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Abstract

As one of the approaches to scenario analysis, cross‐impact methods provide a

structured approach to building scenarios as combinations of outcomes for selected

uncertainty factors. Although they vary in their details, cross‐impact methods are

similar in that they synthesize expert judgments about probabilistic or causal

dependencies between pairs of uncertainty factors and seek to focus attention on

scenarios that can be deemed consistent. Still, most cross‐impact methods do not

associate probabilities with scenarios, which limits the possibilities of integrating

them in risk and decision analysis. Motivated by this recognition, we develop a cross‐

impact method that derives a joint probability distribution over all possible scenarios

from probabilistically interpreted cross‐impact statements. More specifically, our

method (i) admits a broad range of probabilistic statements about the realizations of

uncertainty factors, (ii) supports the process of eliciting such statements, (iii)

synthesizes these judgments by solving a series of optimization models from which

the corresponding scenario probabilities are derived. The resulting scenario

probabilities can be used to construct Bayesian networks, which expands the range

of analyses that can be carried out. We illustrate our method with a real case study

on the impacts of three‐dimensional (3D)‐printing on the Finnish Defense Forces.

The scenarios, their probabilities, and the associated Bayesian network resulting

from this case study helped explore alternative futures and gave insights into how

the Defence Forces could benefit from 3D‐printing.
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1 | INTRODUCTION

Over the past decades, scenario analysis has established itself as one

of the most widely employed approaches to support long‐term

planning and strategic management (Chermack, 2022; Scholz &

Tietje, 2002). The range of scenario methods spans from purely

qualitative (Bowman, 2016; Schwartz, 2012) to purely quantitative

(Pereira et al., 2010; Siljander & Ekholm, 2018), with a rich array of

methods that combine aspects of both (Godet, 1986; Kemp‐

Benedict, 2004; Kosow & Gaßner, 2008), whereby this diversity

reflects differences in the requirements of different application

contexts. The properties of the appropriate method depend on
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questions such as: (1) What is the context of strategic planning and

what are the issues at stake? (2) For what purposes are the scenarios

created and to whom are they presented? (3) What are the time

horizons involved? (4) What data (qualitative or quantitative) can be

obtained to support the formulation of scenarios? Consideration of

questions such as these reveals that the requirements on scenarios

that are designed to cultivate sound managerial thinking (Lehr

et al., 2017) are likely to differ markedly from those that are needed

to support risk analyses of safety‐critical systems such as nuclear

waste repositories (Tosoni et al., 2018).

A persistent challenge faced by scenario modelers is the inherent

trade‐off between what Kemp‐Benedict (2004) calls “complexity”

and “complicatedness.” That is, the more details are included in the

narrative or the description of uncertainty factors,1 the more detailed

(and possibly also more captivating) the scenario is likely to become;

but at the same time, the number of scenarios that would be needed

to span the full range of uncertainties would grow dramatically

(Carlsen et al., 2016). In the face of this inherent trade‐off, most

methods of qualitative scenario analysis advocate the formulation of

relatively few scenarios that are diverse enough to facilitate, for

instance, the formulation of robust decision strategies that perform

satisfactorily across all scenarios regardless of what the future may

bring (Bradfield et al., 2005; Wright & Cairns, 2011). In the

exploration of possible future, one of the advantages of quantitative

methods such as cross‐impact analysis (CIA) is that they are capable

of retaining all possible scenarios in the analysis instead of focusing

only on a few.

In this paper, we adhere to the cross‐impact interpretation

introduced in Salo et al. (2021) where cross‐impacts are measured in

terms of the relative change in the probability of a given event when

another event is known to occur. More specifically, we build on the

literature which embraces probability theory as a theoretically

coherent framework within which cross‐impact statements are

interpreted. While the seminal contributions on CIA (see, e.g.,

Dalkey, 1971; Gordon & Hayward, 1968) employ uncertainties with

binary outcomes only (which either occur or do not), we follow Salo

et al. (2021) and view uncertainty factors as random variables which

take on one out of several possible outcomes. Thus, each scenario

corresponds to a selection of one of the possible outcomes for every

uncertainty factor. That is, because uncertainty factors are not

limited to binary outcomes, our proposed approach is flexible enough

to admit familiar concepts such as key factors and driving forces that

are common in scenarios built using intuitive logics (see, e.g., Phadnis

et al., 2014).

For the purpose of deriving scenario probabilities, we consider all

scenarios that can be formed as combinations of outcomes for

uncertainty factors. To some extent, this allows us to address three of

the seven concerns with probabilistic approaches as outlined by

Derbyshire (2017): determinism, openness, and additivity (the

remaining four being nonstationarity, crucial decisions, accurate

aggregation, and innate subjectivity). First, the concern of determi-

nism is addressed in that no outcome is considered to be represented

by a single scenario only: rather, any outcome can be part of many

scenarios which may have different probabilities. Second, the

concern with openness refers to the need to elaborate all possible

outcomes before probabilities can be assigned. While this is the case

in our approach as well, the computation of probability estimates for

individual outcomes of uncertainty factors helps verify that the

stated outcomes are collectively exhaustive in the sense that they

cover all possibilities. Moreover, it is possible to introduce further

outcomes to the analysis by (i) introducing new uncertainty factors or

(ii) dividing some outcomes of previously introduced uncertainty

factors into their constituent parts. This helps address the concern

with additivity as the initial scenarios can be transformed into more

detailed scenarios while still retaining the validity of previously

elicited probability judgments. The other four concerns cannot be

readily resolved through the development of computational ap-

proaches such as ours. However, they can be arguably addressed

through sound methods for expert judgment elicitation (see, e.g.,

Bolger & Rowe, 2015; Bolger & Wright, 2011; Meyer &

Booker, 2001).

Although we use the same interpretation of cross‐impacts and

scenarios as Salo et al. (2021), the main contribution of the present

paper is quite different. Where Salo et al. (2021) present robust

optimization methods for risk analysis, our main contribution in this

paper is the development of a probabilistic cross‐impact method

which (i) adopts a well‐founded interpretation of cross‐impact

statements and (ii) derives probability estimates for all possible

scenarios in a computationally efficient manner during the elicitation

process. The resulting distribution of scenario probabilities can be

used for several purposes. For example, it can be employed to assess

the relative importance of different scenarios or to produce

integrated analyses that involve statistical data sets as well. It can

also be employed as an integral part of decision support methods like

stochastic optimization (Schneider & Kirkpatrick, 2007), robust

optimization (Ben‐Tal et al., 2009), and decision analysis (Edwards

et al., 2007). We also demonstrate how the scenario probabilities can

be used to construct Bayesian networks for problem visualization and

what‐if analyses.

Furthermore, we describe a case study in which the method was

employed to assess the significance of advances in three‐dimensional

(3D)‐printing technology for the Finnish Defence Forces. Additive

manufacturing, colloquially referred to as 3D‐printing, refers to a

wide variety of processes that can be used to construct a 3D object

based on a digital file (Kietzmann et al., 2015). The methods by which

this is achieved include successively depositing, joining, or solidifying

relatively thin material layers. There is plenty of ongoing research and

product development on all these methods, which accelerates

industry growth (Jiménez et al., 2019). In effect, 3D‐printing

technology shows a lot of promise for military use with applications

ranging from entirely novel production methods to spare part

logistics (Booth et al., 2018; Heinen & Hoberg, 2019).

The rest of this paper is structured as follows. Section 2 discusses

earlier methods of cross‐impact analysis. Section 3 formulates our

method and its computations. Section 4 outlines the case study.

Section 5 concludes.
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2 | METHODS OF CROSS‐ IMPACT
ANALYSIS

The origins of cross‐impact methods can be traced to the 1960s

when Theodore Gordon and Olaf Helmer developed a game called

Future for the Kaiser Aluminum and Chemical Company

(Gordon, 1994). In this game, uncertain events with a given prior

probability were written on cards. A die was then rolled to simulate

whether or not that event happened. If it did, the card was flipped

over revealing how the probabilities of other events would change as

a result. These were the first cross‐impacts.

Subsequently, notable contributions to the development and

application of cross‐impact methods have been made by Gordon

(Gordon, 1994; Gordon & Hayward, 1968), Helmer (1977, 1981), and

others (Godet, 1976, 1994; Panula‐Ontto, 2019). In many of the early

methods and their later variants, the probabilities are estimated by

considering causal relations between events, even if the temporal

occurrence of these events is not necessarily exactly specified. There is

the underpinning assumption that the elicitation of conditional probabilit-

ies can be instructive in its own right and also potentially cognitively less

demanding because, in the elicitation of marginal probabilities, the

respondent would need to take an implicit expectation with regard to all

the uncertainty factors whose outcomes are not specified for the event

whose probability is being elicited. Computationally, many of these cross‐

impact methods can be viewed as computerized implementations of the

original card game, in the sense that the event probabilities define Monte

Carlo chains in which the cross‐impacts cause changes in event

probabilities when a different event is realized.

