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a b s t r a c t 

Influence diagrams are widely employed to represent multi-stage decision problems in which each deci- 

sion is a choice from a discrete set of alternative courses of action, uncertain chance events have discrete 

outcomes, and prior decisions may influence the probability distributions of uncertain chance events en- 

dogenously. In this paper, we develop the Decision Programming framework which extends the appli- 

cability of influence diagrams by developing mixed-integer linear programming formulations for such 

problems. In particular, Decision Programming makes it possible to (i) solve problems in which earlier 

decisions cannot necessarily be recalled later, for instance, when decisions are taken by agents who can- 

not communicate with each other; (ii) accommodate a broad range of deterministic and chance con- 

straints, including those based on resource consumption, logical dependencies or risk measures such as 

Conditional Value-at-Risk; and (iii) determine all non-dominated decision strategies in problems which 

multiple value objectives. In project portfolio selection problems, Decision Programming allows scenario 

probabilities to depend endogenously on project decisions and can thus be viewed as a generalization 

of Contingent Portfolio Programming (Gustafsson & Salo, 2005). We present several illustrative examples, 

evidence on the computational performance of Decision Programming formulations, and directions for 

further development. 

© 2021 The Author(s). Published by Elsevier B.V. 
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. Introduction 

Influence diagrams, in their many variants (see, e.g., Bielza, 

ómez, & Shenoy, 2011; Diehl & Haimes, 2004; Díez, Luque, & 

ermejo, 2018; Howard & Matheson, 1984; Howard & Matheson, 

005 ), are widely employed to represent decision problems whose 

onsequences depend on uncertain chance events and decisions. 

pecifically, such decisions and chance events are represented by 

ecision and chance nodes in an acyclic graph whose arcs indicate 

i) what information is available to the decision maker (DM) and 

ii) how realizations of chance events depend on earlier decisions 

nd chance events. The value node represents consequences associ- 

ted with the DM’s decisions and the realization of chance events. 

isk preferences are typically modeled with a utility function over 

he set of consequences. 

The optimal solution to the influence diagram is the strategy 

hat, at each decision node, assigns one of the decision alternatives 

o every possible state of information at the node so that the com- 
∗ Corresponding author.:. 
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ination of these decisions maximizes the DM’s expected utility. 

f the diagram fulfills the ‘no-forgetting’ assumption, meaning that 

arlier decisions can be recalled when making later ones (see, e.g., 

orgensen, Kristensen, & Nilsson, 2014; Lauritzen & Nilsson, 2001 ), 

his optimal strategy can be computed with well-established tech- 

iques, for example by carrying out local transformations such as 

rc reversals and node removals ( Shachter, 1986; 1988 ), or by for- 

ulating the equivalent decision tree representation and solving it 

ith dynamic programming ( Tatman & Shachter, 1990 ). Mathemat- 

cally, dynamic programming is based on the principle of optimal- 

ty (see, e.g., Bertsekas, 2012 ) which allows the problem to be tack- 

ed by solving a sequence of nested subproblems whose solutions 

oincide with the corresponding optimal decisions in the original 

roblem. This makes it possible to develop computationally effi- 

ient solution approaches to problems in which the principle of 

ptimality holds. 

Yet, while the ‘no-forgetting’ assumption often holds, there are 

mportant problems in which it does not. For example, in dis- 

ributed decision making and adversarial risk analysis ( Rios Insua, 

ios, & Banks, 2009; Roponen, Ríos Insua, & Salo, 2020 ) there can 

e agents such as military patrols who cannot communicate with 

ach other (for examples, see, e.g., Zhang, 1994; Zhang, Qi, & Poole, 
 under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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994 ). Moreover, the adequate performance of safety-critical sys- 

ems must be ensured even in situations where it may be im- 

ossible to synchronize information due to disruptions or com- 

unication delays, which makes it necessary to assess how sys- 

em performance is affected by information sharing. In these sys- 

ems, it is also crucial to pay attention to the full probability dis- 

ribution over consequences (as opposed to expected consequences 

nly), because high consequences with low probabilities are of- 

en of greatest concern (see, e.g., Mancuso, Compare, Salo, & Zio, 

019 ). Importantly, if the ‘no-forgetting’ assumption does not hold, 

hen the principle of optimality breaks down and dynamic pro- 

ramming cannot be applied as usual, because the optimal strat- 

gy within a given branch of the decision tree depends on what 

ecisions are taken in the other, non-overlapping branches of the 

ecision tree. Furthermore, the consideration of risk measures such 

s Value-at-Risk, which reflect the full variability of consequences 

cross the entire decision tree, also undermines this principle and 

onsequently optimal solutions for the original problem cannot be 

btained by combining solutions obtained for different branches of 

he decision tree. Project portfolio selection problems, too, involve 

omparable dependencies, because the consumption of shared re- 

ources, for example, implies that the optimal strategy for a given 

roject cannot be determined without considering strategies for 

he other projects ( Gustafsson & Salo, 2005 ). 

In this paper, we develop the Decision Programming framework 

hich uses the graphical representation of influence diagrams to 

apture the salient properties of multi-stage decision problems un- 

er uncertainty. The inputs of this framework consist of (i) the 

roblem structure, represented by a connected, acyclic directed 

raph consisting of decision, chance and value nodes as well as in- 

ormational and probabilistic dependencies between these, shown 

hrough arcs ; (ii) discrete sets of states that represent the set of 

ossible decisions at each decision node and the possible realisa- 

ion of chance events at chance nodes; (iii) numerical parameters, 

uch as probabilities at chance nodes and consequences (or their 

tilities) at value nodes. The inputs also include (iv) constraints, 

uch as logical dependencies between decisions, bounds on re- 

ource consumption and requirements associated with risk pref- 

rences (eg, chance and VaR constraints). These constraints, too, 

ypically involve numerical parameters. 

Out of the five types of requirements that can be imposed on 

nfluence diagrams (see, e.g., Section 1.2 in Zhang et al., 1994 ), we 

o not require regularity (i.e., there exists a single path travers- 

ng all decision nodes), no-forgetting (i.e., all information which 

s known when making earlier decisions will be available when 

aking later decisions) or existence of a single value node . Further- 

ore, the constraint of not allowing value nodes to have children 

i.e., no-children-to-value-node ) is not restrictive as it can be cir- 

umvented by restructuring the influence diagram (i.e., by convert- 

ng any such value node into a chance node whose state is non- 

andomly dependent on the nodes from which there are arcs to 

his value node and by appending the equivalent new value node 

o the end of the diagram). Thus, we only retain the constraint of 

cyclity which, as an assumption, can be justified on the grounds 

hat decisions and chance events are all typically associated with 

pecific points in time. 

Within this generic set-up, we allow for both deterministic 

e.g., logical dependencies, costs arising at one or more nodes) 

nd chance (i.e., probabilistic) constraints. The resulting joint prob- 

em representation (influence diagram plus constraints) is then 

onverted into an equivalent mixed-integer linear programming 

MILP) problem that is generic enough for solving also LI mited 

 emory I nfluence D iagrams (LIMIDs) in which the ‘no-forgetting’ 

ssumption does not hold. Furthermore, we provide an algorithm 

or computing all non-dominated strategies in problems that have 

ultiple objectives associated with corresponding multiple value 
551 
odes. All these modeling features are cast into corresponding 

ILP problems that can be solved with available software tools (for 

 survey, see, e.g., Fourer, 2017 ). 

As visual tools for problem representation, influence diagrams 

iffer from decision trees since they do not communicate in what 

ays the problem structure may be asymmetric so that the sets of 

ossible states at some decision and chance nodes may be con- 

trained by the states at other nodes. Nevertheless, asymmetric 

roblems can be modeled with influence diagrams by defining 

ode states and their dependencies appropriately (see, e.g., Smith, 

oltzman, & Matheson, 1993 ). Mathematically, the mapping of in- 

ut parameters (i.e., probabilities and decisions) to outputs (i.e., 

xpected utilities) in influence diagrams can be viewed as a piece- 

ise multilinear function ( Borgonovo & Tonoli, 2014 ), which un- 

erpins the developments in this paper. For an account of the evo- 

ution of influence diagrams, see Bielza et al. (2011) . 

Our contribution is relevant to stochastic programming ( Birge & 

ouveaux, 2011 ) in outlining a general framework for problems in 

hich decisions are made over several stages and realizations of 

ncertain events are observed between pairs of successive stages. 

n the first stage, an initial decision is selected, and subsequent 

ecourse decisions are made after observing the realizations of un- 

ertain earlier events. We distinguish between endogenous and ex- 

genous uncertainties based on whether the probability distribu- 

ions associated with chance events are impacted by decisions. In 

ecision Programming, both types of uncertainties are accommo- 

ated by converting influence diagrams and adjoining constraints 

nto multi-stage stochastic integer programming (MSSIP) problems 

hat can be solved using off-the-shelf MILP solvers. That is, the di- 

gram is first converted into a sequence of decision and chance 

odes. This sequence is then employed to build the deterministic 

quivalent MILP formulation of the MSSIP. More generally, the field 

f stochastic optimization spans a wide range problem types and 

olution approaches. Within the framework influence diagrams, 

e address three of the research challenges identified by Powell 

2019) in the recent literature review, i.e., (i) consideration of risk 

easures, (ii) treatment of multiple objectives, and (iii) modelling 

f multiple agents. 

This paper is structured as follows. Section 2 discusses earlier 

pproaches. Section 3 develops the Decision Programming frame- 

ork, and Section 4 presents illustrative examples. Section 5 de- 

elops approaches for dealing with risk preferences, chance con- 

traints and multiple objectives. Section 6 presents results on 

omputational performance and outlines directions for further re- 

earch. Section 7 concludes. 

. Earlier approaches 

Influence diagrams were initially developed in the1970 ′ s 
 Howard & Matheson, 1984; Howard & Matheson, 2005; Howard 

 Matheson, 2006; Howard, Matheson, Merkhofer, Miller, & North, 

006; Olmsted, 1983 ) to represent informational and probabilis- 

ic dependencies between decisions and uncertain chance events 

hose realizations govern what the consequences for the DM will 

e. If the regularity, no-forgetting and single-value node assump- 

ions hold and the aim is to maximize expected utility at the 

alue node, these diagrams can be solved with well-established 

echniques, notably by forming the equivalent decision tree which 

an be solved through dynamic programming ( Tatman & Shachter, 

990 ); or by removing decision and chance nodes from the dia- 

ram one-by-one, possibly after arc reversals (see, e.g., Howard & 

atheson, 2005; Koller & Friedman, 2009; Shachter, 1986; Smith 

t al., 1993 ). 

Problems in which the ‘no-forgetting’ assumption does not hold 

ive rise to LIMIDs. It is well-known (see, e.g., Mauá & Cozman, 

016; Zhang et al., 1994 ) that LIMIDs are computationally chal- 
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enging because optimal strategies cannot be determined through 

 straightforward series of local computations. They have been 

olved primarily in view of maximizing the expected utility (MEU) 

t a single value node, in the absence of constraints which would 

lace restrictions on decision nodes in different parts of the in- 

uence diagram. For this problem context, Lauritzen & Nilsson 

2001) develop an iterative Single Policy Updating (SPU) approach 

or LIMIDs by solving a series of expected utility maximization 

roblems by message passing in a junction tree derived from the 

nfluence diagram. This approach is guaranteed to give the opti- 

um in soluble problems which, in non-technical terms, means 

hat there exists a sequence of decision nodes such that the op- 

imum can be computed by solving a series of local optimiza- 

ion problems. Parmentier, Cohen, Leclère, Obozinski, & Salmon 

2020) construct rooted junction trees and provide an MILP-based 

ormulation which solves soluble MEU problems to optimality, but 

hich is slower than the SPU algorithm. For problems which are 

ot soluble, their formulation provides bounds which are better 

han those by applying the SPU algorithm to the soluble relaxation 

f the initial problem. 

