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Abstract. Reinforcement learning (RL) is used for finding optimal poli-
cies for agents in respective environments. The obtained policies can 
be utilized in decision support, i.e. suggesting or determining optimal 
actions for different states or observations in the environment. An actor-
critic RL method combines policy gradient methods with value functions, 
where the critic estimates the value function, and the actor updates the 
policy as directed by the critic. Usually, the utility is the policy learned by 
the actor. However, if the environment is defined accordingly, the approx-
imated value function can be used to assess, e.g., an optimal solution for 
placing military units in an operational theatre. This paper explores the 
use of the critic as the primary output as a decision-support tool, pre-
senting an experiment in a littoral warfare environment. 
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1 Introduction 

Optimal decision-making [ 5] aims to find the best available action for the 
observed situation or state, w.r.t. the result of the action that is measured with 
some reward mechanism. In a military context, a frequently occurring example is 
the positioning of resources w.r.t. the estimated course of action of the opposing 
side. 

If the operational environment is formulated into a computable form, such 
as a Markov decision process (MDP) [ 17], partially observable MDP (POMDP) 
or a stochastic game [ 16], reinforcement learning algorithms can be used to find 
optimal policies in said environment. 

A warfare scenario can be formulated as a partially observable stochastic 
game (POSG) to mirror the uncertainties related to warfare. Partial observabil-
ity is integral to warfighting, as at least opponents’ plans, force composition and 
factual capabilities are typically concealed and thus only partially observable. 
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The uncertainties related to weather and atmospheric phenomena, human error, 
technical malfunctions and unreliabilities induce stochasticity in the environ-
ment. 

Additionally, warfighting usually consists of multiple units on both sides. 
As such, the POSG can be perceived as a multi-agent reinforcement learning 
(MARL) [ 1] problem. While RL aims to optimize an agent’s policy, MARL has 
several agents with cooperating or competing policies or both. A warfighting 
scenario between two sides and several units can be perceived as a multi-agent 
POSG where two sides compete by trying to optimize their cooperative policies. 

Actor-critic algorithms [ 17] use  a  critic to approximate the value function 
and guide the updates on the policy conducted by the actor. Usually, the result-
ing actor policy is the desired end state of the algorithm, as the policy guides the 
agents to select optimal actions for the states it observes. However, if a warfight-
ing scenario is formulated as described above, the resulting value function can 
produce numeric values for different battlefield situations to support planning 
and decision-making without following a strict policy. 

While a MARL policy can be used to guide decision-making with direct action 
selection, doctrines necessitate human decision-making. Action selection can be 
done under supervision, but leveraging the value function for tactical scenario 
evaluation is practical in combining multiple policies and providing insight into 
the underlying state space values. 

2 Earlier Research 

To evaluate battlefield situations and to predict outcomes, Dupuy [ 4] created the 
Quantified Judgement Analysis (QJM) model to predict the outcomes of future 
battles based on analysis of historic battles. The QJM model enables analyzing 
the parameters and factors that have influenced the results. 

RL and semi-Markov decision problems have been examined by Mattila et 
al. [ 9] regarding fighter aircraft maintenance under conflict conditions, obtaining 
policies that optimize maintenance based on aircraft states. 

Review by Rempel et al. [ 14] examines approximate dynamic programming 
applications within military operations research, viewing Markov decision pro-
cesses in dynamic programming and approximate dynamic programming (ADP), 
listing seventeen articles on ADP within military operations research from 1995 
to 2021, encompassing application areas of investing and planning, force struc-
ture analysis, personnel sustainment, situational awareness, missile defence, air 
combat, battlefield strategy, airlift, weapon target assignment, combat medical 
evacuation, illegal fishing patrols, and inventory routing. Out of the reviewed 
articles, Sztykgold et al. [ 18] is closest to the subject of decision support, as they 
have examined assisting a military decision-maker in battlefield tactics by mod-
elling a conflict as a game and using multi-valued graphs to find an optimal path 
given the uncertainty related to enemy movements and actions. In brief, Sztyk-
gold et al. have modelled the battlefield as nodes and vertices. Armies can either 
move or fire, and the mission is represented by a location to be reached within
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a specific time while preserving some minimum strength ratio between friendly 
and opposing armies. Using an algorithm based on temporal difference learning, 
i.e. .TD(λ), the authors found experimentally that the algorithm returned an 
optimal control in more than 84% of trials in a simple scenario of 16 vertices 
and a 1:2 strength ratio between enemies and allies. 

