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Abstract

We examine carbon-policy design for a power
system with energy storage as well as renewable
and fossil-fuelled generation. A central-planning
solution internalises the environmental externality of
CO2 emissions and curbs fossil-fuelled generation in
proportion to the marginal cost of damage. By contrast,
a decentralised solution leads to a bi-level setup—an
upper-level welfare-maximising policymaker sets a
CO2 tax to impose upon lower-level profit-maximising
generators. For completely efficient storage, an
optimal CO2 tax in this bi-level setting renders the
first-best outcome. However, with inefficient storage,
an infinitesimal increase in the CO2 tax induces prices
to increase at the same rate. As a result, storage shifts
energy to the off-peak period to offset the loss in the value
of stored energy. Hence, relative to the marginal cost
of damage from emissions under central planning, the
optimal CO2 tax for the decentralised case is lower and
may be nonmonotonic in energy storage’s inefficiency.

Keywords: Bi-level optimisation, carbon policy, game
theory, renewable energy, energy storage.

1. Introduction

Several OECD countries have adopted initiatives to
decarbonise their power sectors and to facilitate the
electrification of their broader economies. Examples
of such legislation include the EU’s Green Deal1 and
the U.S. Inflation Reduction Act of 2022.2 While they
differ in scope, such packages typically aim to support
renewable-energy technologies such as wind and solar
power. Due to their intermittent output (Newbery, 2023),
renewables require variability management, e.g., flexible

1https://www.consilium.europa.eu/en/policies/green-deal/ 
2https://www.congress.gov/bill/117th-congress/house-bill/5376

generation and demand response, to integrate them into
the power system. In this context, energy storage can
also serve as a means to balance renewable generation
but faces market and regulatory barriers that affect its
operations by private entities in decentralised electricity
industries (Sioshansi et al., 2012).

Given that a decarbonising power sector based
on renewable energy will rely upon energy storage
and flexible generation for variability management,
carbon policy will have to evolve to ensure that
fossil-fuelled generation does not exacerbate
environmental externalities. While the literature
examines the impact of carbon taxation on market
equilibria (Downward, 2010; Hassanzadeh Moghimi
et al., 2023), it typically does not endogenise how
policy is determined. For example, Debia et al. (2019)
demonstrate that storage-enabled renewable output in
a decentralised industry with fossil-fuelled generation
has the incentive to oppose exogenous improvements
to storage efficiency. Intuitively, more efficient storage
enables greater transfer of energy from the off-peak to
the peak period, which enhances social welfare and
reduces CO2 emissions. Yet, after storage efficiency
reaches a critical threshold, the renewable generator’s
profits actually decrease in storage efficiency because
there will be “too much” energy available in the peak
period, thereby depressing the peak price and causing
renewable output to be diverted to the off-peak period.
Here, a higher exogenous CO2 tax on fossil-fuelled
generation may better align private and social incentives
by limiting the shift of renewable generation to the
off-peak period due to improved storage efficiency.

Ideally, a welfare-maximising policymaker
anticipates industry’s response when setting carbon
policy to maximise social welfare inclusive of the cost of
environmental externalities (Barnett, 1980). This marks
our point of departure from the extant literature: we
investigate how carbon-policy design in a deregulated
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electricity industry leads to market outcomes that are
fundamentally different from those in a centrally planned
industry, especially if storage is not completely efficient.
In particular, we expand the game-theoretic framework
of Debia et al. (2019) to allow for a policymaker that acts
as a Stackelberg leader vis-à-vis industry in setting the
CO2 tax endogenously. We prove that the optimal CO2

tax in a decentralised industry is always lower than the
marginal cost of damage from emissions under central
planning. Indeed, in contrast to central planning, the
CO2 tax is unable to internalise perfectly the temporal
rate of environmental damage from fossil-fuelled
generation. Consequently, CO2 taxation’s immediate
impact is to shift storage-enabled renewable generation
to the off-peak period, which necessitates lowering the
CO2 tax relative to the marginal cost of damage under
central planning. Finally, while the marginal cost of
damage under central planning monotonically increases
with storage inefficiency, a CO2 tax in a decentralised
industry may actually decrease in storage inefficiency to
avoid exacerbating temporal distortions to operations.

The remainder of this paper is structured as
follows. Section 2 details the modelling framework
and underpinning assumptions. Section 3 obtains the
first-best solution for the ideal benchmark of a centrally
planned electricity industry, while Section 4 derives the
result using a bi-level approach for the decentralised
case. Numerical examples in Section 5 illustrate the
main insights, and Section 6 summarises the findings
and offers new directions for research. All proofs of
propositions are in the Appendix.

2. Framework for Analysis
Our ultimate goal is to understand the interplay

between carbon policy and the decisions of
profit-maximising energy storage. To this end,
we examine a Stackelberg leader-follower, i.e., bi-level,
model (Gabriel et al., 2013) to determine the optimal
CO2 tax in a decentralised setting. We contrast this
decentralised case to a first-best central-planning solution
to distil how optimal carbon policy and resultant carbon
emissions compare between the two cases. We take
a stylised approach to address our research objective
and to make the results amenable to comparative statics
(Sioshansi, 2010).3 As is common in the literature, we
use two representative time periods, j = 1, 2, with j = 1
being a low-demand, low-price off-peak period, and
assume no uncertainty in either demand or generation.

