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Abstract. This paper presents the development of an enhanced L-Shaped method applied to an 

inventory management problem that considers a replenishment control system based on the periodic 

review (𝑅, 𝑆) policy. We consider single-item one-echelon problems with uncertain demands and 

partial backorder that are modeled using two-stage stochastic programming. To enable the 

consideration of large-scale problems, the classical single-cut L-Shaped method and its extended 

multi-cut form were initially applied. Preliminary computational results indicated that the classical L-

Shaped method outperformed its multi-cut counterpart, even though the former required more 

iterations to converge to the optimal solution. This observation inspired the development of the 

techniques presented for enhancing the L-Shape method in this context, which consist of the 

combination of a novel acceleration technique with an efficient formulation and valid inequalities for 

the proposed model. Numerical experiments suggest that the proposed approach significantly reduced 

the computational time required to solve large-scale problems.   

Keywords. Stochastic programming; Inventory control; Uncertain demand; Partial backordering; L-

Shaped method; 

1. Introduction  

The central issue regarding inventory management is to guarantee product availability for the final 

consumer at the lowest possible cost while subjected to a variety of particular circumstances. In that 

sense, inventory management plays an important role in answering key questions such as when to 

order, how much to order, and how much to keep as safety stock  (Namit & Chen, 1999). 

The literature provides different inventory control policies associated with mathematical models 

aiming at minimizing the total inventory management cost. Such models can be divided into two basic 

groups: deterministic models, which consider that all parameters are previously known, and 

probabilistic models, in which one or more parameters are considered uncertain. The consideration of 

uncertain parameters turns these models more adherent to real-world problem, at the expense of 
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becoming more challenging in terms practical suitability due to frequent intensive computational 

requirements. 

Considering demand uncertainty, the literature provides many inventory control policies, such as the 

classical systems (𝑅, 𝑄), (𝑅, 𝑆), (𝑅, 𝑠, 𝑆), (𝑠, 𝑆) and (𝑠, 𝑄). In these systems, 𝑅, 𝑄, 𝑠 and 𝑆 represent 

the review period, the fixed order quantity, ordering point and the target inventory level, respectively. 

In the (𝑅, 𝑆) system considered in this paper, in each 𝑅 time units (review period), a variable quantity 

sufficient to elevate the inventory level to position 𝑆 is ordered. However, although closer to reality, 

these models typically have some limitations. In many of these models, for simplification purposes, 

the cost parameters are considered fixed along the planning horizon and the stochastic demands are 

approximated by known probability distributions. For instance, the main limitation of the model 

proposed by Hadley & Whitin (1963) in terms of uncertainty is the consideration of time-independent 

demand following a normal distribution. These premises limit the applicability of the model to real 

problems, given that the demand and other parameters can depend on many factors, such as the 

inherent uncertainties of the market, the cost and the season (seasonality). 

According to Cunha et al. (2017), one form of relaxing the hypothesis of having a simplified model 

when facing stochastic demands is to use two-stage stochastic programming as a modeling framework. 

The two-stage structure is compatible with the previously mentioned inventory policies when used for 

modeling the control variables (i.e., 𝑅, 𝑆, 𝑠 and 𝑄) as the first-stage variables in each system, which 

represent the decisions that should be made before the uncertainties are revealed. One of the main 

advantages of the two-stage stochastic programming structure is that the stochastic parameters can be 

modeled without the need to assume any restrictive hypothesis for the stochastic phenomenon, as long 

as it can be approximated by a discrete set of scenarios. The suitability of two-stage stochastic 

programming as a framework for addressing inventory management problems has been verified in the 

studies performed by Fattahi et al. (2014), Cunha et al. (2017),  and Dillon et al. (2017).  

It is common for inventory management systems to consider complete postponement of the unmet 

demand (pure backorder case) or its complete loss (pure lost sales case). However, a more general 

approach to the unmet demand is to consider that only a fraction of the unmet demand is postponed 

and the remainder is lost. This consists of a partial backorder case, which is more adherent to real-

world situations.  

In this paper, we propose a two-stage stochastic optimization model aiming at defining optimal 

periodic-review (𝑅, 𝑆) inventory control policies under demand uncertainty with the possibility of 

considering partial backorder. We also propose a formulation to generalize the consideration of initial 

inventory in a way that is perfectly adherent to the periodic review policy. Additionally, a more 

efficient linearization, which precludes the use of auxiliary variables (and therefore has fewer 

variables and constraints), is proposed to linearize the originally mixed-integer nonlinear model. These 
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modeling aspects represent considerable improvements of the model originally proposed by Cunha et 

al. (2017), which only considers the pure backorder/ lost sales cases and can only take into account  

initial inventories by artificially expanding the planning horizon. 

The proposed model can be defined as two-stage stochastic programming model with integer and 

continuous first-stage variables (consisting of decisions regarding when to place orders throughout the 

planning horizon and the definition of the target level 𝑆), where the second stage is composed of 

continuous variables (order quantities, postponed and unmet demand, and on hand inventories as 

recourse decisions). These characteristics allow one to consider a scenario-wise decomposition 

strategy based on Benders decomposition applied to two-stage stochastic programming, given the 

particular structure of this type of problem where the first-stage variables play the role of complicating 

variables for being the only elements that promote connections between the second-stage scenario 

subproblems.  

Van Slyke & Wets (1969) presented the first study using Benders decomposition (1962) in a two-stage 

stochastic programming problem, which became known as the classical L-Shaped or single-cut L-

Shaped method. Exploiting the structure of the two-stage stochastic programming models, Birge & 

Louveaux (1997) extended the method to a version considering multiple cuts (multi-cut L-Shaped). 

The computational efficiency of Benders decomposition has been widely confirmed by different 

studies in the literature, especially in the context of two-stage stochastic programming, as 

demonstrated by Costa (2005); Khodr et al. (2009), Oliveira & Hamacher (2012), and Bertsimas et al. 

(2013), for instance. 

However, in some cases, the classical Benders decomposition (or L-Shaped method) may not present 

satisfactory computational efficiency. Hence, different strategies for accelerating the Benders 

decomposition have been proposed over the years  (Côté & Laughton, 1984; Saharidis et al., 2010; 

Yang & Lee, 2012; Sherali & Lunday, 2013; Oliveira et al., 2014). 

The present paper proposes an improved version of a Benders decomposition-based method for the 

proposed inventory management model through the application of a new acceleration technique 

combined with valid inequalities developed specifically for the proposed model that aims to improve 

the efficiency of the decomposition method. It is worth highlighting that the proposed acceleration 

technique could be straightforwardly extended to the classical version of Benders decomposition when 

applied to problems that share the same mathematical structure. 

The main contributions of the present paper can be summarized as follows. 

• proposal of a more general model than that originally proposed by Cunha et al. (2017) with the 

inclusion of the initial inventory and consideration of partial backorder as a generalization of both 

pure lost sales and pure backorder cases;  
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• proposal of a simpler linearization to represent the nonlinearity of the model by Cunha et al. 

(2017) that attains a more efficient formulation in term of the total number of variables and 

constraints;  

• application of the L-Shaped method to the proposed model to improve the computational 

performance, in particular for instances that consider large numbers of scenarios and longer 

planning horizons; 

• development of valid inequalities to improve the solution process of the proposed model, allowing 

the obtention of optimal solutions more efficiently in terms of computational times; 

• proposal of a new acceleration technique that exploits the structure of the master problem of the L-

Shaped method and is general enough to be considered in applications based on the classical 

Benders method (i.e., deterministic problems) that share similar mathematical structure.   

This paper is structured as follows. In Section 2, we present a literature review of inventory 

management models and the main techniques available for accelerating Benders decomposition, which 

can also be applied to the L-Shaped method. In Section 3, we describe the structure of the problem. 

Details the proposed inventory management model are provided in Section 4. In Section 5, we present 

the classical L-Shaped methods and its extended multi-cut form with their application to the model 

proposed in Section 4. In Section 6, valid inequalities are developed and the new technique for 

accelerating the L-Shaped method is presented. All numerical results and analyses of the experiments 

performed are given in Section 7. We conclude in Section 8 with a discussion of results obtained and 

future research directions. 

2. Literature Review  

2.1. Inventory management models  

Over the years, new formulations of deterministic models have been proposed with the aim to reduce 

the simplifications of the EOQ model proposed by Harris (1913). Most of the focus has been on 

increasing its generality and consequently its adequacy for real-world applications, with emphasis on 

the following classical models found in the inventory management literature: economic lot size model, 

quantity discount pricing model and economic lot size model with backorder (Zipkin, 2000), and the 

EOQ model with partial backorder proposed by Pentico & Drake (2009). However, the consideration 

of all parameters of an inventory management model as deterministic, particularly the demand, might 

not be a satisfactory strategy depending on the values of the costs involved in the inventory 

management or when considering the need for a mandatory minimum level of service, for instance.     

Considering partial backorder and stochastic demand following a known probability distribution, 

special attention is drawn to the studies performed by Posner & Yansouni (1972), Das (1977);  

Moinzadeh (1989), Rabinowitz et al. (1995), Chu et al. (2001), Thangam & Uthayakumar (2008), and 
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Hu et al. (2014). To date, the only studies found in the literature and using two-stage stochastic 

programming applied to inventory management were those performed by Fattahi et al. (2014), Cunha 

et al. (2017), and Dillon et al. (2017).  

Based on the continuous system (𝑠, 𝑆), Fattahi et al. (2014) modeled a two-layer network with one 

manufacturer, one retailer, one item, uncertainty in the demand parameter, and pure lost sales and 

analyzed the model in its centralized and decentralized forms. Cunha et al. (2017), proposed a 

replenishment control and inventory model via two-stage stochastic programming, considering 

periodic review (𝑅, 𝑆), one item and uncertain demand. In their model, there is no parameter related to 

the initial inventory, which requires the cost parameters to be considered zero in the first few planning 

horizon periods so that the initial inventory can be computed. Furthermore, the model proposed by 

Cunha et al. (2017) considers the pure lost sales case or, with some alterations of the constraints, the 

pure backorder case. With the adaptation of the model proposed by Cunha et al. (2017), Dillon et al. 

(2017) proposed a red blood cells inventory management model that considers the minimization of the 

operational cost, the perishability of blood, multi-periods, multi-products and uncertain demand.  

2.2. Techniques for accelerating Benders decomposition  

One of the major computational challenges of Benders decomposition methods is associated with the 

solution of its master problem, particularly when the method is applied to solve mixed-integer linear 

programming (MILP) problems. A form of accelerating Benders decomposition is by generating more 

efficient cuts, i.e., cuts or sets of cuts that, when added to the relaxed master problem (RMP), can 

enable convergence of the solution process within fewer iterations when compared with its original 

form. Some researchers propose the inclusion of an additional set of strong cuts in each iteration of the 

method. In this context, the studies performed by the following authors can be cited: Magnanti & 

Wong (1981), Papadakos (2008), Rei et al. (2009), Saharidis et al. (2010), Yang & Lee (2012), Sherali 

& Lunday (2013), and Oliveira et al. (2014) . 

Aiming to reduce the number of iterations required for convergence, and consequently the solution 

time, some researchers have focused on modifying the traditional Benders decomposition master-slave 

relationship, often leading to satisfactory results. In this context, the recent studies are Crainic et al. 

(2016) and Gendron et al. (2016). 

Some techniques focus on improving the solution method applied to the RMP in the whole or part of 

the solution process as, very often, most of the total execution time for Benders decomposition is 

dedicated to solving the RMP. In this context, the following studies can be cited: Benoist et al. (2002), 

Corréa et al. (2007), Naoum-Sawaya & Elhedhli (2013) and Pérez-Galarce et al. (2014). 

In some cases, the slave problem is difficult to solve; hence, aiming to improve the computational 

performance of Benders decomposition, some studies focused on developing efficient strategies for its 
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solution. In this context, the studies performed by the following authors can be cited: Zakeri et al. 

(2000), Cordeau et al. (2001), and Mercier et al. (2005).  

When there are many subproblems to be solved at each iteration of the solution process, the use of 

parallel computational techniques can improve the computational performance of the method. 

Different studies in the literature obtain satisfactory results with the use of this technique, and the 

following are emphasized: Linderoth & Wright (2003), Wolf & Koberstein (2013), and Chermakani 

(2015). 

Other frequently applied techniques found in the literature are the use of valid inequalities. The 

inclusion of a series of valid inequalities in the master problem restricts its domain, meaning that the 

method is typically able to provide better lower and upper bounds since the first iterations of the 

solution process, thus representing an effective method to accelerate convergence. In addition, by 

doing such, one could possibly eliminate infeasible solutions thus partially or completely eliminating 

the necessity of generating feasibility cuts. Satisfactory results obtained with the use of valid 

inequalities can be confirmed by many studies in the literature, which is commonly used in 

combination with other acceleration techniques aiming at obtaining better computational performance. 