The proposed solution shares the same idea as spatial decision analysis [ 6], 
where the decision-makers task is aided by evaluating alternative consequences 
that vary over a spatial region. The underlying problem foundation is the same, 
as most military problems involved with force projection and decision-making 
deal with issues of different possibilities and likely outcomes depending on the 
spatial region. 

While the aforementioned research shares a similar goal of supporting 
decision-making with quantified analysis, to our best knowledge, there are no 
attempts to utilize the critic from actor-critic algorithms in evaluating the state 
space post-training. 

The contribution of this paper is in examining the use of the critic function 
and proposing a framework to enable quantifying the values of different states 
in the environment without following a certain policy per se. 

The optimal solution for the formulated problem is an agent that can gener-
alize and adapt to changing opponent force composition, tactics and operational 
goals. As the critic functions solely as a bootstrapping method [ 17] to guide the 
learning process, there is no intuitive need to utilize it as we propose. 

However, general and complex agents’ decision-making is not transparent, 
and thus using the agents’ suggestions to guide the DMP can be difficult. Instead, 
using the approximated value function enables us to estimate how an aggregated 
global value function perceives the formulated state space comprehensively and 
transparently. The underlying tactical optimality can be assessed by having the 
sub-models that produce measurable and visualizable policies, i.e. tactics. Simply 
aggregating the working policies can, however, lead to unpredictable results. 
Instead, aggregating the approximated value functions allows the production of 
a decision-making support tool that evaluates the selected battleground against 
a partially unforeseen i.e. unobservable opponent and its tactics. 

This paper extends the state-value approach of tabular reinforcement learn-
ing methods [ 17] to more complex environments while producing a similar solu-
tion. 

3 Environment Evaluation Framework 

The use of value functions in optimal decision-making in itself is nothing new. 
Value function methods are also integral in RL, where the value of each state 
or state-action pair is learned to guide the choice of the next action. In a large 
discrete or continuous state space, the thorough exploration of the state-value 
space is infeasible; therefore, value function approximation is used. In deep RL, 
a neural network is used to approximate the value function to produce an agent 
that can select favourable next actions.
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In warfighting, the command plans the operation by assessing different 
courses of action. The knowledge base and tactical insight guide the drafted 
alternatives, which are evaluated to select the course of action that is perceived 
as optimal w.r.t. the mission objective and available resources. A fundamental 
subproblem is positioning the available resources, i.e., units, in the operation 
area. It is not trivial to formulate the tactical insight that identifies and takes 
into consideration all the factors involved in the positioning of units. 

In a recent MARL experiment [ 20], a simplistic POSG was solved with 
MARL, producing alternative courses of action. Due to the non-stationarity and 
stochastics, the results may deviate from known tactical principles to a great 
extent. Therefore, instead of utilizing the learned policies, the learned value 
function can be used to estimate the solutions proposed by human decision-
makers, enhancing the tactical decision-making in the same manner as the critic 
guides the actors learning in actor-critic algorithms. 

The warfighting POSG with multiple agents with different policies can be 
formulated as .[Sn, Ak, Pe, Pa, R] where .Sn denotes the possible states in the 
environment, .Ak the actions available for the agents, .Pe the stochastic changes 
in the environment, .Pa the probabilities of successful actions and . R denotes the 
joint reward. In a game with two sides, the agents . B and . O have respective states 
and available actions for each agent. The agents produce joint observations, 
i.e. the observations are shared between agents on the same side. The actions 
are chosen with a transition function, which determines the action based on 
joint, partial observations. When formulating a warfighting scenario, the goal is 
to defeat the opponent; the victory can be anything from avoiding contact to 
annihilation of opposing forces. The threshold for victory has to be decided to 
formulate the reward function to utilize RL. 

The key difference between learning the value function explicitly and lever-
aging an actor-critic model critic is the dual purpose: the learned policy can be 
evaluated in itself, while the value function can be used to estimate the value 
of static, one-shot battlefield situations that either comply or differ from the 
learned policy. The evaluation of the policy can amplify the decision-makers 
perception of the quality of the found solution, and the value function can be 
used to estimate the ideas of the decision-maker that deviate from the found 
solution. 