Yuan, Wu, & Hansen (2010) propose a branch-and-bound algo- 

ithm which presumes that the influence diagram satisfies the reg- 

larity condition. Koller & Milch (2003) consider multi-agent prob- 

ems and provide algorithms for computing Nash equilibria based 

n MEU maximization under the assumption that agents have per- 

ect recall. Mauá & Cozman (2016) study the computational per- 

ormance of k -neighborhood local search algorithms and propose 

pproximate algorithms. 

MEU problems have also been tackled also in the context of 

redal networks which can be derived from influence diagrams by 

eplacing each decision node by a corresponding chance node with 

ncompletely specified probabilities such that these probabilities 

dd up to one. Then, the computation of optimal MEU strategies 

an be viewed as a problem of probabilistic inference in which 

he aim is to determine for which combination of these incom- 

letely specified probabilities the expected utility is highest (for 

n overview, see Mauá & Cozman, 2020 ). Linear constraints have 

een employed in this setting by de Campos & Ji (2008) who 

mploy McCormick constraints ( McCormick, 1976 ) which, 

owever, are not computationally very efficient. Antonucci, 

e Campos, Huber, & Zaffalon (2013, 2015) present an approach 

hat is based on conditioning the joint probability distribution on 

teratively selected nodes and by solving ensuing linear optimiza- 

ion problems for these. However, they provide no formal proofs 

f convergence. 

A limitation of the above approaches is that they are not capa- 

le of explicitly addressing multiple objectives which correspond 

o different value nodes (see, e.g., Diehl & Haimes, 2004 ). Further- 

ore, while approaches based on local computations and iterative 

essage passing schemes are likely more efficient under a compu- 

ational standpoint, they are not applicable to problems with con- 

traints that pertain to several chance, decision and value nodes in 

ifferent parts of the influence diagram (e.g., due to logical inter- 

ependencies, limited budgets, bounds on risk levels) and whose 

ulfilment cannot therefore be determined locally. For example, the 

M may seek to maximize the expected net present value (NPV) 

ubject to the requirement that the expectation in the lower tail of 

he NPV distribution is not too low (i.e., Conditional Value-at-Risk, 

hich is a coherent risk measure; Artzner, Delbaen, Eber, & Heath, 

999 ). 

In portfolio decision analysis ( Liesiö, Salo, Keisler, & Morton, 

021; Salo, Keisler, & Morton, 2011 ), influence diagrams help por- 

ray the overall structure of probabilistic and informational depen- 

encies, but they cannot handle constraints arising from limited 

udgets or logical dependencies between alternatives. For project 

election problems, Contingent Portfolio Programming ( Gustafsson 
552 
 Salo, 2005 ) employs MILP to determine optimal project man- 

gement strategies when the projects’ cash flows are contingent 

n scenarios whose probabilities cannot depend endogenously on 

roject decisions. Vilkkumaa, Liesiö, & Salo (2018) extend this ap- 

roach to single-stage selection problems in which scenario prob- 

bilities can depend endogenously on project decisions. Liesiö

 Salo (2012) derive decision recommendations for single-stage 

roject selection problems with one objective and possibly incom- 

lete utility and probability information. Yet, none of these ap- 

roaches is equipped to handle problems in which there is a com- 

ination of endogenous uncertainties, several decision stages, and 

ultiple objectives. 

Stochastic programming is widely employed as one of the un- 

erpinning frameworks for multi-stage decision problems under 

ncertainty. Nevertheless, the literature on endogenous uncertain- 

ies in stochastic programming is still sparse, because these uncer- 

ainties give rise to models that cannot be readily solved with ex- 

sting solution techniques, most prominently convex programming 

n general, and linear programming in particular. 

Specifically, most of the related stochastic programming liter- 

ture focuses on problems in which decisions can influence the 

nformation structure, in particular the timing of unveiling un- 

ertainties, but not the probability distributions associated with 

ncertain events. Goel & Grossmann (2006) develop a stochastic 

rogramming formulation for multi-stage problems for the tim- 

ng of oil well exploitation, which decision is assumed not to in- 

uence the uncertain amount of recoverable oil. Building on Goel 

 Grossmann (2004) , they propose a unified framework and so- 

ution methods for problems in which the decisions influence 

he time of observing uncertainties. Gupta & Grossmann (2011, 

014) present specialized solution methods for oil and gas field 

evelopment. Colvin & Maravelias (2008) propose a stochastic pro- 

ramming model for novel product development in pharmaceuti- 

al research, further extended by Colvin & Maravelias (2009) . In 

his context, the timing of the resolution of uncertainties is influ- 

nced endogenously by the decisions on how to perform clinical 

rials which, however, leads to computational challenges ( Colvin 

 Maravelias, 2010 ). Solak, Clarke, Johnson, & Barnes (2010) op- 

imize R&D project portfolios under endogenous uncertainty, ac- 

nowledging that the inclusion of decision dependent uncertainties 

ignificantly degrades tractability. To tackle this issue, they propose 

 sophisticated solution method, exploiting the formulation de- 

ised specifically for the problem. Apap & Grossmann (2017) pro- 

ide a comprehensive recent literature overview and propose an 

pproach for problems with a decision-dependent information 

tructure. 

Problems where decisions can (also) affect the probability dis- 

ributions of uncertain events have been much less explored in 

tochastic programming. The predominant strategy has been to re- 

ove decision dependent probabilities using appropriate transfor- 

ations in the probability measure, as described by Rubinstein 

 Shapiro (1993) (see also Pflug, 2012 ), or in the probabil- 

ty distribution itself (cf. Dupa ̌cová, 2006 ). In their overview of 

his scarce literature, Hellemo, Barton, & Tomasgard (2018) pro- 

ose a taxonomy of distinct classes for stochastic programs with 

ndogenous uncertainties and possible formulation approaches. 

hey also report computational experiments to highlight how 

hallenging these problems are for state-of-the-art optimization 

olvers. 

In fact, multi-stage optimization problems under uncertainty 

an involve decision dependent probabilities, parameters, and/or 

nformation structures ( Hellemo et al., 2018 ). The Decision Program- 

ing framework seeks to encompass all these variants, on condi- 

ion that each chance event has a finite number of possible real- 

zations and decisions correspond to choices from a finite set of 

iscrete alternatives. 
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Fig. 1. An influence diagram for the oil wildcatter example. 
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. Methodological development 

.1. Influence diagram representation of the decision problem 

Multi-stage decision problems under uncertainty can be mod- 

led as connected acyclic networks G = (N, A ) whose nodes N = 

 ∪ D ∪ V consist of chance nodes C, decision nodes D , and value

odes V . Chance nodes C represent uncertain events associated 

ith random variables; decision nodes D correspond to decisions 

mong discrete alternatives; and value nodes V represent conse- 

uences that result from the realizations of random variables at 

hance nodes and the decisions made at decision nodes. 

Dependencies between nodes are represented by arcs A = 

 (i, j) | i, j ∈ N} . A directed path of length k is a sequence of nodes

i 1 , i 2 , . . . , i k ) such that (i l , i l+1 ) ∈ A for all l = 1 , . . . , k − 1 . The in-

ormation set of a node j ∈ N, defined as I( j) = { i ∈ N | (i, j) ∈ A } ,
onsists of the direct predecessors (also referred to as parents) 

f j from which there is an arc to j. Because the network G is 

cyclic, the nodes N can be indexed consecutively with integers 

 , 2 , . . . , | N| (where | · | denotes the number of elements in a set)

o that for each node j ∈ N, the indices of the nodes in its infor-

ation set I( j) are smaller than j (i.e., i < j for all i ∈ I( j) ). 

We denote the number of chance nodes by n C = | C| and the

umber of decision nodes by n D = | D | . These n = n C + n D chance

nd decision nodes are indexed as C ∪ D = { 1 , 2 , . . . , n } , while the

 V = | V | = | N| − n value nodes are indexed as n + 1 , . . . , n + n V . For

ow, we assume that there is a single value node in the influ- 

nce diagram (the extension to multiple value nodes is covered in 

ection 5.4 ). Consequences at this value node are determined by 

he decisions and the realization of chance events. There are no 

rcs from the value node to chance and decision nodes, as these 

re not affected by the consequences. All chance events and deci- 

ions are relevant in the sense that there is a directed path from 

very chance and decision node to the value node. There is a path 

rom every chance and decision node to the value node. 

Each chance and decision node j ∈ C ∪ D has a finite set S j of

iscrete states. The occurrence of states depend on their possible 

nformation states s I( j) ∈ S I( j) , defined as all possible combinations 

f states S I( j) ⊆
∏ 

i ∈ I( j) S i for the nodes in the information set I( j) . 

or each chance node j ∈ C, these states correspond to realizations 

f the random variable X j , which depends probabilistically on the 

tates s i of the nodes i ∈ I( j) in the information set of j. For a de-

ision node j ∈ D , each state s j ∈ S j corresponds to a decision that

s made based on the information state s I( j) . For brevity, we use 

 j , j = 1 , . . . , n , to denote both random variables which are asso-

iated with chance nodes j ∈ C and decision variables which are 

ssociated with decision nodes j ∈ D . 

If j ∈ C is a chance node whose information state is s I( j) , then

tate s j ∈ S j occurs with the conditional probability 

 (X j = s j | X I( j) = s I( j) ) , ∀ j ∈ C, s j ∈ S j , s I( j) ∈ S I( j) , (1)

here X I( j) = s I( j) means that the variables X i in the information 

et i ∈ I( j) have same values that are assigned to them by the in-

ormation state s I( j) . For each decision node j ∈ D , a local (deci-

ion) strategy Z j : S I( j) �→ S j is a function that maps each informa-

ion state in S I( j) to a decision in S j . A (global decision) strategy Z

s a collection of local decision strategies which specifies one lo- 

al strategy Z j for each decision node j ∈ D . The set of all decision

trategies is denoted by Z . 

Fig. 1 illustrates the notation in the context of a simple oil 

ildcatter example in which a test may (but does not have to) 

e carried out to obtain information about the prospective oil 

ell before the drilling decision (see, e.g., Yet, Neil, Fenton, Con- 

tantinou, & Dementiev, 2018 ). The diagram has two chance nodes 

 = { 2 , 3 } , two decision nodes D = { 1 , 4 } and a single value node 

 = { 5 } . Thus, n = n = 2 and n = n + n = 4 . The information
C D C D 

553 
ets I(1) = I(2) = ∅ , I(3) = { 1 , 2 } , I(4) = { 1 , 3 } , I(5) = { 1 , 2 , 4 } . The

ecision at node D 1 node represents whether or not the test is 

arried out, modelled through the states S 1 = { t est, ¬ t est } (where 

 stands for “do not”). At chance node 3, the test result S 3 =
 

wet, dry, none } depends on the state of the oil well s 2 ∈ S 2 = 

 

wet, dry } and the testing decision made at node 1. If s 1 = no, then 

he result s 3 is none ; otherwise the test result will be either wet

r dry , depending on the state of the oil well and the proper- 

ies of the test. For example, P (X 3 = dry | X 2 = wet) is the prob-

bility of getting a false negative result from the test when the 

il well is wet. A local strategy Z 1 at node 1 specifies whether 

r not the test will be carried out. At node 4, the local strat- 

gy Z 4 maps all its information states S I(4) , defined as combi- 

ations (s 1 , s 3 ) ∈ { (yes, wet) , (yes, dry ) , (no, none ) } of testing deci-

ions s 1 and corresponding test results s 3 , to a drilling decision 

 4 ∈ S 4 = { dril l , ¬ dril l } . Finally, the final net present value at the

alue node 5 depends on the costs arising from the testing and 

rilling decisions as well as the state of the oil well. Note that in 

ig. 1 , all arcs lead from a node with a lower index to a node with

 higher one. This would be the situation also if the two first nodes 

ere to be listed in the reverse order, starting with the state of the 

il well, followed by the testing decision. 

