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1 | INTRODUCTION

Edoardo Tosoni! |

Juho Roponen'! | Derek W. Bunn?

Abstract

Cross-impact analysis is widely employed to inform management and policy decisions
based on the formulation of scenarios, defined as combinations of outcomes of relevant
uncertainty factors. In this paper, we argue that the use of nonprobabilistic variants of
cross-impact analysis is problematic in the context of risk assessment where the usual
aim is to produce conservative risk estimates which may exceed but are not smaller than
the actual risk level. Then, building on the characterization of probabilistic dependencies,
we develop an approach to probabilistic cross-impact analysis which (i) admits several
kinds of probabilistic statements about the outcomes of relevant uncertainty factors and
their dependencies; (i) maps such statements into constraints on the joint probability
distribution over all possible scenarios; (iii) provides support for preserving the con-
sistency of elicited statements; and (iv) uses mathematical optimization to compute
lower and upper bounds on the overall risk level. This approach—which is illustrated
with an example from the context of nuclear waste repositories—is useful in that it
retains the informativeness of cross-impact statements while ensuring that these

statements are interpreted within the coherent framework of probability theory.
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outcomes of these uncertainty factors, there exists a distinct scenario that
could be generated (Carlsen et al., 2016; Tietje, 2005). Thus, if there are

In its many variants, scenario analysis is widely employed to support
strategic decisions whose impacts depend on key uncertainties (Bunn &
Salo, 1993; Lord et al., 2016). In such situations, the systematic iden-
tification of relevant uncertainty factors; the characterization of out-
comes which depict possible realizations of these factors; and the
formulation of scenarios as different combinations of such outcomes
provides support for organizational learning, fosters managerial insights
and provides an improved basis for strategic decisions through a sys-
tematic analysis of uncertainties (Schoemaker, 1993; A. Wright, 2005).

Yet, a practical challenge in scenario analysis is that the number of
possible scenarios grows very rapidly with the number of uncertainty

factors and their outcomes. This is because for every combination of

10 factors with five possible outcomes for each, for example, the total
number of possible scenarios which can be defined by such outcome
combinations is 51 = 9.7 million. Understandably, the number of sce-
narios which are usually elaborated is typically much smaller, given that
resources for developing scenarios by engaging experts or by consulting
other sources of information are limited. Moreover, the elaboration of
scenarios and the assimilation of their implications is constrained by the
amount of time and attention that decision and policy makers can devote
to the scenario process. Thus, in many public policy and corporate sce-
nario analyses which are developed primarily by consulting experts and
other respondents, the number of scenarios is in the range between four
and eight (see, e.g., Lord et al., 2016; Wiebe et al., 2018).
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In this setting, methods of cross-impact analysis provide a struc-
tured approach to choosing those outcome combinations for which
scenarios are built, based on statements concerning the logical re-
lationships between the factors and their outcomes. Such statements
are typically elicited by asking the respondent to characterize which
pairs of outcomes are consistent in the sense that these outcomes are
likely to occur jointly. Typically, these cross-impact statements are
expressed verbally and then mapped to corresponding numerical
parameters. For instance, Scholz and Tietje (2001) present a 7-point
numerical scale from -3 to 3 such that, for example, -3 indicates that
the two outcomes are strongly inconsistent in the sense that they are
very unlikely to occur together; O represents independence; and 3 in-
dicates that the outcomes are strongly consistent so that the occur-
rence of an outcome induces the other. Finally, the elicited statements
are synthesized algorithmically to provide suggestions for which
combinations of outcomes scenarios should be built (see, e.g., Salo &
Bunn, 1995; Seeve & Vilkkumaa, 2021; Tietje, 2005).

As one of the important application areas of scenario analysis, risk
assessment covers both risk analysis (which helps identify, character-
ize, and analyze future events and developments that can negatively
impact individuals, assets or the environment) and risk evaluation
(which supports judgments about the extent to which these risks can
be tolerated) (Rausand, 2013). In risk assessment, the demands on the
rigor, quality and transparency of methodological support are parti-
cularly stringent. In part, this is because risk management decisions can
have far-reaching consequences, especially in the context of safety-
critical systems whose failures can cause human casualties, irreversible
environmental damages, and major financial losses. Thus, for example,
in the assessment of the safety of nuclear waste repositories, it is
necessary to account for the full range of relevant uncertainty factors
(called features, events, and processes [FEPs]; see Tosoni et al., 2018)
and their implications for regulatory decisions. Methodological rigor is
also needed in assessing risks due to the impacts of climate change,
healthcare interventions, and environmental regulations (see, e.g.,
Hirabayashi et al., 2013). In all these areas, the possibility of rare but
extremely serious events is of much concern. These events have
usually very low probabilities which can be notoriously difficult to
estimate because of scarce empirical evidence and paucity of relevant
data based (see, e.g., Goodwin & Wright, 2010).

Within the field of risk assessment, probabilistic risk analysis
(PRA) constitutes a theoretically coherent framework which is com-
patible with well-established statistical techniques for data analysis; it
also provides support for synthesizing expert judgments (Bedford &
Cooke, 2001). In the analysis of safety-critical systems, it is often
required that the PRA estimates—which reflect both the probability
and the severity of negative impacts—should be conservative so that
the actual risk level is not underestimated (see, e.g., Aven & Zio,
2011). This requirement is justified by the recognition that in safety-
critical systems, errors due to “false negatives”—the failure to take
appropriate risk management decisions in response to risks which
were deemed tolerable but were actually too high—can be far greater
than errors arising from “false positives”—the cost of unnecessarily

implementing risk management actions in response to assessed risks

which, in reality, were not big enough to warrant such actions. Even
more generally, such conservatism is widely called for in situations
where there are significant uncertainties. For example, the “precau-
tionary principle” (Science for Environment Policy, 2017) has been
invoked to guide the public response to risks in contexts such as
climate change mitigation (Stern, 2007). Also the “minimax regret”
decision rule, which has been proposed as an approach for ensuring
the resource adequacy of electricity systems (National Grid, 2020), is
motivated by the desire to limit the amount of harm that could be
experienced ex post. If the impacts can be characterized in terms of
real-valued consequences (for instance through monetization), in-
formation about the tail risk represented by the least preferred
consequences can be provided through risk measures such as Value-
at-Risk and conditional Value-at-Risk, defined at appropriate con-
fidence levels (see Liesio & Salo, 2012).

The above remarks motivate our central observation on the use of
cross-impact analysis in risk assessment and the ensuing decision
making. That is, to the extent that cross-impact analysis focuses on a
small subset of all possible scenarios, there is a real possibility that the
resulting estimates about the overall risk level will not be conservative,
because the risks associated with all the other “non-constructed”
scenarios may be underestimated or even neglected. This may not be
of major concern in contexts where the stakes are not very high or
where “softer” process objectives such as organizational learning are
dominant. However, if the analysis serves as an essential input to
safety-critical risk management decisions, it is possible that the suffi-
cient conservatism required by regulatory decision making is not being
upheld. Indeed, while all model-based analyses are simplifications and
there is always some “model risk,” in safety-critical applications, due-
diligence requires that this should be minimized.