In principle, the sequences of events in these early Monte Carlo

simulation methods could be viewed as scenarios. However, these

methods are not well suited for estimating the probabilities of all

scenarios, because a very large number of simulation runs would be

required to obtain accurate results. This would especially be the case

for the scenarios with low probabilities which, by definition, would

not appear but in a small fraction of the total number of simulation

runs, but could still give rise to high consequences.

Partly in response to this recognition, dedicated scenario

probability estimation methods have been developed. One of the

first is presented by Dalkey (1971) who computes a feasible set of

scenario probabilities for a consistent cross‐impact matrix (i.e., a

matrix whose elements do not violate the laws of probability theory).

Another example is the BASICS tool of Batelle Memorial Institute

which computes scenario probabilities using abstracted cross‐impact

statements instead of strictly probabilistic ones. However, in these

methods and even more generally, the specification of cross‐impact

estimates that are fully consistent with the tenets of probability

theory is not easy for any expert (Huss & Honton, 1987).

The third category of cross‐impact methods, which we refer to as

structural analysis methods, eschew probabilities altogether. These

methods seek to identify key scenarios or uncertainty factors based

on the strengths of relationships between the factors as quantified on

an ordinal scale. As in BASICS, these scales usually do not have a

strictly probabilistic interpretation and they can be fully qualitative.

Methods in this category include MICMAC (Godet, 1994), Cross‐

Impact Balances (Weimer‐Jehle, 2006), and the consistency analysis

method proposed by Seeve and Vilkkumaa (2022), among others.

Because these methods do not involve probabilities, they tend to be

easy to use and computationally straightforward, making them well‐

suited for exploratory analyses. However, from a theoretical point of

view, without probabilities, they cannot be integrated with probabi-

listic risk analysis methods or the tenets of expected utility theory.

The method proposed in the present paper is focused on the

estimation of scenario probabilities in a setting where some of the

cross‐impact estimates may be inconsistent. This method is

predictable in the sense that the same set of cross‐impact

estimates always produces the same scenario probabilities, which

is in contrast to the presence of some randomness of results

obtained by simulation approaches. It also scales up rather well to

problems with many uncertainty factors and outcomes, as

exemplified by our case study on 3D printing and computational

tests in Appendix B.

3 | METHODOLOGICAL DEVELOPMENT

As in Salo et al. (2021), a scenario is here defined as a combination of

outcomes of uncertainty factors. The uncertainty factors are modeled

as discrete random variables X i N, = 1, …,i which have outcomes

S n= {1, …, }i i . Thus, a scenario is a vector s ss = ( , …, )N1 , where ∈s Si i is

the outcome for uncertainty factor i. The set of all possible scenarios

is the Cartesian product ≔S S S= XN i
N

i1: =1 . Thus, the number of all

possible scenarios is S n= ∏i
N

i=1  .

For a subset of uncertainty factors F N{1, …, }, a partial scenario

is defined as a combination of outcomes for the uncertainty factors

which are contained in F . Consequently, the set of partial scenarios

for F is S S= X  F i F i. An example of a partial scenario is s ss = ( , …, )i i1: 1

which consists of outcomes for the i first uncertainty factors and thus

belonging to the set of partial scenarios S S= Xi j
i

j1: =1 .

When all uncertainty factors belong to F , then, by construction,

the set of corresponding partial scenarios coincides with the set of all

scenarios. If only the first i uncertainty factors are considered so that

i N< , then partial scenarios do not cover outcomes for the

uncertainty factors j i> .

For the purposes of probabilistic analysis, however, any partial

scenario ∈s s Ss = ( , …, )i i i1: 1 1: is compatible with all those (full) scenarios

in which the outcomes of the first i uncertainty factors are the same as in

the partial scenario s i1: . Thus, any partial scenario s i1: can be viewed as

the collection of those scenarios that can be obtained by extending this

partial scenario with outcomes for the uncertainty factors j i N= + 1, …,

so that ∈ { }E s S s s j is( ) = ′ ′ = , = 1, …,i j j1:  . Furthermore, the probabil-

ity of the partial scenario ∈ S i Ns , ≤i i1: 1: can be defined as the sum of

the probabilities of those scenarios which can be obtained by extending it

to full scenarios so that

∈

∑p ps s( ) = ( ).i
E

N
s s

1:
( )

1:

N i1: 1:
(1)

ROPONEN and SALO | 3 of 20

 25735152, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ffo2.165 by A

alto U
niversity, W

iley O
nline L

ibrary on [18/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Much in the same way, the marginal probability of the outcome

∈l Sj for the jth uncertainty factor is the sum of probabilities for all

those scenarios in which this uncertainty factor takes on this

outcome, that is,

∈

∑P X l p s( = ) = ( ).j

S s ls =i j1:  (2)

In referring to partial or full scenarios (which correspond to the cases

i N< and i N= , respectively), we may drop the subscript referring to the

number of uncertainty factors. In this case, if ∈ Ss i1: and ∈j i{1, …, },

then sj refers to the outcome of the jth uncertainty factor in s.

The above definitions are general in that the uncertainty factors

can represent events with binary outcomes (something happens/

does not happen) as well as multi‐state outcomes (the realization of

the ith uncertainty factor is one of ni possible outcomes). The setup is

broad enough to accommodate real‐valued random variables, given

that the measurement scale for recording possible outcomes can be

typically discretized into a set of disjoint and mutually exhaustive

intervals. For example, the rise in global temperatures during the

100‐year period from 2000 to 2100 can be categorized as low (<3°C),

medium (3°C‐5°C), or high (>5°C). Because time is a real‐valued

variable of this kind, it is also possible to include uncertainty factors

whose realization indicates when a given event will occur.

A simplified example of what uncertainty factors and scenarios can

look like can be seen in Table 1. The fictive island nation of Soisalo,

located in some ocean, currently produces most of its electricity with

imported natural gas, but the government is looking to transition to

carbon‐free electricity. As this transition is only in its early planning stages,

an outside observer has estimated the outcomes relating to nuclear

power, renewables (wind and solar), and electricity storage as listed in

Table 1. Highlighted in blue is the scenario in which Soisalo ends up

investing mostly in nuclear power and very little in renewables, but the

total number of scenarios that could be constructed from these three

uncertainty factors is 3 × 4 × 3 = 36. Any realistic examination of

electricity production at a national level would have more than three

uncertainty factors, including perhaps other alternatives for energy

production or more detailed subdivisions of the alternatives considered

here. Yet the size of this illustrative example is kept small on purpose to

make it easier to follow when we revisit it later.

In what follows, we develop our method for estimating scenario

probabilities in four parts. Section 3.1 presents the basic definitions used

for cross‐impact multipliers. Section 3.2 describes the basic method for

computing the scenario probabilities. Section 3.3 explains how conditional

independence information can be harnessed to improve the speed and

accuracy of the estimation process. Section 3.4 shows how to build

Bayesian networks using conditional independence information and

computed probabilities. Finally, Section 3.5 discusses the limitations of the

method and its computational properties.

3.1 | Cross‐impact multipliers

One rationale for the cross‐impact analysis is that the number of

scenarios is often so large that it is practically impossible to elicit scenario

probabilities directly. For example, from 11 uncertainty factors with three

possible outcomes each, it is possible to define a total of 3 = 177, 14711

distinct scenarios. In this setup, instead of characterizing the scenario

probabilities directly, methods of probabilistic cross‐impact analysis

characterize probabilistic dependencies between uncertainty factors

through cross‐impacts and use such characterizations to infer information

about the scenario probabilities.

In this paper, we employ the cross‐impact interpretation in Salo

et al. (2021), which we call the cross‐impact multiplier approach in

which the cross‐impact between events a and b is defined as

≔C
P a b

P a

( )

( )
,ab


(3)

meaning that

P a b C P a( ) = ( ).ab (4)

Thus, the cross‐impact multiplier specifies how many times

more likely the occurrence of the event a becomes when the

event b is known to occur. Here, it is worth pointing out that the

expressions in (4) do not refer to the temporal sequence in which

the events would occur. For instance, it could be the case that the

event b will occur after the event a within the time horizon of

interest. Still, within such a time horizon, the probability of the

event a may be higher when it is known that the event b, too, will

come about.

Normally, the cross‐impact multipliers are placed into a matrix.

Table 2 shows the cross‐impact multipliers for the energy production

example for Soisalo, as estimated by our assumed outside observer.

There is empirical evidence suggesting that humans are more adept

TABLE 1 Uncertainty factors, their outcomes, and
corresponding marginal probabilities describing the electricity
production in the fictive island nation of Soisalo in 2060.

Uncertainty factor Outcome Probability

1. Nuclear power <1 TWh 0.5

1–5 TWh 0.3

>5 TWh 0.2

2. Renewables <1 TWh 0.3

1–4 TWh 0.2

4–8 TWh 0.3

>8 TWh 0.2

3. Energy storage <10 GWh 0.5

10–400GWh 0.4

>400 GWh 0.1

Note: The outcomes of nuclear power and renewables describe the yearly
production and the outcomes of energy storage describe storage capacity.
Highlighted with blue are three outcomes that together form one possible
scenario.
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at estimating relative magnitudes than providing numerical values

(Gallistel & Gelman, 1992). Thus, one motivation for employing the

above relative change in probability is that statements about the

above ratio (3) may be easier for the experts to provide than

estimates about the conditional probabilities as such.