.2. Paths 

A path s = (s 1 , s 2 , . . . , s n ) of length n is a sequence of states s i ∈
 i of all chance and decision nodes, i.e., i ∈ C ∪ D for all i = 1 , . . . , n .

he set S of all paths of length n is 

 = S 1: n = { (s 1 , s 2 , . . . , s n ) | s i ∈ S i , i = 1 , . . . , n } . (2)

aths of length k < n are sequences s 1: k = (s 1 , s 2 , . . . , s k ) such that

 i ∈ S i , i ≤ k . If s 1: k ∈ S 1: k , k < n , and s k +1 ∈ S k +1 , the state s k +1 can

e appended to s 1: k to form the path s 1: k +1 = (s 1 , s 2 , . . . , s k , s k +1 ) ∈
 1: k +1 . If s 1: k ∈ S 1: k , k ≤ n , and I � { 1 , . . . , k } , then s I is a subse-

uence of s 1: k for the nodes i ∈ I. Thus, s I is a sequence of length

 I| which contains the same states as s 1: k for nodes i ∈ I. 

Thus, at each decision node j ∈ D , Z j ∈ Z maps the informa-

ion state s I( j) contained in s to the corresponding decision s j in 

 . The strategy Z ∈ Z is compatible with the path s ∈ S if and only if

 j (s I( j) ) = s j , ∀ Z j ∈ Z, j ∈ D . Conversely, the set of active paths for

he strategy Z is S Z = { s ∈ S| Z j (s I( j) ) = s j , ∀ Z j ∈ Z, j ∈ D } . 
Referring to Fig. 1 , the paths S correspond to sequences 

s 1 , s 2 , s 3 , s 4 ) where the states s i , i = 1 , . . . , 4 , indicate decisions

nd realizations of chance events. For example, s = (s 1 , s 2 , s 3 , s 4 ) =
test, dry, wet, dril l ) is the path in which the test is carried out

 s 1 = test), the well is dry ( s 2 = dry ), the test result is positive

 s 3 = wet) and the well is drilled ( s 4 = dril l ). The strategy defined

y first testing and then drilling if and only if the test result is 
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ositive is compatible with this path. Strategies in which no test is 

arried out, regardless of the drilling decision, are not compatible 

ith this path. 

For any strategy Z ∈ Z , the probability of a path s ∈ S can be

xpressed recursively as a function of the conditional probabilities 

1) and local decision strategies so that 

 (s 1: k | Z) = 

(∏ 

i ∈ C 
i ≤k 

P 

(
X i = s i | X I(i ) = s I(i ) 

))(∏ 

j∈ D 
j≤k 

I 
(
Z j (s I( j) ) = s j 

))
, 

(3) 

here the indicator function I ( · ) is defined so that 

 (Z j (s I( j) ) = s j ) = 

{
1 , if Z j (s I( j) ) = s j , 

0 , otherwise. 
(4) 

ote that if the strategy Z is compatible with s , then I (Z j (s I( j) ) =
 j ) = 1 and thus P (s | Z) = 

∏ 

i ∈ C P (X i = s i | X I(i ) = s I(i ) ) . Conversely, if

is not compatible with s , it contains some local strategy Z j , j ∈ D

uch that the information state s I( j) contained in s is mapped to 

 decision that is not the same as the state s j for node j along

he given path s . Thus, choosing Z means that s cannot occur and 

herefore P (s | Z) = 0 . Moreover, P (s | Z) = 0 for any s �∈ S Z . 

.3. Characterizing path probabilities using linear inequalities 

A given strategy Z ∈ Z assigns probabilities to all paths s 1: k ∈ 

 1: k , k = 1 , . . . , n , in accordance with (3) . In principle, one could

ntroduce binary variables for the indicator functions I 
(
Z j (s I( j) ) = 

 j 

)
, for all j ∈ D, whose multiplication would lead to a mixed- 

nteger nonlinear programming (MINLP) problem which could be 

onverted into a equivalent MILP. An early version of the Decision 

rogramming approach relied on this strategy, which, although fea- 

ible, led to an MILP formulation with a weak linear programming 

elaxation that was too inefficient for off-the-shelf solver perfor- 

ance. 

Alternatively, the path probabilities s 1: k ∈ S 1: k , k = 1 , . . . , n , can

e characterized through sets of linear inequalities. Towards this 

nd, local decision strategies Z j , j ∈ D , are modelled through corre-

ponding binary variables z(s j | s I( j) ) ∈ { 0 , 1 } such that z(s j | s I( j) ) =
 if and only if Z j maps the information state s I( j) to the decision

 j ∈ S j , i.e., 

 j (s I( j) ) = s j ⇐⇒ z(s j | s I( j) ) = 1 , ∀ j ∈ D, s j ∈ S j , s I( j) ∈ S I( j) .

(5) 

he mutual exclusivity of the decisions is ensured through the con- 

traints ∑ 

 j ∈ S j 
z(s j | s I( j) ) = 1 , ∀ j ∈ D, s I( j) ∈ S I( j) , (6)

hich ensure that exactly one decision s j ∈ S j is chosen for every 

nformation state s I( j) ∈ S I( j) . 

For the given strategy Z ∈ Z , the corresponding probability π(s ) 

f any path s ∈ S can be derived recursively as follows. To ini- 

ialize the recursion, let π0 (s ) = 1 . Suppose that the probabili- 

ies πi (s ) = P (X 1: k −1 = s 1: k −1 | Z) are known for nodes i ≤ k − 1 and

onsider the next node k ≤ n . If k ∈ C is a chance node, let 

k (s ) = P 

(
X k = s k | X I(k ) = s I(k ) 

)
πk −1 (s ) , (7) 

here the first term on the right side of (7) is given by (1) . If k ∈ D

s a decision node, let 

k (s ) = 

{
πk −1 (s ) , if z(s k | s I(k ) ) = 1 

0 , if z(s k | s I(k ) ) = 0 . 
(8) 

his assignment corresponds to the inequalities 
554 
ax { 0 , πk −1 (s ) + z(s k | s I(k ) ) − 1 } ≤ πk (s ) 

≤ min { πk −1 (s ) , z(s k | s I(k ) ) } , 
hich are equivalent to 

k (s ) ≤ πk −1 (s ) (9) 

k (s ) ≤ z(s k | s I(k ) ) (10) 

k (s ) ≥ 0 (11) 

k (s ) ≥ πk −1 (s ) + z(s k | s I(k ) ) − 1 . (12) 

Theorem 1 states that the path probabilities implied by strategy 

can be calculated through the assignment (5) –(8) . Importantly, 

he equivalence between the assignments (5) –(8) and the inequal- 

ties (9) –(12) implies that the path probabilities implied by deci- 

ion strategies can be determined by employing these inequalities 

s constraints on the variables z(s k | s I(k ) ) , k ∈ D, s k ∈ S k , s I(k ) ∈ S I(k ) . 

heorem 1. Let Z ∈ Z be a decision strategy and choose a path s ∈ S.

f πk (s ) , k = 1 , . . . , n , and z(s j | s I( j) ) , ∀ j ∈ D , satisfy the constraints

5) –(8) , then 

k (s ) = P (X 1: k = s 1: k | Z) , ∀ k = 1 , . . . , n. (13)

n particular, π(s ) 
de f = πn (s ) is the probability of the path s for the

trategy Z. 

Proof . See Appendix A. 

.4. Maximization of expected utility 

We assume that at the value node v ∈ V , the function Y v :

 I(v ) �→ C maps combinations of states of the nodes in its informa- 

ion set I(v ) to the set of consequences C and that there exists a

eal-valued utility function U : C �→ R that is defined over C . Then,

he utility associated with the path s ∈ S can be precomputed as 

(s ) = U[ Y v (s I(v ) )] . (14) 

Because the path probabilities π(s ) , s ∈ S, for the selected strat- 

gy Z ∈ Z are given by Theorem 1 , it follows that the strategy

hich maximizes the DM’s expected utility is the solution to the 

ptimization problem in Corollary 1 . 

orollary 1. The expected utility is maximized by the strategy Z ∈ Z 

hich solves the optimization problem 

aximize 
Z∈ Z 

∑ 

s ∈ S 
π(s ) U(s ) (15) 

ubject to constraints (5) –(7) and (9) –(12) on decision variables 

(s k | s I(k ) ) ∈ { 0 , 1 } , ∀ k ∈ D , s k ∈ S k , s I(k ) ∈ S I(k ) and path probabilities

k (s ) ∈ [0 , 1] , ∀ s ∈ S. 

In particular, the objective function and constraints in 

orollary 1 are linear in the decision variables z(s j | s I( j) ) and the

orresponding path probabilities πk (s ) . This is an MILP problem 

or which the optimal strategy can be computed with off-the-shelf 

ILP solvers. 

.5. An improved MILP formulation 

To enhance the formulation in Corollary 1 , we note that the ob- 

ective function (15) has path probabilities π(s ) only for full paths 

 ∈ S = S 1: n of length n . Also, the probability π(s ) of each path s ∈ S

epends on two separable components. First, for each path s ∈ S, 

he conditional probabilities (1) of the states s j for chance nodes 
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j ∈ C can be multiplied to obtain the following upper bound for 

(s ) : 

p(s ) = 

∏ 

j∈ C 
P (X j = s j | X I( j) = s I( j) ) . (16)

econd, for a given strategy Z ∈ Z , this upper bound p(s ) is the

ctual probability of s if and only if Z is compatible with s . That 

s, if z(s j | s I( j) ) = 1 , ∀ j ∈ D , the inequalities (9) –(12) imply π j (s ) =
j−1 (s ) for each j ∈ D . This result can be used to solve the equa-

ions (7) –(8) recursively starting from π0 (s ) = 1 to the last node n

or which πn (s ) = p(s ) in (16) . Conversely, if the strategy Z is not

ompatible with s , inequalities (9) –(10) imply that πn (s ) ≤ π j (s ) =
 for some j ∈ D . Thus, because π(s ) = πn (s ) = p(s ) if and only if

(s j | s I( j ) = 1 ∀ j ∈ D , the optimization problem in Corollary 1 can

e reformulated as 

aximize 
Z∈ Z 

∑ 

s ∈ S 
π(s ) U(s ) (17) 

ubject to 

∑ 

s j ∈ S j 
z(s j | s I( j) ) = 1 , ∀ j ∈ D, s I( j) ∈ S I( j) (18) 

 ≤ π(s ) ≤ p(s ) , ∀ s ∈ S (19) 

(s ) ≤ z(s j | s I( j) ) , ∀ s ∈ S, j ∈ D (20) 

(s ) ≥ p(s ) + 

∑ 

j∈ D 
z(s j | s I( j) ) − | D | , ∀ s ∈ S (21) 

(s j | s I( j) ) ∈ { 0 , 1 } , ∀ j ∈ D, s j ∈ S j , s I( j) ∈ S I( j) , (22) 

here the constraints (18) ensure that some decision s j ∈ S j is 

ade at each decision node j ∈ D for every information state set 

 I( j) ∈ S I( j) (as stated in (6) ). Constraints (19) bound the probabil- 

ties of paths s ∈ S. Constraints (20) ensure that only those paths 

hich are compatible with the strategy can have positive prob- 

bilities. Constraints (21) ensure that the probabilities of paths 

ith negative utility U(s ) cannot become smaller than their up- 

er bounds p(s ) for paths s such that z(s j | s I( j) ) = 1 , j ∈ D . Con-

traints (22) enforce the domain of all binary variables z(s j | s I( j) ) .

or clarity, we note that in constraints (20) –(21) , the states s j and

 I( j) are taken from the selected path s ∈ S. The terms U(s ) and

p(s ) in (17) and (19) , respectively, can be calculated from (16) and

14) before solving the model (17) –(22) . 