Electricity consumers are represented passively by a
linear inverse-demand function, Pj(qj) = Aj − qj [in

3Comparative statics permit the decomposition of complex
interactions among the model’s attributes, whereas a more detailed
model that is solved numerically provides only plausible explanations
for such connections (Zhou et al., 2011).

$/MWh], where Aj > 0 [in $/MWh] and qj [in MWh]
is quantity consumed. The slope of the inverse-demand
function [in $/MWh2] is normalised to 1. Aj is the
consumers’ maximum willingness to pay for electricity
during period j. Market clearing is implicit, i.e., qj
equals total electricity generation.

Electricity supply consists of (i) energy storage
that is coupled with a renewable generator (ESR) and
(ii) a fossil-fuelled generator. Both generators are
assumed to be price-taking profit-maximising agents.
ESR has no explicit cost but faces a limited given
stock of resource, D > 0 [in MWh], contained in
its energy storage that it must allocate between the
two periods. ESR output during period j is xj [in
MWh], and F > 1 is a unitless constant that denotes
the inefficiency of energy storage. Thus, the ESR’s
resource-allocation constraint is x1 + Fx2 = D, where
we assume that the entire stock of the ESR resource
must be utilised fully. The period-j cost of fossil-fuelled
generation is 1

2Cy2j , where C > 0 [in $/MWh2] is the
marginal-cost rate of fossil-fuelled generation and yj [in
MWh] is period-j fossil-fuelled generation. This cost
function reflects increasing marginal fuel consumption
by the fossil-fuelled generator, e.g., due to diminishing
efficiency of a single plant or to varying efficiency of a
portfolio of plants. The social cost of damage from CO2

emissions is 1
2K

(
y21 + y22

)
, where K > 0 [in $/MWh2]

is the marginal-cost rate of damage. This damage
function captures the increasing marginal fuel use of
the fossil-fuelled plant as reflected by its cost function.
We assume implicitly that fossil-fuelled generation has a
CO2-emission rate of 1, and ESR use is emission free.

Under a benchmark central-planning (CP) setting, a
single welfare-maximising entity determines generation
directly, while taking account of the externality from
CO2 emissions. Thus, while there is no need to impose
a CO2 tax, the implied CO2 tax, zCP, can be calculated
ex post as the marginal cost of damage (MCD) from

total CO2 emissions, i.e.,
K(yCP

1 +yCP
2 )

2 . By contrast,
the decentralised setting with perfect competition (PC)
leads to a policymaker at the upper level that sets a
welfare-maximising CO2 tax, zPC, in anticipation of
industry’s output at the lower level.4 At the lower
level, each generator takes the CO2 tax as given when
maximising its profit, thereby giving a bi-level problem.5

Based on Debia et al. (2019), we make the following
assumptions to ensure interior solutions under CP:

Assumption 1. (F−1)A2

F 2+1 < A1 < A2

F

4Under perfect competition, the ownership of assets would not
affect the lower-level equilibrium outcome.

5In either the CP setting or the lower level of the PC setting, the
resulting problem will be convex.
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Assumption 2. A1 +A2 ≤ D < A1 + FA2

Assumption 3. Aj > 0, j = 1, 2

Assumption 4. C > 0

Assumption 5. D > 0

Assumption 6. F > 1

Assumption 7. K > 0

The intuition that underlies each of the
aforementioned assumptions is as follows. Assumption 1
formalises that period 2 is the peak one while ensuring
that period 1’s maximum willingness to pay is not

“too low.” It is coherent in the sense that (F−1)
F 2+1 < 1

F .
Assumption 2 formalises that the stock of ESR is
neither “too much” nor “too little.” It ensures also that
D > F (A2 − FA1) because A1 > (F−1)A2

F 2+1 from
Assumption 1. Assumptions 3–7 state that the maximum
willingness to pay is positive, fossil-fuelled generation is
costly, ESR stock is positive, energy storage is inefficient,
and CO2 emissions incur a social cost of damage.

3. First-Best Benchmark: Central
Planning

Under CP, a single welfare maximiser makes all
decisions via the following quadratic program (QP):

maxxj≥0,yj≥0

2∑
j=1

Aj (xj + yj)−
1

2

2∑
j=1

(xj + yj)
2

−1

2
(C +K)

2∑
j=1

y2j (1)

s.t. x1 + Fx2 = D : µ (2)

Eq. (2) enforces full ESR utilisation with a corresponding
shadow price of µ. Eq. (1) comprises consumer surplus
(CS), producer surplus (PS), and damage cost (DC).6

6The welfare components are defined as follows:

• CS is the gross benefit to consumers from electricity
consumption,

∑2
j=1 Aj (xj + yj) − 1

2

∑2
j=1 (xj + yj)

2,

minus the cost of electricity purchased,
∑2

j=1 pj (xj + yj),
where pj is the equilibrium price in period j.

• PS is the revenue from electricity sales for the ESR producer,∑2
j=1 pjxj , plus the revenue from electricity sales for

the fossil-fuelled producer,
∑2

j=1 pjyj , less the cost of

fossil-fuelled generation, 1
2
C

∑2
j=1 y

2
j .