Against this backdrop, we examine cross-impact analysis from the
PRA perspective, with the aim of clarifying how cross-impact analysis
can be employed to support risk management decisions. This per-
spective is motivated by the recognition that (i) risk assessment is, by
definition, focused on the identification, characterization, and analysis
of relevant uncertainties and their impacts, and that (ii) PRA is often
endorsed and in many cases even required as the only appropriate
coherent framework for addressing these uncertainties (see, e.g.,
Helton & Sallaberry, 2009; USEPA, 2014; USNRC, 2016). As a moti-
vating prelude to our methodological development, we point out lim-
itations in nonprobabilistic cross-impact approaches by examining the
cross-impact balances (CIB) method (Weimer-Jehle, 2006, 2008). We
have chosen this method due its visibility in the literature and the
attention that it has recently received in the context of climate change
mitigation (Kemp-Benedict et al., 2010; Panula-Ontto et al., 2018;
Schweizer, 2020; Weimer-Jehle et al., 2020).

Furthermore, by building on formulations for capturing prob-
abilistic dependencies, we develop a probabilistic method of cross-
impact analysis which combines methodological coherence with the
expressiveness of cross-impact statements for characterizing de-
pendencies between pairs of outcomes for uncertainty factors. These
statements are translated into constraints on the joint probability

distribution over the set of all possible scenarios (which, by design,
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are assumed to be mutually exclusive and collectively exhaustive;
see, e.g., the early work of Duperrin & Godet, 1975 and citations to
it). In addition to cross-impact statements, our method accom-
modates many other kinds of probabilistic statements, such as lower
or upper bounds on the marginal and conditional probabilities of the
joint probability distribution. Throughout the elicitation process, the
method can offer support for preserving the consistency of the eli-
cited statements so that the corresponding constraints are satisfied
by at least some scenario probabilities.

In the context of risk assessment, our method can also be em-
ployed together with measures of risk importance to identify the
scenarios which matter most from the risk management perspective
(see, e.g., Salo et al., 2021; Tosoni, 2021). A precondition for this is
that estimates about the expected consequences in every possible
scenario can be assessed. While the generation of such estimates can
be supported by computational models in some contexts (cf. the case
study in Section 4), this assessment task may be challenging if the
number of possible scenarios is large and the required estimates have
to be elicited from experts (see, e.g., Dias et al., 2018). This task may
be less onerous if the consequences depend primarily on few un-
certainty factors, because it may suffice to assess consequences by
conditioning these on, say, pairs or triplets of outcomes for two or
three uncertainty factors. It may also be possible to estimate
scenario-specific consequences by using mathematical models in
which the consequences are expressed as functions of the outcomes
that define the scenarios. One possibility is to apply the rank nodes
method (Fenton et al., 2016; Laitila & Virtanen, 2016) which has been
successfully employed to support the development of conditional
probability tables for Bayesian networks. This method appears par-
ticularly relevant thanks to its flexibility which is achieved by asso-
ciating weighting parameters with each uncertainty factor.

More generally, even if scenario-specific consequences are not
formally assessed, the proposed approach to the elicitation of cross-
impact statements and their conversion into constraints on the un-
derlying joint probability distribution provides a structured and sys-
tematic way for characterizing this distribution. In this regard, it
serves similar purposes as approaches for modeling dependencies
between continuous random variables with real-valued outcomes
(see, e.g., Van Dorp, 2005).

While our emphasis is on probabilistic approaches, we note that
nonprobabilistic approaches such as CIB do not automatically lead to
excessively permissive conclusions about system safety, provided
that deliberate attempts are made to select those scenarios which
pose significant risks while also accounting for the impacts of those
scenarios which are not elaborated. This notwithstanding, a major
shortcoming of these nonprobabilistic approaches is that they are not
founded on a coherent theoretical framework within which the
adequacy, appropriateness, and sufficiency of these kinds of adjust-
ments could be formally assessed. This makes it hard if not impossible
to ascertain if such adjustments warrant valid conclusions about
system safety. Thus, there is a striking contrast with PRA which, due
to its probabilistic foundations, builds on a coherent framework

within which such an assessment can be made.

The rest of this paper is structured as follows. Section 2 discusses
methods of cross-impact analysis and remarks on nonprobabilistic
approches in light of the CIB method. Section 3 shows how cross-
impact statements can be converted into constraints on the joint
probability distribution over all possible scenarios. It also formulates
maximization problems which can be solved to infer conservative risk
estimates, based on all the elicited information. Section 4 presents a

numerical example. Section 5 concludes.

2 | METHODS OF SCENARIO AND
CROSS-IMPACT ANALYSIS

Of the variety of methods in scenario analysis, most are associated
with one of the three main schools which are commonly referred to
as the intuitive logics school; the probabilistic/modified trends
school; and La Prospective (Bradfield et al., 2005; Bunn & Salo, 1993).
The first, intuitive logics, is least quantitative in that it adopts a top-
down inductive approach in seeking to formulate descriptive sce-
narios which represent possible futures and thus help generate ac-
tionable insights (Bowman, 2016; G. Wright et al., 2013). The second
school consists of methods such as Trend-Impact Analysis and Cross-
Impact Analysis which employ techniques for quantifying expert
judgments, for example by characterizing possible deviations from
historical averages or prior expectations (Bradfield et al., 2005). The
third school, La Prospective, can be viewed as a “blend of tools and
systems analysis” (Godet, 2000) or even as a mixture of methods
from intuitive logics and probabilistic analysis (Bradfield et al., 2005).

Regardless of the school, it is useful to consider the determinants
of the scenario quality (Bunn & Salo, 1993). In particular, scenarios
should be comprehensive, meaning that they represent the full range
of possible futures that are relevant to decision making or the
broader objectives of the scenario process; consistent, meaning that
the outcome combinations are plausible in light of available knowl-
edge about the reality which they seek to depict; and coherent,
meaning that the development of scenarios is founded on sound
theories for reasoning about uncertainties. In practice, the pursuit of
these qualities involves inevitable trade-offs. For example, increasing
the number of scenarios to ensure comprehensiveness would, at
some stage, result in the generation of scenarios which are less
plausible and therefore less consistent, too.

In our methodological development, we focus on probabilistic
approaches in which uncertainty factors are modeled as random
variables X/,i = 1,..., n such that the ith uncertainty factor has n;
possible realizations (called outcomes) xL, k =1, ..., nj represented by
the set S = {xi, x{,i}. A scenario s = (X, ..., x") is defined as a com-
bination of outcomes x' € §' for all uncertainty factors i = 1, ..., n.
Thus, mathematically, the set of all scenarios is the Cartesian product
S =X 1S which hasISI = TTi; n; elements. For example, if there are
5 factors with three outcomes for each, there are 3° = 243 distinct
scenarios that can be generated.

Much of the early methodological development of cross-impact
analysis took place in the 1970s and 1980s. One of the major aims
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was to support inferences about which scenarios could be deemed
more plausible than others, based on cross-impact statements about
the consistency of outcomes for pairs of uncertainty factors. The
proposed methods were largely developed within the framework of
probability theory by interpreting the elicited cross-impact judgments
in terms of statements about conditional probabilities and by trans-
lating these statements into corresponding constraints on the joint
probability distribution over the set of all possible scenarios (for an
early review, see tab. 1 in Salo & Bunn, 1995).

In the elicitation of cross-impact statements, one notable chal-
lenge is that when several cross-impact statements are elicited
without explicit guidance, the resulting set of elicited statements may
be inconsistent so that the corresponding constraints will not be
satisfied by any probability distribution over the set of scenarios
(G. Wright et al., 1988). In this case, it would be necessary to revise
earlier statements, either by removing some of them or, alternatively,
by relaxing the bounds of those statements which have been en-
coded as intervals. Both cases are problematic in that it can be
challenging to identify which one(s) of the many earlier statements
are more “wrong” than others.