Because utility functions over consequences are unique to pos- 

tive affine transformations and the value node has a finite num- 

er of 
∏ 

i ∈ I(v ) | S i | information states, one can normalize the util- 

ty function to an interval of non-negative utilities U N (s ) ∈ [0 , 1]

hrough the assignment U N (s ) = [ U(s ) − U )] / [ U − U )] , where U(s )

s the utility function to be normalized and U = max s ∈ S {U(s ) } > 

 = min s ∈ S {U(s ) } . In this case, the constraints (21) can be omitted, 

ecause the path probabilities will be naturally steered to their up- 

er bounds. 

In the oil wildcatter example of Fig. 1 , the constraints (18) are 

iven by 
∑ 

s 1 ∈ { t est, ¬ t est } z(s 1 ) = 1 and 

∑ 

s 4 ∈ { dril l , ¬ dril l } z(s 4 | s 3 ) = 1 

here s 3 ∈ { wet, dry, none } specifies on what information the 

rilling decision is made. For the path s = (s 1 , s 2 , s 3 , s 4 ) =
test, dry, wet, dril l ) , constraint (20) bounds the path probability 

(s ) from above p(s ) = P (X 2 = dry ) P (X 3 = wet | X 2 = dry ) where

 (X 2 = dry ) is the probability that the well is dry and P (X 3 =
et | X 2 = dry ) is the probability of getting a report which says that

he well is wet when it is actually dry. Finally, U(s ) gives the utility

n the situation where the dry well is drilled after the test. 
555 
.6. Computational complexity 

The computational complexity of the formulation (17) –(22) de- 

ends predominantly on the number of chance and decision nodes 

 ∈ C ∪ D , as well as the number of their states S i and informa-

ion states S I(i ) . Here, we assume that the problem is symmetric, 

o that at each chance and decision node all states are possible 

or every one of their information states, noting that in asymmet- 

ic influence diagrams some states are impossible for some infor- 

ation states so that some paths can be eliminated. For exam- 

le, if the decision at node 1 in Fig. 1 is not to test, then the

est result s 3 will be none and the results wet and dry are impos-

ible as P (s 3 = wet | s 1 = ¬ test) = P (s 3 = dry | s 1 = ¬ test) = 0 . Thus,

aths containing the states s 1 = ¬ test and s 3 ∈ { wet, dry } can be 

liminated from consideration. 

In symmetric problems, the number of continuous path vari- 

bles π(s ) is 
∏ 

i ∈ C∪ D | S i | . Thus, if there are at least two states

t each node i ∈ C ∪ D , the number of paths s grows exponen-

ially with respect to the number of decision and chance nodes 

s the lower bound for the number of paths is o( 
∏ 

i ∈ C∪ D | S i | ) =
(2 | C| + | D | ) . The number of binary decision variables z(s j | s I( j) ) , j ∈
, s j ∈ S j , S I( j) ∈ S I( j) , depends on the number of decision nodes

 as well as their states S i and information states S I( j) . Specif- 

cally, there are 
∑ 

j∈ D | S { j } ∪ I( j) | = 

∑ 

j∈ D | S j | ∏ 

i ∈ I( j) | S i | binary deci-

ion variables. Thus, the number of these variables is at most 

 

(∑ 

j∈ D | S { j }∪ I( j ) | 
)
. While the number of binary variables is not 

ypically large, they make the problem becomes much harder to 

olve. The number of constraints in (18) is 
∑ 

j∈ D | S j | , while that of

onstraints (19) is the same that of paths. In constraint (20) , the 

ath probability π(s ) is constrained by each decision along this 

ath s . 

.7. Valid constraints 

The formulation (17) –(22) can be solved more efficiently by 

ntroducing valid constraints derived from the problem structure 

nd help compute the optimal decision strategies, as shown in 

ection 6 . However, adding these constraints directly may slow 

own the overall solution process, especially in larger problems in 

hich many of them can be derived from the problem structure. 

Alternatively, one can include these valid constraints during the 

olution process as “lazy constraints” that can be used by the MILP 

olver to prune nodes of the branch-and-bound tree more effi- 

iently. One can also add them during the solution process in a 

utting plane fashion as “user cuts” for a subset of nodes in the 

ree based on some criterion (or multiple criteria), for example, if 

he upper bound has not improved enough within some time in- 

erval. Such lazy constraints and user cuts are standard features in 

ff-the-shelf MILP solvers. 

Specifically, the first set of equalities, referred to as probabil- 

ty cuts , exploit the fact that for any strategy Z ∈ Z , the sum of

he probabilities π(s ) must equal one so that 
∑ 

s ∈ S 
π(s ) = 1 . These

qualities are valid for any problem that can be formulated as 

17) –(22) . As an example of a probability cut that works as a 

azy constraint, suppose that the optimal (fractional) solution of a 

ode in the branch-and-bound tree does not satisfy the probabil- 

ty cut. Then, the problem at that node will be re-optimized after 

dding the probability cut, and if the new optimal cost is smaller 

han the current best primal bound, the node can be discarded. 

n our computational analyses, we have used probability cuts as 

azy constraints that were not initially included in the MILP for- 

ulation, but checked against violation in the branch-and-cut pro- 

edure. This approach prevents the introduction of a large number 

f constraints that are unlikely to be violated. It is standard prac- 

ice in the use of professional-grade solvers such as Gurobi and 
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Fig. 2. Influence diagram of the double monitoring example. 
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PLEX, and can be done in straightforward manner through their 

pplication protocol interfaces. 

The second set of equalities can be used in problems whose 

tructure makes it possible to determine in advance for a given 

trategy Z ∈ Z how many active paths s ∈ S Z have a positive prob-

bility π(s ) > 0 . For example, if the number of such active paths

s n s is for all feasible strategies, we can define a valid equal- 

ty 
∑ 

s ∈ S π(s ) /p(s ) = n s where p(s ) in (16) is the upper bound for

(s ) . This approach can be generalized to asymmetric problems 

n which the number of active paths varies for different decision 

trategies. In such cases, several equalities can to be added to cover 

ifferent possibilities in how the number of active paths depends 

n the states of decision or chance nodes. Such information, de- 

ived from an analysis of symmetries in the problem structure (see, 

.g., Bielza et al., 2011 ), serve to improve computational efficiency. 

. Decision modeling examples 

.1. Decision programming without the no-forgetting assumption 

As an example of a problem in which the no-forgetting assump- 

ion does not hold, assume that there is an uncertain load L on a 

uilt structure which can be fortified through actions A 1 and A 2 

o mitigate the risk of a structure failure F . These two decisions 

re informed by measurement reports R 1 and R 2 on the load L . 

he decision as to whether action A 1 should be implemented is 

nformed by the report R 1 only and, similarly, decision A 2 is based 

n the report R 2 alone. In particular, the decision as to whether the 

ortification decision A 1 will be or has been installed is not known 

hen making the decision A 2 (and conversely for A 2 ). The utility 

t the target node T depends on whether or not the structure fails 

nd how much the fortification actions cost. 

This problem structure also represents a situation where the re- 

orts are generated by sensors which inform safety controls (e.g., 

alves) that must activated instantaneously to prevent potential 

isruptions in a safety-critical system such as a nuclear plant (see, 

.g., Mancuso et al., 2019 ). In particular, the safety must be en- 

ured even if failures of communication equipment prevent the 

ensors from sharing information with a centralised server or other 

ensors. 

Just as in the example in Figure 12 in Zhang et al. (1994) , this

roblem structure is challenging in that the optimal strategies at 

he decision nodes are inderdependent and cannot be solved based 

n decomposition (see Chapter 8 in Zhang (1994) for a proof). In 

articular, the regularity and ‘no-forgetting’ assumptions do not 

old, because the temporal order of the decision is not predeter- 

ined and there is no sequence of chance nodes C = { L, R 1 , R 2 , F }
nd decision nodes D = { A 1 , A 2 } such that for all decision nodes,

he states of all preceding nodes would be known at the time of 

ecision making. Fig. 2 presents an influence diagram representing 

his setting. 

maximize 
Z∈ Z 

∑ 

(l,r 1 ,r 2 ,a 1 ,a 2 , f ) 

π(l, r 1 , r 2 , a 1 , a 2 , f ) U 

[
Y T (a 1 , a 2 , f ) 

]
ubject to 

∑ 

a i ∈ A i 
z(a i | r i ) = 1 , 

0 ≤ π(l, r 1 , r 2 , a 1 , a 2 , f ) ≤ p(l, r 1 , r 2 , a 1 , a 2 , f ) , 

π(l, r 1 , r 2 , a 1 , a 2 , f ) ≤ z(a i | r i ) , 
π(l, r 1 , r 2 , a 1 , a 2 , f ) ≥ p(l, r 1 , r 2 , a 1 , a 2 , f ) + 

∑ 

i =1 , 2 

z(a i |

z(a i | r i ) ∈ { 0 , 1 } , 
556 
Still, this problem can be solved using Decision Program- 

ing . The sequence (L, R 1 , R 2 , A 1 , A 2 , F , T ) captures the depen-

ence structure: I(R i ) = { L } , i = 1 , 2 (the reports depend on the

oad); I(A i ) = { R i } , i = 1 , 2 (decisions about the fortification actions

re informed by respective reports); I(F ) = { L, A 1 , A 2 } (failure de-

ends on the load and fortification decisions, but not on the re- 

orts); and I(T ) = { A 1 , A 2 , F } (the final outcome depends on the

ailure and the cost of implementing the fortification actions). By 

sing node labels to indicate sets of states for corresponding nodes, 

he paths are sequences s = (l, r 1 , r 2 , a 1 , a 2 , f ) ∈ L × R 1 × R 2 × A 1 ×
 2 × F = S. The probabilities p(s ) in (16) are p(l, r 1 , r 2 , a 1 , a 2 , f ) =
 (l) P (r 1 | l) P (r 2 | l) P ( f | l, a 1 , a 2 ) , and the decision strategies are

efined by Z = (Z 1 , Z 2 ) such that Z i : R i �→ A i . 

Using this notation, the optimal fortification strategy can be ob- 

ained by solving the Eqs. (18) –(22) , which in this example become 

∀ r i ∈ R i , i = 1 , 2 

∀ (l, r 1 , r 2 , a 1 , a 2 , f ) ∈ S 

∀ (l, r 1 , r 2 , a 1 , a 2 , f ) ∈ S, i = 1 , 2 

2 , ∀ (l, r 1 , r 2 , a 1 , a 2 , f ) ∈ S 

∀ a i ∈ A i , r i ∈ R i , i = 1 , 2 , 

here Y T (a 1 , a 2 , f ) gives the consequences associated with the fail-

re state f and the actions a 1 and a 2 . If all the decision and

hance nodes have binary states, then there are 8 decision vari- 

bles (4 per each fortification decision) and 2 6 = 64 paths, result- 

ng in 4 equality constraints and 192 inequality constraints (in the 

econd inequality constraint, the states a i , r i are implied by the 

elected path and third inequality constraints can be omitted by 

ormalizing the utility function so that it attains positive values 

nly). 