In this context, the following recent studies can be cited: Saharidis et al. (2011), Tang et al. (2013), 

Jeihoonian et al. (2014), Lei et al. (2014), and Pishvaee et al. (2014). 

This literature survey suggests that no studies that have proposed models and considered the use of the 

two-stage stochastic programming to support with decision making regarding replenishment and 

inventory control with partial backorder. Furthermore, no studies about inventory management via 

two-stage stochastic programming concerned with developing methods with improved computational 

performance when addressing large-scale problems were found.  

3. Problem statement  

In this study, the retailer is assumed to use the periodic replenishment inventory control system (𝑅, 𝑆) 

where, particularly for the proposed model, 𝑅 is defined by 𝑘 and 𝑟, 𝑘 denotes the period when the 

first order is placed, and 𝑟 denotes the periodicity between orders. 𝑆, represented by 𝑠 in the 

mathematical model proposed in the next section (by convention, all variables are represented by 

lowercase letters), denotes the maximum inventory level (target level) of the item. The problem 

consists in determining the optimal target level 𝑆, the optimal period for first order, 𝑘, and the optimal 

periodicity of the inventory control system of the retailer, 𝑟, for a single item. 

For the supply chain structure presented in Figure 1, a finite planning horizon is considered. It is 

composed of a discrete number of periods 𝑝, which may represent days, weeks or months. We assume 

that the orders received at the start of a period can be consumed in the same period. The orders are 
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always placed at the start of each period and should be placed every 𝑟 periods, from period 𝑘, and a 

variable quantity sufficient to raise the inventory level to the 𝑆 position is ordered. 

The proposed model considers partial backorder. The maximum backorder value that can be delayed 

(with the loss of the remainder) in a certain period and scenario is given by a fraction 𝛽 of the unmet 

demand, where 𝛽 ∈ [0,1]. However, with a simple modification of the model, discussed in the next 

section, a minimum demand level can be guaranteed if necessary.  

 
Figure 1- Supply chain structure   

The proposed mathematical model is formulated via two-stage stochastic programming (Birge & 

Louveaux, 1988; Birge & Louveaux, 1997). This modeling framework enables the representation of 

the stochastic demand through discrete scenarios and their respective probabilities. Hence, any 

stochastic process can be represented, as long as it is possible to obtain discrete samples from it, which 

enables one to consider aspects such as seasonality or general correlations. 

4. Proposed mathematical model  
In relation to the proposed model, some premises are considered in an attempt to simplify the present 

context. However, it is important to highlight that the model could be straightforwardly extended to 

incorporate more general situations. The premises are the following: 

1. the upper bound 𝑆̅ of target level 𝑠 is also a physical restriction on the inventory capacity. In 

addition, the capacities and costs of alternative means of transportation between the supplier and 

the retailer are not considered; 

2. the backorders do not have specific delivery time limits, but because it is a cost minimization 

problem, the backorders are considered to be satisfied as soon as possible, aiming to minimize the 

costs associated with the demand fulfillment delay;  

3. the lead time is constant and pre-determined, but it could be easily indexed in time, as could the 

backorder rate; 

4. although the costs are indexed by period, we consider them constant throughout the planning 

horizon, without loss of generality; 
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5. for simplification purposes, the proposed model considers a single item. Its extension to 

consider multiple products is straightforward. 

The mathematical notation and definitions of sets, indexes, parameters and variables of the proposed 

model can be found in Appendix A. 

4.1. First-stage problem   

The first-stage problem comprises the decisions concerning control variables, which should be made 

prior to observing the actual realization of the uncertainty in the system. In the present study, the first-

stage variables are the review periodicity decisions 𝑅, the period in which the first order is placed 𝐾 

and the target level 𝑆. The first-stage problem is given by 

min.
𝑠,𝑣,𝑢

∑ 𝐶𝐹𝑝

𝑝

𝑣𝑝 + 𝐸Ω[𝑄(𝑣, 𝑠, 𝜉)] (4.1) 

subject to  

∑ 𝑢𝑟,𝑘

𝑟,𝑘

= 1  (4.2) 

∑ 𝑊𝑝
𝑟,𝑘

𝑟,𝑘

𝑢𝑟,𝑘 = 𝑣𝑝 ∀𝑝 (4.3) 

𝑠 ≤ 𝑆̅  (4.4) 

𝑢𝑟,𝑘 ∈ {0,1} ∀𝑟, ∀𝑘 (4.5) 

𝑣𝑝 ∈ {0,1} ∀𝑝. (4.6) 

𝑠 ≥ 0  (4.7) 

In the objective function (4.1), the first term represents the ordering cost, and 𝐸Ω[𝑄(𝑣, 𝑠, 𝜉)] represents 

the expected value of the cost associated with the second-stage problem. Constraint (4.2) indicates the 

existence of exactly one pair of values for the cycle size 𝑅 and for the period of the first order (𝑅 =

𝑟 and 𝐾 = 𝑟, when 𝑢𝑟,𝑘 = 1). Constraint (4.3) indicates the periods in which the orders are placed in 

the planning horizon as a function of the choice of values for 𝑅 and 𝐾. Constraint (4.4) establishes the 

upper bound of the variable that represents the target inventory level (capacity restriction). In (4.5) and 

(4.6), the domains of the binary first-stage variables (that determine when the orders will be placed) 

are presented. In (4.7), the variable representing the target level 𝑆 is defined as continuous and 

nonnegative. 

4.2. Second-stage problem   

The second-stage problem aims to minimize the inventory management costs, lost demands and 

backorders throughout the planning horizon, given the selection of  𝑣𝑝 (i.e. 𝑅 and 𝐾) and 𝑆 (𝑠) and the 

observed scenario 𝜉. In the second stage, the second-stage or recourse variables are determined, which 



 

9 
 

represent the dynamics of inventory management after the demand is observed, aiming at minimizing 

the total cost.  

𝑄(𝑣, 𝑠, 𝜉) = min.
𝑎,𝑓,𝑖,𝑖𝑡,𝑙,𝑞

∑[𝐻𝑝

 𝑝 

𝑖(𝜉)𝑝 + 𝐵𝑝𝑓(𝜉)𝑝 + 𝐵𝐴𝑝𝑙(𝜉)𝑝]  (4.8) 

subject to  

𝑎(𝜉)𝑝 + 𝑓(𝜉)𝑝 + 𝑙(𝜉)𝑝 = 𝐷(𝜉)𝑝 + 𝑙(𝜉)𝑝−1 ∀𝑝 (4.9) 

(1 −  𝛽)𝑙(𝜉)𝑝 − 𝛽𝑓(𝜉)𝑝 ≤ 0 ∀𝑝 (4.10) 

 𝐼𝐼 + 𝑖(𝜉)𝑝−1 + 𝑞(𝜉)𝑝−𝑇𝐸 = 𝑖(𝜉)𝑝 + 𝑎(𝜉)𝑝 ∀𝑝 = 1 (4.11) 

𝑖(𝜉)𝑝−1 + 𝑞(𝜉)𝑝−𝑇𝐸 = 𝑖(𝜉)𝑝 + 𝑎(𝜉)𝑝 ∀𝑝 ≥ 2 (4.12) 

𝐼𝐼 + 𝑖𝑡(𝜉)𝑝−1 + 𝑞(𝜉)𝑝 = 𝑖𝑡(𝜉)𝑝 + 𝐷(𝜉)𝑝 − 𝑓(𝜉)𝑝 ∀𝑝 = 1  (4.13) 

𝑖𝑡(𝜉)𝑝−1 + 𝑞(𝜉)𝑝 = 𝑖𝑡(𝜉)𝑝 + 𝐷(𝜉)𝑝 − 𝑓(𝜉)𝑝 ∀𝑝 ≥ 2 (4.14) 

𝑞(𝜉)𝑝 − (𝑠−𝑖𝑡(𝜉)𝑝−1 − 𝐼𝐼) ≤ 𝑆 ̅(1 − 𝑣𝑝) ∀𝑝 = 1  (4.15) 

𝑞(𝜉)𝑝 − (𝑠−𝑖𝑡(𝜉)𝑝−1) ≤ 𝑆 ̅(1 − 𝑣𝑝) ∀𝑝 ≥ 2 (4.16) 

𝑞(𝜉)𝑝 − (𝑠−𝑖𝑡(𝜉)𝑝−1 − 𝐼𝐼) ≥ 𝑆 ̅(𝑣𝑝 − 1) ∀𝑝 = 1  (4.17) 

𝑞(𝜉)𝑝 − (𝑠−𝑖𝑡(𝜉)𝑝−1) ≥ 𝑆 ̅(𝑣𝑝 − 1) ∀𝑝 ≥ 2 (4.18) 

𝑞(𝜉)𝑝 ≤ 𝑆̅𝑣𝑝 ∀𝑝 (4.19) 

𝑎(𝜉)𝑝, 𝑖(𝜉)𝑝, 𝑖𝑡(𝜉)𝑝, 𝑙(𝜉)𝑝, 𝑞(𝜉)𝑝, 𝑓(𝜉)𝑝 ≥ 0 ∀𝑝. (4.20) 

In the objective function (4.8), the total inventory (𝐻𝑝𝑖(𝜉)𝑝), lost sales (𝐵𝑝𝑓(𝜉)𝑝) and backorder 

costs (𝐵𝐴𝑝𝑙(𝜉)𝑝) are considered. Constraint (4.9) represents the quantities of the demand met, lost 

and in backorder in each period for each scenario 𝜉. Constraint (4.10) guarantees that the backorder 

will be, at most, a fraction 𝛽 of the total unmet demand in each period for each scenario 𝜉. Constraints 

(4.11) and (4.12) represent the inventory balance from one period to the next in each scenario 𝜉. 

Constraints (4.13) and (4.14) represent the balance of the inventory positions (on-hand stock plus 

orders in transit) from one period to the next in each scenario 𝜉. The set of constraints (4.15) to (4.19) 

define the quantities of the item to be ordered at the start of each period for scenario 𝜉 and represent 

the linearization of constraints (4.21) and (4.22), which are modified from the original model proposed 

by Cunha et al. (2017) to consider the initial inventory parameter in the formulation. Finally, in (4.20), 

the second-stage variables are defined as continuous and nonnegative. 

𝑞(𝜉)𝑝 = (𝑠 − 𝑖𝑡(𝜉)𝑝−1−𝐼𝐼)𝑣𝑝 ∀𝑝 = 1 (4.21) 

𝑞(𝜉)𝑝 = (𝑠 − 𝑖𝑡(𝜉)𝑝−1)𝑣𝑝 ∀𝑝 ≥ 1. (4.22) 

Constraints (4.15) to (4.19) proposed in this paper are an alternative representation of the ordered 

quantities of the item throughout the planning horizon in each scenario 𝜉, differently from Cunha et al. 

(2017), without using any additional auxiliary variable. In the Appendix B we present a discussion of 

the validity of the proposed linearization. 
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In contexts where one need to guarantee a minimum demand level to be met (i.e., where the backorder 

percentage has a lower bound), it is enough to rewrite constraint (4.10) as  

(1 −  𝛽)𝑙(𝜉)𝑝 − 𝛽𝑓(𝜉)𝑝 ≥ 0 ∀𝑝. (4.23) 

It is important to emphasize that, because constraint (4.10), setting 𝛽 = 0, implies in 𝑙 = 0, i.e., the 

pure lost sales case is considered. On the other hand, setting 𝛽 = 1 and replacing (4.10) with (4.23) in 

the proposed model, results in 𝑓 = 0 thus enforcing the pure backorder case.  

It is worth highlighting that making 𝑥1 = (𝑠 − 𝑖𝑡(𝜉)𝑝−1 − 𝐼𝐼) in 𝑝 = 1 and  𝑥1 = (𝑠 − 𝑖𝑡(𝜉)𝑝−1) for 

𝑝 ≥ 2, implies in both cases that − �̅� ≤ 𝑥1 ≤  �̅�. Hence, some values of the first-stage variables may 

result in 𝑥1 < 0, i.e., 𝑞(𝜉)𝑝 < 0, which makes the second-stage problem infeasible. Therefore, the 

proposed model is not of relatively complete resources. This issue will be addressed later on when we 

present the development of valid inequalities for the problem. 