An appealing property of the cross‐impact multiplier is that it is

symmetric

C
P a b

P a

P a b

P a P b

P b a

P b
C=

( )

( )
=

( )

( ) ( )
=

( )

( )
= .ab ba

  
(5)

This reduces the number of cross‐impacts to be estimated in half

because these multipliers are the same in either direction. This can

also be seen Table 2 in which the lower‐left half is shown in gray.

These gray cells would be equal to those in the top‐right half and thus

they need not be considered separately.

Unlike some earlier cross‐impact methods, such as the seminal work

by Helmer (1981) and Gordon (1994), our interpretation of cross‐impacts

is not limited to causal relations but reflects also other types of

probabilistic dependencies. Specifically, while the presence of a causal

relationship does give rise to probabilistic dependence, all probabilistic

dependencies between pairs of uncertainty factors cannot be attributed

to direct causality between the two uncertainty factors. This would be the

case, for instance, when there is a shared underlying cause for two

distinct events which are not causally related to each other. To illustrate,

consider a situation where two different kinds of alarm systems have

been installed for fire detection, one for heat detection and the other for

smoke detection. Then neither one of the alarms would cause the other

to go off, yet the two alarms would be related to each other in the sense

that there would be a positive correlation between them. Similarly, in

Table 2, the cross‐impacts between outcomes relating to nuclear power

and energy storage are not be interpreted as direct causal relations one

way or another.

However, enforcing the strict mathematical interpretation of

cross‐impact estimates can be challenging, because the experts often

struggle to provide cross‐impact multipliers that satisfy the laws of

probability theory. For example, the seemingly reasonable multipliers

in Table 2 violate these laws, as shown by Table 3 which contains the

joint probabilities of outcomes relating to nuclear power and

renewable energy. The sum of the joint probabilities is 1.014 even

if every probability distribution should sum up to exactly 1.

Furthermore, the marginal probabilities implied by this joint distribu-

tion deviate from the original estimates and from probabilities

calculated from joint distributions of other uncertainty factor pairs.

There are two possible approaches to addressing this issue. One is to

facilitate the elicitation of mathematically consistent cross‐impact

multipliers by proceeding incrementally and by using software tools to

support the elicitation process at each stage of the analysis (Salo

et al., 2021). In this paper, we take the other approach, realizing that the

elicited estimates may not be mutually consistent, but that they are still

informative so it is instructive to use them for deriving a probability

distribution that, by construction, is mathematically consistent and also

fits the elicited estimates as closely as possible.

TABLE 2 A cross‐impact matrix containing the cross‐impact multipliers for the dependencies between the uncertainty factors in Table 1.

ROPONEN and SALO | 5 of 20
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In the methodological development that follows, we employ the

notation p ( ) to refer to the underlying probability distribution P ( ) over

scenarios. Estimates about scenario probabilities are indicated through

p̂ ( ), where the argument specifies which scenarios are being considered.

More generally, all variables with a hat represent estimates which are

used as input variables. Thus, for example, for a given outcome ∈s Si i,

the p sˆ ( )i is the elicited estimate about the marginal probability p s( )i . The

probabilities which are derived from the estimates through computations

are indicated by q ( ). These distinctions are useful in that it is possible, for

example, the explore conditions under which the computed probabilities

are guaranteed to converge to the true underlying probabilities.

For any ∈k Si and ∈l Sj, we introduce the abbreviated notations

≔p P X k( = )k
i i and ≔p P X l( = )l

j j for the marginal probabilities and

p P X k X l= ( = = )k l
i j i j
 for the conditional probability. From (4), we get

p C p p C p p= =k l
i j

kl
ij

k
i

kl
ij

kl
ij

k
i

l
j


 (6)

where p P X k X l= ( = , = )kl
ij i j and Ckl

ij is the cross‐impact multiplier for

the outcome pair in which the outcome for the uncertainty factor i is

k and that for the uncertainty factor j is l.

3.2 | Conditional probability updating

The probabilistic approach proposed by Salo et al. (2021) invites the

respondent to specify lower and upper bounds for the cross‐impact

multiplier (4) and then converts these bounds on the scenario

probabilities ∈p Ss s( ),N N N1: 1: 1: . Together with estimates of the

expected consequences in each of the scenarios, lower and upper

bounds for the expected disutility are then derived to provide an

aggregate measure of risk. In particular, it is consequently possible to

verify whether or not the risk level of the systems is acceptable.

A limitation of this approach is that it presumes that the cross‐

impact statements elicited from the respondents remain fully

consistent (i.e., for any given set of statements that have been

elicited from the respondent, there exists at least one assignment of

probabilities to all scenarios such that the constraints which

correspond to these statements are satisfied). To guide the

respondent in providing such statements, however, it is necessary

to solve an optimization problem with quadratic constraints which

will give rise to computational challenges when the number of

uncertainty factors is large. More generally, this approach is not

suitable for synthesizing a set of possibly inconsistent cross‐impact

statements to determine a single probability distribution.

Against this backdrop, one of the main contributions of this

paper lies in developing a computationally efficient method that

(i) admits cross‐impacts statements, including inconsistent ones, as

well as many other forms of statements that correspond to

constraints on scenario probabilities and (ii) synthesizes such

statements into a single probability distribution over scenarios in

such a way that the resulting distribution represents the best fit to

the statements. The estimates from which the scenario probabilities

are derived consist of marginal probabilities p pˆ , ˆk
i

l
j for all uncertainty

factors and their outcomes and cross‐impact multipliers Ĉkl
ij

for

selected pairs of uncertainty factors and their outcomes. Specifically,

the probability distribution over scenarios can be derived even in the

absence of information about some pairs of cross‐impact multipliers.

To motivate the approach, assume that estimates about the

marginal probabilities p pˆ , ˆk
i

l
j as well as the cross‐impact multiplier Ĉkl

ij

have been elicited. If these estimates are correct in the sense that

p p p pˆ = , ˆ =k
i

k
i

l
j

l
j and C Cˆ =kl

ij
kl
ij , the probability p P X k X l= ( = , = )kl

ij i j is

equal to C p pˆ ˆ ˆkl
ij

k
i

l
j. Equivalently, however, this same probability can be

expressed as the sum of probabilities for all those scenarios such that

X k=i and X l=j . Thus, we have the following constraint on scenario

probabilities

∈
∑ p C p ps( ) = ˆ ˆ ˆ ,

s k s l

kl
ij

k
i

l
j

= , =i j

S Ns 1:
(7)

where the summation on the left side is taken over those scenarios

whose outcomes for the ith and jth uncertainty factors match those

on the right side of the equality.

To consider the situation where several (but not necessarily all)

cross‐impact multipliers and all marginal probabilities have been

specified, assume that there exists a binary relation R S S: ×ij i j such

that ∈s s R( , )i j ij if and only if the estimate Ĉkl
ij
for the cross‐impact

multiplier (4) is available. In this case, the above term would appear

for all pairs of outcomes such that R s s( , )ij i j , suggesting that the

probability distribution that best matches these estimates can be

obtained by solving the minimization problem

∈ ∈
∑ ∑ ∑ ∑ p C p psmin ( ) − ˆ ˆ ˆ

p s i

N

j

i

k l R
s k s l

kl
ij

k
i

l
j

( ) =2 =1

−1

( , )
= , =

2

ij
i j

S Ns 1:
























(8)

TABLE 3 The joint probabilities of outcomes relating to nuclear
power and renewable energy are shown at the intersections of rows
and columns.

Note: Next to the outcome is the original marginal probability estimate.
The marginal probabilities calculated from the joint distribution are shown

outside the matrix.
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Computationally, however, a concern with the problem (8) is that

the optimization would need to be carried out over all scenarios. This

will be challenging if the number of scenarios is large, either because

there are many uncertainty factors or if these factors have several

possible outcomes (recall that the total number of scenarios is n∏i
N

i=1 ,

where ni is the number of possible outcomes for the ith uncertainty

factor).

However, the probability of any scenario ∈s S N1: can be written

as by conditioning the realization of the ith uncertainty factor on the

partial scenario defined by i − 1 preceding uncertainty factors, that is,

⧹ ⧹p p s ps s s( ) = ( ) ( )i N i N i1: 1: (9)

where ⧹s N i1: is the partial scenario that contains the outcomes for all

uncertainty factors except the ith one. In particular, if the terms

⧹p s( )N i1: representing probabilities for the partial scenarios excluding

the ith uncertainty factor are known, then the estimation of the

scenario probabilities becomes a significantly smaller problem in that

it is necessary to only consider cross‐impact multipliers Ĉkl
ij
that relate

to the uncertainty factor i to estimate the conditional probabilities

⧹p s s( )i N i1: .

