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A B S T R A C T

The allocation of resources to alternative investment opportunities is one of the most important decisions or-
ganizations and individuals face. These decisions can be guided by building and solving portfolio optimization
models that capture the salient aspects of the investment problem, including decision-makers’ preferences,
multiple objectives, and decision opportunities over the planning horizon. In this paper, we give a historically
grounded overview of portfolio optimization which, as a field within operational research with roots in finance,
is vast thanks to many decades of research and the huge diversity of problems that have been tackled. In
particular, we provide a unified and therefore unique treatment that covers the full breadth of portfolio
optimization problems, including, for instance, the allocation of resources to financial assets and the selection
of indivisible assets such as R&D projects. We also identify opportunities for future methodological and applied
research, hoping to inspire researchers to contribute to the growing field of portfolio optimization.
1. Introduction

In a broad sense, portfolio management refers to all the processes
of identifying, selecting, and managing a collection of investment as-
sets by an organization or an individual. These processes involve the
screening and selection of these assets; the allocation of resources to
those selected; the monitoring of portfolio performance over time; and
the updating of the portfolio by introducing new assets or discontinuing
earlier allocations, for instance. In this context, determining the ‘best’
composition of the portfolio is a crucial decision problem that can be
addressed through portfolio optimization.

The origins of portfolio optimization can be traced to the pivotal
contributions by Markowitz (1952). Since the establishment of this
modern portfolio theory, the field of portfolio optimization has become
immense. Presently, it spans a wealth of analytical and often sophisti-
cated models that build on many quantitative disciplines. Accordingly,
portfolio optimization can be approached from complementary per-
spectives. To begin with, pivotal contributions in decision theory, such
as the representation of preferences with the Neumann–Morgenstern
utility function, allow portfolio optimization problems to be addressed
within the framework of expected utility maximization and its variants.
Second, probabilistic and statistical studies focus on deriving proba-
bility distributions over future outcomes so that the consequences of
the selected portfolio for the decision-maker can be assessed. Third,
advances in computational capabilities help in formulating tractable
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optimization models and designing, implementing, and evaluating ef-
ficient algorithms for solving these. Fourth, concerns in leveraging
effective decision support include, among others, the need to ensure
that the portfolio model constitutes a valid problem representation and
that interactions between the model and its users are aligned with the
model’s intended purpose.

As portfolio optimization originated some 70 years ago, we have
not limited ourselves to the past half a century mentioned in the title.
Instead, we highlight selected milestones in the evolution of portfolio
optimization since its birth. This notwithstanding, most emphasis is
given to developments from the past twenty years or so, as this al-
lows us to give an account of the current state-of-the-art in portfolio
optimization. We hope this account and our reflections on future oppor-
tunities inspire those who seek to benefit from portfolio optimization
and wish to advance its frontiers.

In this review, written to celebrate the 50th Anniversary of the
Association of European Operational Research Societies (EURO), we
have aimed to provide balanced coverage of theoretical and method-
ological contributions to portfolio optimization. These contributions are
universal; in our view, there are no major differences in how they
are being leveraged in different parts of the world. However, in our
coverage of applications–which by necessity is representative rather
than comprehensive–we have given some precedence to European re-
searchers and journals when making inevitable choices due to space
vailable online 29 December 2023
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limitations. We note that many European researchers are engaged both
in methodological development and real applications, which fosters the
fruitful interplay between theory and practice, thereby mitigating the
risk of formulating unrealistic models that fail to meet the demands
encountered in practice.

In terms of scope, we have purposely abstained from covering
computational techniques of machine learning and artificial intelli-
gence (AI) for portfolio optimization. On the one hand, this is because
these techniques are covered in recent reviews such as Gunjan and
Bhattacharyya (2023). On the other hand, while these techniques have
become increasingly pervasive in finance, they are less relevant in
selecting portfolios of indivisible real assets for which relevant data
from the past tends to be more limited. Furthermore, most of our
emphasis is mainly on what problem features can be incorporated
into portfolio optimization models. For the technical details of solv-
ing these models, we refer to recent references which also include
solution-oriented reviews (see, e.g., Loke et al., 2023).

The rest of this paper is structured as follows. Section 2 gives an
overview of the historical origins of portfolio optimization. Section 3
outlines the main elements of optimization models for portfolio se-
lection. Section 4 considers optimization approaches, and Section 5
presents examples from the expansive literature on applications. In Sec-
tion 6, we share our perspectives on opportunities for future research
and practice.

2. The origins of portfolio optimization

For this paper, portfolio optimization is defined at the juncture of
its two constituent terms, portfolio and optimization. Historically, the
etymological roots of the term portfolio can be traced to the Italian
term portafoglio which refers to a case or wallet containing documents
such as drawings by an artist. Over the years, this term has taken on
broader meanings. In business and finance, a portfolio refers to any
collection of assets that can be considered investments. We adopt this
definition, noting, however, that the assets in the portfolio need not be
financial, nor does their value have to be measured in monetary terms.
For instance, built infrastructures, R&D projects, and patents consti-
tute assets. Importantly, though, because these assets are investments,
they entail decision opportunities that can be pursued by committing
resources with the aim of receiving later benefits.

Optimization uses mathematical methods to help identify the most
preferred decision alternative out of all alternatives that satisfy relevant
constraints, based on a systematic evaluation with regard to the criteria
that reflect the decision-maker’s preferences. Consequently, portfolio
optimization is concerned with alternative portfolios of assets to support
the selection of the preferred portfolio consisting of those assets that
contribute most to the attainment of stated objectives, based on an
evaluation with regard to evaluation criteria for these objectives while
satisfying the constraints that apply. There can be different kinds
of constraints, both on what properties the individual assets in the
portfolio may have to fulfil and how the selected portfolio is required
to perform. Typically, there are uncertainties because, for instance,
the benefits gained by committing resources to the selected assets are
uncertain at the time of portfolio selection.

In view of the above, we define portfolio optimization as the use of
athematical methods to support the selection of preferred portfolios of as-
ets by accounting for the decision-maker’s preferences, relevant constraints
nd uncertainties. This definition is generic as it does not refer to specific
pplication fields such as finance or R&D management. An important
ationale for the present paper–which discusses the breadth of port-
olio optimization in many contexts–is to highlight similarities across
pplication areas so that synergies between these can be exploited.

Historically, though, the literature on portfolio optimization has
volved in parallel tracks, propelled by the specific characteristics
n application domains where, on the one hand, investment deci-
ions can be meaningfully represented by continuous decision variables
2

(e.g., choosing the share of stocks for a financial investment portfolio)
or by discrete variables (e.g., making ‘lumpy’ investments such as the
construction of bridges). Portfolio optimization problems with dis-
crete variables can be addressed with portfolio decision analysis (PDA;
e.g., Liesiö et al., 2021; Salo et al., 2011). One of the key application
areas of PDA is project portfolio management, which covers all the
activities in selecting, monitoring, and managing project portfolios (see,
e.g., Levine, 2005). Thus, there is plenty of overlap between methods
for project portfolio selection (for a review, see Kandakoglu et al.,
2023) and PDA. Yet the scope of PDA is broader in that the alternatives
need not be ‘projects’ in a conventional sense. Moreover, the aims
of PDA may go beyond selection decisions to support the design of
multi-stage decision processes, for instance.

Next, we give a brief overview of the evolution of portfolio opti-
mization, assuming that the reader has some knowledge of decision
analysis, risk management, finance, and mathematical optimization.

2.1. Financial portfolios

The founding principles of the modern portfolio optimization theory
were laid in the seminal work of Markowitz (1952) who considered
the construction of portfolios of financial assets. This theory effectively
assumes that investors seek to maximize the expected utility of the
portfolio’s return. Markowitz observed that various utility functions can
be approximated by a quadratic function of an investment’s expected
return and variance (Markowitz, 2014). This leads to the well-known
mean–variance model which can be formulated as the bi-objective
quadratic optimization problem

v − max𝜆1 ,…,𝜆𝑚∈ (𝑓1, 𝑓2) =
(

𝑚
∑

𝑗=1
𝜆𝑗𝜇𝑗 , −

𝑚
∑

𝑗=1

𝑚
∑

𝑗′=1
𝜆𝑗𝜆𝑗′𝜎𝑗,𝑗′

)

Subject to: 𝜆1 + 𝜆2 +⋯ + 𝜆𝑚 = 1,
(1)

here 𝜆𝑗 is the proportion of capital allocated to asset 𝑗, 𝜇𝑗 is the
xpected return of asset 𝑗, 𝜎𝑗,𝑗′ is the covariance of the returns of assets
and 𝑗′, and  is the set of admissible capital allocations.

Starting from the 1960s, the foundations of the mean–variance
odel received much attention concerning the generality of this nor-
ative theory and its consistency with the classical decision-making

xioms of von Neumann and Morgenstern. Specifically, early stud-
es in this area characterized the conditions under which the two-
arameter mean–variance model can be used to analyse the choices of
n expected-utility-maximizing investor (see, for instance, Hakansson,
972; Samuelson, 1967; Tobin, 1969). Later studies presented empirical
esults to evaluate the quality of the approximations derived by using
he mean–variance quadratic formulation to different types of utility
unctions (Levy & Markowitz, 1979; Pulley, 1981). While such studies
ave, generally, provided positive results, Samuelson (1970) showed
hat the mean–variance model is most useful when risk is low. In con-
rast, the consideration of higher moments provides improved results in
he general case. Moreover, Kane (1982) noted that under a discrete-
ime portfolio rebalancing scheme, the mean–variance model may be a
oor approximation for expected utility, and examined the properties of
n enhanced model that considers skewness as an additional parameter.

Beyond studies on the foundations of the mean–variance model,
he basis for alternative measures of risk beyond variance was laid in
he 1970s and 1980s. Specifically, the theory of stochastic dominance
as introduced in the context of portfolio selection (Bawa, 1978).
he foundations of downside risk measures were established (Fishburn,
977), which spawned an active research area on coherent risk mea-
ures over the next decades (Artzner et al., 1999). Moreover, new risk
easures were introduced, particularly measures that can be optimized

hrough linear programming formulations such as the Gini mean differ-
nce model of Yitzhaki (1982) and the mean-absolute deviation model
f Konno and Yamazaki (1991). Further early developments that have
mpacted the evolution of portfolio optimization include the formula-
ion of multi-period and dynamic optimization approaches (Hakansson,
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1971; Karatzas et al., 1987) as well as the introduction of the multicri-
teria and multiobjective methodologies for portfolio selection (Colson
& De Bruyn, 1989; Martel et al., 1988).

A more extensive overview of the foundations and early develop-
ment of portfolio optimization theory for financial investments can be
found, for instance, in Elton and Gruber (1997) and Markowitz (1999).