5.  Classical and Extended L-Shaped Formulation  

5.1. Classical L-Shaped method  

For a brief explanation of the L-Shaped method by Van Slyke & Wets (1969), consider the following 

problem: 

min.
𝑥,𝑦,𝑧

 𝐶1
𝑇𝑥 + 𝐶2

𝑇𝑦 + ∑ 𝑃𝑟(𝜉)
𝜉

𝑞(𝜉)𝑇𝑧(𝜉) (5.1) 

subject to  

𝐴𝑥 + 𝐵𝑦 ≤ 𝑐   (5.2) 

𝑇𝑥 + 𝐽𝑦 + 𝑉(𝜉)𝑧(𝜉) ≤ ℎ ∀𝜉 (5.3) 

𝑥 ∈  {0,1}, 𝑦 ≥ 0  (5.4) 

𝑧(𝜉) ≥ 0 ∀𝜉, (5.5) 

where 𝑃𝑟(𝜉) is the probability of each scenario 𝜉, and the parameter 𝐶1, 𝐶2, 𝑞(𝜉), 𝐴, 𝐵, 𝑇, 𝐽, ℎ, 𝑐  and 

𝑉(𝜉) are known matrices in the domain of real numbers with compatible dimensions. 

Problem (5.1)-(5.5) represents a two-stage stochastic linear programming problem with the first stage 

composed of binary and continuous variables. The objective function of the first-stage problem is 

composed by the first two terms of the objective function (5.1) added to the expected value of the 

second-stage problem and is subject to restriction constraint (5.2) and the definitions in (5.4). The 

second-stage or primal slave problem (PSP) is formed by the third term of the objective function (5.1), 

constraint (5.3) and the definition in (5.5).        

Decomposing problem (5.1)-(5.5), into the relaxed master problem (RMP) and PSP, the dual slave 

problem (DSP) is 
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max
𝑢

 𝑇(�̅�, �̅�) = max 
𝑢

𝐸Ω[𝑀(�̅�, �̅�, 𝜉)] = max
𝑢

∑ 𝑃𝑟(𝜉)[𝑢(𝜉)𝑇(ℎ − 𝑇�̅� − 𝐽�̅�)]
𝜉

 (5.6) 

subject to  

𝑉𝑇(𝜉)𝑢(𝜉) ≤ 𝑞(𝜉) ∀𝜉 (5.7) 

𝑢(𝜉) ≤ 0 ∀𝜉, (5.8) 

where 𝑢(𝜉) is the dual variable associated and the bars in �̅�, �̅� in (5.6) denote that the respective 

variables are fixed and their values originate from the solutions of the RMP. The RMP is given by  

min.
𝑥,𝑦,𝑧

 𝐶1
𝑇𝑥 + 𝐶2

𝑇𝑦 + 𝑚 (5.9) 

subject to 

𝐴𝑥 + 𝐵𝑦 ≤ 𝑐   (5.10) 

∑ 𝑃𝑟(𝜉)[(𝑢(𝜉)𝑇)𝑏(ℎ − 𝑇𝑥 − 𝐽𝑦)]
𝜉

≤ 𝑚  ∀𝑏 ∈ B ⊆ 𝑈𝑉 (5.11) 

∑ 𝑃𝑟(𝜉)[(𝑢(𝜉)𝑇)𝑖(ℎ − 𝑇𝑥 − 𝐽𝑦)]
𝜉

≤ 0 ∀𝑖 ∈ I ⊆ 𝑈𝑅, (5.12) 

𝑥 ∈  {0,1}, 𝑦 ≥ 0, 𝑚 ∈ ℝ,  (5.13) 

where each 𝑏 and 𝑖 is related to a solution 𝑢(𝜉)𝑏 ∈ 𝐵 and 𝑢(𝜉)𝑖 ∈ 𝐼, and 𝐵 and 𝐼 are, respectively, the 

subsets of extreme points (𝑈𝑉) and extreme rays (𝑈𝑅) of polyhedron 𝑈, which is defined by (5.7) and 

(5.8).  

Inequalities (5.11) and (5.12) are not explicitly defined constraints. Instead, they are implicitly defined 

by a finite number of Benders cuts (constraints of the type (5.14) or (5.15) are generated with 

information from the solutions of the DSP or from the dual information provided by the solution of the 

PSP). 

A schematic description of the classical L-Shaped (or single-cut L-Shaped method) is given in Figure 

2. According to Figure 2, in the iterative process that governs the L-Shaped method, at each iteration, 

one solution is obtained for the RMP, which is considered as an input parameter in the DSP (or PSP). 

In turn, the DSP (or PSP) is solved to obtain the dual information that is used for the generation of a 

so-called Benders cut that will be added to the RMP. In case the DSP has an optimal solution, the 

generated cut is of type (5.11), known as an optimality cut. However, if the DSP is unbounded (which 

implies in the infeasibility of the PSP), cut (5.12) is generated; this is known as a feasibility cut. 

There is a constraint (5.11) and (5.12) in the complete master problem for each extreme point and 

extreme ray obtained from the DSP, respectively. However, to obtain the optimal solution, only a 

small number of these cuts are expected to be added to the RMP until the optimal solution (presuming 

that the feasible region of the original problem is not empty) is obtained.  



 

12 
 

  
   Figure 2- Flowchart of single-cut L-Shaped method  

5.2. Extended L-Shaped method  

According to Birge & Louveaux (1997), the structure of two-stage stochastic problems allows the 

addition of multiple cuts to the RMP at each iteration, each cut being related to an individual scenario. 

According to their findings, the use of this method can provide substantial improvement in the 

convergence properties of the method. The main difference between the multi-cut and single-cut L-

Shaped methods is in the master problem formulation, which can be conveniently adapted to the multi-

cut L-Shaped structure as follows: 

min
𝑥,𝑦,𝑧

. 𝐶1
𝑇𝑥 + 𝐶2

𝑇𝑦 + ∑ 𝑃𝑟(𝜉)𝑚(𝜉)
𝜉

 (5.14) 

subject to  

𝐴𝑥 + 𝐵𝑦 ≤ 𝑐   (5.15) 

[(𝑢(𝜉)𝑇)𝑏(ℎ − 𝑇𝑥 − 𝐽𝑦)] ≤ 𝑚(𝜉)      ∀𝜉, ∀𝑏 ∈ 𝐵 ⊆ 𝑈𝑉 (5.16) 

[(𝑢(𝜉)𝑇)𝑖(ℎ − 𝑇𝑥 − 𝐽𝑦)] ≤ 0      ∀𝜉, ∀𝑖 ∈ 𝐼 ⊆ 𝑈𝑅 (5.17) 

𝑥 ∈  {0,1}, 𝑦 ≥ 0  (5.18) 

𝑚(𝜉) ∈ ℝ ∀𝜉. (5.19) 

A flowchart for the multi-cut L-Shaped method would be similar to that shown in Figure 2, being the 

main difference the multiple Benders cuts that would be added to the RMP after each solution of the 

DSP. 
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5.3. Classical and extended L-Shaped formulations of the proposed model   

In the DSP of the proposed model, the complicating variables 𝑠 and 𝑣𝑝 are and set to �̅� and �̅�𝑝 (i.e., 

they have fixed values), whereas 𝛼, 𝛾, 𝜎, 𝜋, 𝜇, 𝜌, and 𝜔 are dual variables associated with 

constraints (4.9), (4.10), (4.11-4.12), (4.13-4.14), (4.15-4.16), (4.17-4.18) and (4.19), respectively. 

Therefore, the slave problem can be formulated as 

𝐸(�̅�, �̅�, 𝜉) = max.
𝛼,𝛾,𝜎,𝜋,𝜇,𝜌,𝜔 

∑[𝐷(𝜉)𝑝

  𝑝 

(𝛼(𝜉)𝑝 + 𝜋(𝜉)𝑝) + 𝑆̅�̅�𝑝 𝜔(𝜉)𝑝

+ 𝑆 ̅(�̅�𝑝−1)(𝜌(𝜉)𝑝 −  𝜇(𝜉)𝑝) + �̅�( 𝜌(𝜉)𝑝 + 𝜇(𝜉))] + [𝜋(𝜉)𝑝=1 +  𝜎(𝜉)𝑝=1

+  𝜇(𝜉)𝑝=1 + 𝜌(𝜉)𝑝=1] 

(5.20) 

subject to  

𝜋(𝜉)𝑝+1 − 𝜋(𝜉)𝑝 +  𝜇(𝜉)𝑝+1 + 𝜌(𝜉)𝑝+1 ≤ 0 ∀𝜉, ∀𝑝 (5.21) 

𝜎(𝜉)𝑝+1 − 𝜎(𝜉)𝑝 ≤ 𝐻𝑝 ∀𝜉, ∀𝑝 (5.22) 

−𝜎(𝜉)𝑝 +  𝛼(𝜉)𝑝 ≤ 0 ∀𝜉, ∀𝑝 (5.23) 

𝜋(𝜉)𝑝 + 𝛼(𝜉)𝑝 − 𝛽 𝛾(𝜉)𝑝 ≤ 𝐵𝑝 ∀𝜉, ∀𝑝 (5.24) 

𝜋(𝜉)𝑝 + 𝜎(𝜉)𝑝+𝑇𝐸 + 𝜔 (𝜉)𝑝 +  𝜇(𝜉)𝑝 + 𝜌(𝜉)𝑝 ≤ 0 ∀𝜉, ∀𝑝 (5.25) 

 𝛼(𝜉)𝑝 − 𝛼(𝜉)𝑝+1 + (1 − 𝛽) 𝛾(𝜉)𝑝 ≤ 𝐵𝐴𝑝 ∀𝜉, ∀𝑝 (5.26) 

𝛼(𝜉)𝑝, 𝜋(𝜉)𝑝, 𝜎(𝜉)𝑝 ∈ ℝ  ∀𝜉, ∀𝑝 (5.27) 

𝜌(𝜉)𝑝 ≥ 0 ∀𝜉, ∀𝑝 (5.28) 

𝜔(𝜉)𝑝, 𝜇(𝜉)𝑝,  𝛾(𝜉)𝑝 ≤ 0 ∀𝜉, ∀𝑝. (5.29) 

The formulation of the single-cut L-Shaped RMP for the proposed model is given by 

min.
𝑣,𝑢,𝑠

∑ 𝐶𝐹𝑝

𝑝

𝑣𝑝 + 𝑚  (5.30) 

subject to 

∑ 𝑢𝑟,𝑘

𝑟,𝑘

= 1  (5.31) 

∑ 𝑊𝑝,𝑟,𝑘

𝑟,𝑘

𝑢𝑟,𝑘 = 𝑣𝑝 ∀𝑝 (5.32) 

0 ≤ 𝑠 ≤  𝑆̅  (5.33) 

(∑ 𝑃𝑟(𝜉)𝐸(𝑣, 𝑠, 𝜉)
𝜉 

)

𝑏

≤ 𝑚 ∀𝑏 ∈ 𝐵 ⊆ 𝑈𝑉 (5.34) 

(∑ 𝑃𝑟(𝜉)𝐸(𝑣, 𝑠, 𝜉)
𝜉 

)

𝑖

≤ 0 ∀𝑖 ∈ 𝐼 ⊆ 𝑈𝑅 (5.35) 
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𝑢𝑟,𝑘 ∈ {0,1} ∀𝑟, ∀𝑘 (5.36) 

𝑣𝑝 ∈ {0,1} ∀𝑝. (5.37) 

𝑚 ≥ 0  (5.38) 

Therefore, the single-cut L-Shaped formulation (SF) is composed of RMP (5.30)-(5.38) and DSP 

(5.20)-(5.29). In the multi-cut L-Shaped formulation (MF), the DSP is also given by formulation 

(5.20)-(5.29). The main change is in the master problem, which receives one cut for each scenario at 

each iteration, i.e., multiple cuts are added to the master problem at each iteration of the MF, and it is 

composed of (5.39)-(5.43). One should notice that the DSPs are independent scenario-wise and can be 

solved independently in parallel, which could result in further improvements in the computational 

performance of the proposed technique. The formulation of the multi-cut L-Shaped relaxed master 

problem for the proposed model is provided next:  

min
𝑣,𝑢,𝑠

∑ 𝐶𝐹𝑝

𝑝

𝑣𝑝 + ∑ 𝑃𝑟 (𝜉)𝑚(𝜉)
𝜉

  (5.39) 

subject to 

𝐸(𝑣, 𝑠, 𝜉)𝑏 ≤ 𝑚(𝜉) ∀𝜉, ∀𝑏 ∈ 𝐵 ⊆ 𝑈𝑉 (5.40) 

𝐸(𝑣, 𝑠, 𝜉)𝑖 ≤ 0 ∀𝜉, ∀𝑖 ∈ 𝐼 ⊆ 𝑈𝑅 (5.41) 

𝑚(𝜉) ≥ 0 ∀𝜉 (5.42) 

(5.31), (5.32), (5.33), (5.36), (5,37)  (5.43) 