• DC is the social cost of damage from CO2 emissions,
1
2
K

∑2
j=1 y

2
j .

Because the cost of electricity purchased by the consumer,∑2
j=1 pj (xj + yj), cancels with the revenue terms accruing to

the generators,
∑2

j=1 pjxj +
∑2

j=1 pjyj , social welfare may be
expressed as in (1).

Since (1)–(2) is a convex optimisation problem, it
may be replaced by its Karush-Kuhn-Tucker (KKT)
conditions for optimality:

0 ≤ x1 ⊥ −A1 + (x1 + y1) + µ ≥ 0 (3)
0 ≤ x2 ⊥ −A2 + (x2 + y2) + Fµ ≥ 0 (4)
0 ≤ y1 ⊥ −A1 + (x1 + y1) + (C +K) y1 ≥ 0 (5)
0 ≤ y2 ⊥ −A2 + (x2 + y2) + (C +K) y2 ≥ 0 (6)

µ free, D − x1 − Fx2 = 0 (7)

Eqs. (3)–(7) are sufficient for a global optimum because
we have a convex QP. We solve (3)–(7) analytically to
yield interior solutions, cf. Assumptions 1–2:

xCP
1 =

D + F (FA1 −A2)

F 2 + 1
(8)

xCP
2 =

FD +A2 − FA1

F 2 + 1
(9)

yCP
1 =

A1 + FA2 −D

(C +K + 1) (F 2 + 1)
(10)

yCP
2 =

F (A1 + FA2 −D)

(C +K + 1) (F 2 + 1)
(11)

µCP =
(C +K) (A1 + FA2 −D)

(C +K + 1) (F 2 + 1)
(12)

zCP =
K (F + 1) (A1 + FA2 −D)

2 (C +K + 1) (F 2 + 1)
(13)

Eq. (13) is obtained implicitly by inserting yCP
1 and yCP

2

into the expression for MCDCP =
K(yCP

1 +yCP
2 )

2 .
Figure 1 is a “bathtub diagram” (Førsund, 2015) of

the ensuing first-best solution under CP. From origin O,
period-1 (period-2) decisions are indicated to the left
(right). The dashed line that connects the points Aj on
the vertical and horizontal axes indicates the period-j
inverse-demand function. The utilisation of xCP

1 MWh of
ESR during period 1 leads to a residual inverse-demand
function faced by fossil-fuelled generation that has
its vertical intercept, A1, on the shifted vertical
axis to the right of O. At an interior optimum, (5)
reveals that the marginal benefit (MB) of consumption,
P1

(
xCP
1 + yCP

1

)
, equals the marginal cost (MC) of

generation, (C +K) yCP
1 , inclusive of the damage cost.

In a similar vein, if xCP
2 MWh of ESR output is allocated

to period 2, then the residual inverse-demand function
faced by fossil-fuelled generation has a vertical intercept,
A2, that is on the shifted vertical axis to the left of O. For
an interior solution, (6) equates the MB of consumption,
P2

(
xCP
2 + yCP

2

)
, to the MC of generation, (C +K) yCP

2 .
From the initial D-MWh stock, FxCP

2 MWh of gross
energy is allocated to period 2.
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Figure 1. Bathtub diagram of ESR and fossil-fuelled

operations under CP.

Given the solutions (8)–(13), Proposition 1 formalises
the impact of the marginal-cost rate of damage, K.

Proposition 1. ∂xCP
j

∂K = 0, j = 1, 2,
∂yCP

j

∂K < 0, j = 1, 2,
∂µCP

∂K > 0, and ∂zCP

∂K > 0.
In effect, an infinitesimal increase in the

marginal-cost rate of damage has no impact on
ESR operations because the immediate impact on the
price is proportional to the periodic price. Since the
period-2 price is F times as high as the one in period
1, cf. (3) and (4), there is no immediate gain from
increasing period-2 ESR output by a unit, which would
imply F fewer units of period-1 ESR output. Meanwhile,

the signs of
∂yCP

j

∂K , j = 1, 2, ∂µCP

∂K , and ∂zCP

∂K are all
intuitive because a higher environmental impact of CO2

emissions curbs fossil-fuelled production, increases the
equilibrium price (or, equivalently, the marginal value of
ESR-supplied energy), and boosts the implied CO2 tax.

As for comparative statics with respect to device
inefficiency, F , the findings follow straightforwardly
from Debia et al. (2019) as summarised by Propostion 2.

Proposition 2. ∂xCP
1

∂F < 0 if F < F̂CP, ∂xCP
2

∂F < 0, ∂yCP
1

∂F >

0 if F < F̂CP, ∂yCP
2

∂F > 0, ∂µCP

∂F > 0 if F < F̂CP, and
∂zCP

∂F > 0.
Intuitively, as energy-storage efficiency worsens,

i.e., F increases, period-2 ESR operations decrease
monotonically while period-2 fossil-fuelled generation
increases monotonically. By contrast, period-1 ESR
and fossil-fuelled production, as well as the marginal
value of energy storage are decreasing, increasing, and
increasing in F only for a relatively efficient storage
device, i.e., as long as F < F̂CP, where F̂CP > 1 is

the positive root of the characteristic quadratic function
Q̂CP (F ) = −A2F

2 − 2 (A1 −D)F + A2. This result
follows because the degrading of highly efficient energy
storage incentivises the preservation of the ESR stock
for use during period 2, which induces an increase in
period-1 fossil-fuelled generation to fill the ensuing gap.
Yet, the degradation of a relatively inefficient device
makes it not worthwhile to preserve the ESR stock
for use during period 2. As for the implied CO2 tax,
it is monotonically increasing in F because there is
ample ESR stock to warrant curbing total fossil-fuelled
generation.