2.2. Portfolio optimization of indivisible real assets

Although the early roots of using mathematical optimization to
select a portfolio of real indivisible assets developed separately from
the seminal work of Markowitz (1952), the close methodological links
between these two problem types were soon recognized. That is,
while (Asher, 1962) applied linear programming models to optimize the
allocation of resources to a portfolio of R&D projects without referenc-
ing Markowitz’s work, the survey paper of Weingartner (1966) already
connected the research streams on R&D project selection, financial
portfolio optimization (Markowitz, 1952), and capital rationing (Lorie
& Savage, 1955). Weingartner presented the classical knapsack formu-
lation for optimizing a portfolio of investment alternatives (projects),
which can be written in the general form as

max
𝜆∈{0,1}𝑚

𝑚
∑

𝑗=1
𝜆𝑗𝑣

𝑗 (2)

𝐴𝜆 ≤ 𝐵,

here 𝑣𝑗 is the net present value (NPV) of the 𝑗th investment al-
ernative, and matrix 𝐴 and vector 𝐵 represent relevant portfolio
onstraints. These constraints can include, for instance, resource con-
traints (e.g., budget) as well as logical dependencies between projects
mutual exclusivity of projects, contingent projects). Building on the
ork of Markowitz (1952), Weingartner (1966) also suggested mea-

uring risk as the variance in the portfolio payoff, which led to the
uadratic integer programming problem

max
𝜆∈{0,1}𝑚

𝑚
∑

𝑗=1
𝜆𝑗𝑣

𝑗 − 𝛼
𝑚
∑

𝑗=1

𝑚
∑

𝑗′=1
𝜆𝑗𝜆𝑗′𝜎𝑗,𝑗′ (3)

𝐴𝜆 ≤ 𝐵,

here 𝛼 is a predefined parameter capturing the level of risk-aversion.
In the 1980s, several articles in European Journal of Operational

esearch reported real applications of portfolio optimization models
or selecting R&D projects (e.g., Golabi, 1985; Lootsma et al., 1986;

eber et al., 1990). In these applications, estimates about the project
enefits were obtained by carrying out a multiattribute/criteria evalu-
tion instead of stating these benefits as a single estimate of monetary
alue. Specifically, the project values in model (2) were derived from
n additive multiattribute utility/value function

𝑗 =
𝑛
∑

𝑖=1
𝑤𝑖𝑣𝑖(𝑥𝑗𝑖), (4)

here 𝑤𝑖 and 𝑣𝑖 are the importance weight and attribute-specific value
unction, respectively, for the 𝑖th attribute and 𝑥𝑗𝑖 is the performance
f the 𝑗th project candidate with regard to the 𝑖th attribute. Computa-
ionally, this extension is straightforward as the optimization problem
2) can be solved with integer linear programming (ILP). However, it is
ot obvious that adding up the projects’ multiattribute values gives the
orrect overall portfolio value in the objective function. This concern
as addressed by Golabi et al. (1981) who were the first to apply
ultiattribute value and utility theory (MAVT/MAUT; Dyer & Sarin,
979; Keeney & Raiffa, 1976; Krantz et al., 1971) to build an axiomatic
oundation for portfolio value/utility functions.

A more thorough exposition of the early developments of portfolio
ptimization, with an emphasis on the use of decision analytic ap-
roaches to inform choices from a discrete set of alternatives, can be
ound in the book on portfolio decision analysis by Salo et al. (2011).
3

. Dimensions of portfolio optimization problems

To highlight the diversity of portfolio optimization problems, we
ext elaborate on the salient dimensions of portfolio problems. As such,
hese dimensions are useful in that they can be helpful, for example, in
ssessing how similar different problems are.

.1. Divisibility of assets

The decision opportunities afforded by assets may vary depending
n whether the investments are divisible (i.e., it is possible to make very
mall investments that are meaningfully represented by continuous
ecision variables) or indivisible (i.e., the investments are lumpy, as is
he case with go/no-go projects).

In a typical setting for optimizing portfolios of financial assets,
he composition of the portfolio is defined by asset weights 𝜆𝑗 which
ndicate what proportion of the available capital is invested in the 𝑗th
sset. If the assets are perfectly divisible, all allocations with 0 ≤ 𝜆𝑗 ≤ 1
re admissible (assuming that there are no possibilities for taking a
hort position, in which case 𝜆𝑗 would be negative). Investments into
eal assets typically correspond to decisions in which the asset is either
ncluded in or excluded from the portfolio. This can be represented by
he binary variable 𝜆𝑗 ∈ {0, 1}. In the portfolio optimization problem,
here may be both divisible and indivisible assets at the same. This gives
ise to hybrid settings where, for instance, a company is considering
nvestments into financial instruments along with capital investments
nto real assets.

.2. Decision-makers and stakeholders

There may be one or several DMs whose preferences need to be
epresented in the portfolio optimization model, as exemplified by the
ase studies Vilkkumaa, Salo et al. (2014) and Fasth et al. (2020). In
ddition, there may be stakeholders who are not empowered to act as
ecision-makers but whose values and interests need to be accounted
or by developing multicriteria models for decision support (for an
verview, see Salo et al., 2021).

.3. Decision criteria

The performance of a portfolio, as measured by its contribution to
he attainment of decision objectives, may involve one or more decision
riteria. For instance, net present value (NPV) is often employed as a
riterion in assessing the attractiveness of projects that are expected to
e profitable. In recent years, non-financial factors have gained consid-
rable interest, exemplified by environmental, social, and governance
riteria for socially responsible investments (Ballestero et al., 2012; Utz
t al., 2015). Typically, several criteria are needed to capture the DMs’
references.

.4. Planning horizon

Portfolio optimization problems differ with regard to the length
f the time horizon over which the relevant decision consequences
f the portfolio are considered. Problems with longer time horizons
end to involve more uncertainty, leading to questions about how
hese uncertain future consequences, such as later benefits, will be
onsidered in decision-making. A portfolio may also contain assets with
ifferent maturities. In this case, all the consequences for some assets
ay be realized before the end of the planning horizon, which may

ive rise to a reinvestment problem. It is also possible that not all
nvestment opportunities are available or known at the beginning of the
lanning horizon. As a result, there is a need to decide what share of
vailable resources is committed to the presently available investment
pportunities, on the one hand, and how much is reserved for the
nvestment opportunities that may be available later, on the other hand.
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3.5. Timing of decisions

Portfolio problems differ in terms of when it is possible to make
decisions that change the portfolio’s composition, for instance, by
investing in further assets, altering the level of earlier investments, or
discontinuing investments (see, e.g., Angelelli et al., 2008; Gustafsson
& Salo, 2005; Vilkkumaa et al., 2015). Here, one can distinguish
between single-period, multi-period, and continuous portfolio optimiza-
tion problems. These categories are not mutually exclusive as there may
be assets about which decisions can be made on a continuous basis,
whilst decisions about others can be made only at specific points in
time.

In finance, dynamic optimization models (i.e., multi-period and con-
tinuous) help design portfolio management strategies that account for
transaction costs and changing market conditions such as price trends.
Moreover, the multi-period setting employs discrete-time models in
which investment decisions can be taken only at specific points in time
while continuous portfolio optimization assumes that the portfolio can
be rebalanced at any time.

The intertwined decisions in the processes of asset screening (i.e.,
what is the set of assets to which resources can be allocated) and capital
allocation (i.e., how are resources to be allocated to these assets) can
be approached in different ways. These processes can be carried out in
separate stages (e.g., first focusing on the evaluation of the assets and
then proceeding to asset allocation; see Pendaraki et al., 2005; Xidonas
et al., 2023). Alternatively, they can be considered jointly by combining
both stages through integrated portfolio optimization, as illustrated by
models for cardinality-constrained portfolio optimization (Bertsimas &
Shioda, 2009; Woodside-Oriakhi et al., 2011). Moreover, real-world
portfolio optimization is often required to provide allocations that
satisfy round lot requirements (Mansini et al., 2015). In this case, the
optimization result must specify the exact number of units for the
investment as fractional investments are inadmissible.

3.6. Uncertainties and incomplete information

There can be uncertainties about essentially all aspects of the port-
folio optimization problem, including the characteristics of individual
assets; their interrelationships and consequences over the planning
horizon; the availability of resources that can be invested; and the
preferences that guide the formulation of decision criteria and their
evaluation. Here, we use the term uncertainty as referring to the inabil-
ty to specify with certainty the value of some parameter that appears
n the portfolio optimization model, such as the decision consequences
ssociated with selecting a given portfolio.1

Uncertainties can be addressed through several approaches, most
otably by using standard probability theory to model parameters as
andom variables or by characterizing the lack of complete information
y placing bounds on what parameter values are viewed as possible.
his latter approach leads to an optimization model that accommodates

ncomplete information and can be explored, for example, to derive
obust decision recommendations, which are justified in view of all
arameter values within the stated bounds. Overall, there is a broad
ange of approaches to modelling uncertainties, including the use of
heories with non-additive expected utilities (see, e.g., Gilboa, 2009)

Importantly, uncertainties give rise to risk in that the realized
onsequences of the portfolio ex-post may be worse than what was
xpected ex-ante when the portfolio was selected. Overall, risk is a
entral concept in investment decisions, as evidenced by the wide
ange of risk measures and the burgeoning literature on coherent risk
easures (Artzner et al., 1999; Lim et al., 2011; Szegö, 2002). Beyond

1 We do not consider uncertainties that pertain to non-mathematical aspects
uch as whether or not all relevant stakeholders have been identified and
onsulted in formulating the portfolio model.
4

the traditional use of variance as a measure of risk, popular risk mea-
sures include semi-variance (Markowitz et al., 1993), higher-order risk
measures (e.g., skewness and kurtosis, Kerstens et al., 2011; Kim et al.,
2014), mean absolute deviation (Konno & Yamazaki, 1991), drawdown
measures (Chekhlov et al., 2005), value-at-risk (Jorion, 2006) and
conditional value-at-risk (Rockafellar & Uryasev, 2002). Examples of
further financial performance measures include stochastic dominance
criteria (Ogryczak & Ruszczyński, 1999; Roman et al., 2006), the
Omega ratio (Kapsos, Zymler et al., 2014), the Gini mean difference
index (Mansini et al., 2014), as well as risk-adjusted performance
indicators (e.g., Sharpe, Sortino, etc.).

Even if the uncertain estimates about the consequences of assets in
the optimization model are unbiased, the performance of the selected
portfolio ex-post will, on average, fall short of what one would expect
based on the ex-ante estimates. Thus, just like problems of choosing
one of many alternatives, portfolio optimization problems exhibit the
optimizer’s curse phenomenon (Smith & Winkler, 2006) in that those
assets whose performance has been overestimated tend to have a
higher chance of being selected. This phenomenon can be mitigated by
employing systematic debiasing techniques (see, e.g., Kettunen & Salo,
2017; Vilkkumaa, Liesiö et al., 2014) or robust satisficing (Long et al.,
2022).