Hence, for a given ordering of the uncertainty factors, the

relationship (9) can be exploited to build

⋯

p s p s p p s p s

p

p s p s p s s p s

s s s s

s

s s

( ) = ( ) ( ) = ( ) ( )

( ) =

= ( ) ( )… ( ) ( ),

N N N N N N N

N

N N N N

1: −1 1: −1 1: −1 −1 1: −2

1: −2

1: −1 −1 1: −2 2 1 1

  

  
(10)

This relationship leads to the recognition that the scenario

probabilities can be derived iteratively by (i) starting from the

marginal probabilities for the first uncertainty factor p s( )1 ,

(ii) computing the conditional probabilities p s s( )2 1 which represent

the best fit to the cross‐impact multipliers for the outcomes of the

two first uncertainty factors, and (iii) using these conditional

probabilities to estimate the probabilities for partial scenarios which

comprise these two uncertainty factors. After this step, the iteration

can proceed to the third uncertainty factor and so on until all

uncertainty factors have been reached.

Thus, the procedure can be described as follows:

1. Use previously computed probabilities for partial scenarios and

estimates about marginal probabilities and cross‐impact multipli-

ers to compute the conditional probabilities for the next

uncertainty factor whose outcomes are conditioned on the

previously analyzed partial scenarios.

2. Generate the updated set of partial scenarios which includes this

new uncertainty factor. The number of these partial scenarios is

equal to the product of (i) the number of partial scenarios in the

previous iteration and (ii) the number of outcomes for the new

uncertainty factor.

3. Use the computed conditional probability distributions to com-

pute the joint probability distribution for the updated set of partial

scenarios.

More formally, the iteration can be carried out by computing

probabilities for all partial scenarios i Ns , = 1, …,i1: and with the help

of conditional probabilities q s s( )i i i: −1 such that the iteration is

initialized by setting q k p( ) ← ˆk
1 for any ∈k S n= {1, …, }1 1 . At each

step of the ensuing iteration, the conditional probabilities can be

computed from

∈ ∈

∑ ∑ ∑ q k q C p ps smin ( ) ( ) − ˆ ˆ ˆ
q k j

i

k l R S s l
kl
ij

k
i

l
j

s s( ) =1

−1

( , ) { = }

2

i ij i j1: −1 1: −1










 










 
(11)

∈
∈

∑ q k q p k ns s( ) ( ) = ˆ , {1, 2, …, }
S

k
i

i
s i1: −1

 (12)

∈∑ q k Ss s( ) = 1,
k

n

i i i
=1

1: −1 1: −1 1: −1

i

 (13)

∈ ∈q k k n Ss s( ) ≥ 0. {1, 2, …, },i i i i1: −1 1: −1 1: −1 (14)

In the third summation of the objective function, the sum is taken

over those partial scenarios in which the state of the jth uncertainty

factor is equal to the outcome specified by the term in the relation Rij.

The last two constraints ensure that the conditional probability

distribution is well‐defined. The computed probabilities for the next

partial scenarios (which are constructed by appending the states of

the ith uncertainty factor ∈k Si to the previous partial scenarios

s i1: −1) can be defined by q k q q ks s s(( , )) ← ( ) ( )i i i1: −1 1: −1 1: −1 . Thus,

constraint (12) ensures that the marginal probability is the same as

the estimated marginal probability p̂k
i of the outcome s k=i , ensuring

that the computed probabilities match the estimated marginal

probabilities exactly.

Table 4 shows how the iteration proceeds in the Soisalo example.

The first iteration is not conditioned on previously defined

uncertainty factors and thus involves the marginal probability

distribution only. In the second iteration, conditional probabilities

based on alternative outcomes for the first uncertainty factor are

calculated. In the third iteration, conditional probabilities based on

the consideration of outcomes for the first and second uncertainty

factors are derived. As seen from Table 4, the number of conditional

probabilities calculated grows at every step of the iteration. This may

cause problems, not only because of the amount of computation

required but also because cross‐impacts are not well‐suited for

describing highly multivariate probability distributions. Section 3.3

discusses how exploiting conditional independence can mitigate both

these issues.

The reason why cross‐impacts are not sufficient for the

characterization of multivariate distributions fully is that the number

of conditional probabilities q k s( )i1: −1 becomes significantly higher

than the number of cross‐impact multipliers which appear in the

objective function. This is the case especially when only a fraction of

all cross‐impact multipliers have been elicited. If estimates about all

cross‐impact multipliers have been elicited, there are n n∑i j
i

j=1
−1 terms

in the objective function (11). Equation (12) gives rise to ni constraints

and Equation (13) has n∏ j
i

j=1
−1 constraints. The number of parameters

ROPONEN and SALO | 7 of 20
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is n∏ j
i

j=1 , the same as the number of partial scenarios of length i, and

thus the algebraic equation system (12)–(14) is underdetermined, and

thus, multiple optimal solutions may exist.

In general, the specific distribution generated by the optimization

algorithm depends on the method used to solve the problem as well

as the specific starting point used. We used Matlab's built‐in solver's

interior point method with all conditional probabilities q k s( ) = 1 as a

starting point. This produces results close to the uniform distribution,

which seems appropriate in the absence of explicitly stated

information about dependencies.

However, the nonuniqueness of the implied probability distribu-

tion is often not the only problem in using cross‐impacts. An

attractive property of the above optimization formulation is that it is

capable of handling situations where the cross‐impact statements are

not consistent. In this case, at least some of the estimates C p pˆ , ˆ , ˆkl
ij

k
i

l
j

differ from the cross‐impact multipliers and marginal probabilities

implied by the computed probabilities ∈q Ss s( ), N1: . The implied

cross‐impacts C̊kl

ij
can be obtained from the computed probabilities as

∈

∑C
p p

q s˚ =
1

ˆ ˆ
( ).kl

ij

k
i

l
j

S s k s ls{ = , = }i j
(15)

This recognition is useful in that it can be harnessed to support

the identification and possible revision of those cross‐impact

estimates which differ most from the implied cross‐impacts, either

in absolute terms or in terms of the probabilities for the joint event

X k X l= , =i j that appears in the objective function (11). Because the

marginal probabilities are matched exactly, the cross‐impact terms for

which the following term is maximized

∈
∈

C Cargmax ˆ − ˚

k l R

kl
ij

kl

ij

( , ) ij

i j N, {1, … } (16)

is the one that deviates most from the implied cross‐impact multiplier

based on the derived scenario probabilities q s( ). On the other hand,

the solution

∈
∈

( )C C p pargmax ˆ − ˚ ˆ ˆ

k l R

kl
ij

kl

ij

k
i

l
j

( , ) ij

i j N, {1, … } (17)

helps identify the cross‐impact multiplier for which there is the

greatest discrepancy between the estimated probability of the event

X k X l= , =i j and that of the computed probabilities. This analysis can

thus be employed to identify and, if need be, revise inconsistent

cross‐impact multipliers.

Furthermore, the implied cross‐impacts can be used to explore

which probability distributions other than q s( ) would match the given

expert judgments C p pˆ , ˆ , ˆkl
ij

k
i

l
j equally well. If the cross‐impact terms C̊kl

ij

that are implied by the computed scenario probabilities are assigned

back to (8) instead of Ĉkl
ij
, the solution p qs s( ) = ( ) will make all the sum

terms equal to 0, but often q s( ) is not unique in this regard. To

explore other equally feasible distributions, an optimization problem

can be formulated

f qmin (˚)
q s˚ ( )

(18)

∈ ∈ ∈
∈

∑ q C p p i N j i k l Rs˚ ( ) = ˚ ˆ ˆ , {2, …, }, {1, …, − 1}, ( , )

s k s l

kl

ij

k
i

l
j

ij

= , =i j

S Ns 1:
(19)

TABLE 4 The calculated conditional probabilities for every uncertainty factor in the Soisalo example.
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∈ ∈
∈

∑ q p i N k ns˚ ( ) = ˆ , {1, …, }, {1, …, }

s k

k
i

i

=i

S Ns 1: (20)

∈q Ss s˚ ( ) ≥ 0,N N N1: 1: 1: (21)

where  f : →S  is chosen to find a scenario probability

distribution q̊ with specific properties. To give a few examples,

f q q s(˚) = − ˚ ( *) will maximize the probability of a specific scenario s*

and  ( )f q q s(˚) = ∑ − ˚ ( )S Ss
1 2

  will find the distribution closest to the

uniform distribution when S  is the total number of possible

scenarios. Finding expected utility maximizing or minimizing

scenario probability distributions is also possible if the utilities

of all the scenarios are known. Because all the constraints are

linear, the optimization problem can be solved with commonly

used optimization tools as long as f q(˚) is convex. These cross‐

impact constraints could also be used in conjunction with the

methods presented in Salo et al. (2021) to analyze system risk or

with some different robust optimization methods.