In recent years, the literature on cross-impact analysis has con-
tinued to diversify. There are now approaches in which the assessed
cross-impact evaluations are no longer linked to probabilities. One of
these approaches is the CIB method (Weimer-Jehle, 2006, 2008)
which is a structured technique for identifying consistent scenarios
based on cross-impact assessments about causal dependencies be-
tween uncertainty factors. In CIB, specifically, the respondent is in-
vited to use a scale ranging from -3 to 3 to assess what impact the
outcome x; € S' of the ith factor will have on the outcome x/ e Sl of
the jth factor. These statements are assessed for all pairs of out-
comes (x,'(, x,"),x,"< es, x,j e SI and pairs of uncertainty factors i #j,
resulting in responses C,‘z,,i #j,k=1,.,n,1=1,..,n. These re-
sponses form the elements of the cross-impact matrix C.

In the selection of scenarios, CIB focuses exclusively on con-
sistent scenarios which are defined as combinations of outcomes
(x,}i, x,'j;‘) such that (see eq. 1 in Weimer-Jehle, 2008)

n n
i /- = ,
21 Chns 2 zl Cepi=1,nl=1,..n 1)

i#j i#j

In other words, the scenario (X’%i’ x,f*),x,"(,* e S is consistent in the
N, 1l

sense that the sum of corresponding cross-impact terms in each
column x,ﬁ;,j = 1,.., n; of the aggregate matrix is not less than what

would be obtained by adding the terms in the column for some other
outcome x/ # x,{; instead.

Even if this requirement seems plausible, it is highly restrictive in
that the number of scenarios which satisfies the condition (1) can be
very small, which undermines the objective of generating a compre-
hensive set of scenarios. For instance, in the example in tab. 3 of
Weimer-Jehle (2006) with five factors (four with three possible
outcomes and one with four), only three out of the 3% x 4 = 324
scenarios are consistent, because none of the 321 other scenarios
fulfill the consistency requirement (1).

Alarmingly, it is also possible to construct cross-impact matrices
such that the consistency requirement in (1) is not satisfied by any
scenario. For example, consider the cross-impact matrix in Figure 1
which is based on two uncertainty factors such that the possible
outcomes of the first factor are {a, b, ¢} and those of the second
factors are {x, y, z}. Then, condition (1) means that for example, the
scenario (kf, k3) would be consistent if and only if Cg. = CZj, | # ki
for j=1in (1), and C,}fki > C,}Iz,,l # k3 for j = 2 in (1).

Yet the following nine inequalities show that for any scenario
there exists some other column such that at least one of these

conditions is violated:

Cl2=0<1=CRCHl=-3<3=C2LC2=-1<1=CY
C2=-3<3=C2Cll=0<3=C2c3=0<1=C2

CH=-1<1=CC¥=0<1=ClCl=-2<1=C2

Even if the numerical values in the cross-impact matrix in Figure 1 are
hypothetical, this example shows that there can be data sets of cross-
impacts statements such that no scenarios satisfy the condition (1).
Admittedly, the absence of consistent scenarios can be attributed to
the lack of consistency in the statements. However, to the extent
that the elicitation process offers no structured guidance for the
specification of statements, there is a risk that the set of scenarios
which are screened for further elaboration becomes too small, thus
undermining the attainment of the comprehensiveness as a quality
attribute. In other words, the strong emphasis on the consistency
criterion based on a dichotomous “yes-no” assessment may, de-
pending on the elicited cross-impact statements, be so stringent that
the number of consistent scenarios is too small to ensure the com-
prehensiveness of the generated scenarios, all the more so because
the extent to which the scenarios are comprehensive is not formally

defined. From this perspective, we find that among nonprobabilistic

Factor 1 Factor 2
a b c X y z
a 0 1 -1
Factor 1 b -3 0 3
c 1 0 -2
X 0 1 -1
Factor 2 ¥y -3 0 3
z 1 0 -2 FIGURE 1 An example of inconsistencies
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cross-impact methods there are significant advantages to adopting
approaches which (i) employ quantitative measures for concepts such
as consistency and comprehensiveness and (ii) provide suggestions
for the selection of scenarios by solving corresponding optimization
problems. One such approach for generating scenarios which are
both plausible and diverse is presented in (Seeve & Vilkkumaa, 2021).

In Figure 1, the cross-impact terms are not monotonic in the sense
that transitions to a higher index (e.g., moving first from a to b and then
proceeding to ¢) would be associated with systematic increases or de-
creases in the assessed cross-impacts. In effect, the monotonicity of such
changes makes sense only on condition that there exists a corresponding
metric or ordinal scale such that there is a sense of direction ranging from
outcomes on the lower levels to those on the higher levels (as opposed to
a nominal scale which merely indicates selections from the set of out-
comes without such directionality, for example, choices among political
parties; see Carlsen et al., 2016).

Uncertainty factors which are assessed using metric scales (e.g.,
temperature) can be discretized to formulate corresponding ordinal
scales. Then, assuming that there are such ordinal scales for all un-
certainty factors, the outcomes for each factor can be ordered with a
transitive, antisymmetric, and total binary relation <;,i = 1, ..., n. In

this case, the monotonicity property can be stated as

i i i ij ij ij ij ij
X <i X <i X r= ([th < Chano0027;1 < Ck",] v [Ckl 2 Chaxo0027;1
. S o (2)
> Cl, <l <ch, sl st
2 CM) A ([c,k <cl<ch J v [c, 2Cliz cl J)

In risk assessment, one should be wary of assuming that the lowest
and highest risks would be attained at the endpoints of any such
ordinal scale. For example, if departures from the normal conditions
in a production facility are measured on a natural ordinal scale (or
even an interval scale, as in the case of, e.g., temperature), deviations
into either direction can contribute to increased risks.

Still, even with monotonic cross-impacts, it is possible that there are
no CIB-consistent scenarios. One such example is in Figure 2 where there
are three uncertainty factors whose outcomes belong to the sets
{a, b, c}, {i,j, k}, and {x, y, z}, respectively. The shaded rows indicate the

WILEY—L 2°*

selection of the scenario (a, i, x) which is also indicated by the upward
pointing arrows and the digits “1” in the second row at the bottom of the
figure. The numbers in the first row under the downward arrows show
the sums for those columns which have the highest column sum for the
selection of outcomes for each uncertainty factor. For factor 3, this sum is
the highest 2 = O + 2 (obtained from matrix entries C1¥ = 0 and C2® = 2)
while the corresponding sum associated with the scenario (a, i, x) is
-4 = -3 + (-1), based on C¥ = -3 and C23 = -1. Thus, scenario (a, i, X)
is not consistent, because condition (1) would be violated by replacing the
outcome x by z. It straightforward to check that none of the 27 scenarios
are consistent.

In view of these examples, the procedures of the CIB method
seem excessively restrictive in that there are examples of numerical
inputs such that the consistency requirements hold either for very
few or, at the limit, no scenarios at all. As a result, it appears that in
the case of nonprobabilistic cross-impact analysis, approaches which
are based on the formulation of optimization problems towards the
identification of a set of consistent and diverse scenarios should be
preferred. For example Seeve and Vilkkumaa (2021) present a
structured approach which was applied to generate scenarios for the
National Emergency Supply Agency in Finland. In what follows,
however, we explore how the probabilistic interpretation of cross-
impact statements can be employed to establish a coherent metho-
dological foundation for using cross-impact analysis in the context of

risk assessment, in particular.