The use of the approximated value function requires that the input of the 
value function is aligned with the purpose. To evaluate the combined value of 
unit positions, the critic input needs to consist of the combined state space of the 
agents that also represents the state space used in planning. Hence, the global 
state .sg =

[
s1, s2, · · · , sn

]
where .s1, · · · , sn ∈ S are local states of the . n agents. 

Otherwise, if the critic uses sole local states as input, it can be used to evaluate 
individual positions without regard for one another. Other information the critic 
uses in approximating the value function must not conflict with the purpose, i.e. 
other relevant information can be zeroed if no data is available. 

For example, we formulate the environment as a game grid which depicts 
the chosen battlefield. In a MARL setting, both sides are trained to engage one
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another to reach a victory. The resulting policy of the training is the tactical 
solution, which represents one available course of action. The decision-maker 
can decide to utilize the policy to plan the operation as directed by the policy, 
but instead, we propose to use Monte Carlo (MC) [ 11] methods to produce a 
decision-making solution for the environment. 

An issue arises in the exploration of the state space and generalization to 
unpredicted or new situations. If the algorithm converges to a solution without 
thoroughly exploring the state space, the value function is not able to support 
the decision-maker extensively. Likewise, the decision-maker may be unsure of 
the opponent’s force composition, goal and tactics. Assuming that the strategies 
of both sides reach a Nash equilibrium [ 12] excludes this problem. Still, the 
assumption of Nash equilibrium in the complex and continuous environment of 
warfighting can be deemed unrealistic. Additionally, the agent model needs to be 
complex to be able to generalize to multiple scenarios and tactics. Complexity is 
computationally expensive, often non-explainable [ 2] and the exploration issue 
persists. Aggregation methods used in Federated learning (FL) [ 7,10] can  be  
utilized as a solution. In a federated learning framework, the local models are 
aggregated into a global model through, e.g., averaging model parameters over 
several agents. Thus, a general policy can be formed between several differing 
policies. However, an averaged tactical policy solution may be unpredictable and 
consist of aggregating inconsistent, even opposing policies. 

Fig. 1. Proposed framework 

Therefore, we suggest that a decision-making support tool is aggregated by 
using FL aggregation methods to combine multiple different value functions into 
a global value function, which is then used to produce a mapping of the values of 
different states in the environment. The semantic process is described in Fig. 1. 
The different value functions should represent the diverse scenarios that reflect 
the uncertainty regarding the opponent. As an example, the value functions may 
be by-products of a landing operation scenario, an air raid and a surface warfare 
encounter.
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4 Aggregated Decision-Making Process Critic 

4.1 ADMP-Critic Algorithm 

The proposed solution, labelled as ADMP-Critic (Aggregated Decision-Making 
Process Critic), consists of using an actor-critic algorithm such as DDPG [ 8] or  
PPO [ 15] to find working policies in the environment, aggregating the resulting 
critics and producing a mapping of the values of the environment state space. 
This process is represented in the following Algorithm 1. 

Algorithm 1. Aggregated DMP-Critic 
PHASE 1 
Initialize φg 

for i ∈ scenarios do 
Initialize θi and φi 

Train θi and φi with chosen algorithm 
Append Φ ← φi 

end for 

PHASE 2 
Assign weights wi for aggregation 
for φi ∈ Φ do 

Aggregate φg + wiφi 

end for 

PHASE 3 
Initialize value grid X 
for m iterations do 

Sample sn ∈ S with p ∼ U (S) 
Concatenate global state Sg 

v = φg(Sg) 
for positiona ∈ sa do 

X[position]+ = v 
nagents 

end for 
end for 
Process X to usable format 

In Algorithm 1, the global model .φg is initialized with model weights set to 
zero. Then, actor . θi and critic .φi networks are trained according to a chosen algo-
rithm in every chosen, plausible scenario enabled by the reinforcement learning 
environment. For consistency, the training should be performed multiple times 
for each environment to minimize the effect of stochasticity on the results. 

After the local models have been trained, the aggregation weights .wi are 
assigned according to decision-maker preference. The aggregation can average 
over the number of local models so that .wi = 1

|Φ| where . Φ denotes the set of
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local models. Optionally, the decision-maker can assign specific weights to high-
light the importance of a certain scenario. Other FL methodologies for aggrega-
tion [ 7,13] are also applicable. It is however important to notice that solely the 
aggregation is regarded in this problem formulation. The whole FL framework 
of interacting agents and continuous updates of global and local models is not 
applicable unless applied to a dynamic solution setting. For now, the proposed 
framework aims to enhance a planning process instead of a dynamic coordination 
of live operations. 