The consequences of a portfolio may be influenced by factors such
as the future direction of the economy that are uncertain when the
portfolio is selected. Here, one may distinguish between exogenous un-
ertainties associated with random variables that do not depend on the
elected portfolio; and endogenous uncertainties which are impacted by
his portfolio. From the modelling perspective, exogenous uncertainties
re easier to accommodate as there is no causal relationship between
hem and the portfolio selection. For instance, Contingent Portfolio
rogramming (Gustafsson & Salo, 2005) helps select project portfolios
hose consequences depend on scenarios whose probabilities are not

mpacted by project selections. In the case of endogenous uncertainties,
n contrast, there is a need to characterize these causal relationships
y specifying conditional probabilities that depend on the selections
see, e.g. Salo et al., 2022; Vilkkumaa et al., 2018). This may call for a
ignificant elicitation effort.

Established by researchers working on decision-aiding methodolo-
ies, the dominance-based rough set approach supports portfolio deci-
ions by permitting comparisons between probability distributions and
onsidering the investor’s preferences over time (Greco et al., 2010,
013). There are also further approaches for representing uncertainties
nd varying degrees of belief, most notably fuzzy set theory. In this
aper, however, we do not cover approaches based on fuzzy numbers,
artly because these cannot be readily integrated with probabilistic
epresentations that are compatible with statistical methods and the
xpected utility theory. Recent advances in using non-additive expected
tility theories for portfolio selection are discussed by Baker et al.
2020). An overview of alternative representations of uncertainty in
ulticriteria problems is given in Durbach and Stewart (2012).

.7. Constraints

Depending on the problem, portfolio optimization models may fea-
ure many kinds of constraints:

• Logical constraints represent logical relationships that the selected
assets in a feasible portfolio must fulfil. Such constraints arise, for
instance, in selecting projects of which some may be prerequisites
for others.

• Resource constraints arise from limitations concerning the avail-
ability of different types of resources, such as the size of the avail-
able budget, that must be committed to implement the selected
portfolio.

• Risk constraints place bounds on the degree of variability that the

consequences of feasible portfolios are allowed to have.
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• Strategic constraints represent requirements concerning the con-
tribution the selected portfolio has to make on one or more
strategically important decision criteria. They may also represent
requirements on the composition of a portfolio to ensure, for
example, an acceptable balance across different kinds of assets.
In financial portfolios, strategic constraints may also limit the
number of different kinds of assets in the portfolio (cardinality-
constrained portfolios), round lots, transaction costs, or other
elements that are integral to the investment process.

One can distinguish between hard constraints, which must not be
violated, and soft constraints, which may be violated to some extent,
albeit at a penalty. Moreover, the availability of resources need not be
given exogenously, as the completion of some projects may generate
resources that can be deployed to make subsequent investments into
other assets (see, e.g., Champion et al., 2023).

4. Solution approaches for portfolio optimization problems

4.1. Bi-objective optimization

In finance, bi-objective models for exploring the risk-return trade-
off have attracted the most attention. The general form of these models
can be expressed in two alternative ways:

min Risk(𝝀)
s.t.: Return(𝝀) ≥ 𝜚

𝝀 ∈ 

⎫

⎪

⎬

⎪

⎭

(5)

max Return(𝝀) − 𝛼Risk(𝝀)
s.t.: 𝝀 ∈ 

}

(6)

here Return(𝝀) and Risk(𝝀) are the return and risk functions defined
y the asset weights 𝝀 = (𝜆1,… , 𝜆𝑚). In formulation (5), the risk-return
rade-off is defined through the return constraint Return(𝝀) ≥ 𝜚, where

denotes the expected return that the investor seeks to achieve. On
he other hand, in formulation (6), the risk weight 𝛼 > 0 represents the
elative importance of risk in the objective.

Different efficient portfolios can be obtained by changing the pa-
ameters 𝜚 and 𝛼. If the set  is convex, both formulations trace out
ll efficient portfolios as the parameters 𝜚 in (5) and 𝛼 in (6) are varied
but there is no direct correspondence between the portfolios that are
enerated for different values of these two parameters). However, if
he set  is non-convex, the formulation (5) outperforms the weighted
odel (6) in the sense that the latter may fail to identify unsupported

fficient portfolios.
The exact formulation of the general forms (5) and (6) depends

n how the return and risk functions are defined as well as the other
imensions of the portfolio optimization problem as outlined in Sec-
ion 3. The resulting models are expressed as linear, quadratic, or
on-linear optimization problems whose structure depends very much
n the adopted risk measure. For instance, while variance is a quadratic
unction of assets’ weights, other risk measures, such as the mean
bsolute deviation and conditional value-at-risk, can be written in a
inear form. More complex risk measures, such as skewness and kur-
osis, lead to non-linear optimization problems. Some constraints may
ead to mixed-integer optimization problems. For instance, imposing
onstraints on the number of kinds of assets requires the introduction of
inary variables 𝐳 = (𝑧1,… , 𝑧𝑚) to indicate whether an asset is included
n the portfolio or not, and the addition of the constraints 𝝀 ≥ 𝜀𝐳 and
1 +⋯ + 𝑧𝑚 ≤ 𝐾, where 𝜀 is the minimum weight for the assets in the
ortfolio and 𝐾 is the pre-specified maximum number of assets in the

portfolio.
Portfolio optimization problems with non-linear or combinatorial

features give rise to computational challenges. This has motivated the
development of a wide range of special solution algorithms, heuris-
tics, and evolutionary approaches. Algorithms based on analytical
5

approaches are effective for solving problems with a few hundred
ssets (Cesarone et al., 2013; Graham & Craven, 2021). Bertsimas
nd Cory-Wright (2022) present an algorithm based on the cutting-
lane method that scales up well for larger instances, too. Heuristics
nd meta-heuristics, too, have been extensively used for finding high-
uality portfolio allocations. Maringer (2005) presents the main con-
ributions and application contexts for such algorithms, whereas Erwin
nd Engelbrecht (2023) provide a comprehensive list of various al-
orithms and an overview of the literature covering the past three
ecades.

Another strong line of research has focused on the uncertainty of the
nputs required to implement portfolio optimization models. Optimiza-
ion under uncertainty can be addressed through two main paradigms:
tochastic programming and robust optimization. In stochastic pro-
ramming, uncertainty is described through probability distributions,
ermitting the generation of solutions that satisfy constraints in a
robabilistic sense. Robust optimization, on the other hand, is more
ppropriate when there is a lack of knowledge about probabilities and
need to consider possible realizations of the uncertain parameters in a
re-specified set (Bertsimas et al., 2011). Moreover, robust optimization
odels are computationally easier to solve.

Instead of relying on point estimates for input parameters (e.g., ex-
ected returns and covariances), the robust optimization framework
ssumes that the inputs belong to uncertainty sets around the point es-
imates. For instance, a simple box uncertainty set  = {𝝁 | |𝜇𝑖 − 𝜇𝑖| ≤
𝑖} assumes that the vector of unknown returns 𝝁 = (𝜇1,… , 𝜇𝑚)

belongs to an area around the vector of estimates 𝝁̂, which is typically
defined through historical data. The parameters 𝜹 = (𝛿1,… , 𝛿𝑚) define
the size of the uncertainty set. However, this straightforward way
of defining the uncertainty set focuses solely on returns and ignores
the correlations between the assets. Other types of uncertainty sets
have been used to address this shortcoming, such as ellipsoidal and
mixture distribution uncertainty sets (Fabozzi et al., 2010). The frame-
work of robust optimization is applicable in the context of various
bi-objective models based on different risk-return measures, beyond the
mean–variance model, such as the Sharpe ratio (Chakrabarti, 2021),
value-at-risk (Ghaoui et al., 2003; Zhu & Fukushima, 2009), and the
Omega ratio (Kapsos, Christofides et al., 2014). Multi-period models
have also been proposed (Gülpınar & Rustem, 2007; Ling et al., 2020).
A bibliographic overview of this area for financial portfolios can be
found in Xidonas et al. (2020).

Recently, there has been growing interest in distributionally ro-
bust optimization (DRO) which combines elements from both stochas-
tic and robust optimization. DRO captures uncertainties about out-
comes (Wiesemann et al., 2014) by assuming that the probability
distribution belongs to an ambiguity set. This leads to results that are
less conservative than those of other robust approaches (Goh & Sim,
2010). Mohajerin Esfahani and Kuhn (2018) and Postek et al. (2016)
develop computationally tractable formulations for DRO problems un-
der mild assumptions. They also apply the DRO approach to portfolio
optimization using the conditional value-at-risk risk measure. Chen
et al. (2023) present a similar approach by employing using mean
absolute deviation as a measure of risk.

The frameworks of robust optimization and DRO are mainly data-
driven in that they consider uncertainties about model parameters on
which there is relevant historical data or which can be simulated.
Nevertheless, the formulation of portfolio optimization models often
requires that information about the decision-maker’s preferences is also
specified. This information may also involve many kinds of uncertain-
ties (e.g., incompleteness, vagueness, etc.). We elaborate on this area
of research in Sections 4.3 and 4.4.

4.2. Multi-objective approaches

The multi-faceted nature of portfolio selection calls for a sufficiently
comprehensive framework that spans multiple decision criteria for

characterizing the performance of alternative portfolios. Specifically,
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approaches that account for multiple conflicting objectives help in-
vestors and portfolio managers explore different investment options in
view of their preferences. Their relevance for portfolio optimization
has been discussed extensively by Aouni et al. (2018) and Steuer et al.
(2007).

Multiobjective optimization (MOO) models incorporate different in-
vestment decision criteria in identifying efficient (i.e., non-dominated)
portfolios. The MOO theory provides solution procedures based on 𝜀-
onstraint formulations, scalarising functions, and goal programming
GP) (for an overview of such approaches, see Miettinen, 1999). Each
f these approaches transforms a MOO problem into a single-objective
ormulation that can be solved through standard solvers. In the 𝜀-
onstraint approach, one of the objectives is optimized, while imposing
onstraints on the others. A simple example is the bi-objective risk-
eturn model (5) which has been applied to financial portfolio opti-
ization by Xidonas and Mavrotas (2014). The 𝜀-constraint approach
orks well with a few objectives (i.e., two or three), but identifying

he efficient frontier becomes more complex in many-objective prob-
ems. This limitation is addressed by other approaches, including those
hat use scalarising functions to combine the objectives into a single
easure to be optimized.