2.1 | Probabilistic dependencies

There is an extensive literature on the characterization of probabil-
istic dependencies between events. Such dependencies will arise if
there are causal relationships between the events; but they may very
well exist even in the absence of such relationships. Specifically, re-
search on the topic of probabilistic causation has sought to char-
acterize what causation means in probabilistic terms (see, e.g.,
Williamson, 2009 for an overview as well as contributions by Pearl,
2013; Suppes, 1970). In general, there is wide agreement that a

Factor 1 Factor 2 Factor 3
a b € i J k % ¥ z
a 1 -3 -3 -3 0 0
Factor 1 b 2 0 ) 3 0 -1
c 3 2 3 -2 -2
i 3 3 -2 -1 0 2
Factor 2 j 0 0 3 -1 0 1
k -3 0 3 -3 -2 -1
X 3 2 -2 1 0 0
Factor3 3 0 -2 3 0 0
z -3 -3 3 3 3 0
{ { {
6 5 -4 2 -3 -3 -4 0 2
1 0 0 1 0 0 1 0 0
T 1 T

FIGURE 2 An example of inconsistencies with monotonic cross-impacts
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statement such as “the event A may have been caused by the event
B” can be interpreted as meaning that the occurrence of A is more

likely if the event B has occurred, that is,
P(AIB) > P(A). (3)

Here, the qualification “may have been” is warranted, because
the inequality (3) lacks any contextual knowledge. For instance, it
does not consider when the events occur, even if the attribution of
causality would be possible only on condition that the event B occurs
before A. Moreover, even if this were to be the case, it could be that
the event A can be more meaningfully attributed to intermediate
events which occur after B but before A. There are even parallels to
empirical econometrics where the notion of “Granger causality”
(Granger, 1969) is defined so that B is said to cause A if the regression
A(t) = a + bB(t - 1) (where t refers to points in time) has a significant
regression coefficient b but B(t) = a + bA(t - 1) does not.

In view of (3), we interpret the ratio P(AIB)/P(A) as an indication
of the degree of probabilistic dependency between the occurrence of
events B and A, noting that this ratio need not be reflect causal
relationships between the events. In keeping with this interpretation,
we suggest that the cross-impacts are linked to ratios between
conditional and marginal probabilities, as defined by

_ P P

CI?I =T T 4
[ @

where  p} = P(X' = x}), pi =PI = xf), pll = P(X' = xpIXi = x}), and
pE, =PXi = xj A Xi = x]). In particular, C,’Z, thus provides an answer to the
question “How many times more likely does the outcome xj, of the ith
uncertainty factor become if it is known that the outcome of the jth
uncertainty factor is x,j ?” This question invites intuitively meaningful and
theoretically well-defined answers on a ratio scale. Such answers can be
encoded with the help of verbal descriptors that can be calibrated
through experiments (see Poyhonen et al., 1997). Note that if the out-
comes x| are x/ are independent, then pjj = pj, and C}} = 1.

Based on the interpretation (3), the cross-impact terms are sym-
metric, because (4) implies C,i(i, = C,’k' This property is desirable in that
symmetry is aligned with the nondirectional relational structure of (in)
consistencies. That is, stating that the events A and B are “inconsistent”
does not involve causal judgments about why the joint occurrence is very
unlikely or, in particular, whether or not it is the occurrence of one which
is preventing the other from occurring. Furthermore, this property also
makes it easier to elicit the cross-impacts terms, because evaluations are
needed only for unordered pairs of outcomes (i.e., Zf]-ﬂ,,-*,- (n x ny)/2) in-
stead for all ordered pairs (i.e., z?i=1,i*j ni X nj).

The following result shows that the relation (3) implies
P(AIB) > P(Al = B) and vice versa.

Theorem 1. Assume that events A, B are such that O < P(B) < 1. Then

P(AIB) > P(A) < P(AIB) > P(Al - B). (5)

Proof. “=": If (3) holds, then

P(A) = P(AIB)P(B) + P(Al - B)P(-B) > P(A)P(B)
+ P(Al - B)P(-B) < P(A)(1 - P(B)) > P(Al -~ B)P(-B),

where the first inequality follows from (3) and the last inequality can
be divided by P(-B) = 1 - P(B) > O to obtain P(A) > P(Al = B), which
together with (3) implies P(AIB) > P(Al = B). “<":
P(Al = B) < P(AIB), this follows from

Because

P(A) = P(AIB)P(B) + P(Al -~ B)P(-B) < P(AIB)[P(B) + P(-B)]
= P(AIB). o

However, if the ratio P(AIB)/IP(Al = B) were to be taken as a point
of departure for evaluating cross-impacts, the resulting ratios would
be asymmetric and consequently the number of parameters in the
model would become much higher. Moreover, it could be cognitively
more challenging for the respondent to specify statements involving
comparisons in which the event A is conditioned on the non-
occurrence of B.

The interpretation of cross-impacts in (4) implies that

Ca _ Pu

i} pl
Ci pipl " pkgt’l ) :’)Elj‘/, @
Thus, the ratio between two different cross-impact terms provides
information about “How many times more probable is the occurrence
of x} when x,j occurs, as opposed to when xI’; occurs?” (cf. the dis-
cussion of Bayes factors; Kass & Raftery, 1995).

More generally, an important benefit of this probabilistic inter-
pretation of cross-impact assessments is that the accuracy of such
statements can be tested empirically, for instance by carrying out
experiments with controlled subjects or by revisiting earlier cross-
impact studies and examining how frequently the observed outcomes
match those implied by the stated cross-impact ratios. These kinds of
empirical studies help assess to what extent the statements may need
to be calibrated to ensure a better fit with empirically observed
marginal and conditional probabilities (see, e.g., Hora, 2007; O'Hagan
et al., 2006).

2.2 | Relationship between cross-impact
statements and scenario probabilities

The elicitation of statements about the ratio (4) for several pairs of
uncertainty factors and their outcomes constitutes an approach to
the elicitation of a dependency structure Werner et al. (2017). In
this process, it is possible to employ discrete scales which trans-
late numerical or verbal statements about how strongly the out-
comes being assessed enforce each other into corresponding
ranges of probability ratios (see Theil, 2002). To ensure the va-
lidity of assessments, these translations need to be properly jus-
tified and clearly communicated so that they can be understood

by respondents.
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The cross-impact ratio between the outcomes indexed by k, |
of factors i and j is related to the joint probability distribution
p(-): S~ [0, 1] through

) 2sesipls)
PPl (SaepONaes)ip ()

ij
i _ Pl
K= "7 3

(7)

where p(s) :== P(s),s € S denote scenarios probabilities, the set SE,
contains those scenarios in which the outcomes of factorsi and j are
xi and x/, respectively, and the set S consists of those scenarios in
which the outcome of the ith uncertainty factor is x,i( (and similarly for
the scenario set S,j).

We assume that all outcomes of uncertainty factors occur with
a probability that is strictly positive, that is, pL >0,i=1,..., n,
k =1,.., n. This assumption is plausible, because otherwise the
“impossible” outcome x|, such that pj = 0 could be removed from the
analysis. Technically, this assumption can be introduced through the
constraint p} > € where € > 0 is a very small number.