6. Accelerating the L-Shaped Method   

6.1. Valid inequalities for the proposed model   

An efficient method for accelerating Benders decomposition is to incorporate additional information 

about the PSP in the RMP. This enhancement could be achieved by adding inequalities that explore 

specific characteristics of the PSP, limiting the solution space of the RMP variables without 

preventing the obtention of optimal solutions for the problem. Aiming at improving the computational 

performance of the SF and MF, the following valid inequalities are proposed. All proofs for the 

propositions presented in this section are available in Appendix B. 
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Proposition 1. The inequalities    

𝑠 ≥ 𝐼𝐼 − ∑ (𝐷𝐾(𝜉)𝑘 ∑ 𝑢𝑟,𝑘

𝑟

)
𝑘

 ∀𝜉 (6.1) 

make the proposed model of relatively complete recourse, where 

𝐷𝐾(𝜉)𝑘 = ∑ 𝐷(𝜉)𝑝
𝑘−1

𝑝=1

 ∀𝜉 , ∀𝑘 ≥ 2 
(6.2) 

𝐷𝐾(𝜉)𝑘 = 0. ∀𝜉 , ∀𝑘 = 1 

Proposition 2. The inequalities    

𝑚(𝜉) ≥ ∑ [(𝐻𝑝𝐶𝐼𝐼(𝜉)𝑝 − 𝑀𝐶𝐾3𝑝𝐶𝐹𝐼𝐼(𝜉)𝑝)𝑊𝐾1𝑝,𝑘𝑢𝑟,𝑘]
𝑝,𝑟,𝑘

 

+ ∑ [𝑀𝐶𝐾2𝑝,𝑟,𝑘𝐷(𝜉)𝑝𝑊𝐾2𝑝,𝑘𝑢𝑟,𝑘]
𝑝,𝑟,𝑘

 
∀𝜉 (6.3) 

are valid lower-bound inequalities for 𝑚(𝜉) of the RMP (5.39)-(5.43) in MF, where 

𝐶𝐼𝐼(𝜉)𝑝 = 𝑚𝑎𝑥((𝐼𝐼 − 𝐷(𝜉)𝑝 + 𝐶𝐼𝐼(𝜉)𝑝−1), 0) ∀𝑝 = 1 (6.4) 

𝐶𝐼𝐼(𝜉)𝑝 = 𝑚𝑎𝑥((−𝐷(𝜉)𝑝 + 𝐶𝐼𝐼(𝜉)𝑝−1), 0) ∀𝑝 ≥ 2 (6.5) 

𝐶𝐹𝐼𝐼(𝜉)𝑝 = 𝑚𝑖𝑛((𝐼𝐼 − 𝐷(𝜉)𝑝 + 𝐶𝐼𝐼(𝜉)𝑝−1), 0) ∀𝑝 = 1 (6.6) 

𝐶𝐹𝐼𝐼(𝜉)𝑝 = 𝑚𝑖𝑛((−𝐷(𝜉)𝑝 + 𝐶𝐼𝐼(𝜉)𝑝−1), 0) ∀𝑝 ≥ 2 (6.7) 

𝑊𝐾1𝑝,𝑘 = 1 ∀𝑘, ∀𝑝 ≤ 𝑇𝐸 + 𝑘 − 1 
(6.8) 

𝑊𝐾1𝑝,𝑘 = 0 ∀𝑘, ∀𝑝 > 𝑇𝐸 + 𝑘 − 1 

𝑊𝐾2𝑝,𝑘 = 1 − 𝑊𝐾1𝑝,𝑘 ∀𝑝, ∀𝑘 (6.9) 

𝑊𝑌𝐾𝑝,𝑟,𝑘 = (𝑊𝐻𝐾𝑝,𝑟,𝑘 + 𝑊𝑌𝐾𝑝−1,𝑟,𝑘)𝑊𝐻𝐾𝑝,𝑟,𝑘 ∀𝑝, ∀𝑟, ∀𝑘 (6.10) 

𝑊𝐻𝐾𝑝,𝑟,𝑘 = 1 − 𝑊(𝑝−𝑇𝐸),𝑟,𝑘 ∀𝑝, ∀𝑟, ∀𝑘 (6.11) 

𝑀𝐶𝐾2𝑝,𝑟,𝑘 = 𝑚𝑖𝑛 [𝑊𝑌𝐾𝑝,𝑟,𝑘𝐻𝑝, 𝐵𝑝, (𝐵𝑝(1 − 𝛽) + 𝐵𝐴𝑝𝛽)]  ∀𝑝, ∀𝑟, ∀𝑘 (6.12) 

𝑀𝐶𝐾3𝑝 = 𝑚𝑖𝑛 [𝐵𝑝, (𝐵𝑝(1 − 𝛽) + 𝐵𝐴𝑝𝛽)]. ∀𝑝 (6.13) 

Remark 1. Similarly, it can be said that (6.14) is a valid lower-bound inequality of the RMP (5.30)-

(5.38) of the SF. 

𝑚 ≥ ∑ 𝑃𝑟(𝜉) { ∑ {(𝐻𝑝𝐶𝐼𝐼(𝜉)𝑝 − 𝑀𝐶𝐾3𝑝𝐹𝐼𝐼(𝜉)𝑝)𝑊𝐾1𝑝,𝑘𝑢𝑟,𝑘}
𝑝,𝑟,𝑘

 
𝜉

+ ∑ [𝑀𝐶𝐾2𝑝,𝑟,𝑘𝐷(𝜉)𝑝𝑊𝐾2𝑝,𝑘𝑢𝑟,𝑘]
𝑝,𝑟,𝑘

} 

(6.14) 
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Proposition 3. The inequalities    

∑ 𝑢𝑟,𝑘

𝑟,(𝑘|𝑘≥𝑀𝐾)

= 1  (6.15) 

are valid constraints that limits the selection of the period to place the first order, where  

𝐷𝐾𝑆(𝜉)𝑝 = ∑ 𝐷(𝜉)𝑝

𝑝

𝑝=1

 ∀𝑝, ∀𝜉 (6.16) 

𝐷𝐾𝑀(𝜉)𝑝 = 𝐼𝐼 − 𝐷𝐾𝑆(𝜉)𝑝 ∀𝑝, ∀𝜉 (6.17) 

𝑀𝐾 = [𝑀𝑖𝑛( 𝑝|𝐷𝐾𝑀(𝜉)𝑝 < 0)] − 𝑇𝐸  (6.18) 

The proposed enhanced model, denoted by E-SF, implies that (6.1), (6.14), and (6.15) are included in 

the RMP of the SF. Similarly, E-MF implies that (6.1), (6.3), and (6.15) are included in the RMP in 

MF. 

6.2. Proposed acceleration technique  

The novel acceleration technique presented in this section considers two master problems in its 

formulation, the RMP and an auxiliary RMP (ARMP), and has two versions, depending on the 

solution structure of these problems. When the RMP and the ARMP have the same cut structure, i.e., 

when both of them are based on single-cut L-Shaped or multi-cut L-Shaped formulations, we refer to 

it as being a “pure” version or form of the proposed technique. In turn, when the solution structures are 

different, it corresponds to what we call the “hybrid” version. 

The development of the technique is inspired by its application to mixed-integer stochastic linear 

programming problems. Nevertheless, it is worth mentioning its straightforward extension to 

deterministic MILP problems. The technique is focused on reducing the solution time through the 

reduction of the solution time of the RMP. The driver for its development is the fact that when the SF 

and MF were applied to the inventory management model presented in Section 4, preliminary 

experiment showed that the SF had the best performance in terms of solution time. According to the 

computational results that are presented in the following section, the solution times of the RMP are 

significantly increased when multiple cuts are inserted per iteration of the MF, which causes its 

performance to be inferior to SF, despite fewer iterations being required to obtain the optimal 

solutions. 

6.2.1. Pure form of the proposed acceleration technique  

The flowchart of the proposed acceleration technique in its pure version with single-cut L-Shaped 

structure is presented in Figure 3. It is important to notice that in the pure versions, the RMP and 

ARMP are similar problems, where the only difference is the fact that the integer variables have fixed 

values in the ARMP.  
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According to Figure 3, the initial values of the lower and upper bound (𝐿𝐵 and 𝑈𝐵, respectively) are 

initially determined. After the solution of the RMP, the 𝐿𝐵 parameter takes the value of 𝑍𝑅𝑀𝑃 (value 

of the objective function of RMP), and the variable 𝑥 takes the value obtained in the solution of the 

RMP. Next, one needs to check if the primary stop condition is satisfied and, if not, the current values 

of the variables 𝑥 are fixed in �̅� in the ARMP – turning it into a continuous linear programming 

problem –, the parameter 𝑈�̂� takes on the current value of the parameter 𝑈𝐵, and the parameter 𝐿𝐵𝐴 

takes the current value of the parameter 𝐿𝐵. Next, the satisfaction of the auxiliary stop condition is 

verified, and if it is unsatisfied, a process called the auxiliary cycle is initiated. During this auxiliary 

cycle, using the classical L-Shaped method with ARMP and DSP, aims to determine the optimal 

solution 𝑦∗ given the value of �̅�; this solution is named the optimal ARMP solution and represented by 

(�̅�, 𝑦∗). The auxiliary cycle ends when the auxiliary stop condition is satisfied (i.e., 𝑈𝐵 − 𝐿𝐵𝐴 ≤  𝜖) or 

when the ARMP becomes infeasible. Once the cycle ends, if 𝑈𝐵 < 𝑈�̂�, the optimal solution of the 

ARMP (�̅� 𝑦∗) is certainly found and the parameters (𝑋, 𝑌) take on their respective values. Otherwise, 

if 𝑈𝐵 = 𝑈�̂� and the problem does not have multiple first-stage solutions, the auxiliary cycle ended 

before obtaining the optimal solution for the ARMP in relation to the current �̅�; therefore, a solution 

(�̅�, 𝑦) is obtained.  

After the end of the auxiliary cycle, the integer variables are unfixed, and the RMP is solved, obtaining 

a solution (𝑥, 𝑦). Next, it is verified whether the primary stop condition is satisfied and, if it is the 

case, the optimal solution of the problem is obtained and is equal to (𝑋, 𝑌). If the primary stop 

condition is not satisfied, the current integer values obtained in the solution of the RMP are fixed in �̅� 

in the ARMP, 𝐿𝐵𝐴 takes on the current value of 𝐿𝐵, and a new auxiliary cycle is started. Hence, the 

auxiliary cycles and the new solutions of the RMP are obtained sequentially and alternately until the 

optimal solution of the problem is found. 

The flowchart of the pure multi-cut technique is similar to that presented in Figure 3, where the main 

difference is the generation and addition of multiple optimality or feasibility cuts to the RMP and 

ARMP from solutions obtained by the DSP per iteration. When the pure versions are applied in the 

proposed model, have the pure single-cut formulation (PSF) and pure multi-cut formulation (PMF). 

Notice that both can be enhanced with the proposed valid inequalities. In that case, E-PSF, means 

(6.1), (6.14) and (6.15) are added into the RMP and ARMP; analogously, in E-PMF, (6.1), (6.3) and 

(6.15) are added into the RMP and ARMP. 

A key factor of the proposed technique is the maintenance of the smaller upper bound in both stop 

conditions, making the auxiliary cycles more efficient. Considering the auxiliary cycles, if the finding 

of solution (�̅�, 𝑦∗) depends on having a larger value for 𝑍𝐴𝑅𝑀𝑃 when compared with the current 𝐿𝑆 

(considering a minimization problem without loss of generality), the auxiliary cycle ends before 
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obtaining 𝑦∗ and a solution (�̅�, 𝑦) is obtained. Therefore, the number of iterations of the auxiliary cycle 

decreases. 

 
Figure 3- Flowchart of the acceleration technique proposed in the pure version and with a single-cut L-Shaped structure  

To illustrate the typical behavior of the proposed method, Figure 4 displays the values 𝑈𝐵, 𝐿𝐵 e 𝐿𝐵𝐴 

obtained when applying the pure single-cut L-Shaped form of the method to a generic instance of the 

problem at hand. The yellow, red and black dots represent the values of 𝐿𝐵𝐴 when an optimal solution 

(�̅�, 𝑦∗) of the ARMP is obtained, the values of 𝐿𝐵 when a solution (𝑥, 𝑦) of the RMP is obtained and 

the values of 𝐿𝐵𝐴 when a solution (�̅�, 𝑦) of the ARMP is obtained, respectively. As expected, due to 

the logic of the proposed technique, Figure 4 indicates that whenever a solution (�̅�, 𝑦∗) is obtained, the 

value of 𝑈𝐵 decreases and the optimal solution of the RMP will always be the last solution (�̅�, 𝑦∗) 

obtained in the auxiliary cycle. It should be emphasized that a solution (�̅�, 𝑦∗) can be obtained without 
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a concurrent decrease in the value of 𝑈𝐵 during the auxiliary cycle, in case the problem presents 

multiple first-stage solutions. It is also observed that an auxiliary cycle always occurs between the two 

consecutive solutions of the RMP and that the values of 𝐿𝐵 related to solutions (𝑥, 𝑦) of the RMP 

have a typical Benders decomposition behavior, i.e., as the iterations are performed, they are equal to 

or greater than the previous value.   