Once the global model, i.e. the general value function has been aggregated, 
it outputs the value for states in the environment w.r.t. decision-makers bias. 
The global model is used to map the values to produce a suggestion for optimal 
locations in the environment w.r.t. previous assumptions. 

The value estimation can be executed in a manner that suits the environment. 
While actor-critic algorithms are suited for continuous action spaces, the state 
space may be continuous, discrete or discretized. For environments with a finite 
and relatively small state space, the solution can be calculated combinatorially 
by creating a set of all possible agent state spaces and passing the set to the value 
function. In a large discrete state space or continuous state space, the mapping 
can be produced with MC simulation. In Algorithm 1, the MC sampling is done 
with uniform distribution over all possible states in the spatial region. The MC 
produces, in essence, a probability distribution mapped over the environment 
terrain. The probability distribution functions as the decision-making support 
tool for the decision-maker to analyze the probable value of positioning available 
units to encounter the opponent. 

Other methods for value mapping can also be used, such as search algorithms, 
given that initial locations are known or given. Then, the global value model can 
be used to find the spatial region with the highest value. 

4.2 Assumptions 

The proposed algorithm has several assumptions regarding the environment, 
agent observations, formulation of global state space and other features. The 
proposed algorithm functions with any MARL environment, but it is useful only 
if there exists a need to determine the approximated value of different spatial 
states in the environment w.r.t. known and unknown variables. When the vari-
ables with unknown values are neglected, the resulting value function mappings 
evaluate the perceived situation w.r.t. available information. The evaluation is 
based on the combined experience learned by the aggregated agent policies. 

For the proposed use case, the agent observations need to include at least the 
unit’s position in the state space. The global state has to include the position 
of all units. Other unit observation features enrich the local and global state 
spaces. These also increase the complexity of the value mapping if included in 
the MC simulation. 

The value function approximation assumes that the environment rewards 
are calculated with the Bellman equation [ 3], in which the value of a state is



148 L. Vasankari and K. Virtanen

dependent on the succeeding state and its value. With this dependency, the 
state values reflect the cumulative, discounted values over succeeding states. 

4.3 Experiment 

To demonstrate the use of the proposed algorithm, this paper uses a littoral 
warfare RL environment [ 19]. The environment comprises a .100×100 game grid 
resembling the Baltic Sea, where multiple units on two sides engage in littoral 
surface combat. The tactical goals and unit compositions can be altered, from 
landing operations to areal control. The state and action space are initially 
partially discrete and non-discrete values are discretized for action execution. 

Utilizing a littoral warfare environment and agents trained with MAPPO [ 21], 
the Algorithm 1 was used to produce the value mapping visualized in Fig. 2. 

Fig. 2. A visualization of the global critic mapping of the state space 

Figure 2 displays the value of each grid cell in the environment as the cumu-
lative sum of value produced by the global critic, i.e. .vcell =

∑n
i=1 φg(sgn

) · 1
m , 

where .m is the number of agents involved, . n is the number of occurrences in MC 
iterations and .sgn

∈ U(states) meaning that the states are uniformly sampled 
from the whole state space. 5000 MC samples were drawn for the visualization 
in Fig. 2. The resulting value grid was then pooled with a maximum value over 
.4 × 4 kernel to make the result easier to interpret: max pooling is an operation 
that calculates the maximum value for a patch of data, in this case, the . 4 × 4
grid area. Another solution is to use average pooling. Figure 2 shows that there 
are several locations with higher values, displayed in reddish and white, reaching 
values . ≈0.4. The relevance of the results is improved in linear correlation with 
the amount of samples produced. 

Figure 1 solely represents the value mapping, where infeasible locations in the 
environment map produce zero values and applicable areas differing, codepen-
dent values. The idea of the ADMP-Critic is to highlight that, in this case, there 
are at least 3 locations in the area that produce a higher value than the rest. For
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tactical decision-making purposes, the regions with higher values are, according 
to the aggregated value function, most suitable for force projection to yield a 
positive outcome in an upcoming confrontation. In other words, the decision 
maker can use such a mapping to guide the planning process and iterate over 
the high value regions when contemplating the preferred tactical approach. The 
selection of high-ranking areas can be done with, e.g., top-k sorting to match 
the use case in the planning process. 

