
Box only 0 353 119
BB only 0 0 1
neither 0 146 2 505

900 900 2 700

service and demand points. The penalty for unsatisfied demand was
set to 𝑝 = 1000𝑐max, where 𝑐max = 𝑚𝑎𝑥{𝑐𝑖𝑗 ∣ 𝑖 ∈ {1,… , 𝑛}, 𝑗 ∈ {1,… , 𝑚}}.
Furthermore, we have 𝛼 = 1. The 900 instances were solved for 𝐾 =
1, 2, 3, 4, 5 each, which results in 4 500 input combinations overall.

Computational runtime
A time limit of 3 600 s was set as a termination criterion for

both BB and Box. Table 1 shows the number of instances that were
olved to optimality by either both BB and Box, by only one of the
ethods, respectively, and by neither of them for different values of
. For all 𝐾, Box appears to be superior to BB in this aspect, as it

can solve to optimality a significant amount of instances more than BB.
However, for 𝐾 ≥ 3, the majority of instances remain unsolved by both
algorithms.

Fig. 3 shows the distribution of computational runtime for different
values of 𝐾, demonstrating the significant impact of 𝐾 on the runtime.

hile for 𝐾 = 2 at least half of instances are solved by both algorithms,
his reduces to a very small percentage for 𝐾 = 3. The significant

runtime difference is rooted in the larger number of branching decisions
for BB, and the increase of binary variables in Box. Interestingly, the
majority of runtimes veer close to the extremes, being solved either
very quickly or close to the cutoff time. This suggests that the runtime
is highly instance-specific. Supporting this notion, the results also show
that the instances with 𝑝𝑐 = 0.1 had significantly longer runtimes on
average than those with 𝑝𝑐 = 0.3 (see appendix, Fig. 13).

As shown in Fig. 4, the effect of the instance size 𝑛, 𝑚 on runtime is
less dramatic than the effect of 𝐾 but is noticeable nonetheless. While
the influence of 𝑛 on runtime is negligible, the number of demand
oints 𝑚 seems to impact it more significantly. This can be explained
y the number of second-stage decisions as well as the dimensions of
he uncertainty set, which both depend on 𝑚 but not on 𝑛.

In conclusion, the runtime is mostly affected in descending order
y the number of response plans and the number of demand points.

The scalability with regards to 𝐾 may be considered of less importance
as, in this setting, a small number of response plans is desirable. In
addition, this result is in line with the literature, as the only state-
of-the-art algorithms able to handle large 𝐾 are partitioning schemes
such as the partition-and-bound method of Bertsimas and Dunning
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Fig. 4. Distribution of runtimes in seconds for 𝐾= 2 for different instance sizes.
Fig. 5. Objective progression (relative to static solution) during algorithm execution for 𝐾 = 2, one arbitrarily chosen representative curve is highlighted in each to showcase the
bound value increase rate of BB versus the bound value decrease rate of Box.
(2016), wherein the partitions are fixed beforehand and iteratively
improved, such that the decision-maker can neither decide the value
for 𝐾 nor obtain truly optimal partitions. With respect to instance
size, its impact on runtime is more important, as in this experiment,
the size is much smaller than expected for a real-world setting. This
raises questions about the scalability of the approaches and necessitates
further experimentation with larger, perhaps more realistic instances.

Convergence
The majority of instances were only solved for 𝐾 ≤ 2, which inspires

some investigation into the convergence behavior of BB and Box. For
Box, the evolution appears to be exponentially decaying, meaning that
it is very close to the final solution already in an early stage. When
computation time is limited, this behavior is potentially valuable, pro-
vided that the objective plays an important role. If, however, feasibility
is a major concern, the development of BB is more advantageous, as the
incumbent solution is always feasible (see Fig. 5).