Analogous expressions to (8)–(12) for a central
planner that ignores the social cost of carbon (UI) are
obtained by setting K = 0. Ignoring the cost of the
externality does not affect ESR output, i.e., xUI

j = xCP
j ,

but increases fossil-fuelled generation, i.e., yUI
j > yCP

j ,
and the associated damage cost vis-à-vis CP with a
concomitant social-welfare loss.

4. Decentralised Industry with Perfectly
Competitive Profit-Maximising Agents

Under PC, both ESR and the fossil-fuelled generator
act as price takers at the lower level when making
their electricity-output decisions. Both generators
take the CO2 tax as given but are ignorant of the
direct consequences of the social cost of damage from
CO2 emissions. At the upper level, the policymaker
acts as a Stackelberg leader when deciding upon the
welfare-maximising CO2 tax in anticipation of the
generators’ responses. We solve this problem via
backward induction by obtaining first a Nash equilibrium
at the lower level and subsequently inserting the
generators’ response functions into the policymaker’s
upper-level objective function.

4.1. PC: Lower Level

Given an arbitrary CO2 tax, z, each generator at the
lower level selects period-j output to maximise its profit:

maxxj≥0

2∑
j=1

[Aj − (xj + yj)]xj (14)

s.t. x1 + Fx2 = D : µ (15)

maxyj≥0

2∑
j=1

[Aj − (xj + yj)] yj

−1

2
C

2∑
j=1

y2j − z

2∑
j=1

yj (16)
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Because each lower-level problem, i.e., (14) s.t. (15)
for the ESR and (16) for the fossil-fuelled generator, is
convex and satisfies Slater conditions, it may be replaced
by its necessary and sufficient KKT conditions, viz.:7

0 ≤ x1 ⊥ −A1 + (x1 + y1) + µ ≥ 0 (17)
0 ≤ x2 ⊥ −A2 + (x2 + y2) + Fµ ≥ 0 (18)
0 ≤ y1 ⊥ −A1 + (x1 + y1) + Cy1 + z ≥ 0 (19)
0 ≤ y2 ⊥ −A2 + (x2 + y2) + Cy2 + z ≥ 0 (20)

µ free, D − x1 − Fx2 = 0 (21)

In contrast to CP, there is no direct impact of K on KKT
conditions (19)–(20).

Assuming interior solutions, we solve (17)–(21)
analytically to yield:

xPC
1 (z) = xPC

1 (0) + F (F−1)
C(F 2+1)z (22)

xPC
2 (z) = xPC

2 (0)− (F−1)
C(F 2+1)z (23)

yPC
1 (z) = yPC

1 (0)− [F (F−1)+C(F 2+1)]
C(C+1)(F 2+1) z (24)

yPC
2 (z) = yPC

2 (0) +
[(F−1)−C(F 2+1)]
C(C+1)(F 2+1) z (25)

µPC (z) = µPC (0) + (F+1)
(C+1)(F 2+1)z (26)

Eqs. (22)–(26), which characterise a lower-level solution,
are parameterised on z and follow straightforwardly from
the work of Debia et al. (2019). However, we express the
solutions in terms of the no-tax levels, which are:

xPC
1 (0) =

D + F (FA1 −A2)

F 2 + 1
(27)

xPC
2 (0) =

FD +A2 − FA1

F 2 + 1
(28)

yPC
1 (0) =

A1 + FA2 −D

(C + 1) (F 2 + 1)
(29)

yPC
2 (0) =

F (A1 + FA2 −D)

(C + 1) (F 2 + 1)
(30)

µPC (0) =
C (A1 + FA2 −D)

(C + 1) (F 2 + 1)
(31)

Note that xPC
1 (0) and xPC

2 (0) are identical to the
corresponding CP solutions, cf. (8)–(9). Conversely,
yPC
1 (0) and yPC

2 (0) differ from the corresponding CP
solutions, cf. (10)–(11), only by the factor, C+K+1

C+1 .

Likewise, µPC (0) differs from its corresponding CP

solution, (12), by the factor, C(C+K+1)
(C+1)(C+K) .

7Each producer acts as a price taker and ignores the impact of its
own production on the equilibrium price.

Based on the lower-level solutions, (22)–(26),
comparative statics with respect to an arbitrary z follow
straightforwardly from Debia et al. (2019) as summarised
by Proposition 3.

Proposition 3. ∂xPC
1

∂z > 0, ∂xPC
2

∂z < 0, ∂yPC
1

∂z < 0, ∂yPC
2

∂z >

0 if C < F−1
F 2+1 , and ∂µPC

∂z > 0.