Because the expression (7) is nonlinear in p(s), s € S with quad-
ratic terms in the denominator, it is not possible to convert upper and
lower bounds on this ratio into linear constraints on scenario prob-
abilities. This is in contrast to bounds on marginal or conditional
probabilities which both can be modeled through linear constraints
on scenario probabilities (see Salo & Bunn, 1995).

The expression (7) can be written in matrix notation as follows.
Let the set of all n scenarios be S = {s4, sy, ..., S5} and let S| denote the
cardinality of S, that is the total number of scenarios. Furthermore, let
the vector p € R®' contain all the scenario probabilities so that
probability of the ith scenario is p; = P(s;).

To link scenarios to the specific outcomes of uncertainty factors,
we employ m x 1 dimensional binary vectors OL e {0, 1} so that the
mth element of this vector is 1 if the realization of the ith uncertainty
factor in scenario sp, is xL and zero otherwise. Then, the probability of
the outcome XL can be derived from the joint probability distribution
over scenarios through

phww=w=imﬁhﬁdﬁ' ®
?

where T denotes the transpose of a matrix. The conditional prob-
ability plli in (4), in turn, can be written as

P = p_/ = W, (9)

where the Hadamard product © is defined as (0} o 67}, = (O)m (0 )ms
m = 1, ..., 1Sl. Thus, the entry for the mth scenario in the vector OL ° a,j
is equal to 1 if and only if the outcomes of the ith and jth are equal to
xi and x/. Placing lower and upper bounds pj e {B L,EL] on the

expression (8) leads to linear constraints on scenario probabilities.

WILEY—L 7

The linear fractional expression in (9) is the ratio between sums of
those scenario probabilities which are picked by the vectors g, o o,i
and qj, respectively. Thus, bounding this ratio through bounds
p,i'{, = [g ﬂ{,,ﬁ }(‘{,] can be transformed into linear constraints by multi-
plying these bounds by the denominator (o{)p. For instance, the
constraint pi < p i, is equivalent to (a] o offp < p [l (cfYp].

The cross-impact ratio (7) can be written as

j (o" oq )Tp
i Pu k=™

which is the same as the equality C}j[(a}fp][(oiVp] = (d] o of)p,

which, in turn, is equivalent to the quadratic constraint
i1 i AL
CkIEPTlep - (Uk o 0 ) p=0, (11)

where QZ, = (cr,i( (o,j)T + o,j (OL)T) is a symmetric matrix.

Thus, the modeling of cross-impact statements about the (4)
leads to quadratic constraints on the scenario probabilities. As in the
case of marginals and conditionals, these constraints can be in-
troduced by eliciting lower and upper bounds on the cross-impact
terms (i.e., Cjj e [Q ic ;ﬁ,] (o CZ,) which impose inequality con-
straints on the underlying scenario probabilities. Yet, because the
matrix Q}Z, can be indefinite, this set of scenario probabilities may be
nonconvex, making it computationally more challenging to explore
the implications of cross-impact statements for probabilistic in-
ference. There are, however, specialized algorithms for optimization
problems with quadratic terms in the objective function or in the
constraints (see, e.g., Audet et al., 2000). These algorithms have been
incorporated in commercial optimization solvers which are capable of

handling problems such as the example in Section 4.

2.3 | Consistency implications of probabilistic
statements

Because cross-impact statements refer to the same set of underlying
scenario probabilities based on the ratio (4), these statements are
interdependent in the sense that a given statement about any cross-
impact term imposes constraints on the values of the cross-impact
term for other pairs of uncertainty factors and their outcomes. One
such example is the ratio (6) which connects pairs of cross-impact
terms.

Specifically, if the implications of the earlier statements are not
observed when introducing new ones, the constraints implied by the
new statements may conflict with the constraints derived from the
earlier ones. In this case, there are no feasible scenario probabilities
which satisfy the full set of constraints that are associated with all the
earlier and the newer statements.

To prevent this possibility, we strongly recommend that the

consistency of the model should be maintained throughout the
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elicitation process so that new statements are introduced only on the
condition that the resulting augmented set of constraints continues
to be satisfied by at least some feasible scenario probabilities. One
reason for this is that resolving a complex set of mutually inconsistent
constraints can pose conceptual and computational difficulties. That
is, it would call for the identification of those statements that are
more “wrong” than others, leading to either the removal or relaxation
of constraints that are associated with earlier statements.

In practice, the consistency of the statements can be supported
so that the expression for the new statement to be added (i.e.,
marginal probability (8), conditional probability (9), or cross-impact
statement (10)) is employed as the objective function which is then
minimized and maximized subject to the constraints implied by the
earlier statements. That is, the interval defined by these lower and
upper consistency bounds indicates for which values the new
statement is consistent with the earlier ones. The new statement will
eliminate some previously feasible scenario probabilities from further
consideration if and only if it excludes some values from the interval
defined by the consistency bounds.

For example, consider the situation in which the cross-impact term
C,'z, is about to be specified in terms of its lower and upper bounds
[Q }{, C Z,] Then, if the minimum of the difference on the left side in (11) is
strictly positive for the cross-impact term C Z,, the new constraint will be
excessively restrictive in that none of the feasible probabilities will satisfy
the constraint based on C Z, Conversely, if the maximum of this differ-
ence is strictly negative for the constraint based on C ;’(, this upper bound
is too restrictive. In this way, optimization problems can be solved to
ensure the consistency of statements.

There are also further consistency checks that can be readily
carried out by checking inequality expressions. First, note that the
equality Z;L p,i'(,p,j = pj can be divided by pj, to obtain

< pliljl <

. .
> —p =2 Cipl =1,
=1 Pk I=1

which shows that the probability-weighted average of cross-impact
terms on any row of the cross-impact matrix for uncertainty fac-
torsiandjmust equal one. Thus, if QZI, CZ, are the lower and upper
bounds on the next cross-impact ratio CE, which is being elicited,
there must exist some feasible vector p of scenario probabilities such
that the corresponding marginal probabilities p,j satisfy the inequal-
ities Zril C Z,p,j 1= Zril C g,p/. Similarly, examining the marginals p,j
leads to the equality Y4 C,';j,p,i< = 1 so that the probability-weighted
average of cross-impact terms in any column must be equal to one.
Thus 33y Clipk < 1< 5%, Clipl forany I =1,..., ;.

Even further relationships between the marginal and conditional
probabilities and the cross-impact ratios can be established. For
example, because max{p], p/} <1, it follows that C 2, 2 ,ij, =
pli/(pipf) = pli/min{pi, pf} and hence pl; < T Imin{pi, pf}. Thus, if the
upper bound on the cross-impact term is small, then the probability
pE, of the joint event will be low relative to the marginal probabilities.
In the same vein, using the inequality pE, < min{p,i, p,j} gives
Cli=Cli=pli/(pip) < min{pj, p}/(pip() = 1/max{p}, p} so that

max{p,ﬂ, p,i} <1/C ﬂ, In other words, having a very large lower bound
on the cross-impact term will place an upper bound on the marginal
probabilities.

If consistency bounds are not systematically employed in the
elicitation process, there are strategies which can be applied to
preserve the consistency of the model. That is, if it is only the most
recently elicited statement that is found to be inconsistent with the
earlier statements, then it is possible to backtrack by omitting this
statement from consideration. More constructively, the respondent
can also be asked to revise the lower and upper bounds of this
statement so that consistency is preserved. In principle, one could
also seek to identify those subsets of statements that are mutually
consistent and contain as many statements as possible (for a dis-
cussion of analogous approaches in the case of constraints on mar-
ginal and conditional probability statements, see Salo & Bunn, 1995).
However, in the case of cross-impact statements, this strategy would
call for a considerable amount of computational effort and, in addi-
tion, require that the respondent is prepared to indicate which one(s)
of the earlier statements should be omitted.