. Extensions to modeling chance constraints and multiple 

alue nodes 

Apart from the use of nonlinear utility functions U( · ) in (14) , 

isk preferences can be accounted through risk measures ρ that 

ap decision strategies to non-negative real numbers and can be 

ntroduced as additional terms into the objective function or em- 

loyed as constraints. In the following, we assume that, at the 

alue nodes v ∈ V , the aim is to maximize the consequences C(s ) =
 v (s I(v ) ) ∈ C , which are assessed using real numbers. 
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.1. Absolute and lower-semi absolute deviation 

Let t ∈ R be a given target level for consequences and define 

he non-negative deviation variables 

+ 
t (s ) = max { 0 , C(s ) − t} , �−

t (s ) = max { 0 , t − C(s ) } . (23)

y construction, �+ 
t (s ) (respectively �−

t (s ) ) measures how much 

he consequence C(s ) is above (below) the target level t . The devi- 

tions (23) can be precomputed for the information states S I(v ) at 

he value node v . The expected downside risk (EDR) of the strategy 

 ∈ Z relative to the target level t is 

EDR 

(Z; t) = 

∑ 

s ∈ S 
π(s )�−

t (s ) . (24) 

f t is chosen to be the expected value of consequences E [ C | Z] =
 

s ∈ S π(s ) Y v (s I(v ) ) for the strategy Z, the corresponding non- 

egative deviation (decision) variables �+ 
E [ C | Z] 

(s ) , �−
E [ C | Z] 

(s ) can be 

mployed with the constraint 

(s ) − �+ 
E [ C | Z] 

(s ) + �−
E [ C | Z] 

(s ) = E [ C | Z] 

o capture the deviations from E [ C] . The absolute deviation (AD) 

nd the lower semi-absolute deviation (LSAD) are then given by 

AD 

(Z) = 

∑ 

s ∈ S 
π(s ) 

[
�+ 

E [ C | Z] 
(s ) + �−

E [ C | Z] 
(s ) 

]
(25) 

LSAD 

(Z) = 

∑ 

s ∈ S 
π(s )�−

E [ C | Z] 
(s ) . (26) 

These measures can be used to augment the objective function 

hrough an additional additive term which penalizes for risk. For 

xample, if the aim is to maximize expected consequences while 

ccounting for risks through (lower semi-)absolute deviation, one 

ossibility is to formulate the objective function as max Z∈ Z 
{
(1 −

) E [ X v | Z] − φρLSAD 

(Z) 
}

where φ ∈ [0 , 1] is a weighting coeffi-

ient that reflects the DM’s risk aversion. Alternatively, as an ex- 

mple of using risk measures to constrain feasible decision strate- 

ies, assume that the consequences are defined as profits reported 

n monetary terms. Then, the constraint ρAD 

(Z) ≤ 10 MEUR would 

ule out any strategy Z ∈ Z whose profits can be expected to differ

ore than 10 MEUR from the expected profits E [ C | Z] . 

.2. Chance constraints and Value-at-Risk 

Probabilistic chance constraints can be modeled as linear in- 

qualities on the path probabilities π(s ) which depend linearly on 

he decision variables. For example, to assess whether the conse- 

uences C(s ) meet or exceed the stated target level t ∈ R , we de-

ne the parameters 

t (s ) = 

{
1 , if C(s ) ≥ t 

0 , otherwise . 
(27) 

or example, if the consequence is required to reach the target 

evel t with a probability that is higher than or equal to a stated 

hreshold level p t , we have the constraint 

 

(
{ s | C(s ) ≥ t} | Z 

)
= 

∑ 

s ∈ S 
π(s )�t (s ) ≥ p t , (28)

hich is linear in the path probabilities π(s ) . As for utilities, the 

erms �t (s ) , ∀ s ∈ S can be readily derived from the information

tates s I(v ) ∈ S I(v ) . 

In the present context where the probability distributions over 

onsequences are discrete, the Value-at-Risk (VaR) risk measure for 

he strategy Z can be defined as 

aR α(Z) = F −1 (α) = sup { t | P (s | C(s ) ≤ t) < α} , (29) 
Z 

557 
here F −1 
Z 

is the inverse function of the cumulative prob- 

bility distribution F Z : C �→ [0 , 1] which is defined as F Z (t) =
 

{ s |C(s ) ≤t} π(s ) . 

Because the probability distribution over the set of paths is dis- 

rete, the definition (29) means that consequences which are less 

han or equal to VaR α(Z) can occur with a probability greater than 

( Rockafellar & Uryasev, 2002 ). This is the case if VaR α(Z) coin- 

ides with a consequence where the cumulative probability distri- 

ution function jumps from a level below α to one that exceeds α

o that P 

(
{ s | C(s ) < VaR α(Z) } 

)
< α < P 

(
{ s | C(s ) ≤ VaR α(Z) } 

)
. 

Constraints such as (28) can be employed to introduce VaR re- 

uirements. That is, if the probability α > 0 is associated with the 

orresponding VaR level t α
VaR 

, then the path probabilities for any 

easible strategy Z must satisfy the constraint 
 

s ∈ S 
π(s )[1 − �t α

VaR 
(s )] ≤ α, (30) 

here �t α
VaR 

(·) is defined as in (27) . This approach can be gen- 

ralized to introduce chance constraints on the states of nodes 

 ∈ C ∪ D as well. For instance, assume that the state at node k

eeds to be in some set ˜ S k ⊂ S k with a probability which is less 

han or equal to ˜ p k . This requirement can be represented by the 

onstraint 
∑ 

s ∈ S π(s )� ˜ S k 
(s ) ≤ ˜ p k where � ˜ S k 

(s ) = 1 if s k ∈ 

˜ S k and 

˜ S k 
(s ) = 0 otherwise. Thus, for example, for a decision node k ∈ D ,

ne could require that the probability of having to employ excep- 

ional decisions, as represented by the states in 

˜ S k , does not exceed 

he given probability level ˜ p k . 

.3. Conditional Value-at-Risk 

For the strategy Z ∈ Z ,the Conditional Value-at-Risk (CVaR) at 

he given probability level α > 0 is the expected level of conse- 

uences, conditioned on the event that the realized consequence 

s in the α ∈ (0 , 1] lower tail of the probability distribution. Con- 

ributions to this expectation come from (i) paths s ∈ S < 
VaR α(Z) 

= 

 s ∈ S | C(s ) < VaR α(Z) } which lead to consequences strictly less

han VaR α(Z) ; and (ii) paths s ∈ S = 
VaR α(Z) 

= { s ∈ S | C(s ) = VaR α(Z) }
hich lead to the consequence VaR α(Z) . The share of the prob- 

bility of these latter paths that needs to be accounted in the 

omputation of the CVaR level is the difference α − P ({ s | C(s ) <

aR α(Z) } ) = α − ∑ 

s ∈ S < 
VaR α (Z) 

π(s ) . Thus, as in Liesiö & Salo (2012) , 

e define the risk measure CVaR α(Z) as 

VaR α(Z) = 

1 

α

( ∑ 

s ∈ S < 
VaR α (Z) 

π(s ) C(s ) 

+ 

∑ 

s ∈ S = 
VaR α (Z) 

( 

α −
∑ 

s ∈ S < 
VaR α (Z) 

π(s ) 

) 

C(s ) 

) 

. (31) 

y Proposition 1 , the VaR and CVaR levels for a given prob- 

bility level α > 0 and strategy Z ∈ Z can be determined by 

olving the optimization problem (33) –(43) with precomputed 

arameters c ∗ = max {C(s ) | s ∈ S} , c ◦ = min {C(s ) | s ∈ S} , M = c ∗ − c ◦

nd ε = 

1 
2 min {|C(s ) − C(s ′ ) | | |C(s ) − C(s ′ ) | > 0 , s, s ′ ∈ S} . 

roposition 1. Choose α ∈ (0 , 1] and let π(s ) , ∀ s ∈ S, be the path

robabilities for a strategy Z ∈ Z . Then the optimization problem 

in η (32) 

− C(s ) ≤ Mλ(s ) , ∀ s ∈ S (33) 

− C(s ) ≥ (M + ε) λ(s ) − M, ∀ s ∈ S (34) 
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− C(s ) ≤ (M + ε) λ(s ) − ε, ∀ s ∈ S (35) 

− C(s ) ≥ M( λ(s ) − 1) , ∀ s ∈ S (36) 

(s ) ≤ λ(s ) , ∀ s ∈ S (37) 

(s ) − (1 − λ(s )) ≤ ρ(s ) ≤ λ(s ) , ∀ s ∈ S (38) 

(s ) ≤ ρ(s ) ≤ π(s ) , ∀ s ∈ S (39) 

∑ 

s ∈ S 
ρ(s ) = α, (40) 

(s ) , λ(s ) ∈ { 0 , 1 } , ∀ s ∈ S (41) 

(s ) , ρ(s ) ∈ [0 , 1] , ∀ s ∈ S (42) 

∈ [ c ◦, c ∗] , (43) 

as a solution such that the optimum value η∗ = VaR α(Z) and 

VaR α(Z) = 

1 
α

∑ 

s ∈ S ρ(s ) C(s ) . 

ROOF . See Appendix A. 

An inspection of the proof of Proposition 1 shows that for 

ny feasible solution to the constraints (33) –(43) , the expression 

 

s ∈ S ρ(s ) C(s ) /α gives the correct CVaR α(Z) risk measure for Z. 

hus, if the expectation of consequences in the lower α-tail of the 

robability distribution over consequences is required to be greater 

han or equal to the lower bound t α
CVaR 

, this requirement can be 

nforced by adding the constraints (33) –(43) and 

∑ 

s ∈ S ρ(s ) C(s ) ≥
t α
CVaR 

to (18) –(22) . 

One approach to address trade-offs between the maximization 

f conditional expectations for different levels of α is to treat 

hese as different objectives with respective weighting coefficients. 

hus, combining the unconditional expectation with the selected 

∈ (0 , 1) for CVaR leads to the problem 

aximize 
Z∈ Z 

w 

(∑ 

s ∈ S π(s ) C(s ) 
)

+(1−w ) 
(

1 
α

∑ 

s ∈ S ρ(s ) C(s ) 
)

(44) 

ubject to (18) − (22) , (33) − (43) (45) 

hose solution depends on the parameter w ∈ (0 , 1) that repre- 

ents trade-offs between (i) the overall expectation in the first 

erm of (44) and (ii) the expectation in the lower α-tail as ex- 

ressed by the second term. This parameter can be elicited by ask- 

ng the DM to answer much of the overall expectation the DM is 

illing to give up in return for improving the CVaR level by one 

nit, which gives the ratio 1 −w 

w 

. Note that the linear model as- 

umes that the answer to this question does not depend on the 

verall expectation 

∑ 

s ∈ S π(s ) C(s ) . 

.4. Multiple value nodes and objectives 

The consideration of CVaR levels together with the maximiza- 

ion of expected consequences is an example of the more gen- 

ral case in which there are multiple objectives n V > 1 (see, e.g., 

ntunes, Alves, & Clímaco, 2016 ) associated with different value 

odes. Then, if these objectives are compared based on their ex- 

ected consequences, attention can be focused on non-dominated 
558 
trategies Z ∈ Z ND . In this case, the dominated strategies can be de- 

ned so that Z is non-dominated if and only if there is no other 

easible strategy Z ′ ∈ Z F whose expectation is equal to or higher 

han that of Z at each value node and strictly higher for at least 

ne value node, i.e., 

Z ∈ Z ND ⇐⇒ Z ∈ Z F ∧ � ∃ Z ′ ∈ Z F such that E [ C v | Z ′ ] 
≥ E [ C v | Z] , ∀ v ∈ V, 

here E [ C v | Z] = 

∑ 

s ∈ S π(s ) C v (s ) denotes the expectation at value

ode v ∈ V and the inequality is strict for at least one value node

 ∈ V . Because the strategies are choices from a discrete set of al-

ernatives, this is a discrete multi-objective optimization problem 

MOO) in which the objectives correspond to the maximization of 

xpectations for different value nodes. Thus, it can be solved with 

lgorithms for this problem class. Holzmann & Smith (2018) pro- 

ide an extensive review and propose an algorithm based on aug- 

ented Tchebychev norm, in which choices about the initial step 

ize need to be made. 

The weighting approach in (44) or, more generally, the max- 

mization of the expression 

∑ 

v ∈ V w v E [ C v | Z] can be employed to 

enerate non-dominated strategies. However, a shortcoming of 

his approach is that it does not necessarily generate all non- 

ominated strategies even if all non-negative weighting coeffi- 

ients w v ≥ 0 , ∀ v ∈ V , such that 
∑ 

v ∈ V w v = 1 , are employed. This

ill be the case if a non-dominated strategy Z ′ ∈ Z ND is dominated 

y a weighted linear combination of other non-dominated strate- 

ies Z 1 , . . . , Z k ∈ Z ND so that for some selection of positive weights

 i > 0 with 

∑ k 
i =1 ω i = 1 , it holds that E [ C v | Z ′ ] ≤ ∑ k 

i =1 ω i E [ C v | Z i ]
or all v ∈ V (with a strict inequality for some v ∈ V ). 