Intuitively, the immediate impact of an infinitesimal
increase in the CO2 tax, z, is to increase the electricity
price by the same amount in each period. Thus, in
contrast to the finding under CP, here, it is worthwhile
for ESR output to shift towards period 1 because the
reduction of period-2 output by one unit will lead
to an extra F units of period-1 output. Otherwise,
fossil-fuelled generation tends to decrease in both periods
with the CO2 tax unless the marginal-cost rate is low,
which could lead to an increase in period-2 fossil-fuelled
generation to compensate partially for the shifted ESR
output. Finally, the marginal value of ESR stock
increases with the CO2 tax, which is in line with intuition.

The comparative statics of the lower-level solutions,
(22)–(26), with respect to F are not amenable to
straightforward analytical expressions as pointed out
by Debia et al. (2019). Thus, Debia et al. (2019)
attempt comparative statics only for the no-tax results,
(27)–(31). Consequently, the findings mirror the results
of Proposition 2, viz., period-2 ESR (fossil-fuelled)
generation decreases (increases) monotonically as
energy-storage efficiency degrades, whereas the other
results are nonmonotonic depending on whether F <
F̂CP or not. Thus, it may be anticipated that if a higher
K were to increase z and to reduce period-2 ESR supply,
then degradations to energy-storage efficiency would
further incentivise less period-2 ESR supply.

4.2. PC: Upper Level

The upper-level problem of the policymaker is to
select the CO2 tax, z, to maximise social welfare. It is
constrained by industry’s lower-level problems, (14) s.t.
(15) for the ESR and (16) for the fossil-fuelled generator,
which yields the bi-level formulation. Because each
lower-level problem may be replaced by its necessary
and sufficient KKT conditions, the bi-level problem
may be reformulated as a mathematical program with
equilibrium constraints (MPEC). By inserting the interior
solutions from the lower level, (22)–(26), parameterised
on an arbitrary z, we can subsequently tackle the
policymaker’s welfare-maximisation problem as the
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following single-level unconstrained QP:

maxz

2∑
j=1

Aj

(
xPC
j (z) + yPC

j (z)
)

−1

2

2∑
j=1

(
xPC
j (z) + yPC

j (z)
)2

−1

2
(C +K)

2∑
j=1

yPC
j (z)

2 (32)

Taking the first-order necessary condition for (32)
and assuming an interior solution, we obtain:

− A1 (F + 1)

(C + 1) (F 2 + 1)
− (F + 1)

2

(C + 1)
2
(F 2 + 1)

2 z

+

(
xPC
1 (0) + yPC

1 (0)
)
(F + 1)

(C + 1) (F 2 + 1)

−
(C +K)

[
F (F − 1) + C

(
F 2 + 1

)]2
C2 (C + 1)

2
(F 2 + 1)

2 z

+
(C +K) yPC

1 (0)
[
F (F − 1) + C

(
F 2 + 1

)]
C (C + 1) (F 2 + 1)

− A2F (F + 1)

(C + 1) (F 2 + 1)
− F 2 (F + 1)

2

(C + 1)
2
(F 2 + 1)

2 z

+

(
xPC
2 (0) + yPC

2 (0)
)
F (F + 1)

(C + 1) (F 2 + 1)

−
(C +K)

[
(F − 1)− C

(
F 2 + 1

)]2
C2 (C + 1)

2
(F 2 + 1)

2 z

−
(C +K) yPC

2 (0)
[
(F − 1)− C

(
F 2 + 1

)]
C (C + 1) (F 2 + 1)

= 0 (33)

The second-order sufficient condition is satisfied by
checking the sign of the second derivative of the objective
function, which is:

− (F+1)2

(C+1)2(F 2+1)2
− (C+K)[F (F−1)+C(F 2+1)]

2

C2(C+1)2(F 2+1)2

− F 2(F+1)2

(C+1)2(F 2+1)2
− (C+K)[(F−1)−C(F 2+1)]

2

C2(C+1)2(F 2+1)2
< 0 (34)

Hence, by solving (33), we obtain the optimal CO2 tax
under the decentralised setting, which is:

zPC = C2K(F+1)(A1+FA2−D)

C2(F+1)2+(C+K)[(2C+1)(F−1)2+2C2(F 2+1)]
(35)

Given zPC, Figure 2 provides a bathtub diagram,
which can facilitate understanding of the solution under
PC. The concept is similar to that in Figure 1 except that
now the social cost of damage from CO2 emissions is
not internalised directly. Instead, the tax on fossil-fuelled
generation merely shifts up the private MC during each
period, cf. (19)–(20).

Figure 2. Bathtub diagram of ESR and fossil-fuelled

operations under PC.

Based on the CP and PC solutions, (13) and (35), it
is possible to prove that (i) the optimal CO2 tax under
PC is lower than that under CP, (ii) the marginal value
of ESR stock under PC is lower than that under CP, and
(iii) the MCD under PC is higher than that under CP.
Propositions 4–6 formalise these results.
Proposition 4. zPC < zCP.