We also note that the assessment of inconsistencies in non-
probabilistic cross-impact analysis differs from our approach. In the CIB
method, for example, all cross-impact statements are elicited at the
outset, whereafter an algorithm is applied to identify the scenarios that
satisfy the consistency criterion. By construction, the application of this
criterion in the CIB method presumes that all the statements have been
elicited (i.e., it is not possible to exclude inconsistent scenarios based on a
subset of cross-impact statements). Also, because this criteria lacks a
formal theoretical foundation, it appears that nonprobabilistic approaches
in which the consistency of scenarios is not treated as a dichotomous
“yes-no” criterion but, rather, quantified by providing a more systemic
measure of consistency, are more defensible. One such approach is de-
veloped by Seeve and Vilkkumaa (2021) who generate sets of plausible
scenarios which are diverse, too, as measured by how different the
scenarios are from each other.

In this context, it is worth noting that “comprehensiveness” has
different connotations in nonprobabilistic and probabilistic ap-
proaches. In nonprobabilistic approaches, comprehensiveness refers
to the extent to which the set of generated scenarios represents the
entire range of possible futures (which, as a criterion, does not re-
quire that all the possible futures would have to be generated). In
probabilistic approaches, and especially in the context of safety-
critical systems, comprehensiveness commonly refers to the extent
to which the residual uncertainties concerning the attainment of the
safety requirements permit conclusive statements about the safety of
the system (for a review and discussion, see Tosoni et al., 2018).

Furthermore, we remark that “consistency” has a somewhat different
meaning in the CIB method than in our approach. In the former, con-
sistencies are associated with individual entries of the cross-impact matrix
(with 3 indicating strong consistency and -3 representing strong incon-
sistency) as well as with those scenarios that fulfill the criterion in Equation
(1). In our approach, consistencies refer to sets of statements such that the
corresponding constraints are fulfilled by some joint probability distribu-

tion over the set of all possible scenarios. That is, the scenarios are not
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treated as inconsistent as such but, rather, they are more or less probable,
depending on the logical implications of the elicited probability state-
ments. Also from this perspective of offering insights into what these
statements signify, there are advantages to maintaining the consistency
of the probability model, because this permits many kinds of probabilistic
inferences, such as deriving bounds on those marginal and conditional
probabilities that have not yet been elicited.

3 | CONDITIONING CONSEQUENCES ON
SCENARIOS

In risk assessment, the aim is to characterize the magnitude of risks,
as measured by the severity and probability of harmful con-
sequences. These consequences can differ considerably in terms of
what kinds of impacts they pertain to (e.g., human casualties, en-
vironmental damages, financial losses).

We first consider the situation where these consequences are re-
presented by a real-valued random variable Z (e.g., amount of released
radioactivity from a nuclear facility) whose realization depends on which
one of the ISI scenarios occurs. Because the scenarios are mutually ex-
clusive and collectively exhaustive, the probability for the event that the
consequences exceed a given threshold level 6 € R (e.g., a regulatory

limit) is obtained by conditioning Z on these scenarios s € S so that

PZ >6)= Y P(Z> 0ls)P(s).

seS (12)

In risk assessment, one relevant rationale for the development of
scenarios is that the approach of assessing the conditional prob-
abilities P(Z > 6ls) for the different scenarios separately can lead to a
more structured and defensible elicitation process than seeking to
obtain a single holistic estimate P(Z > 6) (for an overview of struc-
tured elicitation methods, see Dias et al., 2018).

The expression (12) can be also employed to shed light on the
question about which one(s) out of further candidates for additional
uncertainty factors X"*1, X"*2 .. should be introduced to comple-
ment the n uncertainty factors X2, ..., X", on the basis of which sce-
narios have already been formulated. Toward this end, the scenario-
based conditioning of P(Z > 6Is) can be extended to include the ad-
ditional uncertainty factor X"*1 so that

PZ>0s)= Y B(Z>e6isxm x{J*l)IP’(s A xmt = xknﬂ]).

x£+155”+1

In particular, this expression suggests that the inclusion of the ad-
ditional uncertainty factor X"*1 is unlikely to be very useful if (i) the
conditional probabilities P(Z > 8ls, X"*1 = x*1) are the same for differ-
ent outcomes x,’<q+1 e S"*1 (j.e, the first term in the sum is the same for all
outcomes of the uncertainty factor X"*1) or if (ii) the factor X"*1 is per-
fectly correlated with any one of the n factors that are included in the
scenarios s € S (i.e., there exists some other factor X/, i =1, ..., n such

that the outcomes of X"1 are implied by the states of Xi). These

conditions, together with an assessment of how much extra effort is
required to elicit the additional parameters P(Z > Bls, X"*1 = x,’?”) and
P(s A {Xn*1 = xE*l}), help evaluate which additional uncertainty factors
should be included in the analysis.

Furthermore, the expression (12) implies that if some scenarios are
omitted from the sum on the right side, the assessed probability for the
event Z > 6 will be lower than the actual probability, unless this omission
is compensated through an upward adjustment in the other terms in the
sum. Furthermore, if the aim is to establish a conservative upper bound
for P(Z > 0), then the estimates employed for the terms P(Z > 6ls)
should be upper bounds on these scenario-specific probabilities.

The expression (12) can also be generalized to situations where Z
is not necessarily real-valued but takes on values in the set of pos-
sible consequences C. An appropriate disutility function U: C —» R
can then be defined so that the value of this function is highest for
the least preferred consequences and lowest for most preferred
consequences. Such a disutility function can be also defined to
characterize the probability with which these consequences will be
unacceptable. That is, let the set Cfl consist of all unacceptable

consequences and define the disutility function so that

1, Z (Cfail
U = -
0, Z ¢ Cfail,
For this disutility function, the expression >, s E[U(Z)Is]p(s) gives
the probability with which the consequences will be unacceptable. More
generally, we assume that the risk assessment process is required to

provide conservative estimates for the expressions

E[Z] = Y E[Zis]p(s), (13)
se$S

BUE@) - 3 BU@)SIPG) (1)
se§

where in (13) the term Z representing consequence is assumed to be
real-valued and the disutility function in (14) makes it possible to
handle other types of consequences as well.

Using the notations u(s) = E[U(Z)Is], the above formulations can
be combined with the results of the preceding section to state the

following optimization problem

max/min () > uls)pls)
se$S
subject to > pls) =1, (15)
seS
p =0,

plus all the constraints that correspond to the elicited statements
about the marginal probabilities, conditional probabilities, and cross-
impact terms. Thus, lower and upper bounds for the risk level can be
estimated by solving the optimization problem as a minimization and
a maximization, respectively, of the objective function.

Building on the above, the main phases of probabilistic
cross-impact analysis for assessing risks can now be outlined as

follows:
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1. Define the scenarios s € S by specifying the uncertainty factors
and their possible outcomes.

2. Assess bounds for the expected scenario-specific consequences
E[ZIs] or their expected disutilities E[U(Z)ls].

3. Obtain information about the joint probability distribution over sce-
narios by eliciting cross-impact statements about the ratio (4) and/or
statements about the marginal and conditional probability distribu-
tions (see Salo & Bunn, 1995). These statements can be elicited by
employing interval valued statements defined by lower and upper
bounds.