 
Figure 4-Behavior of bounds obtained using the pure single-cut L-Shaped form  

6.2.2. Convergence of the method  

Essentially, by inserting an additional cycle that considers a simplified relaxed master problem (the 

ARMP) the proposed acceleration technique modifies the natural sequence in which the RMP and the 

DSP are solved in the classic Benders decomposition. Nevertheless, one can show that convergence is 

not hindered by using the proposed acceleration technique. We summarize the analysis of the 

algorithm convergence in the three following propositions, which are valid for the pure forms, the 

hybrid form and the modified hybrid form of the technique, as presented in the next subsections. 

Detailed proofs for these are provided in Appendix C.  

Proposition 4. All auxiliary cycles of the proposed technique will always converge to an optimal 

solution (�̅�, 𝑦∗) or solution (�̅�, 𝑦) of the ARMP.  

Proposition 5. The proposed acceleration technique does not compromise convergence properties of 

the classical Benders decomposition.   

Proposition 6. The solution obtained by the proposed technique and the classical Benders method will 

be the same when the same tolerance value 𝜖 is used. Additionally, the optimal solution of the problem 

will always be the last optimal solution (�̅�, 𝑦∗) of the ARMP obtained in the auxiliary cycle.  

It is trivial to verify that multiple first-stage solutions do not prevent convergence of the proposed 

technique.  
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6.2.3. Hybrid form of the proposed acceleration technique 

At its hybrid form, the ARMP has a multi-cut L-Shaped structure and the RMP has the single-cut L-

Shaped structure for the optimality cuts and the multi-cut L-Shaped structure for the feasibility cuts, 

i.e., they are problems with different structures. Thus, the benefit is that the auxiliary cycles require 

fewer iterations for convergence because they are in their multi-cut L-Shaped form and because the 

ARMP is a simplified linear problem with only continuous variables. It is worth highlighting that 

many possible alternative configurations are possible in this context. We opted for this particular one 

based on preliminary experiments with all possible combinations. 

The RMP will receive the same cuts added to the ARMP during the local cycles but single cuts in the 

case of optimality cuts and in the form of multiple cuts (one cut for each scenario) in the case of 

feasibility cuts, thus guaranteeing that the ARMP and the RMP have the same feasibility region.  

Nevertheless, when the cuts are combined to be inserted in the single-cut L-Shaped form in the RMP, 

information from the solution of the DSP could be lost in comparison to the cuts in the multi-cut L-

Shaped form, which could lead the RMP to revisit previously found integer solutions during the 

solution process. To avoid this undesired effect, it is necessary to include “locally optimal cuts” (LOC) 

in the RMP at the end of each auxiliary cycle. 

Considering the current auxiliary cycle and that 𝐶𝑛,𝑗
𝑏  and 𝑇𝑀𝑏 are parameters where 𝑏 = 0 (initial 

value) and immediately after the end of each auxiliary cycle 𝑏 = 𝑏 + 1, the result is 

𝐶𝑛,𝑗
𝑏 = �̅�𝑛,𝑗  

(6.19) 
𝑇𝑀𝑏 = (∑ 𝑃𝑟(𝜉)𝑚(𝜉)𝜉 ),  

where �̅�𝑛,𝑗 is the value of 𝑥𝑛,𝑗 (integer variables of the RMP that are fixed in the ARMP) at the end of 

the auxiliary cycle and 𝑚(𝜉) takes on the value obtained at the end of the current auxiliary cycle. 

Hence, the following LOC is added in the RMP: 

( 𝑇𝑀𝑏)
[(∑ 𝐶𝑛,𝑗

𝑏
𝑖,𝑛 𝑥𝑛,𝑗) − (∑ 𝐶𝑛,𝑗

𝑏
𝑖,𝑛 ) + 1]

𝑁
≤ 𝑚 |∑ �̅�𝑛,𝑗

𝑖,𝑛

> 0 (6.20) 

( 𝑇𝑀𝑏) (1 − ∑ 𝑥𝑛,𝑗
𝑖,𝑛

) ≤ 𝑚 |∑ �̅�𝑛,𝑗
𝑖,𝑛

= 0. (6.21) 

According to definition (6.20), for any different values of the integer variables in relation to the value 

obtained at the end of the current auxiliary cycle, the left side of the equation is null or negative. When 

the value is equal to that obtained at the end of the current auxiliary cycle, 𝑚 is at least equal to the 

value of 𝑇𝑀𝑏 (𝑍𝐴𝑅𝑀𝑃 at the end of the current auxiliary cycle). A similar analysis can be performed 

for (6.21). It should be emphasized that (6.20) and (6.21) cover different types of problems with binary 



 

21 
 

variables; however, they are not general equations, and it may be necessary to develop a LOC with a 

different format but following a similar logic in relation to (6.20) and (6.21). 

The LOC developed for the hybrid version of the proposed technique and specific for the proposed 

model can be verified in (6.22).  

𝑚 ≥ ∑ 𝐿𝑂𝑟,𝑘,𝑏𝑢𝑟,𝑘,
𝑟,𝑘

  (6.22) 

where the parameter 𝐿𝑂𝑟,𝑘,𝑏 is given by  

𝐿𝑂𝑟,𝑘,𝑏 = [∑(𝑃𝑟(𝜉) 𝑚(𝜉))
𝜉

] 𝑢𝑟,𝑘 ∀𝑘, ∀𝑟, (6.23) 

with 𝑚(𝜉) and 𝑢𝑟,𝑘 in (6.23) assuming the values obtained in the solution of the ARMP at the end of 

each auxiliary cycle. In addition, the single-cut and multi-cut hybrid formulation (SMHF) can be 

enhanced, referred to as E-SMHF, when (6.1), (6.14) and (6.15) are added to the RMP, and (6.1), (6.3) 

and (6.15) are added to the ARMP. 

The flowchart of the hybrid version of the technique is represented in Figure 5. As previously 

mentioned, in the hybrid version, the ARMP and RMP are problems with different solution structures. 

Therefore, it is recommended that the definition of the upper bound, in this case, is performed as 

described in Figure 5 to avoid convergence problems. In addition, the RMP and ARMP should receive 

feasibility cuts in the multi-cut form. This stops infeasible solutions for the ARMP from being 

obtained in the RMP and its respective Benders cuts from being inserted in the ARMP.  

6.2.4. Modified hybrid form of the proposed acceleration technique   

In the RMP, the variable 𝑠 does not appear in any of the constraints nor is part of the objective 

function. Hence, the variable 𝑠 can be removed from the RMP, causing the integer variables to be the 

only decision variables; thus, only the LOC is used. Therefore, this modified single-cut and multi-cut 

hybrid formulation (MSMHF) entails solving a simpler integer problem as the RMP, which could 

represent a reduction in the solution time.  

In its enhanced version, E-MSMHF, the RMP is formed by (5.30)-(5.32), (5.36)-(5.38), (6.14), (6.15), 

in addition to the valid inequalities (6.1), which are used after each solution of the RMP to guarantee 

that only optimality cuts will be generated in all iterations. Basically, this change consists of starting 

the search by the auxiliary optimal solution, always with the maximum value between the minimum 

permitted as a function of 𝑢𝑟,𝑘 in (6.1) and a certain value selected (in this case, the average value of 

its bounds was selected). Additionally, this procedure can decrease the number of iterations required 

for the convergence, considering that the values obtained for the variable 𝑠, solving the RMP, are 
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distant from the value obtained in the optimal solution (usually extreme values). The pseudocode of E-

MSMHF is presented in Appendix D. 

 

 
Figure 5- Flowchart of the proposed acceleration technique in its hybrid version  

7. Computational Experiments 

All models proposed in this study were implemented using the AIMMS 3.14 software package and 

solved using CPLEX 12.6. All experiments were performed on an Intel i7-4510 2.0 GHz processor 

with 8G RAM. Table 1 contains the instance classes, which are defined by distinct set sizes their 

respective sizes in terms of number of variables and constraints. The scenarios for the demand were 

randomly generated following a normal distribution with the mean of 50 and variance of 75. For each 

of these classes, we generated a total of ten instances. The parameters 𝐵𝑝, 𝐵𝐴𝑝, 𝐶𝐹𝑝, 𝐻𝑝, 𝑆,̅  𝛽 and 𝐼𝐼 
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are set to 25, 12, 25, 0.2, 500, 0.7, and 265, respectively. The lead time is equivalent to two time 

periods. We used as stop criteria a solution time limit (TL) of one hour (3600 seconds) and a tolerance 

(𝜖) of 10-5. The CPU time, number of iterations, and relative optimality gap (given by 𝑈𝐵−𝐿𝐵
𝑈𝐵

) in Tables 

2, 3, 5, 6, and 8 are presented, with their mean (A), largest (L) and smallest (S) values.  

Table 2 presents the results obtained in terms of CPU time, number of iterations, and relative 

optimality gap value using the SF and MF, and solving the deterministic equivalent problem (“Full 

Problem”) directly using CPLEX. 

Table 1- Classes of the instances used in the present study and their respective impact on problem size  

Class Size of sets Number of variables Number of 
constraints |Ω| |P| |R| |K| Binary Continuous (𝛽 = 0) Continuous (𝛽 > 0) 

C1 50 36 10 10 136 9.001 10.801 12.638 
C2 50 72 10 10 172 18.001 21.601 25.274 
C3 100 72 10 10 172 36.001 43.201 50.474 
C4 100 72 20 10 272 36.001 43.201 50.474 
C5 250 72 20 10 272 90.001 108.001 126.074 
C6 250 72 20 20 472 90.001 108.001 126.074 
C7 500 72 20 20 472 180.001 216.001 252.074 
C8 500 90 20 20 490 225.001 270.001 315.092 
C9 250 180 20 20 580 225.001 270.001 315.182 

C10 500 180 20 20 580 450.001 540.001 630.182 
C11 250 365 20 20 765 456.251 547.501 639.117 
C12 500 365 20 20 765 912.501 1.095.001 1.277.867 

According to Table 2, the total CPU time for all formulations increases with the increase in the 

number of scenarios, periods, periodicities, and periods available for placing the first order, as 

expected. Additionally, solving the full problem achieves smaller mean CPU times for C1 only. 

However, from C2, SF consistently provided the smallest mean CPU time in relation to MF and Full 

Problem, and was always capable to return the optimal solution within the time limit. From C7, only 

SF was able to obtain the optimal solution within the limit of one hour. It is important to highlight that 

the number of iterations of MF is consistently smaller than that of SF. Nonetheless, the difference 

between the mean solution times of SF and MF increase as the instances get larger. 

Table 2- Computational results with the application of the CPLEX and L-Shaped methods  

Class 
Full Problem SF MF 
CPU time [s] CPU time [s] Iteration Gap (%) CPU time [s] Iteration Gap (%) 

A L S A L S A L S A L S A L S A L S A L S 
C1 20 23 17 58 64 46 191 196 184 - - - 203 246 181 139 151 131 - - - 
C2 96 116 83 95 102 88 196 212 183 - - - 289 527 211 147 172 136 - - - 
C3 344 399 296 177 197 157 197 212 188 - - - 614 1094 439 144 169 129 - - - 
C4 420 606 342 232 245 224 244 283 231 - - - 1097 2200 770 162 189 153 - - - 
C5 2862 3600 2176 561 614 511 250 276 240 - - - 2725 3600 2182 153 160 143 0.1 0.6 - 
C6 2734 3588 1908 580 665 538 255 336 223 - - - 3563 3600 3200 147 157 123 0.2 0.8 - 
C7 3600 3600 3600 1171 1562 1010 257 343 224 - - - 3600 3600 3600 109 120 90 0.6 0.9 0.5 
C8 3600 3600 3600 1383 1603 1254 260 353 226 - - - 3600 3600 3600 105 118 64 0.6 0.9 0.5 
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Table 3 shows the effects of using the valid inequalities in the improved on the solution time and 

number of iterations of the L-Shaped formulations. Additionally, the results obtained with SF, which 

represents the formulation with the best computational performance in Table 2, are complemented 

with classes from C9 to C12.  