The result zPC < zCP in Proposition 4 indicates that
the implied CO2 tax under CP is always higher than
that in a deregulated industry. Intuitively, this occurs
because an infinitesimal increase in the CO2 tax under
PC incentivises ESR production to shift to the off-peak
period, thereby potentially exacerbating the damage from
fossil-fuelled generation, cf. Proposition 3. Thus, the
policymaker under PC has a quandary and optimally
reduces the CO2 tax vis-à-vis CP. However, with a
perfectly efficient storage device, the same outcome is
rendered under both CP and PC, i.e., limF→1+ zCP =
K(A1+A2−D)
2(C+K+1) = limF→1+ zPC.

Proposition 5. µPC
(
zPC

)
< µCP.

In effect, Proposition 5 demonstrates that the
propensity of the ESR generator to shift its production to
the off-peak period under PC for any positive CO2 tax
obviates the value of storage.
Proposition 6. MCDPC > MCDCP ≡ zCP.

Proposition 6 shows that a decentralised industry
under PC always has a higher MCD than one under CP.
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This outcome is intuitive, given the need to curb the CO2

tax under PC to avoid exacerbating the misallocation of
ESR energy storage.

Analogous to Proposition 1 under CP, we can
demonstrate in the following proposition that the optimal
CO2 tax under PC (35) monotonically increases with
respect to K.

Proposition 7. ∂zPC

∂K > 0.
Given a higher social-cost rate of damage from CO2

emissions, the policymaker increases the CO2 tax on the
fossil-fuelled generator.

In a similar vein to Proposition 2 under CP, the
following proposition demonstrates how the optimal CO2

tax under PC (35) behaves with respect to F .

Proposition 8. ∂zPC

∂F < 0 if F > F̂ PC.
Note that the CO2 tax under PC is increasing in

energy-storage efficiency loss for a perfectly efficient

device, i.e., limF→1+
∂zPC

∂F = K(A2−A1+D)
4(C+K+1) > 0 from

(A-20). However, a higher CO2 tax incentivises greater
period-1 ESR output unconditionally as well as more
period-2 fossil-fuelled output (for sufficiently degraded
energy-storage efficiency), cf. Proposition 3. Thus, it is
plausible for the CO2 tax under PC to actually decrease
in F once storage efficiency has degraded sufficiently,
which is in contrast to the monotonic result under CP, cf.
Proposition 2.

5. Numerical Examples
We use the following parameter values: A1 = 100,

A2 = 250, C = 0.18, D = 350, K = 0.5, and F ∈
(1, 2.5]. These are consistent with Assumptions 1–7 in
yielding interior solutions as F is varied.

The main finding about the optimal CO2 tax under
CP and PC is illustrated in Figure 3: while zCP increases
monotonically with F , zPC encounters a turning point
at F̂ PC = 1.6308, cf. Propositions 2 and 8. The
characteristic quadratic, Q̂PC (F ), that identifies F̂ PC is
illustrated in Figure 4. Note that exactly a single F̂ PC > 1
exists due to the concavity of the characteristic quadratic.
Moreover, following from Propositions 4 and 6, it is also
evident that the CO2 tax is lower under PC while its
MCD is higher. For reference, the higher MCD under UI
is also provided in Figure 3.

As for the marginal value of ESR stock, Figure 5
illustrates Proposition 5’s finding that it is always higher
under CP than under PC. Both µPC

(
zPC

)
and µCP also

exhibit turning points with respect to F . However, only
the latter’s turning point, F̂CP = 2.4142 may be found
analytically, as formalised by Proposition 2, via the root
of the characteristic quadratic, Q̂CP (F ) (see Figure 6).

Not surprisingly, social welfare decreases
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Figure 3. Optimal CO2 tax and MCD with respect

to F .
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Figure 4. Characteristic quadratic, Q̂PC (F ), that

identifies F̂ PC, above which zPC decreases with F .

monotonically with F under all settings (see Figure 7).
The ordering of the maximised welfare is also in line
with intuition as the outcome under the (second-best)
decentralised PC setting is sandwiched by those under
first-best CP and the UI settings.

6. Conclusions
Renewable-energy integration will necessitate an

unprecedented transformation of the power system with
increasing reliance on energy storage and other forms
of flexibility. In this respect, fossil-fuelled generation
may still play a role and require appropriate regulation
in line with climate goals. While the extant literature
has analysed storage operations in a deregulated industry
with emission constraints, the design of carbon policy in
a future power system has received less attention.

This paper examines optimal carbon pricing in an
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Figure 6. Characteristic quadratic, Q̂CP (F ), that

identifies F̂CP, above which µCP decreases with F .

electricity sector with carbon-intensive fossil-fuelled
generation, carbon-free renewable generation, and
energy storage. We do this by contrasting an
ideal central-planning benchmark, wherein a welfare
maximiser makes all production and energy-storage
decisions while internalising the social cost of carbon,
to a decentralised setting. One of our key findings is
that with perfect competition, a decentralised setting
yields social-welfare losses and socially suboptimal use
of generation and energy-storage resources compared
to the central-planning benchmark. This result is
counterintuitive because conventional wisdom holds that
perfect competition with properly priced and internalised
externalities will yield a social-welfare-optimising
outcome. Moreover, the contrast between the two
settings becomes starker as storage efficiency decreases.
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Figure 7. Social welfare with respect to F .