4. Compute lower and upper bounds for the aggregate risk level (as
expressed in (12), (13), or (14)) based on information about cor-
responding scenario-specific expectations and the joint prob-
ability distribution over scenarios.

5. Once the maximum tolerable risk level has been determined, as-
sess the risk management implications of the available information
by considering the following possibilities (Tosoni et al., 2019):

o |f the upper bound of the aggregate risk level, obtained by
maximizing (15), is below the maximum tolerable risk level, the
system can be deemed safe.

o |If the lower bound of the aggregate risk level, obtained by
minimizing (15), is higher than the maximum tolerable risk
level, the system can be deemed unsafe.

e Otherwise, return to steps 2 and 3 to obtain additional
information with the aim of deriving tighter bounds on the

aggregate risk level.

From the viewpoint of data analysis and generation, solving the
problem (15) presumes that the expected scenario-specific disutilities
u(s), s € S are available for all scenarios. There are, however, problem
contexts in which estimates about these disutilities can be generated
with the help of computational models, as illustrated by the example
in the next section. The maximization problem (15) can also be solved
based on conservative upper bound estimates about these disutilities.
One can also explore just how large these disutilities would have to
be so that the maximum tolerable risk level would be reached.

Because the cross-impact statements are interpreted as constraints
on the joint probabilities, it is conceptually and computationally straight-
forward to integrate the use of such statement in Monte Carlo simula-
tions in which vectors representing joint probabilities are generated. That
is, computational results reflecting cross-impact statements can be pro-
duced by retaining only those probability vectors that satisfy the con-
straints implied the cross-impact statements. In particular, this makes it
possible to benefit from cross-impact statements when using other ap-
proaches for the exploration dependencies in safety risk models (see, e.g.,
Harrison & Cheng, 2011).

4 | CASE STUDY

The risk assessment of nuclear waste management facilities is an im-
portant application context of scenario analysis (Tosoni et al., 2018). In
this context, the uncertainty factors consist of so-called FEPs which

include, for instance, physical and chemical variables that affect the life-
time of the facility and its surrounding environment. The FEP outcomes
can be represented through discretized states such as low, medium,
and high.

In this section, we revisit the case study (Tosoni et al., 2019) on the
nuclear waste repository at Dessel (Belgium) in which the Bayesian net-
work in Figure 3 was developed to represent dependencies between nine
FEPs. As shown in Table 1, there are two possible outcomes for the first
five FEPs while the two last ones have three possible outcomes.

In this setting, scenarios are defined as combinations of out-
comes for each FEP. Thus, for example, there is a scenario which
represents the following combination of FEP states: a beyond-design-
basis Earthquake (BDBE), low Water flux, micro crack Aperture, low
Diffusion coefficient, low Distribution coefficient, slow Chemical de-
gradation, fast Concrete degradation, slow Monolith degradation, and
low Hydraulic conductivity. Given the nine FEPs and their two or
three outcomes, the total number of scenarios is 27 x 32 = 1152.

The scenarios differ from each other in terms of how probable it is
that radioactive particles will be released into the environment, causing
human exposure to radiation. For each scenario, this impact is quantified
by the conditional probability that the subsequent dose rate to humans
exceeds a predefined safety threshold level. Aggregating these condi-
tional probabilities over all scenarios based on (12) thus gives an estimate
about the radiological risk, which is measured by the total probability with
which this threshold 6 is violated.

For each scenario s, the corresponding conditional probability
P(Z > 6ls) in (12) of violating the threshold 6 was computed as the
average of three numbers, that is, (i) the prior value in Tosoni et al. (2020)
and (i) the lower and upper bounds in Tosoni et al. (2019). This approach
was adopted, because it serves to illustrate how results concerning the
total violation probability P(Z > 6) in (12) changes as a result of providing
additional information about the probabilities. These conditional violation
probabilities are not reported here due to the large number of scenarios,
but they are available from the authors upon request. For instance, the
conditional violation probability for the scenario described in the second
paragraph of this section was 0.678.

In the following illustrative analysis, we build on the model and
data in papers Tosoni et al. (2019, 2020) which represent the nuclear
waste repository as a Bayesian network (Pearl & Russel, 2003). In this
network, the nodes represent the FEPs, whereas directed arcs in-
dicate cause dependencies between the FEPs. The uncertainties as-
sociated with the FEP outcomes are modeled as the feasible sets of
marginal and conditional probabilities (Tosoni et al., 2019).

Specifically, we consider three steps in which increasingly de-
tailed information about scenario probabilities are provided. The first
step uses only marginal probabilities of FEP outcomes. In the second
step, the dependencies between those FEPs which are linked by arcs
in the Bayesian network are approximated with cross-impact state-
ments. In the third step, it is stated that the six FEPs in Figure 3 (i.e.,
Water flux, Earthquake, Crack aperture, Diffusion coefficient, Dis-
tribution coefficient, Chemical degradation) from which there are
only outgoing arcs are almost independent. This statement is in-

troduced by allowing the cross-impact ratio (4) to assume value in the
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FIGURE 3 The Bayesian network for the case study (Tosoni et al., 2019)

interval [0.9950-1.0050]. Note that this assumption is weaker than
the full independence assumption which is embedded in the structure
of the Bayesian network and corresponds to the requirement that all
cross-impacts between the outcomes of these six FEPs are equal
to 1. Thus, the introduction of the relatively narrow interval
[0.9950-1.0050] helps explore how the results would change if it
were to be the case that the Bayesian network in Figure 3 is not a
valid model of the dependencies between the FEPs. Furthermore,
because the statements in second step do not yet limit these de-
pendencies, the introduction of these intervals in the third step
provides a significant amount of additional information. This leads to
much tighter constraints on the scenario probabilities so that a re-
duction in the violation probability P(Z > 6) can be expected.

For the first step, the lower and upper bounds for the marginal
probabilities of FEP outcomes in Table 1 were computed by sampling
the feasible sets of marginal and conditional probabilities in the
Bayesian network, leading to corresponding sample distributions over
FEP outcomes. The marginals in Table 1 were taken from these dis-
tributions by employing their 5% and 95% quantiles.

For the second step, the characterization of dependencies between
selected pairs of FEP outcomes was also based on the model in Tosoni
et al. (2019) as above, except that the sample distributions were es-
tablished for the cross-impact ratio in (7) (rather than for the marginal
probability distributions). Moreover, the bounds for cross-impact terms
were established by using the more conservative 0.5% and 99.5%
quantiles (as opposed to 5% and 95% quantiles) to allow for more im-
precision in the characterization of cross-impacts. The resulting bounds
on the cross-impact ratios are reported in Tables 2 and 3.