For Box, the feasibility is measured in terms of the subproblem
objective 𝜁 . Fig. 6 shows the occurrences of values for the last 𝜁 before
convergence (a) or termination, i.e., interruption due to the time limit
(b). In case of convergence, unsurprisingly, most values are very close
to zero. For the terminated runs, the bulk of 𝜁 has not yet approached
zero; however, the smaller 𝐾, the closer it appears to be to zero,
indicating that at time 𝑡 = 3600 the runs with smaller 𝐾 had progressed
933 
further and implying a distinctive pattern of convergence even for
the terminated instances. We conclude that in practice, with a limited
timeframe, both algorithms are potentially useful depending on model
characteristics and the decision-maker’s priorities.

Solution quality
As mentioned in Section 3.4, the objective function value of robust

models may not be a good indicator of observable performance. In
addition, in our case, the model is designed in a way that feasibility is
not a concern due to the slack variables measuring (and enabling) un-
satisfied demand. Here, an infeasible solution simply means a solution
in which not all unsatisfied demand was accounted for in the objective
function. Making use of the observable objective, we can therefore
analyze performance for suboptimal or infeasible solutions.

Fig. 7 shows the distribution of objectives across all 4500 input
combinations for which both or neither algorithm converged, respec-
tively (see Table 1 for exact numbers). It demonstrates that the model
objective is not a good approximation for real-world performance if
the objective is mainly centered around unsatisfied demand. The only
case where the distribution of model objectives comes close to the
actual performance is for the terminated cases of Box, because for those,
the model objective is a lower bound due to solution infeasibility. In
addition, a difference in performance between the two algorithms is
visible mainly for the terminated cases, and thus for higher 𝐾.
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Fig. 6. Distribution of the last values of the infeasibility indicator 𝜁 (zeta).
Fig. 7. Optimal objective values and observable objective values (obs) of the different algorithms.
d

r
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Fig. 8 shows the observable performance of BB and Box relative
to the static robust solution. Unsurprisingly, for 𝐾 = 1, there is no
mprovement at all, as all three return a static solution. Nevertheless,

it is noteworthy that these static solutions do not only share the model
objective but also the observable objective, indicating that the optimal
olution is either unique or that the three models are tantamount to this

case. For 𝐾 = 2, BB returns the best solutions on average. For 𝐾 = 3, the
verage is similar, with a slightly higher variance for BB. For 𝐾 > 3, the
olution quality of BB stagnates while Box solutions improve further.
n explanation for this is the higher variety in explored solutions —
B only returns feasible incumbents, and must therefore explore a
ranch in full depth before a solution is found. Our implementation
f BB searches the tree width-first, which makes it difficult for BB to
iscover a wide range of incumbents at the beginning of the algorithm.

Box, on the other hand, returns all infeasible incumbents, therefore
aving access to a wider variety of incumbent solutions. The graphs also

indicate that for some instances, improvement is negative, which means
hat the static solution performs better in the observable case. There
re two possible explanations for this. Firstly, these cases only occur
or 𝐾 ≥ 2, which means it is possible that the corresponding algorithm
as not able to converge within the time limit, thus not guaranteeing
n optimal solution. Secondly, the model optimizes the model objective
nd not the observable objective, so that it is theoretically possible for
he model to prefer a solution which is observably worse. For more
etailed results on observable performance, see Fig. 14 (Appendix).

In conclusion, despite the poor runtime performance of BB and Box,
oth algorithms were able to significantly improve solution quality
ith respect to the static case. This is possible because of modeling
ecisions that accommodate the evaluation of theoretically infeasible
olutions. As, in emergency response, the foremost concern is demand

atisfaction, these modeling decisions are reasonable.

934 
4.2. Case study

This case study is based on data from the flooding and landslide
isaster in the Serrana region of Rio de Janeiro state, Brazil, in January

2011. Based on (Alem, Clark, & Moreno, 2016), four municipalities
(𝑛 = 4) host depots for emergency supplies and there were nine affected
egions (𝑚 = 9). The transportation costs 𝑐 are set to the travel times
etween these nodes.