Indeed, for a sufficiently degraded storage device, carbon
policy in a decentralised setting behaves fundamentally
differently vis-à-vis central planning as it necessitates a
decrease in the CO2 tax as efficiency drops.

Despite the counterintuitive nature of our finding, it is
not without precedent. Downward (2010) demonstrates
cases in which imposing a carbon price or tax can
increase total carbon emissions. His finding can be
explained as being due to a third-best outcome. His base
case has three market failures—transmission congestion,
market power, and an unpriced carbon externality.
Addressing only one of the market failures (the unpriced
externality), exacerbates the effect of the other two,
which yields a less socially desirable outcome. Our
finding differs, insomuch as we have neither transmission
congestion nor market power. However, Sioshansi
(2014) unveils cases in which energy storage that is
owned by a generator, which is the case for the ESR
supplier, can yield social-welfare losses compared to a
no-energy-storage case. As such, our finding could be an
extension of this phenomenon.

Future work in this area could proceed in two
directions. First, market power by generators plagues
even well-functioning electricity markets (Tangerås &
Mauritzen, 2018) and could potentially be exploited
by flexible producers in a future power system with
higher renewable penetration (Hassanzadeh Moghimi
et al., 2023). In this vein, departures from perfect
competition at the lower level to allow for Cournot
behaviour (Crampes & Moreaux, 2001) would enable
a richer examination of carbon-policy design. Second,
besides a carbon tax, renewable portfolio standards
(Siddiqui et al., 2016) and rate-based measures (Tanaka
et al., 2022) are part of the regulatory toolkit. By
providing greater flexibility in meeting environmental
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constraints, such policies could address a simple carbon
tax’s limitations in curbing fossil-fuelled generation
adequately and would also be amenable to rigorous
analysis via our bi-level framework.
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Tangerås, T. P., & Mauritzen, J. (2018). Real-time versus
day-ahead market power in a hydro-based
electricity market. The J. Ind. Econ., 66(4),
904–941.

Zhou, Y., Wang, L., & McCalley, J. D. (2011). Designing
effective and efficient incentive policies for

renewable energy in generation expansion
planning. Appl. Energy, 88(6), 2201–2209.

Appendix: Proofs of Propositions

Proof of Proposition 1 From (8)–(9), it is evident

that
∂xCP

j

∂K = 0, j = 1, 2. Moreover, from (10)–(13) and
Assumption 2, we obtain:

∂yCP
1

∂K = − (A1+FA2−D)

(C+K+1)2(F 2+1)
< 0 (A-1)

∂yCP
2

∂K = − F (A1+FA2−D)

(C+K+1)2(F 2+1)
< 0 (A-2)

∂µCP

∂K =
(F 2+1)(A1+FA2−D)

(C+K+1)2(F 2+1)2
> 0 (A-3)

∂zCP

∂K = (C+1)(F+1)(A1+FA2−D)

2(C+K+1)2(F 2+1)
> 0 (A-4)

Proof of Proposition 2 The following results are
unconditional using (9), (11), and (13) based on
Assumptions 1, 2, and 5:

∂xCP
2

∂F =
D(1−F 2)−(FA2+A1)−F (A2−FA1)

(F 2+1)2
< 0 (A-5)

∂yCP
2

∂F =
F (A2−FA1)+(F 2−1)D+F (FA2+A1)

(C+K+1)(F 2+1)2
> 0 (A-6)

∂zCP

∂F =
K[(A2+A1−D)(1−F 2)+2(A2−A1+D)F ]

2(C+K+1)(F 2+1)2
> 0 (A-7)

Meanwhile, the remaining results using (8), (10), and
(12) hold if F < F̂CP, where F̂CP > 1 is the positive
root of the characteristic quadratic function Q̂CP (F ) =
−A2F

2 − 2 (A1 −D)F +A2:

∂xCP
1

∂F = F (FA2+A1)−2FD−(A2−FA1)

(F 2+1)2
< 0 (A-8)

∂yCP
1

∂F = (A2−FA1)+2FD−F (FA2+A1)

(C+K+1)(F 2+1)2
> 0 (A-9)

∂µCP

∂F = C[(A2−FA1)+2FD−F (FA2+A1)]

(C+K+1)(F 2+1)2
> 0 (A-10)

Proof of Proposition 3 From (22)–(26), we have:

∂xPC
1

∂z = F (F−1)
C(F 2+1) > 0 (A-11)

∂xPC
2

∂z = − (F−1)
C(F 2+1) < 0 (A-12)

∂yPC
1

∂z = − 1
(C+1)

[
1 + F (F−1)

C(F 2+1)

]
< 0 (A-13)

∂yPC
2

∂z = − [C(F 2+1)−(F−1)]
C(C+1)(F 2+1) > 0 if C < F−1

F 2+1 (A-14)

∂µPC

∂z = (F+1)
(C+1)(F 2+1) > 0 (A-15)

Page 3089



Proof of Proposition 4 Note that zPC <

zCP ⇔ C2K(F+1)(A1+FA2−D)

C2(F+1)2+(C+K)[(2C+1)(F−1)2+2C2(F 2+1)]
<

K(F+1)(A1+FA2−D)
2(C+K+1)(F 2+1) , cf. (35) and (13). Simplifying, we

obtain:

zPC < zCP

⇔ 2C2
(
F 2 + 1

)
< C2 (F + 1)

2
+ (C +K) (2C + 1) (F − 1)

2

⇔ C2 (F − 1)
2
< (C +K) (2C + 1) (F − 1)

2

⇔ C2 < (C +K) (2C + 1)

⇔ 0 < C2 + 2CK + C +K (A-16)

The latter holds from Assumptions 4 and 7, where in the
next-to-last line of (A-16), we have used the fact that
(F − 1)

2
> 0.