Looking at the ratios in Table 2, it is instructive to see that if a major
outcome of the FEP Earthquake does occur, the probability of fast Barrier
degradation becomes much higher (i.e., [1.5755-6.9785] times) in com-
parison with the situation where there is no information about the
probability of an Earthquake. On the other hand, if the outcome for the
Earthquake is BDBE (i.e., of a lower magnitude than a major earthquake,
but still beyond what the repository barriers are designed to withstand),

TABLE 1 FEPs and their outcomes in Tosoni et al. (2019) and
corresponding on bounds marginal probabilities

FEP Outcome Probability bounds
Earthquake BDBE [0.9912-0.9950]
Major [0.0050-0.0088]
Water flux Low [0.6525-0.8428]
High [0.1572-0.3475]
Crack aperture Micro [0.8148-0.8874]
Macro [0.1126-0.1852]
Diffusion coefficient Low [0.5209-0.7275]
High [0.2725-0.4791]
Distribution coefficient Low [0.5215-0.7268]
High [0.2732-0.4785]
Chemical degradation Fast [0.5361-0.6694]
Slow [0.3306-0.4639]
Barrier degradation Fast [0.0787-0.2337]
Slow [0.7663-0.9213]
Monolith degradation Very fast [0.0293-0.2678]
Fast [0.0594-0.2695]
Slow [0.4627-0.9114]
Hydraulic conductivity Low [0.5993-0.7066]
Medium [0.2016-0.2715]
High [0.0872-0.1342]

Abbreviation: BDBE, beyond-design-basis earthquake; FEPs, features,
events, and processes.

the probability of slow Barrier degradation will grow, albeit marginally.
This is in keeping with the recognition that a major Earthquake can have
an impact on the speed of Barrier degradation; but its absence does not

have a comparable impact.
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TABLE 2

Barrier degradation

Bounds on the cross-impact ratios for pairs of outcomes for the FEPs Earthquake, Barrier degradation, and Monolith degradation

Monolith degradation

Fast Slow

Earthquake BDBE [0.9544-0.09963] [1.0011-1.0036]

Major [1.5755-6.9785] [0.5660-0.8174]

Very fast Fast Slow

[0.9950-1.0050] [0.9329-0.9982] [0.9975-1.0052]

[0.9950-1.0050] [1.2769-10.1853] [0.3406-1.3606]

Abbreviations: BDBE, beyond-design-basis earthquake; FEPs, features, events, and processes.

Bounds to the cross-impact ratios for pairs outcomes of the FEPs Crack aperture and Hydraulic conductivity

Medium High
[0.4941-0.7490] [0.9950-1.0050]

[2.5666-3.9985] [0.9950-1.0050]

TABLE 3
Hydraulic conductivity
Low
Crack Micro [1.0896-1.1880]
Aperture Macro [0.1628-0.3017]

Abbreviation: FEPs, features, events, and processes.

The bounds in Tables 2 and 3 specify no restrictions on de-
pendencies between the six FEPs which are independent in
Figure 3 as they have only outgoing arcs in this Bayesian network.
Thus, the independence between these six FEPs is introduced in
the third step. As noted above, however, this independence as-
sumption is quite strong, so that we relax it by allowing for minor
deviations from independence by bounding the cross-impact ra-
tios to the interval [0.995-1.005]. Moreover, in Tables 2 and 3
there are two columns (i.e., very fast Monolith degradation in
Table 2, high Hydraulic conductivity in Table 3) in which the in-
dependence assumption contained in the Bayesian data has been
relaxed similarly.

Based on the probability information for the three steps
above, the following conservative upper bounds for the level of
radiological risk can now be computed by solving the maximization
problem (15) subject to the corresponding constraints on scenario
probabilities.

1. Marginals only: When there is information about the marginals
only, the upper bound on the maximum level of risk is 0.576.

2. Cross-impacts bounds for arcs between FEPs in Tables 2 and 3:
When the constraints based on these bounds are added to the
information in the first step, the upper bound is reduced to 0.571.

3. Cross-impact bounds for independent FEPs: When the narrow intervals
[0.995-1.005] are introduced for pairs of outcomes for independent

FEPs in the Bayesian network, the upper bound becomes 0.427.

The results are summarized in Table 4. The greatest reduction
in the upper bound is attained as a result of introducing the as-
sumption of near-independence when moving from the second
step to the third. This can be explained by noting that the number
of such constraints is high (i.e., lower and upper bound con-

straints for every combination of outcomes for all pairs of the six

TABLE 4 Upper bounds on the risk level for different settings of
probabilistic information

Setting 1 2 3
1. Marginals @ @ @
® ©

2. Cl ratios for designated FEP 0
dependencies (Tables 2, 3)

3. Cl ratios for o o @

independent FEPs

Constraints

Upper bound on risk level 0.576 0.571 0.427

Abbreviation: FEPs, features, events, and processes.

FEPs) and because these intervals are relatively tight. This can be
contrasted with the shift from the first step to the second step
which leads to a much smaller reduction in the total violation
probability.

More generally, this example shows how probabilistic cross-
impact analysis can be interfaced with other models. Specifically,
scenario-specific estimates concerning radiological risk were in-
ferred from Tosoni et al. (2019, 2020). Parameters of the Baye-
sian network (Tosoni et al., 2019) were employed to generate
information about the marginal probabilities. Analogously, in-
formation about conditional dependencies was provided through
cross-impact ratios stated in terms of lower and upper bounds.
We emphasize that all this information about probabilities and
dependencies could have been introduced directly without ex-
plicit reference to the Bayesian network (which has been em-
ployed as a useful tool for generating such information). This
notwithstanding, we stress that the numerical results are illus-
trative and do not provide any indications as to the safety of the

nuclear waste repository at Dessel.
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5 | DISCUSSION AND CONCLUSIONS

In this paper, we have considered the limitations of nonprobabilistic
cross-impact analyses in risk management and, specifically, in the risk
assessment of safety critical systems for which the aim is produce
conservative estimates that provide an upper bound on the overall
risk level. Importantly, we have shown that instead of limiting at-
tention to the most consistent scenarios only, it is pertinent to ac-
count for all the scenarios that can make a nonnegligible contribution
to the overall risk level, even if some of these scenarios are quite
improbable. That is, neglecting these scenarios may lead to risk es-
timates which are too small, as the actual risk will be higher than what
is suggested by the analysis. This, in turn, may lead to the selection of
inadequate and insufficient risk mitigation actions.

We have also advocated the probabilistic interpretation of cross-
impacts, because this helps establish precise and empirically testable
mappings between the qualitative verbal expressions employed in the
elicitation process and their numerical counterparts. This inter-
pretation also makes it possible to integrate the scenario process with
other approaches for analyzing probabilistic inputs, for instance by
carrying out statistical analyses or by synthesizing them with judg-
mental forecasts (see, e.g., G. Wright et al., 2009). Furthermore,
probabilistic models are appealing not least because they can be
adapted to assess the attractiveness and effectiveness of insurance
as one of the quantitative risk management options.

We have also developed a probabilistic cross-impact method
which is capable of accommodating and synthesizing many kinds of
probability elicitation statements (including both marginal and con-
ditional probabilities as well as cross-impacts statements). All these
statements are converted into corresponding linear or quadratic
constraints in the optimization models which can be solved to (i)
guide the elicitation of further statements which are consistent with
the statements that have been elicited earlier and (ii) compute lower
and upper bounds on the overall risk level at any stage of the elici-
tation process. Results such as these are useful for reaching con-
clusions about the safety of the system, which provides support for
risk management decisions. There are also promising avenues for
future work, for example by employing cross-impact statements to-
gether with other methods for assessing dependencies and their
impacts (see, e.g., Harrison & Cheng, 2011). One could also assess
how the cross-impact statements and therefore scenario prob-
abilities, too, would be impacted by alternative risk management
actions. This would make it possible to accommodate endogenously
dependent scenario probabilities (for a case study with decision-

dependent scenario probabilities, see Vilkkumaa et al., 2018).
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