The uncertainty set is constructed considering the population of the
respective areas as follows: The total population within the nine areas is
827 825, out of which a total of 304 562, or 36.79% was affected (that
is, displaced, homeless, or otherwise directly or indirectly affected) by
the disaster. We, therefore, chose this percentage of the corresponding
node’s population to define the node-specific demand bounds 𝐷𝑗 , 𝑗 =
1,… , 𝑚. For instance, the region of Teresópolis with a population of 163
746 has a total demand bound 𝐷𝑇 𝑅𝑆 = 163 746 ⋅ 0.3679. However, not
everyone who was affected will need supplies. Thus, for the aggregated
demand bound 𝑏, we rely on the same estimate of the number of
displaced, homeless and fatal victims as (Alem et al., 2016), which is
33 370 victims out of 304 562 total affected, or 10.96%. Therefore, 𝑏 =
33 370. The remaining constraint of the uncertainty set in Section 3.1,
constraint (6a), is omitted for this case study since the historic demand
values are not strictly concentric due to the mountainous geography of
the region in combination with the nature of the disaster.

As emergency supply items, we considered hygiene kits, cleaning
products, and medical products, each forming an individual instance.
According to the available data, a kit of personal hygiene products
serves one person, a unit of cleaning products serves a five-person
family, and a kit of medical products serves 90 people. By multiply-
ing the number of total available kits by the number of people the
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Fig. 8. Observable improvement of the objective value with respect to the static solution ( 𝜃𝑠𝑡𝑎𝑡𝑖𝑐−𝜃
𝜃𝑠𝑡𝑎𝑡𝑖𝑐

) for 𝐾 = 1, 2, 3, 4, 5.
Fig. 9. Results from the case study. BB shows substantially larger computation times compared to Box, while not yielding any improvement for any 𝐾. Box yields no improvement
for 𝐾 = 2, but substantial improvement for higher 𝐾.
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Table 2
Number of supplies 𝑟 and observable objectives for the different supply items (in-
tances). BB and Box objectives are for 𝐾 = 3.
Supply Quantity Static BB Box

Hygiene 44 394 7.6802e9 7.6772e9 4.7615e9
Cleaning 40 000 7.6776e9 7.6772e9 7.1898e9
Medicine 64 260 7.6810e9 7.6772e9 4.2705e9

corresponding item serves, we obtain the supply bounds 𝑟 as stated in
Table 2.

For each of the three supply items, we executed the model for
= 1, 2, 3, 4, 5 with a time limit of 7 200 s, resulting in 3 ⋅ 5 = 15

nstances in total. For 𝐾 = 1, 2, all models were able to converge within
he time limit, with the runtime statistics shown in Fig. 9(a). For 𝐾 ≥ 3

however, neither of the algorithms was able to converge for any of the
nstances. These results are consistent with the findings in Section 4.1,

where the vast majority of instances did not converge within the time
limit for 𝐾 ≥ 3.

For the converged instances 𝐾= 1,2, the observable objective value
yields no improvement compared to the static model for either algo-
ithm. The reason for this behavior lies in the number of available
upplies: The presence of oversupply in this case study allows the
odel to partially compensate for a lack of flexibility in the case
= 1, forestalling any improvements for the case 𝐾 = 2. For the

on-converged instances, that is, 𝐾 ≥ 3, BB continues to show no
mprovements at all, while Box improvements range from 5 to 45% (see
 b

935 
Fig. 9(b)). The improvement is not strictly increasing, with Medicine
nd Hygiene showing a decrease in improvement for 𝐾 = 4 and 𝐾 = 5,
ecause the algorithm did not converge for these instances, therefore
ielding suboptimal solutions.

As a measure of convergence, we again observe the subproblem
objective value 𝜁 , which measures infeasibility for the Box algorithm,
as shown in Fig. 10. Once more, the behavior seems largely consistent
with the observations from Section 4.1: The smaller 𝐾, the closer 𝜁 is
to zero, indicating that at time 𝑡 = 7 200 the runs with smaller 𝐾 had
progressed further, implying a distinctive pattern of convergence. In
this case, the values of 𝜁 are several orders of magnitude higher than
the same values for the synthetic dataset, which can be attributed to the
generally higher objectives, indicating a higher amount of unsatisfied
demand in general.