The simplest scalarising function is the weighted sum. As noted
n our elaboration of Eq. (1), a major limitation of weighted sum
ormulations is that they may not identify all efficient portfolios when
he optimization model is non-convex due to integer-valued decision
ariables, for example. Other options are also available, such as ap-
roaches that focus on identifying portfolios that minimize deviations
rom reference values (points) specified by the decision-maker to define
he investment objectives. An example of such a scalarising function
sing the maximum values 𝑓 ∗

1 ,… , 𝑓 ∗
𝑛 of the objectives as the reference

oint (assuming the objectives are in a maximization form) is the
ugmented weighted Chebyshev metric

max
=1…,𝑛

[𝑤𝑖(𝑓𝑖(𝝀) − 𝑓 ∗
𝑖 )] + 𝜃

𝑛
∑

𝑖=1
(𝑓𝑖(𝝀) − 𝑓 ∗)

here 𝑤1,… , 𝑤𝑛 ≥ 0 are the weights associated with the objectives and
is a small positive constant for ensuring that the minimization will not

uggest a weakly efficient portfolio. Pavlou et al. (2019) employ this
pproach to construct financial portfolios combining three performance
riteria: return, mean absolute deviation, and conditional value-at-
isk. Dächert et al. (2022) use a similar Chebychev metric for strategic
sset allocation for an insurance company.

GP formulations are also based on optimizing the deviations from a
et of predefined target values on the decision criteria. Compared with
calarisation models, GP provides additional flexibility in modelling
nd treating deviations (e.g., the prioritization of the goals), formu-
ating the investor’s goals, and specifying the corresponding target
evels. For instance, Ballestero et al. (2012) build a GP model to
ombine financial and environmental, social and governance (ESG)
oals, whereas Tamiz et al. (2013) and Tamiz and Azmi (2019) propose
n extended framework that accounts for goals related to the macroe-
onomic environment, regional factors, as well as accounting and stock
arket performance ratios. A review of related GP applications can be

ound in Aouni et al. (2014) and Colapinto et al. (2019).
MOO approaches, such as those mentioned above, can, in principle,

e applied in an a priori or a posteriori setting (Hirschberger et al.,
013; Hwang & Masud, 1979). In the first case, the investor’s prefer-
nces are incorporated in a MOO model to obtain a unique solution,
.e., the portfolio that best matches the investor’s preferences subject
o the constraints on the investment policy. A central part of these
pproaches is the modelling of preferences, for example, by developing
ecision models based on value/utility function representations, out-
anking relations, or decision rules. Sub-Section 4.3–4.6 discuss these
pproaches.
A posteriori implementations, on the other hand, focus on the iden-
6

ification of all non-dominated portfolios from which the investor can
then choose the most preferred one. This calls for efficient computa-
tional procedures for MOO. As with approaches for the bi-objective
case, analytical and algorithmic methodologies have been proposed.
In the MOO setting, analytical methods for portfolio optimization do
not incorporate complex non-linearities or combinatorial features. For
instance, Qi and Steuer (2020), Qi et al. (2017) derive the analytical
algebraic solution for the efficient surface in portfolio optimization
problems with at least three objectives, assuming that variance is the
main measure of risk. For complex instances that require the solution
of computationally intensive models, multiobjective evolutionary al-
gorithms (MOEAs) have been extensively used. Reviews by Ponsich
et al. (2013) and Metaxiotis and Liagkouras (2012) on the appli-
cations of MOEAs in financial portfolio optimization indicate that
such approaches are typically used to address the complexity due
to non-linear performance measures and the introduction of realistic
constraints. Commonly, there are two to five objectives that are con-
sidered as performance measures. Except for return and variance, these
objectives include value-at-risk, expected shortfall, social responsibility,
skewness, and the Sharpe ratio. The constraints mainly focus on the
composition and diversification of the portfolios (e.g., cardinality con-
straints, bounds on the asset weights), and transactions-related issues
(e.g., transaction costs, round lots, turnover constraints).

As in the case of bi-objective optimization approaches, handling
uncertainty has attracted interest in the MOO context. Based on the
framework for bi-objective models, the first framework for data-driven
robust optimization can be found in Fliege and Werner (2014) who
introduce the robust Pareto frontier and illustrate how it can be applied
to portfolio optimization using an ellipsoidal uncertainty set. MOO
formulations based on worst-case scenarios have also been considered.
For instance, Xidonas et al. (2017) use a minimax regret criterion
to model uncertainties concerning the investor’s risk-return attitude
(i.e., the weights of risk-return criteria). Caçador et al. (2020) use a
similar minimax regret model to consider the uncertainty with respect
to the covariance matrix of asset returns, combined with a genetic
algorithm to solve the resulting non-linear optimization model.

An alternative path to address uncertainties in multi-objective mod-
els for portfolio optimization has arisen in stochastic programming. For
example, Abdelaziz et al. (2007) present a chance-constrained compro-
mise programming formulation to model the uncertainties the returns
of financial assets and their systematic risk (𝛽 coefficient). Masmoudi
and Ben Abdelaziz (2017) present a similar approach while Aouni
et al. (2013) employ a stochastic GP approach to model the portfolio
selection process for venture capital investments, using criteria related
to the return and risk of the investment, as well as the survival rate and
intellectual capital rate. Bravo et al. (2010) employ a stochastic GP for
the expected utility of portfolio returns.

4.3. Incomplete information on multiattribute preferences

Multiattribute portfolio models require the specification of several
parameters that reflect the decision-maker’s preferences. For instance,
using the additive multiattribute value function (4) to produce project
values 𝑣1,… , 𝑣𝑚 requires that the attribute weights 𝑤1,… , 𝑤𝑛 and the
attribute-specific performances (scores) 𝑣𝑖(𝑥𝑗𝑖) are elicited for each in-
vestment candidate 𝑗. Arguably, such an elicitation process may require
a significant cognitive effort, which makes it difficult to ensure that the
parameter estimates are reliable.

Here, preference disaggregation and learning techniques can be
useful. Disaggregation methods use techniques such as ordinal regres-
sion to infer decision models that are as consistent as possible with
holistic judgements provided by the decision-maker (Jacquet-Lagrèze
& Siskos, 2001). These approaches are not restricted to the elicitation
of value function models as they can be applied together with various
decision models, including outranking relations and decision rules (cf.
Section 4.6). Pendaraki et al. (2005) employ such an approach to

infer an additive value function model for evaluating and selecting
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mutual funds in order to construct fund-of-funds portfolios. Ehrgott
et al. (2009) use a similar approach in an integrated framework in
which a value function is first inferred from the investor’s holistic
judgements, followed by constructing the value-maximizing portfolio
through optimization.

In a typical disaggregation setting, the inference process yields
point estimates for the parameters of a decision model. However, these
estimates involve uncertainties due to the subjectiveness in the inputs
provided by the decision-maker (i.e., holistic judgements). It is, there-
fore, advisable to complement decision recommendations based on the
identification of the optimal portfolio with global sensitivity analyses
focusing on how the optimal portfolio would change in response to
changes in the parameter values.

These concerns have motivated the development of portfolio op-
timization approaches that explicitly capture incomplete information
about multiattribute preferences. Technically, these approaches often
rely on set inclusion in which parameters are constrained to a set of
feasible values that is constructed from the stated preference infor-
mation. Decision recommendations are then generated based on the
identification of non-dominated portfolios, i.e., those feasible portfolios
for which there does not exist another feasible portfolio that has
a greater value for all allowed parameter values, or decision rules
(e.g., maximin, minimax-regret). For instance, Liesiö et al. (2007)
consider a set of attribute weights 𝑊 ⊂ R𝑛

+ defined through a system
of linear constraints corresponding to the decision-makers’ preference
statements and intervals 𝑣𝑗 (𝑥𝑗𝑖) ∈ [𝑣𝑗𝑖, 𝑣𝑗𝑖] for the investments alterna-
tives’ attribute-specific values (scores). Arguably, allowing the scores to
take on any values within these intervals leads to conservative decision
recommendations, which has motivated the development of models
that limit the number of decision alternatives whose scores deviate from
their most likely value in the spirit of robust optimization (Fliedner &
Liesiö, 2016; Hassanzadeh et al., 2014).

Vilkkumaa, Salo et al. (2014) extend the set inclusion approach
to group decision-making by modelling incomplete information about
the relative importance of the decision-makers in the group as well as
the individual preferences of each group member. Liesiö and Punkka
(2014) consider incomplete information on the baseline value that
specifies the value of not selecting an investment alternative into the
portfolio (Clemen & Smith, 2009; Golabi et al., 1981). Set inclusion
has also been used to capture incomplete information about the costs of
investment alternatives through interval-valued coefficients in the port-
folio constraint 𝐴𝜆 ≤ 𝐵 in model (2) (Liesiö et al., 2008; Lourenço et al.,
2012). Furthermore, portfolio optimization helps guide the allocation
of resources to decision-making units (DMUs) whose performance in
converting these inputs to outputs can be examined with efficiency
analysis. A key insight from such analyses is that allocating more
resources to DMUs with high efficiency scores while withdrawing re-
sources from those with low scores may lead to a less efficient portfolio
of DMUs, suggesting that resource allocation decisions should be ap-
proached through portfolio optimization rather than extrapolation from
efficiency analysis (Liesiö et al., 2020a).

Computationally, many of the above approaches lead to a multi-
ple objective zero–one linear programming (MOZOLP) problem from
which the set of non-dominated portfolios is computed. When the
investment alternatives’ attribute-specific consequences or costs are
interval-valued, the optimization problem has interval-valued objective
function coefficients. Exact algorithms for this problem by Liesiö et al.
(2007, 2008) are based on the algorithms of Villarreal and Karwan
(1981) for solving MOZOLP problems with point-estimate objective
function coefficients. The exact algorithm by Argyris et al. (2011) can
identify the set of those non-dominated portfolios that are optimal for
some attribute weights (cf. supported efficient solutions). Approximate
algorithms for the interval-valued MOZOLP problem have been devel-
oped by Mild et al. (2015). Challenges in identifying all non-dominated
solutions have also motivated the development of heuristic evolution-
ary algorithms (Doerner et al., 2006; Gutjahr et al., 2010) as well as
interactive methods that identify some of the non-dominated portfo-
lios based on interactive process eliciting decision-maker’s preference
7

information (see, e.g., Hassanzadeh et al., 2014).
4.4. Incomplete information on risk-preferences and state probabilities

The decision-maker’s risk attitude needs to be modelled with an
appropriate risk measure or a utility function to incorporate risk aver-
sion into portfolio optimization. However, the specification of the
exact functional form for the utility function may be time-consuming
because there is a need to complete a lengthy process consisting of
a series of preference elicitation questions. Thus, it can be helpful to
provide decision recommendations that can be justified in view of dif-
ferent assumptions about risk preferences (e.g., a range of risk-aversion
levels).

In this setting, the concept of stochastic dominance (SD) helps
compare the outcome distributions for decision alternatives (in our
case portfolios of assets), making it possible to determine whether or
not one of them is preferred to the other for every utility function
belonging to a specific class of functions. Concretely, if the outcome
distribution dominates another in the sense of first-order stochastic
dominance (FSD; Quirk & Saposnik, 1962), the former portfolio has
a higher expected utility than the latter for any increasing utility
function. Second-order stochastic dominance (SSD; Hadar & Russell,
1969) holds if the expected utility is higher for all increasing and
concave utility functions. SSD is particularly relevant for portfolio op-
timization because it is compatible with the preferences of risk-neutral
and risk-averse decision-makers.