This notwithstanding, the weighting approach can be adapted 

o generate all non-dominated strategies. First, if Z ′ ∈ Z ND is a non- 

ominated strategy, then it can be eliminated from consideration 

n the computation of further candidates for non-dominated strate- 

ies through the linear constraint ∑ 

 (s i ,s I(i ) ) | z ′ (s i | s I(i ) )=0 } 
z(s i | s I(i ) ) + 

∑ 

d∈ D 

∏ 

i ∈ I(d) 

| S i | 

−
∑ 

{ (s i ,s I(i ) ) | z ′ (s i | s I(i ) )=1 } 
z(s i | s I(i ) ) ≥ 1 , (46) 

here z ′ (s i | s I(i ) ) , s i ∈ S i , s I(i ) ∈ S I(i ) are the decision variables for Z ′ .
n (46) , the left side for strategy Z will be greater than one if and

nly if Z differs from Z ′ . 
Second, if Z ′ ∈ Z ND , then further candidates for non-dominated 

trategies must not be dominated by Z ′ . A necessary condition 

or this can be stated by defining the binary variables λ+ 
Z ′ , v (Z) , 

−
Z ′ , v (Z) ∈ { 0 , 1 } , ∀ v ∈ V so that λ+ 

Z ′ , v (Z) + λ−
Z ′ , v (Z) = 1 and 

 [ C v | Z] ≤ E [ C v | Z ′ ] + Mλ+ 
Z ′ , v (Z) (47) 

 [ C v | Z ′ ] ≤ E [ C v | Z] + Mλ−
Z ′ , v (Z) (48) 

here M is a large constant (e.g., greater than c ∗ = max s ∈ S C(s ) ). 

ow, consider any solution to (47) –(48) such that λ+ 
Z ′ , v (Z) = 

 , ∀ v ∈ V . Then E [ C v | Z] is either strictly less than E [ C v | Z ′ ] for all

 ∈ V so that Z is dominated by Z ′ ; or if not, there exists some

 

′ ∈ V such that E [ C v ′ | Z] = E [ C v ′ | Z ′ ] so that the values of the

ariables λ−
Z ′ , v ′ (Z) = 1 , λ+ 

Z ′ , v ′ (Z) = 0 can be switched to λ−
Z ′ , v ′ (Z) =

 , λ+ 
Z ′ , v ′ (Z) = 1 , in which case the constraints (47) –(48) are still sat-

sfied. Thus, for any strategy Z which is not dominated by Z ′ there 

ill exist a solution such that 
 

v ∈ V 
λ+ 

Z ′ , v (Z) ≥ 1 , Z ′ ∈ Z ND . (49) 

The above constraints (47) –(48) and (49) constitute a necessary 

ut not a sufficient condition. That is, the candidate solution Z 
′′ 
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hich maximizes 
∑ 

v ∈ V w v E [ C v | Z] may be dominated by Z ′ if the

alue nodes can be partitioned into non-empty sets V = ∪ V < = V 

uch that E [ C v | Z ′′ ] = E [ C v | Z ′ ] , v ∈ V = and E [ C v | Z ′′ ] < E [ C v | Z ′ ] , v ∈
 

< , i.e., Z 
′′ 

is dominated by Z ′ . Consequently, explicit dominance 

hecks are needed to evaluate whether the candidate solution Z 
′′ 

s non-dominated. If it is, the set of non-dominated strategies can 

e updated by adding Z 
′′ 

to this set and by introducing the con- 

traint (46) to eliminate Z 
′′ 

from further consideration. Adding this 

onstraint to (47) –(48) for Z ′′ does not prevent the computation of 

lternative strategies whose expectations are the same for all value 

odes, as such strategies do not dominate each other. 

Next, the algorithm can be iterated by maximizing 
 

v ∈ V w v E [ C v | Z] to generate further candidate strategies and 

ugmenting the sets of non-dominated strategies and constraints. 

f the algorithm is terminated prematurely, it provides a viable 

et of non-dominated strategies that can be examined to check in 

hat region the expected values of any non-dominated strategies 

hat have not yet been generated would lie. Because the number 

f non-dominated strategies is finite, the algorithm will generate 

hem all. Moreover, if the DM’s preferences are represented by 

 real-valued function which is strictly increasing in each of the 

xpectations E [ C v | Z] , v ∈ V , the computation of non-dominated

trategies generates all the solutions that can be optimal for any 

uch function. 

The number of non-dominated solutions and the effort that is 

equired to compute them depends on the problem characteristics. 

n general, this effort tends to grow with (i) the number of objec- 

ives and feasible decision strategies; and (ii) the presence of neg- 

tive correlations between the objectives. To see why this the case, 

ssume that there are two objectives v and v ′ such that the ex- 

ected consequences E [ C v | Z] and E [ C v ′ | Z] are perfectly correlated

cross the set of feasible decision strategies Z ∈ Z F . Then, there is

 positive linear relationship between E [ C v | Z] and E [ C v ′ | Z] and

he strategies which maximize these two objectives are the same. 

hus, there is only one non-dominated strategy assuming that 

hese maximization problems do not have alternative optimal so- 

utions. At the other end of the spectrum, if the objectives v and 

 

′ have a perfect negative correlation of minus one, there is a neg- 

tive linear relationship between E [ C v | Z] and E [ C v ′ | Z] and conse-

uently all feasible decision strategies are non-dominated. Between 

hese extremes, the number of non-dominated strategies can be 

xpected to be larger when there is a strong negative correlation 

etween the objectives. 

One reason for computing all non-dominated solutions is that 

n many problems the objectives are negatively correlated across 

he set of alternatives (e.g., low cost vs. high quality). In such prob- 

ems, restricting the attention to the solutions generated by the 

eighted sum approach may suggest comparatively extreme strate- 

ies only (i.e., quite costly with very high quality; or unsatisfac- 

ory quality at a low cost) while neglecting more balanced strate- 

ies that are of interest to the DM in that they perform reasonably 

ell on many objectives. 

If there is a single value node v with real-valued consequences, 

he above multi-objective algorithm can be adapted to determine 

ll the strategies which are non-dominated in the sense of first- 

rder stochastic dominance. Specifically, the consequences associ- 

ted with the information states s I(v ) can be viewed as target levels 

o that the function �t (s ) in (27) is defined for the different tar-

et levels t that correspond to the different consequences v . Then, 

or strategy Z, the probability of meeting or exceeding the level t

s the expectation E [�t | Z] , which can be treated as the objective

hat corresponds to the target level t . Specifically, strategy Z will 

ominate Z ′ (in the sense of first-order stochastic dominance; see, 

.g., Liesiö & Salo, 2012; Rockafellar & Uryasev, 2002 ) if and only 

f E [�t | Z] ≥ E [�t | Z ′ ] for all target levels t with a strict inequality

or some target level. Often, it is reasonable to limit the attention 
559 
o these stochastically non-dominated strategies, because only they 

an be optimal if the DM’s utility function over consequences is 

nown to be increasing. Thus, this approach can be used to prune 

he set of viable strategies based on weak assumptions about the 

M’s utility function. 

The ability to screen non-dominated strategies can be par- 

icularly useful in group decision making problems as well, be- 

ause there is no need to build a consensual representation of the 

roup’s utility function. Rather, once the non-dominated strategies 

ave been identified, methods of multi-criteria decision analysis 

an be deployed to support the final selection (see Salo, Hämäläi- 

en, & Lahtinen, 2021 for an overview). 

. Computational experiments 

We next report results from computational experiments to 

emonstrate the viability of Decision Programming. All implemen- 

ation were coded in Julia 1.1.0, using the package JuMP to imple- 

ent models which were solved with Gurobi 8.1.0. using 2 out of 

 available threads. All problem instances were solved with an In- 

el Xeon E3-1230 v5 desktop clocked at 3.40 GHz with 32 GB RAM 

unning Windows 10 x64 Education Edition. The open-source code 

or these examples and supporting documentation are available at 

ttp://github.com/gamma-opt/DecisionProgramming.jl . 

.1. N-monitoring problem 

The N-monitoring problem has the same structure as the dou- 

le monitoring problem in Section 4.1 except that there are N bi- 

ary reinforcement decisions of which each is informed by its own 

oad report with two states, low and high . For every problem size, 

e solve 100 instances with randomly generated data, both with 

nd without the probability cuts in Section 3.7 . 

Data sets with plausible characteristics were generated as fol- 

ows. The utility of the structure not failing was set to 100 and that 

f failing to 0. For the load node L , the probability p H of the high

oad state was generated from the uniform distribution U(0 , 1) 

ver the unit interval and the remaining probability p L = 1 − p H 
as assigned to the low load state. All reports were conditionally 

ndependent of each other given the load. For both loads, the prob- 

bility of receiving a correct report was max { x, 1 − x } where x was

enerated from the uniform distribution U(0 , 1) . Further realiza- 

ions of x and y from U(0 , 1) were used to set the prior prob-

bility of failure in the case of high load to max { x, 1 − x } and

hat in the case of low load to min { y, 1 − y } . The costs of forti-

cation c i , i = 1 , . . . , N actions were also generated from U(0 , 1) .

he posterior probability of failure after implementing the actions 

 ⊆ { 1 , . . . , N} was taken to be that of the prior divided by e 
∑ 

i ∈ A c i .
hus, the actions served to mitigate the possibility of failure and 

he more costly actions are effective in doing so. This is an exam- 

le of a portfolio problem with endogenous uncertainties in which 

he failure probability depends on all fortification decisions. 

Table 1 shows the solution times in seconds for randomly gen- 

rated instances, comparing the computational performance with 

nd without the probability cuts discussed in Section 3.7 . At each 

ecision node, there are 4 decision variables (i.e., z(s i | s I(i ) ) , two

ossible decisions for each information state). Thus, for the given 

umber of reports N, there are 4 N different decision strategies so 

hat in the case of 9 decisions, there 4 9 = 262 122 strategies. Be- 

ause all nodes are binary and there are 2 + 2 N nodes, the number 

f real variables (i.e., π(s ) for path probabilities) is 2 2 N+2 The re- 

ults show the average (Avg) and standard deviation (Std) for 100 

roblem instances. A time limit of 25 200 seconds (7 hours) was 

sed. The entry “-” denotes cases for which no solution could be 

ound within thee 7h time limit. As can be observed, the probabil- 

ty cuts greatly improve the performance of the solver. 

http://github.com/gamma-opt/DecisionProgramming.jl
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Table 1 

Results for samples of 100 randomly generated N-monitoring instances. 

Number of variables Without probability cuts With probability cuts 

# Decisions N Binary Real Avg Std Avg Std 

2 8 64 0.01 0.01 0.01 0.00 

3 12 256 0.12 0.08 0.02 0.01 

4 16 1 024 0.79 0.53 0.07 0.02 

5 20 4 096 5.94 2.80 0.35 0.19 

6 24 16 384 77.35 46.31 2.44 1.63 

7 28 65 536 676.35 468.09 20.58 17.48 

8 32 262 144 8 474.00 7 377.28 268.93 330.89 

9 36 1 048 576 - - 1 727.19 2 880.20 

Table 2 

Results for the pig farm problem for different numbers of decision periods. 