3.3 | Conditional independence

When there are many uncertainty factors, there are inherent limitations in

using cross‐impact multipliers to estimate all possible scenario probability

distributions. To illustrate this, assume that the N uncertainty factors

have equally many outcomes n (i.e., n n i N= , = 1, …,i ). Then the

number of different cross‐impact multipliers that can be elicited is

n n N N n∑ ∑ = ( − 1) /2i
N

j i
N

i j=1 = +1
2 . This is proportional to the square of the

number of uncertainty factors and their outcomes. Still, the number of

scenarios n n∏ =i
N

i
N

=1 grows exponentially with the number of uncer-

tainty factors. This implies that estimates about marginal probabilities and

cross‐impact multipliers will not suffice to fully characterize all possible

scenario probabilities, because the number of constraints implied by the

cross‐impact multipliers will be much lower than the number of scenarios.

Against this backdrop, two observations on the optimization

problem in (11)–(14) are in order. First, the number of estimates

about cross‐impact multipliers increases in every step of the iterative

algorithm because the ni outcomes of the new uncertainty factor are

compared with the previously considered uncertainty factors. That is,

if all these estimates have been provided, there are n n∑ /2i j
i

j=1
−1 terms

in the objective function (11) while the conditional probabilities

q k s( )i1: −1 have already been fixed. As a result, the optimization

problems grow in size at every step of the process.

Second, the outcomes of those uncertainty factors which appear

earlier on in the sequence of uncertainty factors appear in a larger

number of optimization problems. As a result, they likely exert more

influence on the final scenario probabilities. More specifically, the

probabilities for the partial scenarios defined by the uncertainty

factors in the early part of the sequence will not be impacted by

the cross‐impact terms in the latter part of the sequence. In

qualitative terms, this implies that the sequence should be developed

so that the uncertainty factors in the early part of the sequence

should not be impacted by the later uncertainty factors.

A way to solve this problem of increased complexity is to limit

the number of uncertainty factors in every iterative step by focusing

only on the relevant dependencies. Specifically, when estimating the

conditional probability of the outcome k for the ith uncertainty factor

p k s( )i1: −1 , any uncertainty factor whose outcome does not affect this

conditional probability is irrelevant. That is, an uncertainty factor a is

irrelevant for uncertainty factor i in partial scenario set S i1: if and only

if p k s( )i1: −1 = ∈⧹  p k k n Ss s( ), = 1, …, ,i a i i i1: −1 1: −1 1: −1 , when ⧹s i a1: −1

is the same partial scenario as s i1: −1 but with uncertainty factor a

removed. Equivalently, uncertainty factor a is irrelevant for i in partial

scenario set S i1: , if and only if, random variables Xa and Xi are

conditionally independent in every partial scenario ∈⧹ ⧹Ss i a i a1: −1 1: −1 .

The conditional dependencies between uncertainty factors can

be visualized with a directed acyclic graph. Figure 1 illustrates this

with the uncertainty factors from the Soisalo energy production

example. The uncertainty factors are represented by nodes drawn as

circles. The edges connecting the nodes, drawn as arrows, indicate

that uncertainty factors are relevant to each other, whereas the lack

of a connecting edge implies irrelevance. This is how conditional

independence between variables is represented in graphical models

such as Bayesian networks (Pearl & Paz, 2022). Figure 1 shows that

uncertainty factors representing nuclear power and energy storage

have been deemed irrelevant to one another, provided that the

outcome for renewables is known. The rationale for this is that

energy storage is not a prerequisite for using nuclear power.

However, as the share of renewable energy production increases,

there is an increased need for load‐balancing: because the generation

of solar and wind power may be highly variable, energy storage is one

way to meet that need. The demand for electricity in Soisalo is finite,

so it is unlikely that both nuclear and renewables are built in large

quantities.

Incorporating conditional independence in the expert judgment

elicitation process can be done in two ways. The first is to start by

constructing a directed acyclic graph that depicts the dependence

structure of the uncertainty factors and then collecting cross‐impact

information on the directly connected uncertainty factors. The

second way is to give the experts the option to state that some

pairs of uncertainty factors do not provide any meaningful informa-

tion about each other (possibly conditional on information about one

or more other factors). This irrelevance assertion would then be

recorded in the cross‐impact matrix instead of the cross‐impact

estimate.

The updated cross‐impact matrix for the Soisalo energy produc-

tion example is shown in Table 5. The submatrix describing the

dependencies between outcomes of nuclear power and energy

F IGURE 1 Irrelevance between uncertainty factors from Table 1
depicted as a graph.
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storage is now left empty. (The cells below the diagonal are not

considered, because cross‐impacts are symmetric.) remaining non-

empty submatrices now correspond to connections in the graph in

Figure 1. Depending on the context, it is equally valid to either form

the graph first and then ask the experts for the cross‐impacts only in

specific submatrices, or the experts can fill out the entire cross‐

impact matrix freely and leave those submatrices empty that they

deem independent or conditionally independent.

Incorporating conditional independence into the computational

model is straightforward because multiple irrelevant uncertainty

factors are also jointly irrelevant (i.e., if the two or more uncertainty

factors are irrelevant any partial scenario formed as a combination of

their states is also irrelevant. See Appendix A for proof). Let us

denote the set of relevant (not irrelevant) uncertainty factors for

uncertainty factor i with Di and the associated partial scenario set

with  { }S s s= X , …,D j D
j

n
j

1i i j
. The probability distribution over partial

scenarios in SDi is calculated from the probability vector p of S i1: −1 by

taking a sum over all the partial scenarios in S i1: −1 that can be

obtained by extending the partial scenario sDi

∈ ∈



∑ ∑p p ps s s( ) = ( ) = ( ).D
E

E E

i
s s

s s
( )

( ) ( )

1: −1i

Di
i Di

i S is

1: −1
1: −1 1: −1 (22)

Thus, the probability distribution p for partial scenario set SDi is

the marginal distribution for uncertainty factors in Di. The

constraint E Es s( ) ( )i D1: −1 i means that every scenario in the

extension of s i1: −1 can also be found in the extension of sDi, that

is, partial scenarios s i1: −1 and sDi have the same outcomes for all

uncertainty factors in Di.

Now, because the uncertainty factors that are not included in Di

are irrelevant for estimating the conditional probabilities for the ith

uncertainty factor based on the partial scenarios s i1: −1, we have

∈ ∈ 

( ) ( )p s p s

E E s S S

s s

s s s

= ,

if ( ) ( ). ,

k
i

i k
i

D

i D i i D D

1: −1

1: −1 1: −1 1: −1

i

i i i

(23)

Furthermore, when cross‐impact statements are available for

pairs of uncertainty factors i j, such that j i< and j Di, the

optimization problem (11)–(14) can be solved in SDi instead of S i1: −1

so that

∈ ∈ ∈

∑ ∑ ∑ q k q C p ps smin ( ) ( ) − ˆ ˆ ˆ
q k j D k l R S s l

kl
ij

k
i

l
j

s s( ) ( , ) { = }

2

Di i ij Di j










 










 
(24)

∈
∈

∑ q k q p k ns s( ) ( ) = ˆ , {1, 2, …, }
S

k
i

i
s Di

 (25)

∈∑ q k Ss s( ) = 1,
k

n

D D D
=1

i

i i i (26)

∈ ∈ q k k n Ss s( ) ≥ 0, {1, 2, …, },D i D Di i i (27)

TABLE 5 A cross‐impact matrix containing the cross‐impact multipliers describing the dependencies between the uncertainty factors fromTable 1.

Note: Uncertainty factors representing nuclear power and energy storage have been deemed irrelevant to one another, so the associated cross‐impact
multipliers are not included.
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and then (23) can be used to get probabilities for all partial scenarios in

S i1: −1. As before, Ĉ and p̂ represent expert judgments about cross‐

impacts and probabilities, respectively, and q ( ) represents computed

probabilities. Incorporating irrelevance between uncertainty factors like

this makes the optimization problem more tractable because the number

of scenarios at each iterative step will now depend only on the relevant

uncertainty factorsDi instead of all factors i{1, …, − 1}. This also leads to

tighter constraints and thus less uncertainty in scenario probabilities

without increasing the size of the optimization problems.

Implementing conditional independence, however, adds some

additional limitations on the order in which the uncertainty factors are

included in the iterative process, because the uncertainty factors upon

which the conditional independence relies are already contained in the

partial scenario set S i1: −1. Similarly, uncertainty factors that are marginally

independent, such as A and B in Figure 2, but have other uncertainty

factors dependent on them, should be included before the dependencies.

This is because while introducing additional irrelevant uncertainty factors

in expanding the set of partial scenarios cannot turn irrelevant uncertainty

factors into relevant ones, the same does not hold for adding relevant

uncertainty factors, which can under specific circumstances change other

uncertainty factors from irrelevant into relevant.

3.4 | Bayesian networks

Conditional probability information and the conditional indepen-

dence structure can also be combined to form a Bayesian network

(Pearl & Paz, 2022). In the network, the conditional independence

information is represented by a directed acyclic graph, like the one in

Figure 3. The nodes (circles) represent uncertainty factors and the

edges (arrows) between nodes represent conditional dependencies.