Overall, we conclude that this case study seems more computa-
tionally challenging than the synthetic data, but nevertheless leads to
significant improvements in the observable objective, and is aligned

ith most of the conclusions from Section 4.1.

5. Conclusion

This research aimed to shed light on the application of 𝐾-adaptability
o the subject of emergency response. To this end, we developed a 𝐾-
daptable model for the preallocation of emergency supplies as well as
 new reformulation of the same in terms of the worst-case scenarios.
n a computational study, we assessed the potential of this approach
y comparing two solution algorithms, one of them being our proposed
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Fig. 10. Last zeta values of terminated runs.

novel Box CCG algorithm. From the numerical results, we conclude that
𝐾-adaptability possesses great potential with respect to this application.
The experiments suggest that it is sufficient to consider very small
values for 𝐾 to obtain significant improvements in preparedness, a
itting result for the context of emergency response, where a small
umber of responses is desirable in many aspects, such as swiftness
nd cost efficiency.

Despite, or perhaps because of its potential, this avenue of research
till faces many challenges, the overcoming of which shall be the
ubject of future work. Computation time could potentially be reduced
or example, by introducing a symmetry-breaking constraint to all
odels, which in their current form are symmetric with respect to
hich subset is assigned to which 𝑘 ∈ {1,… , 𝐾}. In addition, the
ranch-and-bound algorithm might benefit from a more careful node
election. The Box CCG algorithm could be improved by refining the
nteraction of the main and subproblems, for example by introducing
egularization measures. The pre-allocation model could be enhanced
y adding features such as the routing of transport or the unreliability
f network components such as the used infrastructure. Furthermore,
he simplified model adopted here exposes the relevant features for
ur developments but lacks the additional features relevant to specific
ases, which will give further indication towards the applicability of
-adaptability. Likewise, it would be interesting to see how the model

nd algorithms perform in other real-world instances.
Based on these conclusions, this preliminary study successfully

pens the door for further considerations of 𝐾-adaptability as a well-
itted framework for emergency response planning.
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Appendix A. Partition-and-bound method

Similar to the branch-and-bound method in Section 3.2, the method
f Bertsimas and Dunning (2016) relies on pre-fixed partitions to solve
he 𝐾-adaptable problem. However, instead of the partitioning being
teratively constructed, it is iteratively refined until a stopping criterion
as been reached (see algorithm 3). To refine the partition, the number

of subsets 𝐾 is steadily increased by the algorithm, and can therefore
not be chosen beforehand. The partitioning process is represented by
a tree structure  , wherein every node represents a subset of the
uncertainty set. The tree  is initialized with a single node, which
 s

936 
represents the whole uncertainty set  . By solving the subproblems

𝑆 𝑢𝑏𝑗 ( ) ∶= max
𝜉∈

𝜉𝑗 for 𝑗 = 1,… , 𝑚,

we obtain, for each 𝑗 = 1,… , 𝑚, an optimal 𝜉
𝑗
∈  , the so-called active

values, which are the worst-case scenarios contained in  . If constraint
(5f) is fulfilled for the maximum component 𝜉

𝑗
𝑗 for all 𝑗 = 1,… , 𝑚, 𝑘 =

,… , 𝐾, then it must also hold for any other 𝜉 ∈  . Thus, by solving
he deterministic problem (5a)–(5e),(5h) with deterministic demand

constraints
𝑛
∑

𝑖=1
𝑦𝑖𝑗 + 𝑠𝑗 ≥ 𝜉

𝑗
𝑗 for all 𝑗 = 1,… , 𝑚 (15)

the algorithm obtains an optimal solution to the 1-adaptable pre-
allocation model with the uncertainty set  . Now, for each of the active
alues 𝜉

𝑗
, 𝑗 = 1,… , 𝑚, a child node is added to the tree  . From now

n, the following steps are repeated until the stopping criteria are met.

Algorithm 3 Partition-and-Bound Method (Bertsimas & Dunning,
2016).

1. Initialize: partitioning tree  with one node containing an
arbitrary scenario 𝜉 ∈  , and 𝐾 = 1.

2. Compute Partition: Given the leaves of  , compute a Voronoi
diagram of  and partition accordingly into subsets  1,… , 𝐾 .