Fig. 3. A visualization of the value map with regard to designated unit areas and map 
features 

Figure 3 displays a similar visualization but now concerning specific unit 
areas of responsibility and the actual map area. The value mapping is produced 
with Monte Carlo sampling over a simplified Baltic Sea map. Each of the three 
units can be positioned within a specified distance from its original position, and
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the value of the positioning of all three units is then calculated with the aggre-
gated global value function. In this case, the values result from 100,000 sampling 
rounds, where the highest values are saved for a particular combination of unit 
positions. Other state space variables were static, except for radar transmission, 
which had an equal probability of being on or off. As Fig. 3 shows, while the areas 
of responsibility overlap, it is favorable to place units to the western side, or fur-
ther east, and mainly as north as possible. This correlates with the depiction of 
Fig. 2. In order to be useful, the output can be, e.g., a pooled coordinate area 
suggestion for each unit instead of the value mapping. Likewise, the decision-
maker can guide the value determination by providing additional information 
for the calculation, such as radar transmission rules, other available assets et 
cetera. Combining expert insight reduces combinatorial complexity, resulting in 
more precise and applicable results that reflect the decision-maker’s intuition. 

Additionally, once the top-k areas have been identified, these can be re-
examined combinatorically to determine which combinations of locations are 
most favourable. The crude mapping considers only the fact that these locations 
have been a part of some formation that in itself produced a high value. Addition-
ally, max pooling reduces data, as nearby positions may have had considerably 
lower values. 

As a result, the decision-maker can be supported with visualization and areal 
suggestions for force positioning. ADMP-Critic enables an explainable tool that 
quantifies the stochastic environment into a format suitable for initial planning 
without extensive information on the particular upcoming situation. 

5 Discussion 

This paper proposes a way to aggregate several value functions into a global 
value function. The global value function is used in creating a static state-value 
mapping of the problem area to determine the spatial states most likely to result 
in a high return value. 

As RL reward engineering plays a crucial role in the agents’ learning process, 
leading to different policies w.r.t. goal setting and additional rewards, the pro-
posed method can be used to average these differences into a common state-value 
mapping. The mapping produces insight into the environment and its possibil-
ities as a weighted projection of different reward functions. In other words, the 
proposed solution allows the detection of spatial states that have a high value 
under different reward functions or locally optimal policies or exposes the lack 
thereof. 

The solution is essentially a shortcut to avoid the non-stationarity charac-
teristic of MARL [ 1] and to combine several possible solutions into one value 
function and one state-value mapping. This approach is chosen instead of increas-
ing the complexity of the model, to enhance explainability. The solution aims 
to allow optimization with MARL and leverages the agent’s exploration of the 
state space w.r.t. the problem formulation in a computationally feasible manner.
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However, the spatial value mapping explainability is still dependent on base 
model explainability, i.e., it enables an interpretable decision-support mecha-
nism but the model policy behind the value mapping can remain obscure. The 
explainability depends on the ability of the decision-maker to explain the result 
w.r.t. the problem. 

6 Conclusion 

We proposed an extended use of actor-critic algorithms in evaluating the state 
space of complex reinforcement learning domains to increase the explainability 
of the found solutions. The proposed algorithm functions as a decision-making 
support tool by quantifying spatial positioning within the formulated environ-
ment. While this paper did not produce baseline results to compare with exist-
ing RL and MARL methods, the approximation of a critic value function allows 
for flexibility in evaluating several, possibly conflicting policies in determining a 
weighted solution to provide insight when facing uncertainty in decision-making. 
In the future, the method is supposed to be evaluated in a qualitative manner in 
a military exercise scenario, where the decision-makers can utilize the solution 
and evaluate its impact on their planning process. 

The use case was driven by military decision-making, as many tactical mil-
itary decisions are related to troop and unit positioning within the operational 
theatre against an opponent which is, at best, only partially observable in its 
goals, force composition and tactics. Despite having roots in military decision-
making, the use of aggregated value functions can be applied to other fields 
where the selection of an optimal policy is hindered due to conflicting, alternate 
courses of action while facing uncertainty regarding the opposing policy. 
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