As can be seen in Table 3, there is substantial improvement in terms of the number of iterations and 

CPU time for E-SF and E-MF formulations when compared with SF. Considering the largest CPU 

time for E-SF and E-MF, only in C12 E-MF was not able to obtain the optimal solution within the 

time limit. However, its mean solution time in this instance is 1074s, which is significantly less than 

one hour. In addition, one can note that in C12, SF does not obtain the optimal solution within the time 

limit in any of the tests performed. It is important to highlight that with the use of the valid inequalities 

in the E-SF an E-MF formulations, the increase of |R| from 10 to 20 (C3 to C4) and the increase of |K| 

from 10 to 20 (C5 to C6) do not have a significant impact on the solution time, as in SF. Additionally, 

in E-SF and E-MF, the values of the mean, largest and smallest iteration numbers remained the same.  

Table 3-  Effects of the use of valid inequalities in the L-Shaped formulations  

Class 
SF E-SF E-MF 
CPU time [s] Iteration Gap (%) CPU time [s] Iteration CPU time [s] Iteration 
A L S A L S A L S A L S A L S A L S A L S 

C1 58 64 46 191 196 184 - - - 12 14 9 41 44 37 15 18 12 29 31 24 
C2 95 102 88 196 212 183 - - - 21 32 18 42 46 40 24 36 20 29 33 28 
C3 177 197 157 197 212 188 - - - 39 43 33 43 50 41 51 88 38 30 35 27 
C4 232 245 224 244 283 231 - - - 40 44 34 43 50 41 54 92 40 30 35 27 
C5 561 614 511 250 276 240 - - - 99 108 89 45 52 42 139 209 109 29 35 26 
C6 580 665 538 255 336 223 - - - 106 113 95 45 52 42 151 226 115 29 35 26 
C7 1171 1562 1010 257 343 224 - - - 215 228 197 46 53 43 333 561 252 30 34 27 
C8 1383 1603 1254 260 353 226 - - - 251 269 213 45 54 38 374 672 286 29 36 27 
C9 1271 1790 1098 259 381 225 - - - 232 292 214 47 57 43 323 856 209 31 40 28 

C10 2518 3349 2173 264 382 225 - - - 469 584 417 48 64 44 707 2140 403 32 44 27 
C11 2546 3600 2200 263 363 234 0.0 0.0 - 450 727 397 48 76 42 648 3153 319 32 56 27 
C12 3600 3600 3600 193 236 177 0.6 0.9 0.2 881 1333 773 48 72 43 1073 3600 683 30 40 27 

The percentage decrease in the number of iterations and the speed-up factor when E-MF are compared 

with SF and MF and when E-SF is compared with SF and E-MF are presented in Table 4. The 

obtained values were calculated using the average values of Tables 2 and 3. When compared with the 

SF and MF, the speed-up factor of the E-MF formulation is defined as the ratio of the solution times of 

SF to E-MF and of MF to E-MF, respectively. Similarly, the speed-up factors of E-SF are obtained 

when its solution times are compared with those of SF and E-MF.  

According to Table 4, the performance of E-MF and E-SF is better in relation to SF, with speed-up 

factor values between 3.5 and 4.3 and between 4.5 and 5.8, respectively. The use of the valid 

inequalities in E-MF and E-SF promotes significant reductions in the mean number of iterations. 

When E-MF is compared with SF and MF, the percentage of mean decrease ranges from 85% to 89% 

and from 79% to 81%, respectively. 
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Table 4 - Comparison of E-MF with SF and MF and of E-SF with SF and E-MF 

 
Class 
 

E-MF E-SF 
Speed-up factor Iteration reduction (%) Speed-up factor Iteration reduction (%) 
SF MF SF MF SF E-MF SF E-MF 

C1 3.9 13.5 85 79 4.8 1.3 79 -41 
C2 4.0 12.0 85 80 4.5 1.1 79 -45 
C3 3.5 12.0 85 79 4.5 1.3 78 -43 
C4 4.3 20.3 88 81 5.8 1.4 82 -43 
C5 4.0 19.6 88 81 5.7 1.4 82 -55 
C6 3.8 23.6 89 80 5.5 1.4 82 -55 
C7 3.5 - 88 - 5.4 1.5 82 -53 
C8 3.7 - 89 - 5.5 1.5 83 -55 
C9 3.9 - 88 - 5.5 1.4 82 -52 
C10 3.6 - 88 - 5.4 1.5 82 -50 
C11 3.9 - 88 - 5.7 1.4 82 -50 
C12 - - - - - 1.2 - -60 

Furthermore, the efficiency of the multi-cut strategy is notably improved with the use of the valid 

inequalities, where E-MF presents mean speed-up factors between 12.0 and 23.6 when compared with 

MF. However, although the percentage of mean decrease of E-SF ranges from -60% to -41%, when 

compared with E-MF (i.e., when E-SF needs on average 41% to 60% more iterations in relation to E-

MF), the performance of the single-cut approach is still better than the multi-cut, where E-SF presents 

mean speed-up factors of 1.1 to 1.5 when compared with E-MF.  

Table 5 presents the values of the total time spent on the solution of the RMP and its percentages in 

relation to the total solution time (M/T), for SF, MF, E-MF, and E-SF. The results in Table 5 indicate 

that iteratively adding multiple Benders cuts to the RMP of MF and E-MF makes them significantly 

harder to solve when compared with SF and E-SF. This difference is the key factor underlying the 

improved performance of the single-cut method in comparison to the multi-cut method. The mean 

percentage of time spent on the solutions of the RMP ranged from 79% to 91% and from 50% to 62% 

in MF and E-MF, respectively. In turn, in the SF and E-SF formulations, these ranges are only from 

3% to 16% and from 5% to 17%, respectively.  

The use of valid inequalities has direct impact on the reduction of the number of iterations, which in 

turn implicates that smaller master problems (i.e. with less cuts) have to be solved. According to Table 

5, this effect is determinant in the decrease of the total time spent on solving the RMP in the E-MF 

formulation. However, for E-SF, the differences in the mean solution time of the RMP in relation to 

the SF are significantly smaller. Therefore, one could infer that the reduction in the total solution time 

of E-SF is mainly due to the reduction in the number of times that the master problem is solved.  

Table 6 displays the effects on the CPU time and on the number of iterations of the formulations 

implemented with the proposed acceleration techniques combined with valid inequalities. According 

to the maximum solution times of all formulations presented in Table 6, the optimal solution was 

obtained within the established time limit in all tests performed. 
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Table 5 - Total solution times of the RMP for the SF, MF, E-MF and E-SF  

Class 
SF - Master Problem MF - Master Problem E-SF - Master Problem E-MF - Master Problem 
CPU time [s] M/T (%) CPU time [s] M/T (%) CPU time [s] M/T (%) CPU time [s] M/T (%) 

A L S A L S A L S A L S A L S A L S A L S A L S 
C1 9 10 8 16 18 15 167 203 146 82 85 80 2 2 2 17 20 16 8 10 6 53 59 48 
C2 12 16 10 13 17 11 227 464 152 79 88 71 3 4 2 14 17 11 12 25 8 50 69 40 
C3 12 16 10 7 10 6 492 976 317 80 89 72 4 5 3 10 12 8 27 65 16 53 73 41 
C4 29 41 25 13 17 10 960 2071 634 88 94 81 4 6 4 10 14 10 29 68 17 54 74 44 
C5 31 41 25 6 8 5 2390 3411 1820 88 93 83 8 9 7 8 9 7 77 147 48 55 71 44 
C6 50 95 35 9 14 6 3238 - 2849 91 - 89 14 16 13 13 15 12 90 166 56 60 73 48 
C7 56 116 37 5 8 3 - - - - - - 25 30 24 12 14 11 208 430 134 62 77 52 
C8 61 128 40 4 8 3 - - - - - - 26 34 21 10 13 9 226 529 137 60 79 48 
C9 83 237 49 7 13 4 - - - - - - 18 27 15 8 10 7 181 69 74 56 81 35 

C10 87 246 51 3 7 2 - - - - - - 33 52 28 7 9 6 414 1777 158 59 83 39 
C11 150 565 80 6 16 3 - - - - - - 28 69 21 6 10 5 366 2672 79 56 85 24 
C12 - - - - - - - - - - - - 45 97 37 5 7 4 539 3036 174 50 81 26 

Furthermore, once again the increase of the |R| from 10 to 20 (C3 to C4) and the |K| from 10 to 20 

(C5 to C6) did not have significant impact on the solution time of the improved formulations, with 

very similar corresponding mean values. Considering the mean CPU times, E-PSF and E-PMF can be 

considered to have similar computational performance in the tested cases, with E-PMF performing 

slightly better in most cases. Considering the mean, largest and smallest CPU time values, the 

performance of E-SMHF is clearly better than E-PSF and E-PMF. Similarly, the computational 

performance of E-MSMHF is superior to that of E-SMHF.  

Table 6 - Effects of the use of the proposed acceleration techniques combined with valid inequalities  

Class 
E-PSF E-PMF E-SMHF E-MSMHF 
CPU time [s] Iteration CPU time [s] Iteration CPU time [s] Iteration CPU time [s] Iteration 

A L S A L S A L S A L S A L S A L S A L S A L S 
C1 11 13 8 41 44 37 10 12 8 29 31 24 8 9 6 29 31 24 7 8 5 24 27 22 
C2 18 20 15 42 46 40 16 19 15 29 33 28 13 15 11 30 34 28 11 13 10 25 30 24 
C3 37 41 31 43 50 41 34 41 28 30 35 27 26 31 24 30 36 27 21 25 20 25 32 23 
C4 38 44 31 43 50 41 34 42 29 30 35 27 27 29 24 30 36 27 22 25 20 25 32 23 
C5 97 110 85 45 52 42 91 121 76 29 35 26 66 72 59 30 36 26 57 63 50 26 31 23 
C6 97 107 86 45 52 42 94 130 82 29 35 26 68 73 63 30 36 26 57 64 51 26 31 23 
C7 200 216 178 46 53 43 197 293 163 30 34 27 140 154 127 30 35 27 115 126 109 26 30 23 
C8 236 256 202 45 54 38 237 385 193 29 36 27 163 179 152 30 37 27 139 154 124 26 33 24 
C9 219 273 201 47 56 43 216 481 154 31 39 27 151 187 138 32 40 28 127 165 106 27 38 22 

C10 460 540 407 48 64 44 449 972 310 32 43 27 319 445 257 33 46 27 267 375 223 29 42 24 
C11 432 728 375 48 82 42 417 1457 267 32 57 27 302 591 242 32 59 27 258 511 204 29 55 23 
C12 851 1214 741 48 69 43 881 3265 554 32 57 27 600 1187 500 32 59 28 515 1031 439 29 54 24 

In Table 7, we present the percentage decrease in the number of iterations and the speed-up factor 

when the E-PSF is compared with SF and E-SF, when E-PMF is compared with SF and E-MF; when 

E-SMHF is compared with SF, E-PSF and E-PMF; and when E-MSMHF is compared with SF and E-

SMHF. The obtained values were calculated using the average values of Table 6. 

The values of the speed-up factors observed in Table 7 corroborate with the analyses of the results in 

Table 6. Additionally, it can be seen that E-MSMHF is the formulation with the best computational 

performance among those tested, reaching speed-up factors from 8.3 to 10.5 in relation to the SF and 
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from 1.1 to 1.2 in relation to E-SMHF. The second best computational performance is the E-SMHF, 

which reaches speed-up factors values from 6.8 to 8.6, from 1.4 to 1.5, and from 1.2 to 1.5 in relation 

to SF, E-FPS and PMF, respectively. It is also possible to notice that E-PSF and E-PMF overperform 

E-SF and E-MF, respectively.  

Table 8 presents the values of the total time spent on the solution of the RMP and ARMP, and their 

percentages in relation to the total solution time (M/T), for the E-PSF, E-PMF, E-SMHF and E-

MSMHF. According to Table 8, there is a significant reduction in the mean values of the total time 

spent to solve the master problems when compared to the values in Table 5, specifically in the E-PMF 

and E-SMHF. In Table 5, the mean percentage in relation to the total CPU time of E-MF ranges from 

50% to 62%, whereas Table 8 presents the mean variations from 25% to 38% and from 6% to 13% in 

E-PMF and E-SMHF, respectively.  