# Months Optimal value (DKK) Solution time (s) 

3 764 0.01 

4 727 0.04 

5 703 0.62 

6 686 19.52 

7 674 617.21 

Fig. 3. The pig farm problem with three decision periods ( Lauritzen & Nilsson, 

2001 ). 
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.2. The pig farm problem 

In the pig farm problem (see Lauritzen & Nilsson, 2001 ), a vet- 

rinary doctor visits a pig farm each month to test each pig for a 

isease and decides, based on the uncertain test result, whether or 

ot to inject the pig with a drug that helps prevent and cure the 

isease at a cost of 100 DKK. After four months, healthy pigs are 

old for 1 0 0 0 DKK and diseased ones for 300 DKK. Because the

octor has no access to individual records for each pig, she has to 

ake the treatment decision based on the most recent test result 

ithout knowing earlier injection decisions. This problem is repre- 

ented by a limited memory influence diagram (LIMID) in Fig. 3 . 

Despite its practical relevance and conceptual simplicity, this 

roblem is not soluble . As a result, the Single Policy Update al- 

orithm (which is based on solving a series of local optimization 

roblems) is not guaranteed to converge to the global optimum 

for details, see Lauritzen & Nilsson, 2001 ). With Decision Program- 

ing, this problem can nevertheless be solved to global optimal- 

ty relatively efficiently. Table 2 presents the optimal solutions and 

heir computation times both for the original four-month version 

f the problem with three decision periods (in which there are 

4 different strategies, corresponding to 4 × 4 × 4 combinations of 

he four local decision strategies in each of these three months), 

s well as extensions for the same problem up to seven monthly 
560 
ecision periods with the same numerical parameters. Here, the 

umber of strategies grows rapidly with the number of periods, 

eaning that solving the problem through explicit enumeration 

ecomes increasingly impractical. In the case of seven periods, for 

xample, there are 4 7 = 16 384 decision strategies. 

The formulations in Section 5.4 help determine the non- 

ominated strategies based on the consideration of the two ob- 

ectives of maximizing (i) the overall expected utility and (ii) the 

onditional expectation in the lower α = 20% tail. Fig. 4 shows 

he overall expected utility (assuming risk-neutral preferences over 

onetary consequences) and the conditional CVaR expectation in 

he lower tail of for each of the 64 decision strategies for this 4- 

onth pig problem. 

In Fig. 4 , the four non-dominated strategies are connected and 

arked with orange circles, while the remaining 60 dominated 

trategies are marked with blue circles. Going from left to right, 

he first non-dominated strategy has the highest expected utility, 

hile the fourth one has the highest conditional expectation in the 

0% lower tail. The vaccination policies in these non-dominated 

trategies are, respectively, as follows: 

1. Never treat at 1st month. Treat at 2nd and 3rd month if and 

only if test results are positive. 

2. Never treat at 1st and 2nd month. Treat at 3rd month if and 

only if test results are positive. 

3. Never treat at 1st and 3rd month. Treat at 2nd month if and 

only if test results are positive. 

4. Never treat at any of the 3 months. 

Thus, the local strategy of never treating in the first month is 

 robust decision recommendation as it is contained in all non- 

ominated strategies and thus in the set of ‘core’ selections in the 

ense of Robust Portfolio Modelling (RPM) ( Liesiö, Mild, & Salo, 

0 07; 20 08 ). Furthermore, all local strategies which suggest treat- 

ents based on negative test results can be ruled out from con- 

ideration, because they are not included in any non-dominated 

trategies and thus belong to the set of ‘exterior’ RPM selections. 

The chosen level α = 20% could be have been set at other levels, 

oo (say, at 5% or 10%), leading to the introduction of other objec- 

ive functions that could complement or replace the objective as- 

ociated with α = 20% . Furthermore, because the fourth year cash 

ow is either 1 0 0 0 or 30 0, preceded by either 0, 1, 2 or 3 in-

ections at a cost of 100 during the first three months, the final 

ash position will be 0, 10 0, 20 0, 30 0, 70 0, 80 0, 90 0 or 1 0 0 0

all in DKK) whereby the probability of each of these positions 

epends on the selected decision. For example, in the pig farm 

xample there are eleven first-order stochastically non-dominated 

trategies. Among these, there are seven that have an expected fi- 

al cash position over 670 DKK; but none of these seven strategies 

nvolve any first period injection. Thus, in the light of this infor- 

ation, one could consider omitting the first period test entirely. 

his notwithstanding, the eleven stochastically non-dominated 
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Fig. 4. Expected utilities and conditional expectations in the lower α = 0 . 20 tail. The four non-dominated strategies are connected and marked with orange circles. 
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trategies are instructive in that they also reflect the preferences 

f a highly risk averse DM who is intent on maximizing the prob- 

bility of having a strictly positive final cash position. In this case, 

t is optimal to provide first period injections regardless of the test 

esult. This strategy is stochastically non-dominated, albeit with a 

ery low expected cash position at 583 DKK. 

.3. Computational performance, comparative advantages and future 

xtensions 

The computational performance of Decision Programming can 

e enhanced in several ways. For example, if the influence diagram 

ontain chance nodes that do not belong to the information set 

f any decision node, then this structure can be exploited as fol- 

ows. Specifically, let D = D ∪ { i | ∃ j ∈ D s . t . i ∈ I( j) } be the union

f decision nodes and their information sets and similarly C = C ∪ 

 i | ∃ j ∈ C s . t . i ∈ I( j) } . Then, for a given strategy Z, the path prob-

bility s is p(s ) = p(s 
C 
) = 

∏ 

i ∈ C p(s i | s I(i ) ) for any active path s ∈
 Z = { s ∈ S | Z(s I( j) ) = s j , j ∈ D } and 0 otherwise. Now, define binary

ecision variables x (s ′ ) ∈ { 0 , 1 } , s ′ ∈ S 
D 

= { s 
D 
| s ∈ S} such that the

onstraints 1 − [ | D | − ∑ 

j∈ D z(s ′ 
j 
| s ′ 

I( j) 
)] ≤ x (s ′ ) ≤ 1 

| D | 
∑ 

j∈ D z(s ′ 
j 
| s ′ 

I( j) 
)

old for s ′ ∈ S 
D 

. Then, x (s 
D 
) = 1 if and only if the s 

D 
is contained

n an active path s ∈ S Z and the objective function can be written

s E [ U(s ) | Z] = 

∑ 

s ∈ S Z x (s 
D 
) p(s 

C 
) U(s V ) . Thus, the number of deci-

ion variables x (s 
D 
) is at most i ∈ 

∏ 

i ∈ D | S i | , which can be smaller

han the total number of paths | S| = i ∈ 

∏ 

i ∈ C∪ D | S i | . In (20) , it is

lso possible to replace the decision constraints for each decision 

y the single constraint π(s ) ≤ x (s 
D 
) . 

Further improvements in computational performance can be 

ought by noting that because the path probabilities satisfy the 

onstraint π(s ) ≤ p(s ) in (19) and because the utilities can be 

ormalized into the [0,1] interval so that U(s ) ≤ 1 , s ∈ S, we have
 

s ∈ S ′ π(s ) U(s ) ≤ ∑ 

s ∈ S ′ p(s ) . Thus, the contribution of any given 

ubset of paths S ′ � S to the total expected utility is bounded from 

bove by 
∑ 

s ∈ S ′ p(s ′ ) . This can be exploited to obtain an approxi- 

ate solution by omitting paths with very low probabilities and 
561 
y computing the optimum based on the more probable paths. 

he computed optimum will then provide a lower bound for the 

rue optimum, while the sum of probabilities for the omitted paths 

ives an upper bound for how much higher than the computed ap- 

roximate solution the true optimum can be. For example, in the 

monitoring example in Section 6.1 . with an initial binary load 

 and N = 8 binary reports on this load, there are 2 9 = 512 sub-

aths of length nine, defined by the initial load L followed by the 

ight reports R i , i = 1 . . . , 8 . Based on the probability distributions

n Section 6.1 , the 62% most probable subpaths account for about 

9% of the total probability. Hence, a solution which is within 1% of 

he optimum can be obtained by using paths which are extensions 

f these most probable subpaths. 

In comparison with solution approaches based on the explicit 

numeration of strategies, Decision Programming has comparative 

dvantages when the total number of strategies is large relative 

o the number of paths. For example, in the N monitoring ex- 

mple, it could be of interest to assess what benefits could be 

ained by sharing some or even all measurement reports to in- 

orm the actions. In this case, the number of paths would remain 

he same, but the number of decision strategies would grow ex- 

remely rapidly. To see this, assume that all information is shared 

o the actions. Then each of the 2 N possible combinations of re- 

orts corresponds to an information state that is available to the 

actions. For each of these combinations, one could, in princi- 

le, select any one of the 2 N possible combinations of binary ac- 

ions at the N action nodes. Because these selections can be made 

eparately for each information state, the number total number of 

trategies becomes (2 N ) (2 N ) . 

Concretely, for four N = 4 actions there are 2 10 = 1 024 paths.

ow, if all reports are shared among the actions, the number of 

trategies grows from 4 4 = 256 to (2 4 ) (2 4 ) = 1 . 84 × 10 19 . Still, the

ize of the optimization model (17) –(22) grows rather moderately. 

he number of binary decision variables z(s i | s I(i ) ) grows from 16 

o 128, the number of equality constraints (18) grows from 8 to 48, 

nd the number inequality constraints (19) - (20) stays unchanged 
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t 1 024 and 4 096, respectively. This problem is small enough so 

hat it can be promptly solved to optimality. 

Within this setup, it is possible to assess if the benefits of shar- 

ng information about the actions outweigh the possible costs of 

uch information sharing. Such an assessment can be carried out 

nly on condition that the optimal solution can be determined 

oth (i) when the information is shared and (ii) when it is not. 

n the latter case, the no-forgetting assumption does not hold and 

ynamic programming approaches cannot be deployed effectively. 

rom this perspective, we believe that Decision Programming has 

dvantages in the class of problems that support the design of sys- 

ems in which information is to be shared and exploited optimally. 

We also note that the formulation (17) –(22) has been applied 

o compute optimal strategies for a realistic Prognostics and Health 

anagement problem ( Mancuso, Compare, Salo, & Zio, 2021 ) with 

uch a large number of strategies that the solution could not 

ave been derived through explicit enumeration. This influence di- 

gram in this application has seven five-state chance nodes and 

wo three-state decision nodes so that the number of paths is 

 

7 × 3 2 = 703 125 paths. Each of the two decision nodes are in-

ormed by two five-state chance nodes and thus have twenty- 

ve information states. The total number of strategies is therefore 

 

25 × 3 25 ≈ 7 . 18 × 10 22 . 

Decision Programming can be extended to problems repre- 

ented by hybrid influence diagrams (cf. Li & Shenoy (2012) ), in 

hich some of the decision and random variables associated with 

ecision and chance nodes, respectively, are continuous. There are 

everal cases, depending on whether random variables, decision 

ariables or both are continuous. Here, we offer ideas for ap- 

roaching such problems, under the assumption that the domains 

f all continuous variables are compact and that the utility and 

robability density functions are continuous. 

First, problems involving discrete decisions based on some con- 

inuous random variables can be tackled with techniques such as 

ynamic discretization ( Neil, Tailor, & Marquez, 2007 ). That is, if 

he random variable X i , i ∈ C, is represented by the real-valued ran-

om variable r ∈ R with the probability density function f i (r | s I(i ) )

or the discrete information states s I(i ) ∈ S I(i ) , then this variable can 

e discretized into n i states by defining the intervals [ r k , r k +1 ) , k =
 , . . . , n i with probabilities 

∫ r k +1 
r k 

f i (r | s I(i ) ) dr. If the information set

f this chance node i contains other chance nodes with continuous 

andom variables (say, X j , j ∈ I(i ) ), the discretization needs to pro-

eed in the order of increasing indices so that the discrete infor- 

ation sets S I(i ) are defined first. In deriving the conditional prob- 

bilities (1) , information about the distribution of X j as well as the 

onditional distribution of X i given X j , j ∈ I(i ) will be needed. Mul-

ivariate uncertainties described by m -dimensional random vari- 

bles r m ∈ R 

m could be accommodated by defining intervals over 

ach of the m dimensions and by deriving probabilities by inte- 

rating over the resulting m -boxes. 