The most popular approach for incorporating stochastic dominance
into portfolio optimization is to introduce constraints to ensure that
the optimal portfolio dominates a predefined benchmark distribution
(e.g., return distribution of the market portfolio in case of finan-
cial assets). Kuosmanen (2004) develop MILP models to handle FSD
constraints. Because the incorporation of SSD constraints does not
require binary decision variables, it leads to LP models as demonstrated
by Dentcheva and Ruszczynski (2003), Post (2003), and Kuosmanen
(2004). More recently, Post and Kopa (2013) and Kallio and De-
hghan Hardoroudi (2019) propose constraints for higher orders of
stochastic dominance to model preferences consistent with smaller
subsets of increasing concave utility functions. Portfolio optimization
models with stochastic dominance constraints under incompletely spec-
ified state probabilities are developed by Dupacova and Kopa (2014)
and Liesiö et al. (2020b).

When incompletely defined risk preferences are accounted for
through stochastic dominance constraints, there is a need to define a
benchmark portfolio (or a distribution) that the optimal portfolio must
dominate. Yet the resulting decision recommendations can be sensitive
to the selection of this benchmark. This issue could be circumvented
by identifying all feasible portfolios that are not stochastically domi-
nated, albeit this would be computationally more challenging than the
incorporation of stochastic dominance constraints. Still, identifying all
stochastically non-dominated portfolios by solving multiple objective
optimization problems has attracted attention. Liesiö and Salo (2012)
and Vilkkumaa et al. (2018) solve all non-dominated portfolios of
indivisible investment alternatives in view of incomplete probability
and risk-preference information in scenario planning. More general ap-
proaches for identifying the set of non-dominated portfolios by solving
multiobjective optimization problems have been developed by Liesiö
et al. (2023).

4.5. Non-additive multiattribute value and utility functions

In practice, the additive-linear portfolio value function is the most
widely used preference model for optimizing portfolios of indivisible
investment alternatives evaluated with regard to multiple attributes. In
this function, the portfolio value is expressed as the sum of the mul-
tiattribute values of the alternatives that are included in the portfolio.

Formally, substituting the additive multiattribute-value/utility function
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(4) into the objective function of portfolio optimization problem (2)
yields the linear-additive portfolio optimization model

max
𝜆∈{0,1}𝑚

𝑚
∑

𝑗=1
𝜆𝑗

𝑛
∑

𝑖=1
𝑤𝑖𝑣𝑖(𝑥𝑗𝑖), (7)

𝐴𝜆 ≤ 𝐵.

t is rather straightforward to use this model. To elicit preferences,
t suffices to specify an additive multiattribute value function that
ggregates the consequences of each investment alternative into a
ingle-dimensional value. Moreover, the optimal portfolio can be iden-
ified with any standard zero–one linear programming (or ILP) algo-
ithm. The potential shortcoming of model (7) is that it cannot capture
on-linearities in the overall portfolio value. For instance, the model
ssumes that an alternative’s additional contribution to this portfolio
alue is the same (i.e., constant), regardless of the other alternatives
he portfolio contains.

These concerns have motivated research on non-additive portfolio
alue/utility functions. Already Golabi et al. (1981) proposed that
he multiplicative multiattribute utility function should be employed
instead of the additive utility function) to model the utilities of indi-
idual investments in (7); this still preserves the ZOLP structure of the
ptimization problem. Grushka-Cockayne et al. (2008) develop non-
dditive portfolio value functions and corresponding MILP formulations
o support selecting a portfolio of improvement actions in air traffic
anagement. Argyris et al. (2014) consider preferences represented

y any concave multiattribute value function and develop MILP for-
ulations to build portfolio optimization approaches in which the
ecision-maker’s preferences are interactively elicited. Liesiö (2014)
nd Liesiö and Vilkkumaa (2021) establish axiomatic foundations for
amilies of symmetric multi-linear portfolio value and utility functions.
hey also develop tailored implicit enumeration algorithms as well as
LP and MILP formulations to identify the optimal portfolio under such
alue/utility functions.

.6. Other preference models

While value/utility function models have been used extensively
o model preferences in portfolio optimization, a smaller strand of
iterature developed primarily by European researchers has explored
ther approaches to preference modelling, such as outranking methods
nd dominance-based decision rules. The main advantage of these
pproaches is that they are flexible in modelling preference structures
hat do not fit the standard normative framework of utility theory.

The first application of outranking models to portfolio optimization
as presented by Martel et al. (1988) on using ELECTRE I and II
ethods to evaluate financial portfolios based on the comparison of

heir risk-return profiles. Concretely, the ELECTRE I method identifies
ortfolios that best match the decision-maker’s preferences, whereas
LECTRE II ranks the portfolios from the best to the worst. The ELEC-
RE I method has been employed by Perez Gladish et al. (2007)
s a component of a three-stage methodology for financial portfolio
election that combines multivariate statistical techniques for mod-
lling returns, a fuzzy multiobjective optimization model for portfolio
onstruction, and the ELECTRE I method for portfolio selection. Apart
rom portfolio selection, outranking models have supported the initial
creening of assets, which is an integral part of the portfolio optimiza-
ion process. For example, Xidonas et al. (2009) employ the ELECTRE
ri method to sort stocks into performance categories.

Approaches to guide investments into real indivisible assets have
lso been proposed based on preference models incorporating outrank-
ng relations. For instance, Vetschera and de Almeida (2012) present
ptimization models in which the principles of the PROMETHEE V
ethod are adapted to construct project portfolios. Kandakoglu et al.

2022) combine PROMETHEE methods both with Stochastic Multicrite-
8

ia Acceptability Analysis (SMAA, Lahdelma et al., 1998) and an integer
Table 1
Recent examples of applications of financial portfolio optimization.

Field Authors Methodology

Mutual funds Tamiz et al. (2013) GP
Utz et al. (2014) Inverse MO
Zhou et al. (2018) DEA

Indices Abid et al. (2023) GP
Bonds Li (2019) DP

Drenovak et al. (2021) MOEA
Cryptocurrencies Brauneis and Mestel (2019) MV

Hashemkhani Zolfani et al. (2022) MCDA
Maghsoodi (2023) MCDA
Youssef et al. (2023) GP

Commodities Al Janabi et al. (2017) NLP
Wang et al. (2022) MV

Derivatives Zymler et al. (2013) RO
Fu et al. (2014) DP
Gülpınar and Çanakoḡlu (2017) RO

Insurance Dächert et al. (2022) MO

CP: compromise programming, DP: dynamic programming, FMO: fuzzy multiobjective
optimization, GP: goal programming, MCDA: multicriteria decision analysis, MINLP:
mixed-integer non-linear programming, MO: multiobjective optimization, MOEA: mul-
tiobjective evolutionary algorithm, NLP: non-linear programming, MV: mean–variance,
RO: robust optimization.

programming model to generate a cluster of maintenance projects
under resource constraints. Balderas et al. (2022) and Fernandez et al.
(2015) present hybrid methodologies that integrate outranking ap-
proaches founded on ELECTRE methods with multi-objective portfolio
optimization models.

Greco et al. (2013) propose a further hybrid approach to financial
portfolio optimization. Using the dominance-based rough set approach
(DRSA), they capture investors’ risk-return preferences and identify
efficient portfolios with the mean–variance model. The resulting deci-
sion rules from DRSA serve as inputs to an iterative and interactive
optimization process that identifies the portfolio that best matches
the investors’ preferences. DRSA has also been applied to optimize
portfolios of real assets. For example, Barbati et al. (2018) formu-
late a multi-objective optimization problem whose criteria indicate
how many projects in the portfolio attain specified reference levels,
whereafter DRSA is used to determine the optimum portfolio.

5. Applications, empirical results, and discussion

To a significant extent, portfolio optimization has evolved through
efforts to tackle challenges in building and solving models for real-life
applications. In effect, the literature on the applications of portfolio op-
timization is so voluminous that we cannot review it comprehensively.
Rather, we seek to offer insights based on reported applications and
recent review papers.

5.1. Financial portfolios

Most applications of portfolio optimization models for financial
assets are data-driven in that the required modelling parameters are es-
timated from historical data. In effect, while most studies have focused
on equity portfolios for which historical data are readily available,
other investment contexts have also been considered. Table 1 gives
a representative list of applications from the past decade that high-
lights the variety of assets, including mutual funds, equity indices,
bonds, cryptocurrencies, commodities, derivatives, as well as insur-
ance portfolios that have been considered in portfolio optimization.
Beyond the standard mean–variance model, the solution approaches
include multiobjective optimization and GP, robust optimization, dy-
namic and stochastic programming, multi-criteria decision analysis,
and non-linear programming (for details, we refer to these papers).

While most applications in Table 1 are founded on a data-driven
approach, some approaches incorporate the investor’s preferences into
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the analysis with a constructive scheme. For instance, Ehrgott et al.
(2004) extends the risk-return framework into an enriched hierarchy of
five objectives (12-month and 3-year return, annual dividend, volatil-
ity, Standard and Poor’s Star Ranking) which are aggregated to form
an investor-specific additive value function. The recommended port-
folio allocation is then determined by maximizing the value function
using metaheuristics. However, because this value function can be
challenging to construct, Ehrgott et al. (2009) extend this approach by
adopting the UTADIS preference disaggregation method (Doumpos &
Zopounidis, 2002) in which the value function can be inferred from de-
cision examples. Implementing these approaches can be expedited with
decision support systems that provide data management capabilities as
well as decision modelling and reporting tools (Samaras et al., 2008;
Xidonas et al., 2021, 2011).

Such constructive approaches to financial portfolio optimization
are becoming increasingly important due to the growing interest in
incorporating non-financial objectives into the decision process. Many
of these objectives are linked to sustainability principles such as en-
vironmental, social, and governance factors (ESG) which have been
addressed through goal programming approaches (Abid et al., 2023;
Ballestero et al., 2012) and multiobjective formulations (Gasser et al.,
2017; Methling & von Nitzsch, 2020; Utz et al., 2014, 2015), for
instance. In effect, the vast market on sustainability-linked investments
creates a major opportunity for using these models to set up socially
responsible investment (SRI) strategies that comply with ESG principles
(see, e.g., Chen et al., 2021). These models can also be used in an
explanatory framework, as noted by Utz et al. (2014). For example, the
recent multiobjective formulations by Steuer and Utz (2023) suggest
that the investments of ESG mutual funds fall short of their claimed
sustainability policies.

Questions pertaining to the timing of portfolio decisions are ad-
dressed, for example, by Pham et al. (2022) who develop a distribu-
tionally robust portfolio optimization approach in a continuous time
setting in the presence of ambiguity about expected returns as well
as correlations between asset returns. Topaloglou et al. (2008) de-
velop discrete-time models for optimizing international stock and bond
portfolios through a stochastic programming approach. Because multi-
period models for portfolio optimization can pose computational chal-
lenges, advanced computational procedures and solution platforms can
be useful. For instance, Östermark (2017) propose a computational ap-
proach which combines a genetic algorithm with a time-series module
in a massively parallel processing platform.