Because the graph is directed and acyclic, there exists at least one

total ordering of nodes such that node u precedes node v if there is

an edge from node u to node v in the graph. This is called a topological

ordering of the graph. In Figure 3 alphabetical order is one possible

topological ordering. If two nodes do not share an edge they

are conditionally independent given a subset of other nodes that

precede either of the two. Conversely, if two nodes share an edge,

they are not conditionally independent.

Probability information is incorporated in the Bayesian network

in the form of conditional probability tables like the one seen in

Figure 4. Assuming the indexing of uncertainty factors follows a

topological ordering of the Bayesian network, the probability table of

uncertainty factor i contains the conditional probabilities

∈ ∈( )p k k n Ss s{1, …, },D i D Di i i . When combined, the conditional

probability distributions p k s( )Di of all the uncertainty factors can be

used to calculate the probability of any scenario p s( ) in S. This is

because of the chain rule of probability (10) and conditional

independence (23)

p s p s s p p s s p

p s s p s s p s p s s p s s

p

p s s p s s p s s p s

s s

s

( ) = ( ) ( ) = ( ) ( )

= ( ) ( ) ( ) = ( ) ( )

( )…

= ( ) ( )… ( ) ( ),

N N N N D N

N D N N N N D N D

N

N D N D D

1: −1 1: −1 1: −1

−1 1: −2 1: −2 −1

1: −2

−1 2 1

N

N N N

N N

−1

−1 2

 
   

  
(28)

which makes these conditional probability distributions a very

memory‐efficient way of storing the probability distribution.

Constructing the Bayesian network based on cross‐impacts and

conditional independence information is quite straightforward

because the computational estimates for p k s( )Di can be obtained

by solving the optimization problem (24)–(27). Indexing the uncer-

tainty factors following a topological ordering of the conditional

dependence graph is not a problem, because the cross‐impact

multipliers only measure probabilistic dependence and not causality,

and thus they do not limit the order in any way.

3.5 | Computational considerations

The results of the iterative method may differ slightly from those

obtained by solving a single optimization problem to determine all

scenario probabilities which would represent the best fit to all the

elicited expert judgments about marginal probabilities and cross‐

impacts. Specifically, in the notation of Section 3.2, the problem of

fitting scenario probabilities directly can be stated as the linear least

squares problem

∈ ∈
∑ ∑ ∑ ∑ q C p psmin ( ) − ˆ ˆ ˆ

q i

N

j

i

k l R
s k s l

kl
ij

k
i

l
j

s( ) =2 =1

−1

( , )
= , =

2

ij
i j

S Ns 1:
























(29)

∈ ∈
∈

∑ q p i N k ns( ) = ˆ , {1, …, }, {1, …, }

s k

k
i

i

=i

S Ns 1: (30)

∈q Ss s0 ≤ ( ) ≤ 1, .N1: (31)

F IGURE 2 Two independent uncertainty factors A and B which
share a dependent uncertainty factor C.

F IGURE 3 A simple conditional independence network.
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where the next to last constraint ensures that the scenario probabilit-

ies are matched to the marginal probabilities. The difference between

the iterative process and this direct fitting stems from the fact that the

iterative method does not weigh all cross‐impact statements simulta-

neously. However, our computational experiments suggest that when

the statements about marginal probabilities and cross‐impacts are

consistent (i.e., the sum (29) is zero for some scenario probabilities

q s( )), both approaches produce similar distributions, which also fit all

the marginals and cross‐impacts perfectly by construction.

However, while the formulation (29) is conceptually simpler than

the iterative approach in Section 3.2, it has a major caveat in that it

leads to much bigger optimization problems. Specifically, the size of

the optimization problem in (29) grows exponentially and in our

computational tests, workstations with 16–32GB RAM ran out of

memory when the number of scenarios reached tens of thousands. In

particular, the case study in Section 4 with its 3 = 177, 14711 scenarios

proved too large for this approach. In contrast, the iterative approach

which exploits judgments about conditional independence was able to

construct the scenario probability distribution for the case study in

3.9 s using a laptop with 2.40GHz I5 processor and 16GB RAM.

In short, the iterative method performs better when analyzing

large systems with more uncertainty factors. The reason for this is that

the size of the optimization problems does not depend on the total

number of scenarios but, rather, only on the size of the partial scenario

set which contains the relevant uncertainty factors. To illustrate this

point, if the new uncertainty factors can be added without increasing

the average number of relevant factors per each new factor, the

computational complexity of the iterative process increases linearly

with the number of total uncertainty factors. This can be contrasted

with the direct fitting approach in which the size of the optimization

problems grows exponentially so that these problems become quickly

unsolvable. In other words, while direct scenario probability fitting can

still be used in smaller problems, the iterative method will prove

indispensable in many problems of realistic size.

4 | CASE STUDY

We next present a case study on analyzing the developing 3D‐

printing technologies and their future impact on the Finnish Defence

Forces (FDF). The aim of this case study was to (i) identify uncertainty

factors that have a large impact on, how 3D printing would be applied

in the Finnish military in view of possible developments over the next

15 years, (ii) specify ranges of possible realizations for these

uncertainty factors, (iii) characterize dependencies between the

uncertainty factors, and (iv) build structured scenario framework

which would capture these multiple inputs, by doing so, and (v) serve

as a tool for offering insights into questions which are of focal

concern to the FDF in the context of 3D printing.

4.1 | Uncertainty factors

The identification of uncertainty factors was preceded by a systematic

literature review and preliminary interviews with experts, resulting in

an initial set of 10 key uncertainty factors with three outcomes for

each. These uncertainty factors were discussed at length in a 4‐h

remote workshop which was organized by using video conferencing

tools and attended by a panel consisting of half eight 3D‐printing

experts from the Finnish military and research community. The specific

F IGURE 4 One conditional probability table from the Bayesian network in the case study. The rows of the table show the outcome
probabilities of the third uncertainty factor, printing cost, conditioned on the relevant preceding uncertainty factor's outcomes.
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fields of expertise represented by the panelists covered military

logistics, 3D‐printing business, and 3D‐printing technology.

In the workshop, the experts reached a consensus that the factor

Progress in 3D manufacturing should be separated into two factors,

representing Printing speed and Printing costs. This lead to the final list

of uncertainty factors in Table 6.

In the workshop, the outcomes of every uncertainty factor were

discussed together with the experts. A verbal description was

developed for each, including numerical bounds where appropriate.

For each outcome of every uncertainty factor, the corresponding

marginal probability was assigned. This represented the baseline

probability of this outcome in the absence of information about the

outcomes of other uncertainty factors.

Next, the experts were asked to characterize cross‐impacts using

a seven‐point scale from −3 to 3. This scale was employed to record

statements about how the probability of a given outcome for an

uncertainty factor would change from its baseline probability as a

result of knowing that another uncertainty factor will have a specific

outcome. For example, how much more likely it is that the global 3D

industry maintains the growth speed of 2019–2020 if the costs

associated with printing fall by 50%–90%? A small part of the cross‐

impact matrix is in Table 7.

The statements recorded on this ordinal scale were converted into

estimates about cross‐impact multipliers through the transformation

C = 2 ,kl
ij Vkl

ij (32)

where Ckl
ij is the cross‐impact multiplier derived from the statement

Vkl
ij . Thus, responses from the range −3 to 3 were mapped to numerical

values cross‐impact multipliers , , , 1, 1 , 2
1

3

1

2

2

3

1

2
, and 3, and this

information was available to the experts during the evaluations. The

experts only estimated the cross‐impacts of those uncertainty factor

pairs they deemed to provide significant information about each other.

The remaining pairs were deemed conditionally independent given the

preceding uncertainty factors, as is shown in Table 8.

The usual scale from −3 to 3 was chosen (instead of asking about the

cross‐impact multipliers directly) to expedite the elicitation process

while recognizing that the resulting estimates would not necessarily be

consistent answers. Indeed, there were some inconsistencies in the

resulting estimates. In Table 7, the highlighted cross‐impact between

stable industry growth and 10%–50% printing cost leads to a situation

where the conditional probabilities associated with the row for global

industry growth would not sum up to one. This inconsistency is easy to

spot, because all terms on this row are nonnegative, meaning that stable

industry growth would invariably preserve or increase the probabilities of

all outcomes of printing costs; but this is impossible because these

outcomes are (meant to be) mutually exhaustive (Salo et al., 2021). Similar,

including less apparent inconsistencies appear all over the cross‐impact

matrix. Indeed, the fact that such inconsistencies in expert judgments are

likely to surface in the cross‐impact analysis is one of the reasons which

motivated us to develop a method that could derive scenario probabilities

even when the estimates are not perfectly consistent. This can make the

elicitation process both faster and less arduous.

TABLE 6 Uncertainty factors, their outcomes, and
corresponding marginal probabilities estimated for the year 2035.