3. Solve 𝐾-adaptable problem (5a)–(5f), (5h) optimally for this
partition, i.e., 𝑘 =  𝑘. Obtain active values 𝜉

𝑗 𝑘
=

argmax𝜉∈𝑘
𝜉𝑗 , 𝑗 = 1,… , 𝑚, 𝑘 = 1,… , 𝐾.

4. Grow Tree: For 𝑘 ∈ {1,… , 𝐾}, add 𝑚 children to node 𝑘 in  ,
one for each 𝜉

𝑗 𝑘
. Update 𝐾 ← 𝐾 ⋅ 𝑚.

5. If a stopping criterion is met, stop. Otherwise go to step 2.

Let 𝐾 be the number of leaf nodes in  and 𝜉𝑘 ∈  , 𝑘 =
,… , 𝐾 the scenarios contained within them. From these scenarios,

the next partition is computed via a Voronoi diagram. Given the set
of Voronoi points 𝜉1,… , 𝜉𝐾 ∈  , the Voronoi diagram separates the
uncertainty set by Euclidian distance to these points: Each element
in the uncertainty set is assigned to the point 𝜉𝑘 it is closest to, thus
defining 𝐾 new subsets

𝑘 = {𝜉 ∈  ∣ ||𝜉𝑘 − 𝜉|| ≤ ||𝜉𝑙 − 𝜉|| ∀𝑙 = 1,… , 𝐾 , 𝑙 ≠ 𝑘} (16a)

= {𝜉 ∈  ∣ (𝜉𝑙 − 𝜉𝑘) ⋅ 𝜉 ≤ 1
2
(𝜉𝑙 − 𝜉𝑘) ⋅ (𝜉𝑙 + 𝜉𝑘) ∀𝑙 = 1,… , 𝐾 , 𝑙 ≠ 𝑘}

(16b)

for 𝑘 = 1,… , 𝐾 in accordance with (Bertsimas & Dunning, 2016).
Fig. 11 illustrates this principle. Consequently, every leaf node of 
represents one subset 𝑘 ⊆  , and together they form a partition
of  . Given the partition  = 1 ∪ ⋯ ∪ 𝐾 , the algorithm solves
the subproblems 𝑆 𝑢𝑏𝑘𝑗 = 𝑆 𝑢𝑏𝑗 (𝑘) for all 𝑗 = 1,… , 𝑚 and 𝑘 =

1,… , 𝐾. The resulting active parameters 𝜉
𝑗 𝑘

are then used to construct
a deterministic set of demand constraints
𝑛
∑

𝑖=1
𝑦𝑘𝑖𝑗 + 𝑠𝑘𝑗 ≥ 𝜉

𝑗 𝑘
𝑗 for all 𝑗 = 1,… , 𝑚, 𝑘 = 1,… , 𝐾 , (17)

which, together with (5a)–(5e),(5h) leads to an optimal solution to
the 𝐾-adaptable pre-allocation model with the fixed partition  =
1,… ,𝐾 . Subsequently, the partitioning tree  is grown by adding,
for every 𝑗 = 1,… , 𝑚, the child node 𝜉

𝑗 𝑘
to 𝜉𝑘. Thus, the number of

leaf nodes 𝐾 increases by 𝑚 in every iteration. In the next partitioning
step, the values are separated by the Voronoi diagram. This leads to an
improvement of the current partition: by separating 𝜉

𝑗 𝑘
, 𝑗 = 1,… , 𝑚, via

artitioning, the model is freed from the need to accommodate several
‘extreme’’ scenarios with the same plan 𝑦𝑘. By always generating a new
ubset for every active value each, which is to say 𝑚 new subsets, we
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Fig. 11. Voronoi diagrams. The Voronoi diagram splits the set according to proximity to the Voronoi points.
Fig. 12. The Effect of pc on the optimal objective value (pb corresponds to the static solution). For pc = 0.3, the optimal objective values are consistently smaller.
Fig. 13. The Effect of pc for 𝐾 = 2 on the runtime (pb corresponds to the static solution). For pc = 0.3, the objective value is drastically reduced.
d
a

ensure that the active values are pairwise separated and therefore the
partitioning will lead to an improvement (Bertsimas & Dunning, 2016).
Therefore, this process is repeated until some stopping criterion has
een met, such as a maximum amount of subsets or iterations.