While there has been plenty of interest in continuous optimiza-
tion approaches, their practical usefulness has been questioned. For
instance, Kolm et al. (2014) note that it can be difficult to estimate
model parameters (e.g., expected returns and covariances over multiple
periods), to overcome computational challenges caused by complex
optimization problems, and to incorporate real-world features at large.
Moreover, Elton and Gruber (1997) criticize the common assumption
that returns are independent over time. They also argue that although
continuous-time approaches have (mostly) confirmed the results of
discrete multi-period results by employing more realistic assumptions,
they have not offered new significant insights. In effect, the empirical
evidence provided by Carroll et al. (2017) suggests that adjusting the
composition of the portfolio will hinder performance if the transaction
costs are high.

Beyond multi-period optimization schemes, trading methodologies
and approaches that explicitly account for the timing of investments
are also relevant. For instance, the hybrid approach of Chen and Wang
(2015) combines a portfolio optimization model for capital allocation
with a genetic algorithm for trading decisions. Décamps et al. (2005)
develop an optimal stopping approach to help decide when to invest
in a project whose current value is known but whose evolution over
time is unknown. De Gennaro Aquino et al. (2023) extend the mean–
variance model to a broader set of investment options in which the
9

investor can invest in available investment opportunities or, alter-
natively, explore new investments that will become available in the
future.

Overall, the formulation of more elaborate models and method-
ological approaches leads to multi-faceted questions about how these
models and approaches compare with each other and, importantly,
what benefits can be gained by adopting new tools as opposed to
following simpler investment strategies. In response to these ques-
tions, Table 2 provides a representative list of comparative studies on
portfolio optimization approaches for investments in financial assets.

Focusing on bi-objective models, DeMiguel et al. (2009) compare
the naïve allocation (i.e., equal weights for all assets) with fourteen
models within the mean–variance framework. Their empirical results
from the US equity market show that the naïve approach is quite
competitive with bi-objective optimization models in terms of its risk-
adjusted return (e.g., the Sharpe ratio) and turnover, particularly when
the number of assets is large, there is limited historical data, and the
idiosyncratic risk is low. In a similar comparative analysis, Cesarone
et al. (2020) examine the stability properties of the simple risk diver-
sification strategies and optimization approaches. They conclude that
the risk parity strategy (in which the portfolio is chosen so that the
assets contribute equally to the total risk) provides the most stable
results. However, the risk-adjusted performance of this strategy was
often inferior to optimization-based models. Georgantas et al. (2021)
examine the stability of portfolio optimization models by employing
robust optimization approaches. Based on an analysis of bi-objective
models and their robust counterparts, they conclude that the latter has
provided superior risk-adjusted performance, particularly during the
2007–2009 financial crisis. Bi-objective approaches are also considered
by Mansini et al. (2003) who focus on models that can be formulated as
LP problems, based on different risk-metrics such as the mean absolute
deviation, the Gini mean difference (GMD) index, and conditional
value-at-risk (CVaR). They report that the LP models provide more
stable asset allocations than the mean–variance model, whereas GMD
and CVaR performed better in their out-of-sample returns.

In a similar study, Ramos et al. (2023) cover a more extensive
arsenal of LP solvable models taking transaction costs also into con-
sideration. They employed several performance metrics in comparing
the results of the optimization models with the Standard & Poor’s 100
index. Although the benchmark index’s performance was inferior to
the portfolios constructed with optimization approaches, they note that
no conclusive finding can be drawn as to the relative performance of
these models when multiple performance metrics are considered. This
suggests that approaches that accommodate multiple criteria can be
well-aligned with the many facets in assessing portfolio performance.

Multiobjective models have been considered by Anagnostopoulos
and Mamanis (2011), Ceren and Köksalan (2014), and Pavlou et al.
(2019), among others. Anagnostopoulos and Mamanis (2011) compare
five MOEAs in cardinality-constrained mean–variance optimization, fo-
cusing on the computational performance of algorithms and the quality
of solutions. The strength Pareto evolutionary algorithm (SPEA2) per-
formed best of the tested algorithms. Ceren and Köksalan (2014) used
a data set from the Istanbul stock exchange to compare bi-objective
and multiobjective models that covered four criteria (return, variance,
liquidity, CVaR). They gave much attention to the conflicting nature
of the objectives and the added value they bring into the portfolio
optimization process. Yet a limitation of this analysis was that it was
based on in-sample results.

Focusing on discrepancies between in-sample and out-of-sample
performance, Pavlou et al. (2019) examined three bi-objective models
and a three-objective formulation using Standard & Poor’s 500 US index
data. The mean–variance formulation gave the most robust results of
the three bi-objective models. Nevertheless, the multiobjective model
with three objectives (return, mean absolute deviation, CVaR) out-
performed the bi-objective formulations in terms of its out-of-sample

robustness.
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Table 2
A representative list of comparative studies on financial portfolio optimization.

Author Objectives (beyond return) Model type Other features

Mansini et al. (2003) Variance, MAD, Maximum
loss, GMD, CVaR

LP

Angelelli et al. (2008) MAD, CVaR MILP Heuristics, CCP

DeMiguel et al. (2009) Variance QP

Anagnostopoulos and
Mamanis (2011)

Variance MIQP MOEAs, CCP

Ceren and Köksalan (2014) Variance, CVaR, Liquidity LP/QP &
MOO

Pavlou et al. (2019) Variance, MAD, CVaR LP/QP, MOO

Cesarone et al. (2020) Variance, Semi-MAD,
CVaR, Maximum loss,
Omega ratio

LP/QP

Georgantas et al. (2021) Variance, CVaR, Omega
ratio

LP/QP RO

Ramos et al. (2023) Expected/maximum loss,
Expected loss deviation,
Shortfall deviation risk,
Expectile VaR, Deviation
expectile VaR

LP Transaction costs, CCP

CCP: Cardinality constrained portfolios, GMD: Gini mean difference, LP: Linear programming, MILP: Mixed integer LP, QP: Quadratic
programming, VaR: Value-at-risk.
5.2. Portfolio decision analysis for allocating resources to indivisible assets

The recent survey paper Liesiö et al. (2021) reviews recent de-
velopments in PDA by examining 146 papers from 2006 to 2019
with an emphasis on the features of the decision model, its solu-
tion approach, and, where applicable, the primary application area.
In particular, optimization was the solution approach in 82% of the
papers, highlighting the close connections between PDA and portfolio
optimization. Mohagheghi et al. (2019) review the literature at the
intersection of project management and project portfolio optimization.
They cover 148 papers published from 1993 to 2018, based on the
selection of evaluation criteria, representation of uncertainties, and
choice of the solution approach. Like Liesiö et al. (2021), they conclude
that the highest number of papers in this area have been published in
the European Journal of Operational Research.

Given these comprehensive reviews on optimization models for
electing portfolios of indivisible alternatives, we do not seek to cover
he wealth of research in this area. Instead, we give an overview of
epresentative case studies to illustrate the breadth of application areas
nd the diversity of methodological approaches. The selection of these
apers in Table 3 is geared towards relatively recent examples which
etter reflect state-of-the-art capabilities. For most (but not for all) of
hese papers, we summarize the problem and the approach taken to
ddress it.
Defence: In their review of 54 papers, Harrison et al. (2020)

oint to the unique challenges in applying portfolio optimization in
efence because, for example, planning horizons are often long and
he consequences of deploying military systems depend on the actions
f counterparties. This notwithstanding, optimization is helpful as it
rovides a structured framework within which relevant inputs can be
ynthesized to inform the design and operation of defence systems.
he usefulness of such a framework is demonstrated by Kangaspunta
t al. (2012) who present how combat models can be integrated with
ptimization models to identify portfolios of cost-effective weapons
ystems in achieving military goals. Davendralingam and DeLaurentis
2015), in turn, consider how the development of military capabilities
n System of Systems (SoS) can be guided through robust portfolio
ptimization, focusing on choices from alternative architectural de-
igns. Their approach is illustrated with a naval warfare scenario in
hich portfolios of viable systems are generated from a candidate list
10

f available systems.
R&D Management: Gouglas and Marsh (2021) describe how the
Coalition of Epidemic Preparedness Innovations (CEPI) allocated some
US$ 140M in 2017 to technology platforms to accelerate the develop-
ment of effective vaccines for epidemic infectious diseases caused by
some previously unknown pathogen. In this case study, 16 platform
projects were assessed within a valuation framework that accounted for
project-level and portfolio-level considerations. Estimates about seven
factors contributing to each platform’s success probability were elicited
from experts and then combined using a multiplicative model. Pref-
erence information was elicited through discrete choice experiments.
Finally, Monte Carlo simulation and extensive sensitivity analyses were
employed to assess the performance of feasible portfolios. In retrospect,
this application has been enormously impactful as six selected projects
served as platforms for developing COVID-19 vaccines that helped
combat the global pandemic.

Another instructive example from R&D management is given by
Kloeber (2011) who gives a good overview of what approaches are
commonly employed by large pharmaceutical companies. Possibilities
for adopting interactive approaches are illustrated by Stummer and
Heidenberger (2003) who propose a three-phase approach that starts
by screening the project proposals that are worth further evaluation.
In the second phase, all non-dominated portfolios are computed by
solving a multiobjective integer linear programming model whose con-
straints include interdependencies, strategic requirements, and resource
constraints. In the third phase, the decision-maker can set aspiration
levels for the objectives in order to explore the set of feasible portfolios
iteratively until a satisfying portfolio is identified.

Energy and climate change: Electricity retailers are exposed to
financial risks when they procure electric energy from the spot market
before delivering it to meet their customers’ demands. Rocha and Kuhn
(2012) show how retailers can hedge against these risks with a portfolio
of electricity derivatives constructed by solving a multistage stochastic
mean–variance optimization model. Computational challenges are tack-
led by employing linear decision rules to restrict the recourse decisions
so that the optimal portfolio can be obtained from a convex quadratic
program.

Fleischhacker et al. (2019) describe a case study on using portfolio
optimization to promote distributed energy resources and to implement
energy efficiency measures in Linz, Austria. Building on available open-
source models and clustering algorithms, they equip the stakeholders
with tools for calculating the capabilities and restrictions of the local
energy system with regard to two partly conflicting criteria, i.e., costs
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Table 3
Selected examples of optimizing the allocation of resources to real assets.