Uncertainty factor Outcome Probability

1. Global industry growth Decreases 0.3

Remains same 0.5

Increases 0.2

2. Printing speed
compared to present

Up to 2 times faster 0.4

2–10 times faster 0.5

Over 10 times faster 0.1

3. Printing cost compared

to present

Up to 50% cheaper 0.5

50%–90% cheaper 0.4

Over 90% cheaper 0.1

4. Finnish industry growth Decreases 0.3

Remains same 0.5

Increases 0.2

5. Graduates with 3D‐
printing expertise

Up to 100 (current) 0.2

100–300 0.6

Over 300 0.2

6. Legal regulation of 3D‐
printing in Finland

Limits strongly 0.05

Similar to other
manufacturing

0.9

No regulation 0.05

7. Standardization of
processes and models

No standardization 0.35

Includes technical
requirements

0.45

Full automation possible 0.2

8. Use of 3D‐printed
objects in FDF

Just individual items 0.1

Common and has
purchase procedures

0.5

Access to 3D‐printing
capacity on demand

0.4

9. FDF access to 3D‐
printing model files

Just individual items 0.2

Relevant models included

in system purchases

0.7

Models available for most
new and old systems

0.1

10. FDF 3D‐printing spare

parts in peacetime

Low importance 0.7

Significant and well
planned

0.29

Crucial and strictly
controlled

0.01

11. FDF 3D‐printing spare
parts in crisis times

Low importance 0.45

Significant and well

planned

0.45

Crucial and strictly

controlled

0.1
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4.2 | Results

We used the presented iterative method to compute the scenario

probability distribution for all the scenarios that can be formed from

the uncertainty factors inTable 6. The entire distribution could not be

included here, because it has 3 = 177, 14711 probabilities. Thus, we

are offering some (hopefully) interesting observations instead.

The cross‐impact judgments provided by the experts indicated that

the role of 3D‐printing in the future of spare parts logistics is quite

uncertain. There is a 41% probability that it will not have a great role in

either the peace or crisis time logistics. From the scenario probability

distribution, we calculated that the probability of any scenario where

spare parts production in either peace or crisis time is significant or

crucial is practically zero, if the use of 3D printed objects in FDF is

limited to just individual items or access to 3D‐printing models is

extremely limited. Collecting a library of 3D‐printing model files and

building processes to order and use 3D‐printed items takes a significant

amount of time and effort, so it would be advisable to start as soon as

possible if the 3D printing of spare parts is seen as worth pursuing.

Using the conditional probability distributions and conditional

independence information (Table 8), we also constructed a Bayesian

network using the GeNIe Modeler software (BayesFusion, LLC, 2021),

seen in Figure 5. The uncertainty factors were introduced starting with

exogenous factors that would not be affected by choices the FDF

makes, followed by exogenous factors that could be affected in limited

ways in cooperation with Finnish government entities and industry,

and the last factors included were endogenous to the Finnish military.

Thus, factors 1–3 describe the state of the 3D‐printing industry

globally, 4–7 describe the situation in Finland, and 8–11 describe the

situation inside the FDF. The constructed network can be used to

illuminate various what‐if (partial) scenarios (Fenton & Neil, 2001).

To give a concrete example, looking at the partial scenarios

consisting of uncertainty factors 1–7, that is, the exogenous factors,

the most probable is the one in which every factor gets the second

outcome. Its probability is 8.62%, which is quite high considering

these uncertainty factors can produce 3 = 21877 different partial

scenarios. Figure 6 shows how the probabilities of the FDF

endogenous uncertainty factors change when the outcomes of other

TABLE 7 Part of the cross‐impact estimate matrix on
probabilistic dependencies between pairs of outcomes for
uncertainty factors.

TABLE 8 The X:s denote the uncertainty factors whose cross‐impacts were evaluated.

Note: The empty white cells are conditionally independent uncertainty factor pairs.
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uncertainty factors are locked in place. 3D‐printed parts are very

likely to have at least significant importance in crisis time operations.

At the same time, they are quite unlikely to be that important during

peacetime. Because crisis capabilities are developed during peace-

time, this means that special attention should be focused on both

training and developing processes to support this 3D‐printing spare

parts in a crisis, because it seems unlikely to develop on its own.

Figure 7 shows how the endogenous probabilities change yet

again when the exogenous uncertainty factors are locked into

another relatively high probability (2.28%) partial scenario in which

uncertainty factors 1–5 and 7 all obtain the first outcome while

uncertainty factor 6 obtains its second outcome. This is a more

pessimistic partial scenario for the 3D‐printing industry as a whole

and represents growth and technological development slowing down

F IGURE 5 The constructed Bayesian network in GeNIe Modeler software (BayesFusion, LLC, 2021).

F IGURE 6 The probability distributions of uncertainty factors describing 3D‐printing in Finnish Defence Forces in the most likely exogenous
partial scenario.
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significantly. Here 3D‐printing is unlikely to play any role at all in the

spare parts logistics, and this helps showcase why there is such a high

probability of them remaining unremarkable despite their seeming

importance in the most probable scenario in Figure 6. The

developments in the industry as a whole are going to have an impact

on the usefulness of the technology for the FDF and should be

monitored carefully.

5 | CONCLUSIONS AND DISCUSSION

Scenario analysis provides a structured framework for identifying

and exploring how the future is shaped by key uncertainties.

Because the range of qualitative and quantitative scenario

methods is so wide, there are different perspectives on the

rationales and suitable ways of carrying out scenario analysis

(Millett, 2009), but qualitative and quantitative scenario methods

are not fundamentally at odds. Rather, they are complementary:

for instance, evocative narratives can be made even more

compelling by accompanying them with numerical data while

detailed quantitative analyses can be enriched with storylines to

communicate the implications behind the numbers. In short, the

choice of methodologies should be guided by how the scenarios

are going to be used.

Against this backdrop, we have formulated a method to elicit

expert judgments about cross‐impact terms which are processed to

infer the accompanying joint probability distribution over all possible

scenarios. A notable benefit of this approach is that it facilitates the

integration with other well‐founded quantitative approaches—

including expected utility theory, probabilistic risk assessment, and

statistical inference—and thus expands the extant range of available

techniques for foresight and strategic planning.

To our knowledge, our approach is the first to include conditional

independence in cross‐impact analysis. This increases the number of

uncertainty factors that can be included in the analysis without

overwhelming the experts from whom cross‐impact estimates are

elicited. Adding this new element to the elicitation process may

necessitate some training when working with experts who are

accustomed to earlier cross‐impact methods. However, even if some

conditional independence relationships are overlooked, as long as

reasonable cross‐impact estimates were provided instead, this should

have a minimal impact on the calculated results.

Scenario probabilities and Bayesian networks depicting depen-

dencies between the uncertainty factors have many practical uses in

the military context. Scenario probability distributions facilitate a

number of different analyses to assess the impacts of new

technologies. Numerous simulation (Lappi, 2008; Rao et al., 1993),

game‐theoretic (Poropudas & Virtanen, 2010; Roponen et al., 2020)

and dynamic (Gue, 2003) tools can be used to analyze the scenario‐

specific system performance, but their ability to support strategic

analysis is limited without the underlying scenario probabilities.

The same also applies to technology forecasting beyond the

military context to some extent. For example, climate models help

generate well‐founded scientific predictions concerning the rate of

change in the global temperature and sea level, rise, but they are less

apt at predicting what kinds of mitigation actions governments will

take or how people will respond to changing environmental

conditions; yet such behavioral would also need to be accounted

for to address risks comprehensively. As a result, there is a need for

scenario models such as ours which harnesses cross‐impact

statements to link technological changes to the key behavioral

responses that are pivotal in shaping the future.

Among cross‐impact methods, ours is purposely grounded on the

estimation of all possible scenario probabilities. Most probabilistic

F IGURE 7 The probability distributions of uncertainty factors describing 3D‐printing in Finnish Defence Forces in a pessimistic high
probability exogenous partial scenario.
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cross‐impact methods tend to rely on Monte Carlo simulation, which,

however, may require an impractically large number of iterations to

reach good accuracy when the number of scenarios is large.

Computationally, our method scales well into problems with even

dozens of uncertainty factors, especially if the number of probabilistic

dependencies between the uncertainty factors is not too large (see

Appendix B). The problems caused by large dependency sets can be

mitigated to some extent by choosing the included uncertainty

factors and iteration order in the right way, but eventually, a limit is

reached on how much can be expressed with just pairwise

dependency statements. This is a limitation shared by all cross‐

impact techniques because the number of possible scenarios grows

faster than the number of cross‐impacts.

We have employed unconditional cross‐impact multipliers (4) in

which the relative change in the probability of a given outcome level

does not explicate assumptions about the realizations of uncertainty

factors beyond the two that are considered in the comparison.

Mathematically, however, one could elicit conditional cross‐impact

multipliers which would explicate such assumptions with no reason

why the cross‐impact multipliers could not be even extended into

triplets or a larger number of uncertainty factors. We have chosen

not to explore it beyond conditional independence in this paper,

because the number of triplets and beyond grows so much faster

than the number of pairs, that collecting such information for all

uncertainty factors would be practically infeasible in most cases.