The formulation based on binary variables x 
D 
(s ) , as outlined at 

he beginning of this section, can be very useful in discretizing 

ontinuous random variables that are not in the information set 

f any decision node. In this case, increasing the granularity of the 

pproximation does not much affect computational performance, 

ecause the number of variables or constraints stays unchanged al- 

hough the number of paths in the objective function grows. This 

ould be would be the case, for instance, in the N monitoring ex- 

mple where the initial load L and the magnitude of the failure F 

o not belong to the information sets of the fortification actions 

 i . Thus, the distributions of L and F could be approximated with 

any intervals without increasing the computation time markedly. 

uch approximations can be guided by minimizing the Kullback- 

eibler distance between the discretized distribution and the un- 

erlying continuous distribution (for an illustration, see Yet et al., 

M

562 
018 ). Even other approximations techniques can also be employed 

see, e.g., Hammond & Bickel, 2013 ). 

If there is some continuous random variable which belongs to 

he information set of a discrete decision variable, then improv- 

ng the accuracy of the approximation increases the number of 

aths and constraints significantly. However, because the number 

f discrete strategies is finite, there then exists a partition of the 

omains of the continuous variable such that one of the discrete 

trategies is optimal over each interval in this partition. Thus, one 

ossibility is to explore such partitions iteratively and to solve the 

esulting optimization models, keeping track of which strategies 

erform best over the different intervals. Comparable simulation- 

ptimization approaches have been tackled in the context of diag- 

ostic testing problems, for example (see, Hynninen, Vilkkumaa, & 

alo, 2020; Müller, Berry, Grieve, Smith, & Krams, 2007 ). 

If there are continuous decision variables with discrete informa- 

ion states, then the task is to choose which real-valued decision 

hould be chosen for each information state. Here, one possibil- 

ty is to generate manageable numbers of candidates (for instance 

hrough sampling) that represent possible local decision strategies 

nd to solve the resulting problems repeatedly to identify ‘good’ 

trategies which are optimal within their own set of candidates 

nd from which the best performing ones are taken forward to 

enerate recommendations. In principle, the generation of addi- 

ional candidates for local decision strategies could be guided by 

pplying ideas from augmented nested sampling which has been 

pplied successfully in MEU problems in two-stage decisions with 

 single endogenous uncertainty (see, e.g., Bielza, Müller, & Rios In- 

ua, 1999; Ekin, Polson, & Soyer, 2017; Ekin, Walker, & Damien, 

020 ). Yet, in our context the characterization of the joint probabil- 

ty distribution over all decisions and chance events would in most 

ases prove challenging. Moreover, it could be hard to provide con- 

ergence guarantees, because some of the conditional probabilities 

t chance nodes may be zero for some information states. 

Importantly, the generality of the MILP-formulation makes it 

ossible to exploit remarkable improvements in professional-grade 

olver implementations such as Gurobi and CPLEX in a relatively 

traightforward manner instead of relying on ad-hoc implementa- 

ions which are not readily available, tend to be problem specific 

nd may provide few guarantees for having followed sound soft- 

are engineering practices in terms of versioning, updating and 

ontinuous improvement. In this regard, our contribution repre- 

ents an important step forward in addressing an increasingly large 

lass of problems based techniques such as decomposition, paral- 

elization and heuristic methods that have made considerable in- 

oads in solving other challenging MILPs. Here, there are two par- 

icularly promising avenues for investigation. The first is to investi- 

ate the formulation (17) –(22) through the lenses of combinato- 

ial analysis and convex analysis on polyhedral spaces to derive 

tronger formulations from the standpoint of LP relaxation. This 

ould suggest additional valid inequalities and/or relaxations of 

he integrality constraints on z(s j | s I( j) ) . The second direction is 

o investigate decomposition approaches that exploit the problem 

tructure to identify possibilities for parallelization. In particular, 

ecause for any strategy Z ∈ Z the set of active paths s ∈ S Z is a

mall subset of all paths, it is possible develop column generation- 

ased approaches (using a professional-grade framework such as 

olving Constraint Integer Programs, see https://www.scipopt.org/ ). 

oth avenues, which have proven very efficient in other challeng- 

ng MILPs, such as vehicle routing and scheduling problems, repre- 

ent exciting research directions for future work. 

. Summary and conclusions 

In this paper, we have developed Decision Programming as an 

ILP optimization approach for solving mixed-integer multi-stage 

https://www.scipopt.org/
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ecision problems with discrete decisions and chance events. Such 

roblems can be represented as influence diagrams, including LIM- 

Ds in which the usual ‘no-forgetting’ assumption may not hold. In 

ur approach, risk preferences can be captured through non-linear 

tility functions over consequences or, alternatively, by extending 

he objective function with terms for risk measures or by intro- 

ucing risk constraints. Multiple objectives can be handled, for in- 

tance, by using a weighted additive linear function to aggregate 

onsequences (or their utilities) across different value nodes. The 

et of all non-dominated strategies, too, can be computed with 

ILP by employing a weighted linear objective function together 

ith the sequential introduction of constraints to eliminate dom- 

nated strategies and already discovered non-dominated strategies 

rom consideration. 

In the context of stochastic optimization, Decision Programming 

s particularly useful in mixed-integer decision problems where 

he probabilities in the scenario tree depend endogenously on ear- 

ier integer-valued decisions. This ability to handle endogenous un- 

ertainties can be helpful, for instance, when appraising R&D and 

arketing investments, because the size of the market as well as 

he products’ market performance are often contingent on these 

arlier decisions. From this perspective, the proposed approach can 

e viewed as a generalization of Contingent Portfolio Program- 

ing (see Gustafsson & Salo (2005) and the on-line companion) 

o problems where the probabilities of chance events associated 

ith branches of the scenario tree depend on project selection de- 

isions. 

Importantly, the Decision Programming framework can be em- 

loyed to address problems that are not amenable to dynamic pro- 

ramming techniques, such as problems in which earlier decisions 

annot be recalled, there are multiple agents, or deterministic and 

hance constraints make it impractical or impossible to conven- 

ional techniques. Therefore, although Decision Programming has 

arallels to developments in stochastic mixed-integer dynamic pro- 

ramming (such as employing mathematical programming formu- 

ation to find optimal policies, as in the seminal work of Manne 

1960) and ensuing literature; see Bertsekas (2012) for a thorough 

xposition), Decision Programming makes it possible to tackle a 

roader class of problems by exploiting the expressiveness of in- 

uence diagrams for problem structuring, whereafter the equiva- 

ent MILP formulations that can be solved using off-the-shelf MILP 

olvers. 

Based on our numerical experiments, the Decision Program- 

ing approach can be used to solve problems of realistic size to 

ptimality, even if it does suffer from the curse of dimensionality 

ust like other exact approaches for solving dynamic problems with 

 larger number of decision periods and uncertainties. We have 

herefore outlined approaches for enhancing its computational per- 

ormance, for example by exploiting the properties of the problem 

tructure or by assessing which paths could be eliminated from 

onsideration based on their low probabilities in order to compute 

ood approximate solutions. We also believe that future research is 

arranted for investigating how techniques which have been pro- 

osed for convex optimization problems with continuous variables 

such as those proposed by Dupa ̌cová, Gröwe-Kuska, & Römisch, 

003 ) can be adapted to deal with continuous decision and ran- 

om variables. 

In summary, Decision Programming holds promise in extending 

he expressiveness of influence diagrams to problems in which it 

ay be necessary to account for the probability distribution or de- 

ision consequences and their uncertainties, the presence of mul- 

iple objectives or the interdependencies between decisions that 

aken by multiple agents. At the same time, it provides a struc- 

ured and systematic approach so that practitioners need not be 

verly concerned with specific problem characteristics (such as 

hether or not the regularity or no-forgetting assumptions are ful- 
563 
lled) in deciding how the problem should be formulated as an 

ptimization model. This helps circumvent the need to implement 

ifferent solution methods, allowing practitioners to focus on mod- 

lling, while relying on the maturity and ever improving perfor- 

ance of mathematical programming solvers. 
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ppendix A 

roof of Theorem 1. Let Z ∈ Z and take any path s ∈ S. The in-

ormation set of the first node k = 1 is empty. If this node is a

hance node, the random variable X 1 does not depend on Z and 

hus π1 (s ) = P (X 1 = s 1 ) = P (X 1 = s 1 | Z) . If it is a decision node,

here are two cases. First, if Z 1 = Z 1 (∅ ) = s 1 , it follows that P (X 1 =
 1 | Z) = 1 while (5) gives z(s 1 ) = 1 . Thus, by (8) we have π1 (s ) =
(s 1 ) = 1 = P (X 1 = s 1 | Z) . Second, if Z 1 � = s 1 , then P (X 1 = s 1 | Z) =
 while z(s 1 ) = 0 gives π1 (s ) = 0 , and hence π1 (s ) = 0 = P (X 1 =
 1 | Z) in this case, too. Thus, Theorem 1 holds for k = 1 . 

Assume that (13) holds for j ∈ 1 , . . . , k − 1 with k − 1 < n . We

how that it holds for k , too. If k ∈ C is a chance node, { j | j ∈ D, j ≤
 } = { j | j ∈ D, j ≤ k − 1 } and 

 (s 1: k | Z) = 

(∏ 

i ∈ C 
i ≤k 

P 

(
X i = s i | X I(i ) = s I(i ) 

))(∏ 

j∈ D 
j≤k 

I 
(
Z j (s I( j) ) = s j 

))

= P 

(
X k = s k | X I(k ) = s I(k ) 

)( ∏ 

i ∈ C 
i ≤k −1 

P 

(
X i = s i | X I(i ) = s I(i ) 

))
( ∏ 

j∈ D 
j≤k −1 

I 
(
Z j (s I( j) ) = s j 

))

= P 

(
X k = s k | X I(k ) = s I(k ) 

)
πk −1 (s ) = πk (s ) , 

here the last equality follows the induction hypothesis and (7) . 

nalogously, if k ∈ D is a decision node, then 

 (s 1: k | Z) = I 
(
Z k (s I(k ) ) = s k 

)( ∏ 

i ∈ C 
i ≤k −1 

P 

(
X i = s i | X I(i ) = s I(i ) 

))
( ∏ 

j∈ D 
j≤k −1 

I 
(
Z j (s I( j) ) = s j 

))

= z(s k | s I(k ) ) πk −1 (s ) = πk (s ) , 

here the last equality follows the induction hypothesis and Eqs. 

5) and (8) . �

roof of Proposition 1. Choose α ∈ (0 , 1] and consider η∗ = 

aR α(Z) which, by (29) , is well defined. Then constraints (33) –

36) are satisfied by ρ(s ) , ρ(s ) , λ(s ) and λ(s ) , defined so that

(s ) = λ(s ) = 1 for paths such that C(s ) < η∗; λ(s ) = 1 and λ(s ) =
 for C(s ) = η∗; and λ(s ) = λ(s ) = 0 for C(s ) > η∗. From (37) - (39)

t follows that ρ(s ) = ρ(s ) = π(s ) when C(s ) < η∗; 0 = ρ(s ) = 0 ≤
(s ) ≤ π(s ) for C(s ) = η∗; and ρ(s ) = ρ(s ) = 0 when C(s ) > η∗.

y the choice of η∗, is it possible to choose variables ρ(s ) ≥
 for C(s ) = η∗ so that (40) gives the correct tail expectation 

 

s ∈ S ρ(s ) C(s ) /α in (31) . Finally, assume that there exists another 
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olution for some η′ < η∗. But then (40) implies that the prob- 

bility α is attained as the sum of those paths whose conse- 

uence is lower than or equal to η′ , violating the assumption that 
∗ = VaR α(Z) . �

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at 10.1016/j.ejor.2021.12.013 
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