Field Authors Methodologies

Defence Harrison et al. (2020) Survey of methods
Kangaspunta et al. (2012) Simulation, cost-efficiency analysis
Davendralingam and DeLaurentis (2015) Robust portfolio optimization

R&D management Gouglas and Marsh (2021) Stochastic dominance, Monte Carlo simulation
Kloeber (2011) Risk analysis, pipeline optimization
Stummer and Heidenberger (2003) Multiobjective optimization, aspiration levels
Noro and Dias (2023) Bi-objective optimization

Energy and climate change Rocha and Kuhn (2012) Multi-stage stochastic optimization
Fleischhacker et al. (2019) Scenarios, clustering algorithms
Baker et al. (2020) Robust PDA, belief dominance

Urban and environmental management Lahtinen et al. (2017) Survey of methods, application of RPM
Fasth et al. (2020) Conflict constrained optimization

Maintenance Mild et al. (2015) RPM with approximative algorithms
Sacco et al. (2019) RPM
Mancuso et al. (2017) Fault trees, Bayesian belief networks

Supply chains Sawik (2019) System dynamics, dynamic optimization
Built infrastructures Barbati et al. (2023) MCDA, PROMETHEE, ELECTRE Tri

Roberti et al. (2017) AHP, multiobjective optimization
Human resources Gutjahr (2015) Survey of methods

Gutjahr et al. (2010) Bi-level optimization
Stummer and Kiesling (2009) Multicriteria screening, aspiration levels

AHP: Analytic Hierarchy Process; RPM: Robust Portfolio Modelling; MCDA: Multicriteria Decision Analysis.
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and carbon emissions; they also use scenario planning (Bunn & Salo,
1993) to examine possible lock-in effects of existing infrastructure
and future developments. The results alert to the importance of the
steady transformation of local energy systems in reaching economically
sustainable goals.

Motivated by the recognition that long planning horizons may in-
volve ‘deep’ uncertainties that cannot be captured by completely spec-
ified probability distributions, Baker et al. (2020) present an approach
based on robust portfolio decision analysis to guide R&D investments
into energy technologies. Specifically, they identify which portfolios of
R&D investments are robust in view of the beliefs expressed by three
different expert groups on how R&D investments will impact the future
technological capabilities that can be leveraged to mitigate climate
change. This application is also instructive as it demonstrates how
portfolio optimization can be integrated with integrated assessment
models (IAM).

Urban and environmental management: In general, applications
f portfolio optimization for real investments typically involve multiple
riteria; they may also involve investment alternatives that are rather
ifferent from each other. Focusing on environmental management,
ahtinen et al. (2017) note the need to construct portfolios consisting
f many kinds of actions (e.g., energy saving measures, investments
n renewables, educational projects, development and adoption of new
echnologies, regulation policies) so that when these actions are imple-
ented together, they are jointly effective in contributing to multiple
ecision objectives such as mitigating greenhouse gas emissions, foster-
ng biodiversity, and minimizing costs. As a result, the construction of
uch portfolios of actions can be usefully guided by portfolio optimiza-
ion. In support of this claim, Lahtinen et al. (2017) provide pointers
o several environmental management applications in which portfolio
ptimization techniques, such as quadratic programming and multi-
le objective integer optimization, have been effective in providing
ecision support.

Urban planning affects the quality of life within local communities
ver different spatial scales and time horizons. It also involves many
takeholder groups which may have conflicting interests. To manage
ossible conflicts, Fasth et al. (2020) construct a decision analytic
ramework in which stakeholders assess urban planning actions and
stimate the weights of the criteria employed in this assessment. For
ach action, a conflict index and the overall value are calculated. All
areto efficient action portfolios are computed from an optimization
odel in which different levels of conflict are treated as a constraint.

ensitivity analysis is an integral part of this framework, illustrated
11

ith data from the municipality of Upplands Vasby, Sweden.
Maintenance: Mild et al. (2015) describe how the Finnish Trans-
ort Agency (FTA) has embraced portfolio optimization in its an-
ual planning processes when selecting dozens of bridge maintenance
rojects from hundreds of project candidates. Specifically, this selection
ecision is guided by the Core Index values of an RPM model which
ccounts for multiple criteria, project interdependencies, uncertain-
ies concerning project consequences, and financial and other relevant
onstraints.

Mancuso et al. (2017) employ portfolio optimization to identify
ost-effective safety measures for the airlock subsystem of the CANDU
uclear power plant. Towards this end, they convert the fault tree
epresentation of the subsystem into a Bayesian belief network as

framework for assessing the consequences of different portfolios
f safety measures. In particular, they show that the optimization
pproach leads to considerably lower residual risk for different cost
evels than the selection of safety measures based on conventional risk
mportance measures.

Sacco et al. (2019) develop a risk-based maintenance framework
o help decision-makers select optimal maintenance plans to reduce
he severity and likelihood of failures in a high-pressure natural gas
ipeline in Great Britain. The results indicate, for example, that if there
re no spatial constraints on budget allocation across zones, the selected
aintenance actions will be concentrated only on some critical zones

uch as Scotland and the southernmost part of England. However, if
redefined maintenance budgets are apportioned to different areas, the
elected portfolio may be sub-optimal with a smaller risk reduction over
he maintenance horizon.
Supply chains: Sawik (2019) proposes a dynamic optimization

odel to assist a manufacturer in choosing a portfolio of suppliers
ased on indicators reflecting their financial stability, production sta-
ility, product quality, and cost. The selection of suppliers and the
llocation of orders to them are guided by a combined simulation–
ptimization framework with real-time monitoring of supply risk in-
icators. Specifically, a system dynamics model is first employed to
ssess the effect of supply risk indicators on a manufacturer’s profit
ver a planning horizon. Then, a portfolio optimization model is solved
o determine the optimal order allocation to suppliers in view of the
anufacturer’s risk propensity. Thus, the manufacturer can re-balance

ts supply portfolio in response to early changes in supply risk indicators
o ultimately gain higher expected profits with lower risks.
Built infrastructures: Barbati et al. (2023) present an application

f portfolio optimization to foster cultural heritage by prioritizing
wenty project interventions on historical buildings in Naples, Italy.
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Specifically, they propose an approach called Priority Based Portfolio
Selection which employs multiple criteria sorting and ranking methods,
such as PROMETHEE and ELECTRE TRI, to compare projects based on
the consideration of qualitative and quantitative criteria. Then, feasible
portfolios of projects satisfying the resource and logical constraints are
identified before the final recommendations are derived through port-
folio optimization. Although this approach has been initially developed
for prioritizing conservation projects, it is generic enough to be applied
in different contexts.

Another example related to historical buildings is presented by
Roberti et al. (2017) who evaluate possible retrofit actions such as
external and internal envelope insulation, airtightness improvement,
windows replacement, and ventilative cooling. They use the Analytic
Hierarchy Process (Saaty, 1980) to derive a conservation score for each
action based on the judgements that are elicited from ten experts. This
conservation score is combined with the energy needs for heating and
cooling as well as thermal comfort in a multiobjective optimization
model whose solution gives the optimal portfolio retrofits for a medi-
aeval building in Italy. This portfolio allows for a four-fold reduction
in energy needs at a high thermal comfort level.

Human resources: Gutjahr et al. (2010) develop a multi-objective
ptimization model to guide the selection of projects considering both
conomic benefits, on the one hand, and the impacts that alternative
roject assignments have on the evolution of competencies, on the
ther hand. Pareto-optimal solutions with regard to these two criteria
re obtained by decomposing the problem into (i) a master problem
or portfolio selection and (ii) a slave problem for assigning personnel
o the work packages of selected projects. Linearized formulations
re provided to solve the slave problem efficiently, and experimen-
al results are presented for synthetically generated test instances as
ell as for real data from a software-intensive organization. Related

hemes in managing human resources are addressed by Stummer and
iesling (2009) who view human capital not only as an input resource
equired for conducting research but also as the output of pursuing
hat research. Specifically, they present a multi-criteria decision sup-
ort system (MCDSS) with financial and non-financial objectives and
onstraints. In this system, the set of Pareto-efficient solutions is first
etermined so that the decision-maker can interactively explore and
ilter this set. More generally, Gutjahr (2015) reviews project selec-
ion models that incorporate skills development by learning and/or
orgetting.

.3. Discussion

The above summary of applications demonstrates the breadth of
roblems that can be tackled through portfolio optimization. Still, one
ay ask what kinds of decision problems are particularly amenable

o portfolio optimization and what caveats one should be aware of in
eeking to benefit from it.

For starters, portfolio optimization has been immensely impactful
n finance. Its profusion has been expedited by good access to data
esources and, in many cases, apparent clarity concerning relevant
ecision criteria (e.g., expected return, volatility). Moreover, because
ajor financial commitments are at stake, considerable benefits can

e expected by moving from a sub-optimal portfolio to the optimal
ne. It is also usually possible to validate the benefits of portfolio
ptimization ex-post, for example by examining the financial outcomes
nd associated consequences for the decision-maker that would have
aterialized if the investment decision had been different from the one

ecommended by portfolio optimization. Still, even if there is abundant
istorical data on financial assets, the financial environment contin-
es to evolve dynamically, which limits the value of the information
hat back-testing validation procedures provide for future investment
ecisions (Reschenhofer et al., 2020).

An example of another field with influential penetration of portfolio
12

ptimization is pharmaceutical R&D (cf. Gouglas & Marsh, 2021) in
hich projects advance through a well-defined stage-gate structure,
uided by evaluation criteria that focus on the assessment of financial
spects and the demonstration of safety, and efficacy (see Hesarsorkh
t al., 2021; Kloeber, 2011). Yet in the selection of ‘far-out’ innovation
rojects, it is often much less clear what the projects are expected to
chieve. Moreover, the experts may not be able to assess projects with
uch confidence, and it is practically impossible to ascertain ex-post
hat would have happened if another portfolio of innovation projects
ad been selected. These challenges may explain why the development
f advanced quantitative methods for selecting innovation projects has
ad a limited impact on practice in settings where the innovation
rocess is unstructured, unpredictable, and ambiguous (Si et al., 2022).

In view of the above, it is easier to justify the use of portfolio
ptimization in problems in which there are concrete benefits from
ntroducing a structured decision process with a well-defined time
orizon, clarity about the investment alternatives and the ability to
laborate a sufficiently comprehensive set of decision criteria with re-
ard to which the alternatives can be evaluated with a reasonable level
f confidence. Conversely, if significant difficulties are encountered in
uilding a validated optimization model, then using numerical opti-
ization results for making investment choices may not be warranted.

till, attempts to build such a model may help expose, for example,
imitations in data resources or conflicting perceptions about the ‘right’
roblem scope. An awareness of such obstacles can be instructive in
uggesting preparatory activities that need to be completed before a
seful optimization model can be built. When making efforts towards
his end, one should remain attentive to any concerns that may have
een inadvertently neglected or purposely omitted in specifying the
odel.