Table 7- Comparison of computational performance with formulations with proposed acceleration techniques  

Class 
E-PSF E-PMF E-SMHF E-MSMHF 
Speed-up 
factor 

Iteration 
reduction (%) 

Speed-up 
factor 

Iteration 
reduction (%) 

Acceleration  
Factor 

Iteration  
reduction (%) 

Speed-up 
factor 

Iteration 
reduction (%) 

SF E-SF SF E-SF SF E-MF SF E-MF SF E-PSF E-PMF SF E-PSF E-PMF SF E-SMHF SF E-SMHF 
C1 5.3 1.1 79 0 5.8 1.5 85 0 7.3 1.4 1.3 85 29 0 8.3 1.1 87 17 
C2 5.3 1.2 79 0 5.9 1.5 85 0 7.3 1.4 1.2 85 29 -3 8.6 1.2 87 17 
C3 4.8 1.1 78 0 5.2 1.5 85 0 6.8 1.4 1.3 85 30 0 8.4 1.2 87 17 
C4 6.1 1.1 82 0 6.8 1.6 88 0 8.6 1.4 1.3 88 30 0 10.5 1.2 90 17 
C5 5.8 1.0 82 0 6.2 1.5 88 0 8.5 1.5 1.4 88 33 -3 9.8 1.2 90 13 
C6 6.0 1.1 82 0 6.2 1.6 89 0 8.5 1.4 1.4 88 33 -3 10.2 1.2 90 13 
C7 5.9 1.1 82 0 5.9 1.7 88 0 8.4 1.4 1.4 88 35 0 10.2 1.2 90 13 
C8 5.9 1.1 83 0 5.8 1.6 89 0 8.5 1.4 1.5 88 33 -3 9.9 1.2 90 13 
C9 5.8 1.1 82 0 5.9 1.5 88 0 8.4 1.5 1.4 88 32 -3 10.0 1.2 90 16 

C10 5.5 1.0 82 0 5.6 1.6 88 0 7.9 1.4 1.4 88 31 -3 9.4 1.2 89 12 
C11 5.9 1.0 82 0 6.1 1.6 88 0 8.4 1.4 1.4 88 33 0 9.9 1.2 89 9 
C12 - 1.0 - 0 - 1.2 - -7 - 1.4 1.5 - 33 0 - 1.2 - 9 

According to the percentage decrease in the number of iterations in Table 7, the E-PSF has the same 

mean number of iterations of E-SF, and E-PMF has practically the same mean number of iterations of 

E-MF, except that in C12, where E-PMF requires 7% more iterations. The E-SMHF presents similar 

number of iterations in relation to the E-PMF. Hence, the reductions obtained in the solution times of 

Table 6 are mainly due to the reductions in the total time spent on solving the master problems, which 

is precisely the expected effect of the proposed acceleration techniques. Furthermore, as expected, this 

effect is smaller in E-PSF in relation to E-SF, and significantly larger in E-PMF and E-SMHF in 

relation to E-MF.    

Finally, according to the decrease in the number of iterations and the best computational performance 

of E-MSMHF in relation to SMHF, the strategy with the removal of variable s from the RMP in the 

hybrid formulation was successful, especially in the larger classes, in which significantly faster 

solutions can be obtained, considering the mean computational time. 
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Table 8 – Sum of the total solution times of the RMP and ARMP for the E-PSF, E-PMF, E-SMHF and E-MSMHF  

Class 
E-PSF– Masters E-PMF – Masters E- SMHF – Masters E-MSMHF - Masters 
CPU time [s] M/T (%) CPU time [s] M/T (%) CPU time [s] M/T (%) CPU time [s] M/T (%) 
A L S A L S A L S A L S A L S A L S A L S A L S 

C1 1 1 1 9 9 6 3 4 2 30 33 26 1 1 1 13 13 10 1 1 1 14 14 10 
C2 1 1 1 6 7 4 4 9 3 25 47 18 1 1 1 8 11 7 1 1 1 9 9 6 
C3 1 2 1 3 5 3 9 18 6 26 43 19 2 3 1 8 11 6 1 2 1 5 8 5 
C4 2 2 1 5 6 3 9 19 6 26 44 21 2 3 2 7 12 7 1 2 1 5 9 5 
C5 3 4 2 3 4 2 29 62 19 32 51 24 5 8 4 8 12 6 3 5 2 5 9 4 
C6 4 6 4 4 6 4 34 69 22 36 53 27 7 11 6 10 15 9 4 6 3 7 10 6 
C7 8 11 8 4 6 3 73 166 49 37 57 28 15 23 13 11 15 9 8 12 7 7 11 6 
C8 9 13 8 4 5 3 90 235 51 38 61 25 16 27 13 10 15 8 9 17 7 6 11 5 
C9 6 11 5 3 5 2 77 350 25 36 73 16 10 24 7 7 13 5 6 16 3 5 9 3 

C10 11 21 9 2 4 2 160 695 59 36 71 17 22 65 13 7 15 5 13 41 7 5 11 3 
C11 9 29 6 2 4 1 134 968 29 32 66 10 17 83 8 6 14 3 10 51 4 4 10 2 
C12 14 41 10 2 3 1 323 2310 66 37 71 11 34 183 15 6 15 3 21 120 8 4 12 2 

8. Conclusions 

In this paper, we propose an inventory management model with periodic review policy (R, S) and 

partial backorder with one layer, one item and uncertain demand, formulated via two-stage stochastic 

programming. The proposed model extends that originally proposed by Cunha et al. (2017) as the 

proposed formulation allows for the consideration of initial inventory in a more natural manner and 

considers the possibility of partial backorder, with the possibility of being simply converted into pure 

lost sales or pure backorder cases, being thus more general. Additionally, a more efficient exact 

linearization was applied to the model, which provides a formulation with less constraints and 

variables in comparison to the model developed by Cunha et al. (2017).   

According to the numerical results obtained, although the SF always requires more iterations than the 

MF to converge and obtain the optimal solutions, the performance of the SF was notably better than 

MF and the full problem formulation. It should be highlighted that the MF was computationally 

inferior to the full problem formulation.  

To allow the efficient solution of larger problems, valid inequalities were developed along with a new 

acceleration technique containing three variants: pure single-cut L-Shaped version, pure multi-cut L-

Shaped version and a hybrid version that uses both the multi-cut L-Shaped and single-cut L-Shaped 

structures. Additionally, it was possible to develop a specific hybrid formulation modified for the type 

of model proposed in the present study due to the particular characteristic of its master problem.  

Among the forms of the proposed acceleration technique, the modified hybrid version combined with 

the set of valid inequalities, E-MSMHF stood out computationally, resulting in the best computational 

performance among the performed tests. On average, E-MSMHF obtained solutions from 8.3 to 10.5 

times faster than SF.   

The results obtained support the conclusion that the more realistic problems – considering, for 

instance, more items, demand simulations with more complex stochastic processes and requiring a 
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large number of scenarios and long planning horizons for the control system (R, S) – can be efficiently 

addressed by the proposed approach. In addition, the proposed acceleration technique is sufficiently 

general to be applied to other problems in the literature that share a similar structure, including 

applications based on the classical Benders method (i.e., deterministic problems).  

As future studies, application of the acceleration technique proposed in the present study to other 

models, including MILP models without continuous variables in the master problem, is suggested to 

verify whether the computational performance is improved and, if possible, to combine it with other 

existing techniques, aiming at maximizing the computational performance of the models that would be 

tested. Additionally, we propose the application of the improved inventory management model in real 

situations, comparing the results obtained with those of models already existing in the literature, 

aiming to observe their advantages, disadvantages and limitations. 
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Appendix A – Model notation  

Sets 

𝑃 − Time periods; 
Ω − Scenarios; 
R − Review periods, where τ ⊂ 𝑃;  
𝐾 − Periods for the first order, where 𝐾 ⊂ 𝑃; 
|⋅| − Size of the set ⋅; 
Indices 

𝑝 ∈ 𝑃 − Time period; 
𝜉 ∈ Ω − Scenario; 
𝑟 ∈ R − Review period; 
𝑘 ∈ 𝐾 − Period for the first order; 

Parameters 

𝐵𝑝     − Cost of unmet demand per unit of item in period 𝑝; 
𝐵𝐴𝑝     − Backorder cost per unit of item in period 𝑝; 
𝐶𝐹𝑝 − Fixed ordering cost in period 𝑝; 
𝐻𝑝         − Inventory cost per unit of item in period 𝑝; 
𝐷(𝜉)𝑝    − Demand for item in scenario 𝜉 and period 𝑝; 
𝛽         − Backorder rate; 𝛽 ∈ [0,1]. 
𝐼𝐼         − Initial inventory; 
 𝑆�  − Upper bound for stock level of the item; 
𝑃𝑟(𝜉) − Probability of scenario 𝜉; 
𝑇𝐸 − Lead time; 

𝑊𝑝,𝑟,𝑘 − Auxiliary parameter that indicates the period of the order depending on the value of 
𝑘 e  𝑟;  𝑊𝑝,𝑟,𝑘 ∈ {0,1};  𝑟 = 1, … , |𝑅|;    𝑝 = 1, … , |𝑃|;  𝑘 = 1, … , |𝐾|; 

where 𝑊𝑝,𝑟,𝑘 is represented by the following matrix: 

 
Variables 

𝑎(𝜉)𝑝 − Quantity of demand met in scenario 𝜉 and period 𝑝; 
𝑓(𝜉)𝑝 − Quantity of unmet demand in scenario 𝜉 and period 𝑝; 
𝑖(𝜉)𝑝 − Final inventory in stock at the end of each period 𝑝, in each scenario 𝜉; 

𝑖𝑡(𝜉)𝑝 − Total inventory position (in stock plus backorders) at the end of each period, in each 
scenario 𝜉; 

𝑙(𝜉)𝑝  − Backorder quantity in scenario 𝜉 and period 𝑝; 
𝑞(𝜉)𝑝 − Ordered quantity of item at the start of each period, in each scenario 𝜉.  
𝑠 − Target inventory level for the item throughout the time horizon; 
𝑣𝑝 − Indicates the existence or absence of order for item in period 𝑝; 𝑣𝑝 ∈ {0,1}. 

𝑢𝑟,𝑘 − Auxiliary variable for determination of cycle size 𝑅 and period 𝑘 in which the first 
order is placed; 𝑢𝑟,𝑘 ∈ {0,1}. 



 

Appendix B – Linearization of variable product 

The exact linearization of 𝑦 = 𝑥1𝑥2, when 0 ≤ 𝑥1 ≤ 𝑀 and 𝑥2  is a binary variable is given by the 

following set of constraints 

𝑦 ≤ 𝑀𝑥2  (B.1) 

𝑦 ≤ 𝑥1  (B.2) 

𝑦 ≥ 𝑥1 + 𝑀(𝑥2 − 1)  (B.3) 

𝑦 ≥ 0.  (B.4) 

Cunha et al. (2017) use this artifice to linearize individualy the product of variables in constraint (B.5), 

which requires the inclusion of the auxiliary variables 𝑖𝑡𝑖(𝜉)𝑝 𝑖𝑡𝑖𝑣(𝜉)𝑝 and 𝑠𝑣𝑝, the parameter Big - 

M, 𝐼𝑇𝐼, and a set of 5 × |𝑃| × �𝛺 � + 3 × |𝑃| constraints in place of (9.5). 

𝑞(𝜉)𝑝 = (𝑠 − 𝑖𝑡(𝜉)𝑝−1)𝑣𝑝 ∀𝑝 (B.5) 

However, considering −𝑀 ≤ 𝑥1 ≤ 𝑀 and 𝑥2 a binary variable, the exact linearization of 𝑦 = 𝑥1𝑥2 is 

given by 

𝑦 ≤ 𝑀𝑥2  (B.6) 

𝑦 ≤ 𝑥1 +𝑀(1 − 𝑥2)  (B.7) 

𝑦 ≥ 𝑥1 + 𝑀(𝑥2 − 1)  (B.8) 

𝑦 ≥ −𝑀𝑥2.  (B.9) 

The validity of the constraints (B.6) - (B.9) can be verified in Table B.1 where all possible 

combinations of values for 𝑥1 and 𝑥2 are considered. Therefore, setting 𝑥1 = (𝑠 − 𝑖𝑡(𝜉)𝑝−1 − 𝐼𝐼) 

when 𝑝 = 1 and  𝑥1 = (𝑠 − 𝑖𝑡(𝜉)𝑝−1)  when 𝑝 ≥ 2, in both cases, implies − 𝑆� ≤ 𝑥1 ≤  𝑆� . Hence, for 

𝑦 = 𝑞(𝜉)𝑝 and 𝑥2 = 𝑣𝑝, applying the linearization (B.6)-(B.8), in (4.21) and (4.22), being (B.9) 

disconsidered because 𝑞(𝜉)𝑝 ≥ 0, we obtain the set of constraints (4.15)-(4.20), which does not 

require auxiliary variables, and consists of 3 × |𝑃| × |𝛺 | constraints and include the parameter 

referring to the initial inventory, without loss of quality in the linearization. 

Table B.1- All possibles products of 𝑦 = 𝑥1𝑥2 for −𝑀 ≤ 𝑥1 ≤  𝑀 and 𝑥2 ∈ {0,1} 

𝑥1 𝑥2 𝑥1𝑥2 Constraints imply 

−𝑀 ≤ 𝑥1 ≤ 𝑀 0 0 

𝑦 ≤ 0 
𝑦 ≤ 𝑥1 + 𝑀 
𝑦 ≥ 𝑥1 −𝑀 
𝑦 ≥ 0 

 
𝑦 = 0 

 

−𝑀 ≤ 𝑥1 ≤ 𝑀 1 𝑥1 

𝑦 ≤ 𝑀 
𝑦 ≤ 𝑥1 
𝑦 ≥ 𝑥1 
𝑦 ≥ −𝑀 

 
𝑦 = 𝑥1 
 

 



 

Appendix C – Proofs 

Proposition 1.  