Since the sequence of partitions is nested, and different cells are not
prohibited from using the same second-stage solutions, every previous
olution is also feasible for the subsequent partitions. It follows that
ith this partitioning scheme, the optimal solution can never deterio-

ate, only improve across iterations. The algorithm will thus, in every
937 
iteration, provide an increasingly adaptable solution, such that the
ecision-maker may stop the algorithm at any time according to their
ssessment.

When partitioning as described in algorithm 3, every iteration yields
𝑚 new cells in each of the former cells, one for each active parameter,
so that in iteration 𝑡 we obtain 𝑚𝑡 cells. To decelerate this fast growth in
cell numbers, one simple modification, suggested in Bertsimas and Dun-
ning (2016), suffices: We place a condition on the re-partitioning of a
cell 𝑘. The cell is only partitioned further if it is active, i.e., its objective
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Fig. 14. Observable objective value relative to the static solution for different combinations of pc and 𝐾.
i

𝑧𝑘 equals the optimal objective of (5a), that is if 𝑘 = argmax𝑘=1,…,𝐾 𝑧𝑘.
ith this condition, the increase in the number of cells is roughly

linear, as empirically observed in Section 4, and the iterative improve-
ents of the objective values remain almost unchanged. Since now the

bjectives of all cells 𝑧𝑘, 𝑘 = 1,… , 𝐾, gain importance, as opposed to
nly the worst one (i.e, cell 𝑘 = argmax𝑘=1,…,𝐾 𝑧𝑘), we motivate the

odel to minimize all 𝑧𝑘 (and not only the worst one) by adding a

938 
term containing all 𝑧𝑘 to the objective constraint (5b):

𝑧 ≥ 𝑧𝑘 + 𝜀
𝐾
∑

𝑘=1
𝑧𝑘, 𝑘 = 1,… , 𝐾 .

The weight 𝜀 hereby secures robustness in the traditional sense, that
s, the optimization of the worst case, by discounting the sum, thus

making the model prioritize the worst-case objective. To this end, for
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𝑙 = argmin𝑘=1,…,𝐾 𝑧𝑘, we choose 𝜀 > 0 such that 𝜀∑𝐾
𝑘=1 𝑧𝑘 < 𝑧𝑙, or

𝜀 < 𝑧𝑙 ⋅
( 𝐾
∑

𝑘=1
𝑧𝑘

)−1
< 𝑧𝑙 ⋅

( 𝐾
∑

𝑘=1
𝑧𝑙

)−1
=

𝑧𝑙
𝐾 ⋅ 𝑧𝑙

= 1
𝐾

(18)

throughout the algorithm. Thus, for any upper bound 𝐾 ′ of 𝐾, we may
set 𝜀 = 1

𝐾′ .
For a continuous uncertainty set, this algorithm is not guaranteed

o converge in a finite number of iterations, even if the completely
adaptable solution is better than the static one and attainable with
 finite partition (see Bertsimas and Dunning (2016), Proposition 3
or a counterexample). The benefits of this algorithm lie mainly in its
bility to approximate the optimal completely adaptable solution by
eans of the hierarchical adaptability it offers. Too many cells equal

he completely adaptable solution, which we want to avoid, but too
ew cells may not significantly improve the objective with respect to
he static formulation. Navigating between these two extremes permits
ne to optimize the trade-off between efficiency and effectiveness
ccording to the decision-maker’s priorities. As a downside, the exact
alue of 𝐾cannot be chosen beforehand but is instead determined by
he algorithm. In addition, it can only be increased in steps of 𝑚, which,

in our context, is usually a large number.

Appendix B. Additional results

This appendix contains some additional graphical representations of
the results from the computational study in Section 4 (see Fig. 12).
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