Many benefits of portfolio optimization stem from its ability to
rovide recommendations for portfolio selection based on a systematic
omparison within a broad set of comparable alternatives. Intuitively,
ne might think that choosing this portfolio of ‘best’ alternatives from
truly comprehensive set of alternatives would be better than pooling

he results for optimizing smaller subsets containing these same alter-
atives. Yet several reasons suggest that the temptation to extend the
cope of portfolio models in terms of time horizons or different kinds
f alternatives should be resisted:

• If the set from which a portfolio is selected contains very different
kinds of investment alternatives, it may be harder to specify
tangible evaluation criteria that can be meaningfully interpreted
and consistently applied across all these alternatives. Therefore,
depending on the context, one may aspire to make comparisons
across alternatives that are sufficiently ‘similar’ so that they can
be legitimately compared.

• In many cases, extending the time horizon over which the port-
folio is optimized will lead to more uncertainties about the con-
sequences of the investment alternatives, which may erode the
credibility of the results. Also, the ensuing reinvestment problem
must be recognized and addressed if the assets are not of the same
maturity.

• Constructing an optimization model in order to select the port-
folio from a very large set of alternatives may involve indirect
costs, for example, due to greater administrative efforts or the
need to postpone decisions on some alternatives to create such
a set. Thus, it is pertinent to assess if the benefits of optimizing
for this comparatively larger set outweigh the costs of building
such a set in the first place. Furthermore, when new investment
alternatives arise continually, the decision process needs to be
designed in view of expectations concerning what future alterna-
tives may become available. For example, Vilkkumaa et al. (2015)
present multi-stage simulation–optimization models to support

the reallocation of resources to new alternatives.
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Models of portfolio optimization can be built to tackle new problems
or to establish decision-making practices in which such models are
solved recurrently, even routinely, with the aim of gaining enduring
benefits. Developing and adopting such practices can be seen as a
learning process which may take time. Yet it can be expedited by
distilling ‘lessons learned’ from using portfolio models for decision
support (see, e.g., Mild et al., 2015) and by paying attention to their
behavioural fit within the organization (Luoma, 2016).

We also stress that there are application areas in which mastering
the mathematical aspects of portfolio optimization does not suffice
for providing effective decision support. In environmental decision-
making (Lahtinen et al., 2017) and urban planning (Fasth et al., 2020),
for instance, there are often stakeholder groups whose interests must
be accounted for, because the recommended policy actions may be met
with much resistance unless the stakeholder groups are engaged in the
decision process. In such situations, competencies in the design and
facilitation of participatory decision processes are crucial.

6. Opportunities for future research and practice

Here, we offer reflections on timely opportunities in portfolio op-
timization for continued research and applied work. Many of these
opportunities are linked to introducing new modelling features to
extend the range of problems that can be approached with portfolio
optimization. Although we do not delve into technicalities, we note
that many of these opportunities are linked to methodological and
algorithmic challenges that need to be tackled.

• Building integrated models with a broader span of criteria and uses:
In finance, concerns such as economic, social, and environmental
sustainability have become increasingly important, giving rise to
questions about how these kinds of inherently qualitative criteria
can be best incorporated into models of portfolio optimization.
This can be challenging, as the criteria must be adequately de-
fined and the corresponding data resources must be of sufficiently
high quality. Conversely, models for selecting portfolios of real
assets can be extended by including financial assets and perfor-
mance measures. Thus, for example, budgets need not be viewed
as fixed constraints but as decision variables that can be opti-
mized. Overall, there is much potential in developing integrated
approaches, as demonstrated, for instance, by Tinoco et al. (2018)
who optimize business project portfolios in view of economic,
social, and environmental aspects.

• Establishing interfaces to non-numerical data sources: Much of the
online qualitative textual information is relevant to portfolio
optimization. For example, written comments on financial news
convey information about investor sentiment. For optimization
purposes, however, such information has to be quantified, which
creates a need for tools capable of exploring qualitative data
resources and converting such resources into numerical inputs
(see, e.g., Yu et al., 2022). Such tools can also provide useful
information about stakeholders’ values and preferences. Thus,
they extend the range of problems that can be tackled with
portfolio optimization.

• Synthesizing statistical analysis with subjective perceptions of un-
certainties: In many problems, there are significant uncertainties
about the future consequences of alternative portfolios. Although
much research has been done to improve the characterization of
uncertainties, further efforts are needed to build models that ac-
commodate not only data-driven estimates of uncertainties based
on statistical techniques but also subjective views on uncertain-
ties, obtained through structured processes of expert judgement
elicitation. Incorporating such views (or beliefs, see Baker et al.,
2020) may be especially useful when there is not much relevant
data from the past. In pursuing such an integration, probabilistic
approaches are appealing in that they make it possible to syn-
thesize inputs from diverse information sources within the sound
13

framework of standard probability theory.
• Optimizing decision processes for portfolio selection: It is often possi-
ble to develop an improved portfolio model through efforts that
reduce uncertainties by providing more accurate estimates about
the consequences of the alternative assets being considered. If
these efforts are insufficient, the remaining uncertainties may be
so significant that there is a high probability of choosing a sub-
optimal portfolio ex-post. Still, if such efforts towards reducing
uncertainties consume plenty of resources, the benefits of being
able to choose a better portfolio may not compensate for the
resources that are consumed by these efforts. Thus, these kinds
of inherent tradeoffs can be studied by employing the concept of
Value of Information to design the selection process optimally in
view of all stages that span from the formulation of the portfo-
lio model to the implementation of the recommended portfolio.
Specifically, the optimal design of processes for portfolio selection
is thus an important topic that can be approached, for example,
through simulation–optimization studies to derive well-founded
triage decision rules (Keisler, 2004) that can be combined with
portfolio optimization. For instance, if exceptionally excellent
investment opportunities are encountered, it may be optimal to
seize them promptly. In contrast, decisions on less attractive op-
portunities can be postponed and resolved later through portfolio
optimization.

• Designing robust and new assets based on portfolio optimization: Port-
folio problems often involve significant uncertainties whilst many
decision-makers are risk averse. Therefore, instead of focusing on
the solution that is optimal for a single choice of parameter values
that proves erroneous ex-post, it may be advantageous to identify
robust portfolios that perform reasonably well across a wide range
of parameter values. Here, the computation of non-dominated
portfolios based on the concept of stochastic dominance, for
instance, is a powerful approach as one can derive conclusions
about which alternative assets are included in all non-dominated
portfolios and are therefore robust in view of the full range of
parameter values. Although much work has been carried out
in this area, these analyses can be extended to address fresh
research questions in portfolio optimization. For example, rather
than taking the set of alternative assets as a given, one may ask
how new assets should be designed so that they will be included
in many or most non-dominated portfolios.

• Ensuring the validity of models: Because portfolio optimization
models rely on the information available at the time of the
investment decision, the recommended portfolio is guaranteed
to be optimal with respect to this information only. Thus, when
the investment environment evolves, it is crucial to validate
the underlying modelling hypotheses and carefully assess the
selected portfolio’s realized (future) performance. This kind of
ex-post validation complements ex-ante approaches such as ro-
bustness analysis. It also helps build an integrated framework
for establishing empirically grounded conclusions about the ef-
fectiveness of optimization models in practice. Validation can
extend beyond examining a single portfolio to consider all non-
dominated portfolios (Kao & Steuer, 2016; Pavlou et al., 2019).
Ideally, validation tests should not be limited to simple measures
of profitability/return; instead, they should span a broader range
of criteria in light of possible changes in the decision-makers’
preferences over time.

• Enhancing human interactions: The interactions through which in-
formation is elicited from decision-makers and stakeholders, as
well as the ways in which results of portfolio optimization are
communicated to them are key determinants of the quality and
eventual impact of decision support. For example, if the elicita-
tion process is inadequate, the model will not be valid; and if the
results are not clearly communicated, the decision recommenda-
tions may not be understood or trusted. Thus, there is a need

to enhance these human interactions, for instance through new
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elicitation protocols and visualization techniques. These advances
need not be geared to developing very large portfolio models,
which might require excessive elicitation effort. It may be more
fruitful to build more parsimonious models whose results can be
appreciated interactively in workshops, for instance.

While many portfolio optimization models are sophisticated for a
ood reason, we caution against developing models whose features
re unnecessarily complex for their intended use. One reason is that
he simultaneous compounding of multiple approaches in representing
references and uncertainties, for example, may give rise to models that
ack transparency. This can make it hard to explain the recommenda-
ions and, at worst, may contribute more to confusion than clarity. Yet
f models fail to capture key concerns that actually matter (e.g., signifi-
ant uncertainties or interdependencies between assets), there is a risk
f losing validity due to an inadequate problem representation. Against
his backdrop, there is a continuing need for reflective case studies with
eal data and real decision-makers, as only such case studies permit
arranted conclusions about what kinds of portfolio models work well

n practice. Such conclusions cannot be reached by speculating how
maginary decision-makers would interact with overly sophisticated or
implistic models of hypothetical problems.

. Conclusions

For a long time, portfolio optimization has been one of the most
rominent fields of operational research, marked by significant the-
retical, methodological, and algorithmic advances as well as com-
elling achievements in supporting the allocation of resources across a
tunningly diverse range of problems. This celebrated history notwith-
tanding, much work is needed to expand its capabilities further.
or example, more expressive preference models are needed to fully
apture concerns such as sustainability; the impacts of unforeseen
isruptions need to be accounted for in adapting risk measures for
etter risk management; and ever-better optimization techniques are
eeded to solve large portfolio models that are presently intractable.
urthermore, progress in synergistic areas such as text mining, deep
earning, and human–computer interaction can be exploited to cre-
te capabilities for building, solving, and using portfolio optimization
odels beyond the state of play.

Overall, building on this paper’s extensive scope, which covers
ivisible and indivisible assets, we see exciting opportunities that arise
rom the cross-fertilization between these complementary and synergis-
ic areas of portfolio optimization. For example, the need to quantify
nd mitigate financial risks has spawned risk measures that can now
e deployed to support the management of real assets. Conversely,
dvances in building preference models for multiple attributes can be
sed to address concerns such as the UN Sustainable Development
oals that transcend the scope of conventional financial evaluation
riteria.

Efforts are also needed to understand even better in what kind of
roblems portfolio optimization has most to offer. Many of the benefits
f portfolio models come from the possibility of allocating resources
o alternative assets based on a more systematic and comprehensive
valuation than what would otherwise be the case. Still, if the costs of
ormulating such models outweigh the benefits, more straightforward
pproaches, such as taking decisions on individual assets sequentially
ne by one based on triage decision rules, may be considered. Thus,
ne should not take it for granted that the construction and solution of
full-blown portfolio optimization model is optimal.

Although portfolio optimization is a comparatively mature field,
here are promising avenues for advancing its frontiers. These fron-
iers include but are not limited to incremental enhancements to its
athematical and methodological algorithmic core, because there are

ttractive opportunities that stem from the challenges encountered in
14

roblems that have not yet been satisfactorily mastered. In developing
this emerging agenda, there is a need for a sufficiently close interplay
between theory and practice to ensure pertinent aspects of validity,
ranging from well-founded modelling activities to effective interaction
with decision-makers. This combination of methodological rigour and
practical relevance will ensure that the future of portfolio optimization
will be bright indeed.
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