However, introducing individual optimization constraints based on

higher‐level dependencies would be straightforward if desired.

Although our case study has focused on 3D‐printing, the

proposed method is generic and can be readily applied across

numerous contexts in which it is of interest to build a comprehensive

model that retains all possible scenarios. Thus, its advantages lie in

countering the risk that the focus is, perhaps prematurely, placed on a

small subset of scenarios, as opposed to capturing the full breadth of

possible scenarios that can be built as combinations of outcomes of

several uncertainty factors. In such contexts, cross‐impact analysis

offers a pragmatic, relatively straightforward, and cognitively

manageable approach to assessing dependencies between uncer-

tainty factors. Furthermore, the models proposed in this paper are

computationally efficient and make it possible to provide informative

insights based on the interactive exploration of the implications of all

model inputs, including judgments about the marginal outcome

probabilities and cross‐impact statements.
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ENDNOTE
1 An uncertainty factor refers here to a salient aspect of the future which
is uncertain and which can be addressed by dividing it into two or more
mutually exclusive and jointly exhaustive outcomes. In the literature,
there are several terms for analogous concepts, for example, random
variable (Kallenberg, 1997), random event (Harsanyi, 1967), key factor

(Bunn & Salo, 1993), lottery (Myerson, 1997; Raiffa, 1968), distinction
(Howard & Abbas, 2016), and uncertainty factor (Seeve &
Vilkkumaa, 2022). Here, the term uncertainty factor emphasizes that
the perceived randomness need not arise from inherent stochasticity

but, rather, the subjective lack of information. The interpretation of this
term is consistent with (Salo et al., 2021).
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APPENDIX A: PROOFS

Definition Consider the set of partial scenarios S i1: such that the

probabilities p s( )i1: −1 are strictly positive. Then the uncertainty factor

∈a i{1, …, } is irrelevant for uncertainty factor i if and only if p s s( )k
i

i1: −1
= ∈⧹  ( )p s k n Ss s, = 1, …, ,k

i
i a i i i1: −1 1: −1 1: −1 , where ⧹s i a1: −1 denotes

the partial scenario that is contained in s i1: −1 but does not include the

uncertainty factor a.

We note that the requirement of positive probabilities for partial

scenarios s i1: −1 is needed because otherwise the conditional

probabilities as the conditional would not be well‐defined.
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Theorem 1 (Intersection). Let a b, , and i be distinct uncertainty factors

in {1,…, i} such that a b b i i a≠ , ≠ , ≠ . If uncertainty factors a and b are

irrelevant for uncertainty factor i in the set of partial scenarios S ,i1: then

∈⧹  ( )p s p s k n Ss s s( ) = , = 1, …, ,k
i

i k
i

i a b i i i1: −1 1: −1 , 1: −1 1: −1  .

Proof. By assumption,

∈⧹  ( ) ( )p s p s k n Ss s s= , = 1, …, ,k
i

i k
i

i a i i i1: −1 1: −1 1: −1 1: −1

(A1)

∈⧹  ( ) ( )p s p s k n Ss s s= , = 1, …, ,k
i

i k
i

i b i i i1: −1 1: −1 1: −1 1: −1

(A2)

and thus

∈

⧹ ⧹ 



( ) ( )p s p s k

n S

s s

s

= , = 1, …,

, .

k
i

i a k
i

i b

i i i

1: −1 1: −1

1: −1 1: −1

(A3)

Now, let ∈k n{1, …, }i and ∈ Ss i i1: −1 1: −1. Using the law of total

probability, we get

⧹ ⧹ ⧹( ) ( ) ( )∑p s p s s p ss s s= ,k
i

i a b
l

n

k
i

i a b l
a

l
a

i a b1: −1 ,
=1

1: −1 , 1: −1 ,

a

(A4)

Because ⧹( )ss i a b l
a

1: −1 ,  is a partial scenario in ⧹S i b1: −1 , the equality

(A3) gives

⧹ ⧹ ⧹( ) ( ) ( )∑p s p s p ss s s=k
i

i a b
l

n

k
i

i a l
a

i a b1: −1 ,
=1

1: −1 1: −1 ,

a

(A5)

⧹ ⧹( ) ( )∑p s p ss s= k
i

i a
l

n

l
a

i a b1: −1
=1

1: −1 ,

a

(A6)

⧹( )p s s= .k
i

i a1: −1 (A7)

Thus, combining this equality ⧹ ⧹( ) ( )p s p ss s=k
i

i a b k
i

i a1: −1 , 1: −1 with the

assumption ⧹( ) ( )p s p ss s=k
i

i k
i

i a1: −1 1: −1 leads to the stated conclusion

∈⧹  ( ) ( )p s p s k n Ss s s= , = 1, …, , .k
i

i k
i

i a b i i i1: −1 1: −1 , 1: −1 1: −1 □

It would also be straightforward to extend this proof to any

number of irrelevant uncertainty factors.

APPENDIX B: COMPUTATIONAL EXPERIMENTS

To test how much the order of the uncertainty factors affected the

results iterative approach from Section 3.2 and how much they

differed from the direct fitting approach found in Section 3.5, we

compared the results with several randomly generated distributions

with exponentially distributed probability density using 8 uncertainty

factors with three possible outcomes each. We used λ = 1 for

generating the randomized probabilities, but because the probabilit-

ies need to be normalized to sum up to 1, the λ does not affect the

end result. The setup was chosen to represent a worst‐case where

the probabilities cannot be represented well with cross‐impacts. The

exponential distribution was used because it produces probabilities

that are similarly distributed in magnitude as, for example, our 3D‐

printing case study.

We tested the method with 10 different randomly generated

distributions that had eight uncertainty factors with three possible

outcomes each. The test was limited to eight uncertainty factors

because we also wanted to test against the direct fitting approach

from Section 3.5, and including more than eight uncertainty factors

would have required more memory than was available on our test

laptop. The cross‐impact multipliers and marginal probabilities were

calculated from the randomly generated probability distributions. We

also used five different randomly chosen calculation orders for the

iterative method for each distribution, to test whether the order of

uncertainty factors made a difference.

The total absolute differences of the calculated probability

distributions, that is, the sum of the absolute values of the differences

between the scenario probabilities ranged from 0.0130 to 0.0273

when comparing the different computation orders for the iterative

method, and from 0.0211 to 0.0304 when comparing the iterative

method to the direct fitting approach. Considering that there were

3 = 65618 scenarios in total, the average differences in individual

scenario probabilities were less than 5 × 10−6. Both methods also

produced probability distributions that matched the given cross‐

impacts and marginal probability distributions exactly, as designed.

The calculated distributions are so similar that any inaccuracies

arising from computation orders and approaches are dwarfed by the

inaccuracies in the expert judgments intended to be used for the

calculations.

F IGURE B1 A 3‐regular directed tree with a depth of 4. The
number of nodes multiplies by three on each row when moving up.
The first row has nodes 1–81, the second row has 27 nodes
numbered 82–108, the third row nine nodes numbered 109–117, the
fourth row three nodes numbered 118–120, and the fifth row only
has one node numbered 121.
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The calculated distributions, however, differed significantly from

the original ones used to generate the marginals and cross‐impacts,

because all higher‐degree dependence information was lost. The only

similarity the calculated distributions had to the original was limited

to the cross‐impacts and marginals. This was expected because the

original distributions were just a collection of random numbers that

added up to 1.

To test the scalability of the iterative method, we created a

conditional independence network of 121 uncertainty factors, whose

underlying undirected graph was a 3‐regular tree of depth 4

(Figure B1). This means that the last uncertainty factor, that is,

number 121, had three incoming connections, and each of those

three connected nodes also had three incoming connections and so

on, repeated a total of four times. Each of the uncertainty factors had

three possible outcomes.

The total number of scenarios that could be formed as

combinations of 121 uncertainty factors with three outcomes each

is 3 ≈ 5.4 × 10121 57. This means that the entire scenario probability

distribution is impossible to store on any device as a list of

probabilities, so instead, we only computed the conditional

probability distributions for all uncertainty factors, which could be

used to easily calculate the probability of any scenario. Because we

were testing the scalability of the method presented in this paper,

both the marginal probabilities and cross‐impact estimates were

randomly generated. Thus, both the parameters and the output of the

computation are nonsense.

A laptop with a 2.40 GHz I5 processor and 16 GB RAM

calculated the conditional probabilities in 0.36 s. Considering that

the 3D‐printing case example takes 3.9 s to calculate on the same

computer, this confirmed that the total number of uncertainty factors

can be very large as long as the number of cross‐impacts affecting

individual uncertainty factors remains low. In the 3D‐printing case

example, most of the calculation time is spent on uncertainty factors

9 and 11, both of which are dependent on six preceding uncertainty

factors and take 1.7–1.8 s to calculate each. Solving the least squares

minimization problems takes up 90% of the total computation time in

the 3D‐printing case. With the large tree, the least squares problem

solver only took around 60% of the total computation time, but this is

mostly because of other inefficiencies in the code taking up relatively

more time with the shorter total run time.
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