Proof. Parameter 𝐷𝐾(𝜉)𝑘 denotes the sum of the demands since the first period of the planning 

horizon to the period prior to all possible periods for first order (𝑘 ∈ 𝐾), in each scenario. Hence, the 

expression ∑ �𝐷𝐾(𝜉)𝑘 ∑ 𝑢𝑟,𝑘𝑟 �𝑘  represents the sum of the demands since the first period of the 

planning horizon to the period prior to the first period determined in the solution of the RMP, in each 

scenario. Therefore, 𝐼𝐼 − ∑ �𝐷𝐾(𝜉)𝑘 ∑ 𝑢𝑟,𝑘𝑟 �𝑘  indicates the inventory in stock, which originates from 

the initial inventory in the period of the first order, in each scenario. Thus, (6.1) guarantees that 

variable 𝑠 will not assume values smaller than 𝐼𝐼 − ∑ �𝐷𝐾(𝜉)𝑘 ∑ 𝑢𝑟,𝑘𝑟 �𝑘 , which guarantees 

nonnegative values for variables 𝑞(𝜉)𝑝, due to constraints (4.21) and (4.22). Hence, when (6.1) is 

included in the RMP (5.30)-(5.38) and (5.39)-(5.43) (the SF and MF, respectively), they become of 

relatively complete resources (meaning that for any feasible first-stage solution, there is at least one 

feasible second-stage solution), and thus only optimality cuts are inserted in the RMP during the 

solution process. Similarly, the insertion of (6.1) in (4.1)-(4.7) also makes the proposed formulation of 

relatively complete resources. ■ 

 

Proposition 2.  

Proof. Consider the division of the planning horizon into two time intervals. The interval 1 ≤ 𝑝 ≤
𝑇𝐸 + 𝑘 − 1, composed by the first period and all other periods until the eve of the first delivery. This 

is represented in parameter 𝑊𝐾1𝑝,𝑘 in (6.8). The interval 𝑇𝐸 + 𝑘 ≤ 𝑝 ≤ |𝑃|, when orders can be 

received, is represented in the parameter 𝑊𝐾2𝑝,𝑘 in (6.9). In both cases, the parameter takes value 1 

when within their specified range, and 0 otherwise. 

Parameter 𝐶𝐼𝐼(𝜉)𝑝 in (6.4) and (6.5) denotes the inventory quantity in stock, from the initial inventory, 

that will not be used in the period 𝑝 in each scenario. Parameter 𝐶𝐹𝐼𝐼(𝜉)𝑝 denotes the quantity of the 

demand unmet by the inventory in stock, which originates from the initial inventory, for period 𝑝 in 

each scenario. Parameter 𝑀𝐶𝐾3 in (6.13) represents the minimum cost value, between the loss and the 

partial backorder of the unmet demand. Therefore, for each value of the first-stage variable 𝑢𝑟,𝑘, the 

minimum cost of the second-stage problem, in the interval 1 ≤ 𝑝 ≤ 𝑇𝐸 + 𝑘 − 1 is given by  

∑ {(𝐻𝑝𝐶𝐼𝐼(𝜉)𝑝 − 𝑀𝐶𝐾3𝑝𝐶𝐹𝐼𝐼(𝜉)𝑝)𝑊𝐾1𝑝,𝑘𝑢𝑟,𝑘}𝑝,𝑟,𝑘 , i.e., it is the minimum cost obtained by holding 

only the inventory that originates from the initial inventory 𝐼𝐼. 

Parameter 𝑊𝐻𝐾𝑝,𝑟,𝑘 in (6.11) has the value of 1 in the periods without the delivery of orders 

throughout the planning horizon, where 0 is the value assumed in the remaining periods. Hence, the 

parameter 𝑊𝑌𝐾𝑝,𝑟,𝑘 defined in (6.10) denotes in each period 𝑝 the accumulated number of periods 

since the last delivery, for each value of 𝑟 and 𝑘. Therefore, the minimum inventory cost considering 



 

the total demand to be met and the absence of backorders, in the interval 𝑇𝐸 + 𝑘 ≤ 𝑝 ≤ |𝑃|, is 

∑ [𝑊𝑌𝐾𝑝,𝑟,𝑘𝐻𝑝𝐷(𝜉)𝑝𝑊𝐾2𝑝,𝑘𝑢𝑟,𝑘]𝑝,𝑟,𝑘 , for each value of the first-stage variable 𝑢𝑟,𝑘.  

Parameter 𝑀𝐶𝐾2𝑝,𝑟,𝑘 in (6.12) determines, in each period 𝑝, the lowest cost among the inventory cost, 

lost sales and partial backorder for each value of 𝑟 and 𝑘. Therefore, in the interval 𝑇𝐸 + 𝑘 ≤ 𝑝 ≤ |𝑃|, 
the minimum inventory management cost in the second-stage problem is given by 

∑ [𝑀𝐶𝐾2𝑝,𝑟,𝑘𝐷(𝜉)𝑝𝑊𝐾2𝑝,𝑘𝑢𝑟,𝑘]𝑝,𝑟,𝑘  for each value of the first-stage variable 𝑢𝑟,𝑘. Therefore, as both 

parcels are considered at their minimal value and 𝑚(𝜉) corresponds to a lower approximation of the 

original second-stage cost function, (6.3) is a valid lower bound inequality of the RMP (5.39)-(5.43) of 

the MF. ■ 

Proposition 3.  

Proof. Parameter 𝐷𝐾𝑆(𝜉)𝑝 defined in (6.16) assumes, in each period, the value of the demand in 

period 𝑝 plus the sum of demands of all previous periods for each scenario. Therefore, parameter 

𝐷𝐾𝑀(𝜉)𝑝 in (6.17) represents the remaining inventory in stock in relation to the initial inventory 𝐼𝐼 in 

each period and scenario. In the optimal solution, the period for the first order 𝑘 should take on a value 

so that the first delivery occurs in a period with negative 𝐷𝐾𝑀(𝜉)𝑝 for at least one scenario. In the (R, 

S) system, if the first delivery occurs in a period with positive 𝐷𝐾𝑀(𝜉)𝑝 for all scenarios, it would not 

be part of the optimal solution because it would incur in unnecessary inventory cost. Hence, defining 

min. (p | 𝐷𝐾𝑀(𝜉)𝑝 < 0) as the minimum value in period 𝑝, where the parameter 𝐷𝐾𝑀(𝜉)𝑝 is 

negative in at least one scenario, the parameter 𝑀𝐾 in (6.18) is a lower bound on 𝑘. Therefore, the 

inequality (6.15) is a valid restriction that limits the selection of the period for placing the first order 

and can be inserted in the RMP of the SF and MF. ■ 

Proposition 4.  

Proof. Each auxiliary cycle is fundamentally an application of Benders decomposition to a continuous 

linear problem cosidering two modifications: the value of the initial 𝑈𝐵 at each cycle is the smallest 

value obtained in the previous auxiliary cycle and the Benders cuts generated in each cycle are 

accumulated in both the ARMP and RMP.  

The maintenance of the value of 𝑈𝐵 from the previous cycle results in two possibilities of 

convergence for the auxiliary cycle: by obtaining the optimal solution (�̅�,𝑦∗) or the solution (�̅�,𝑦). If 

at the end of the auxiliary cycle, the current values of �̅� produce a solution 𝑦∗ whose value of the 

objective function of the ARMP (𝐿𝐵𝐴) is smaller than 𝑈𝐵�  (for the case of minimization without loss 

of generality), the auxiliary cycle converges when 0 ≤ 𝐿𝑆 − 𝐿𝐼 ≤ 𝜖, and the new solution (�̅�,𝑦∗) of 

the ARMP, which by definition is better than the previous solutions, will be obtained. In this case, at 

the end of the auxiliary cycle, 𝑈𝐵 < 𝑈𝐵�  and (�̅�,𝑦∗) are stored in (𝑋,𝑌). 



 

Otherwise, as the solutions of the ARMP during the auxiliary cycle generate a monotonically 

increasing sequence of lower bounds 𝐿𝐵𝐴, convergence of the auxiliary cycle will eventually occur 

and solution (�̅�,𝑦) will be obtained. In this case, at the end of the auxiliary cycle, we have that 

𝑈𝐵 = 𝑈𝐵� . It is important to observe that the accumulation of Benders cuts in the ARMP and RMP 

approximate them to the equivalent deterministic problem. However, when feasibility cuts are added 

to the ARMP, this may cause infeasibilities due to the setting of a new value for �̅� at each auxiliary 

cycle, which changes its feasible region. Nevertheless, as observed in the flowchart shown in of Figure 

3, this is circumvent by ending the auxiliary cycle when the unfeasibility of the ARMP is verified, 

continuing the iterative solution process. In this case, at the end of the auxiliary cycle, 𝑈𝐵 = 𝑈𝐵�  and 

the solution obtained by solving the ARMP will be of the type (�̅�,𝑦). ■ 

Proposition 5.  

Proof. The auxiliary cycles between the solutions of the ARMP and the DSP can be regarded as 

auxiliary problems solved with the intention of accelerating the Benders decomposition process. 

Additionally, according to the logic of the technique presented in Figure 3, whenever the RMP is 

solved, the obtained solution is fixed in the DSP and one Benders cut is added to the RMP. Next, a 

number of additional cuts, from the solutions obtained in the auxiliary cycle – which always converge,  

according to Proposition 4 – are generated and added to the RMP. Such cuts improve the current 

approximation without making the RMP infeasible. Then, the RMP is solved and the primary stop 

condition is verified; if the condition is not satisfied, the iterative process continues. Therefore, the 

algorithm will converge after a finite number of iterations because in the worst-case scenario, after 

obtaining all the optimal solutions (�̅�,𝑦∗) of the ARMP – whose total quantity is a finite number 

smaller or equal to the number of possible 𝑥 values – in the auxiliary cycle and after the insertion of 

the Benders cuts in the RMP, the optimal solution of the problem will be found. Hence, the proposed 

acceleration technique will always converge whenever the conditions for the classical Benders to 

converge are fulfilled. ■  

Proposition 6.  

Proof. Considering a minimization problem without loss of generality. At the end of an auxiliary 

cycle, if a better value of 𝑈𝐵 (𝑈𝐵 < 𝑈𝐵� ) is obtained, then an optimal solution (�̅�,𝑦∗) of the ARMP is 

obtained. Suppose that (𝑥∗,𝑦∗) is the optimal solution of the problem that would be obtained using 

classical Benders decomposition. When �̅� = 𝑥∗ at the end of the auxiliary cycle, the optimal solution 

(�̅�, 𝑦∗) of the ARMP – which in this case is the optimal solution of the problem – will always be 

obtained because 𝑈𝐵, whose values obtained throughout the iterative process form a monotonically 

decreasing sequence, will reach its minimum value at the end of the auxiliary cycle. Therefore, as long 

as the RMP is being solved without a solution that satisfies �̅� = 𝑥∗, the value of 𝑈𝐵 will not reach the 



 

minimum value, and a solution (𝑥∗,𝑦) can always be obtained by the RMP such that 𝑈𝐵 − 𝐿𝐵 > 𝜖. 

Hence, the primary stop condition will only be satisfied after the RMP obtains a solution (𝑥∗,𝑦), and 

consequently �̅� = 𝑥∗  is fixed in the ARMP. Thus, at the end of the auxiliary cycle an optimal solution 

(�̅�, 𝑦∗) of the ARMP, or specifically in this case, the optimal solution (𝑥∗,𝑦∗) of the RMP equivalent 

to the solution that would be obtained in the classical Benders decomposition will be obtained.   

When the ARMP obtains the solution (�̅�, 𝑦∗) = (𝑥∗,𝑦∗), 𝑈𝐵 will reach its minimum value and the 

parameters (𝑋,𝑌) take on the values of (𝑥∗,𝑦∗), given that 𝑈𝐵 < 𝑈𝐵� , at the end of the auxiliary cycle. 

Hence, all the other solutions obtained by ARMP at the end of the subsequent auxiliary cycles are of 

the type (�̅�,𝑦) and at the end of the cycles 𝑈𝐵 = 𝑈𝐵�  and therefore the last value stored in (𝑋,𝑌) will 

always be the optimal solution (𝑥∗,𝑦∗) of the problem. ■ 

 



 

Appendix D – Pseudocode for E-MSMHF 

 

 

 