Proof of Proposition 5 Note that µPC
(
zPC

)
<

µCP ⇔ C(A1+FA2−D)
(C+1)(F 2+1) + (F+1)

(C+1)(F 2+1)z
PC <

(C+K)(A1+FA2−D)
(C+K+1)(F 2+1) , cf. (12) and (26). Simplifying, we

obtain:

µPC (
zPC) < µCP

⇔ C (C +K + 1) (A1 + FA2 −D)

+ (C +K + 1) (F + 1) zPC

< (C +K) (C + 1) (A1 + FA2 −D)

⇔ (C +K + 1)C2 (F + 1)
2

< (C +K)
[
(2C + 1) (F − 1)

2
+ 2C2

(
F 2 + 1

)]
+ C2 (F + 1)

2

⇔ 0 < (2C + 1) (F − 1)
2
+ C2 (F − 1)

2 (A-17)

The latter holds from Assumption 4.
Proof of Proposition 6 The MCD

under PC is obtained by substitution of
the total fossil-fuelled-generation level,
yPC
1

(
zPC

)
+ yPC

2

(
zPC

)
, into MCDPC =

K(yPC
1 (z

PC)+yPC
2 (z

PC))
2 = K(F+1)(A1+FA2−D)

2C(C+1)(F 2+1) ×

[C3(F+1)2+2C4(F 2+1)+C(F−1)2(2C2+C+CK+K)]
C2(F+1)2+(C+K)[(2C+1)(F−1)2+2C2(F 2+1)]

. We

prove now that MCDPC > MCDCP ≡ zCP by
comparing the latter expression with (13):

MCDPC > MCDCP

⇔ C2K (F + 1)
2

+ 2C2
(
F 2 + 1

)
[C (C +K + 1)− (C + 1) (C +K)]

+ (F − 1)
2
(C +K + 1)

(
2C2 + C + CK +K

)
− (F − 1)

2
(C + 1)

(
2C2 + C + 2CK +K

)
> 0

⇔ C2K (F + 1)
2 − 2C2K

(
F 2 + 1

)
+ (F − 1)

2 (
C2K + CK2 +K2

)
> 0

⇔ (F − 1)
2
(C + 1)K2 > 0 (A-18)

The latter holds from Assumptions 4 and 7.
Proof of Proposition 7 Via (35), we have:

∂zPC

∂K = C2 (F + 1) (A1 + FA2 −D)

× [C2(F+1)2+C[(2C+1)(F−1)2+2C2(F 2+1)]]
{C2(F+1)2+(C+K)[(2C+1)(F−1)2+2C2(F 2+1)]}2

> 0 (A-19)

The latter holds from Assumptions 1, 4, 6, and 7.
Proof of Proposition 8 Using (35), we obtain:

∂zPC

∂F
= Q̂PC (F )C2K

{
C2 (F + 1)

2
+ (C +K)

×
[
(2C + 1) (F − 1)

2
+ 2C2

(
F 2 + 1

)]}−2

(A-20)

where Q̂PC (F ) is the quadratic function
with F 2 coefficient C2 (A2 −A1 +D)
+ (2C + 1) (C +K) (D −A1 − 3A2)
+2C2 (C +K) (D −A1 −A2), F
coefficient 2C2 (A2 −A1 +D)
+2 (2C + 1) (C +K) (D −A1 +A2)
+4C2 (C +K) (D −A1 +A2), and
constant term C2 (A2 −A1 +D)
+ (2C + 1) (C +K) (A2 + 3A1 − 3D)
+2C2 (C +K) (A2 +A1 −D). The necessary

condition for ∂zPC

∂F < 0 corresponds to finding

the root, F̂ PC > 1, of Q̂PC (F ). Note that
Q̂PC (1) = 4C2 (D −A1 +A2) > 0 from
Assumption 1 and Q̂PC′ (1) = 4C2 (A2 −A1 +D) +
4 (2C + 1) (C +K) (D −A1 −A2) +
8C2 (C +K) (D −A1) > 0 from Assumptions 1–2.
Thus, Q̂PC (F ) is positive and increasing at F = 1.
Whether Q̂PC (F ) is convex or concave depends on the
sign of Q̂PC′′ (F ), which is 2C2 (A2 −A1 +D) +
2 (2C + 1) (C +K) (D −A1 − 3A2) +
4C2 (C +K) (D −A1 −A2). If Q̂PC′′ (F ) ≥ 0,
then no F̂ PC > 1 exists, but exactly one F̂ PC > 1 exists
if Q̂PC′′ (F ) < 0, i.e., if A2 is large enough to entice
more period-2 fossil-fuelled output.
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