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tract

n Finland, colorectal cancer (CRC) incidence rates have steadily increased over the last dec
s of 2020, CRC is the second most common cancer in both males and females. CRC is a cru

ern for the public health of Finland, highlighted by the recent implementation of a nati
lation screening program. In this paper, we optimize the screening test positivity cut-off le
the use of potential incentives for stratified populations to minimize cancer prevalence.
ization results, computed with the novel Decision Programming approach for discrete m
decision problems under uncertainty, show the optimal cut-off levels and uses of incent

innish target groups subject to different constraints on colonoscopy capacity. The outcome
optimal strategies are estimated to determine the expected corresponding prevalences of C

required colonoscopies, and expected third-party costs. Finally, measures describing diffe
lity perspectives are presented.

ords: OR in health services, colorectal cancer screening, optimization, influence diagram
ion programming

troduction

olorectal cancer (CRC), also referred to as bowel cancer, is cancer of the colon and/or rect
incidence rates have steadily increased over the last decades with CRC currently being
d most common cancer in adults in Finland, and the third most common worldwide (Fin
er Registry 2017, World Health Organization 2018). In 2020 CRC accounted for 2.3% o
s in Finland and was the second most diagnosed cancer in both males and females, makin
cial concern to public health (Finnish Cancer Registry 2022, Advisory Board of OSF 2022
ver 70% of colorectal cancers develop via the adenoma-carcinoma sequence (Hardy et al. 2

hich adenomas (i.e., growths on the epithelial tissue in the bowel) develop into cancer. T
ence is a slow process that can take from several years to a decade (Simon 2016). Due to
detection and removal of pre-cancerous adenomas can prevent progression to cancer, ma
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extremely suitable for population screening. Population screening of CRC using faecal oc
testing has long been shown to reduce later-stage CRC incidence and improve morta

del et al. 1993, Kewenter et al. 1994, Kronborg et al. 1996, Mandel et al. 1999). Along with e
tion of adenomas, early diagnosis of cancer improves the probability of successful treatm
outcomes by providing care at the earliest possible time. This has an important impac
ic health strategy as it helps avoid CRC-attributed deaths and morbidity, in addition to
ment and indirect costs associated with advanced cancer stages (World Health Organiza
).
n 2019, Finland implemented a new CRC population screening program, which became
ide in 2022. The program invites entire age cohorts to screen using faecal immunochem
g (FIT) to first filter participants for further examination. Then, those program particip
e FIT result exceeds a given cut-off level (hemoglobin level in the stool sample) are invited
onoscopy (Finnish colorectal cancer screening expert groups 2021). Colonoscopy is an inva
edure, which allows the visual inspection of the colon to detect abnormalities such as po
enomas. If an abnormality is discovered, it can be removed via polypectomy and sent

ology assessment. Colonoscopies are resource intensive and may cause discomfort and adv
ts (such as bleeding or perforation of the bowel) to the participant. It is therefore impor
velop cost-effective screening strategies in which scarce colonoscopy resources are allocate
participants for whom they yield the highest health benefits.

n the current program, the FIT cut-off level for a positive result is fixed based on the par
’s sex. Specifically, the Finnish program employs a cut-off level of 25 µg Hb/g for both fem
males, regardless of their age. In reality, however, the interpretation of the result should be
tiated by participants’ risk profiles (i.e., age, sex, and family history of cancer; Selby et al. 2
et al. 2020). Moreover, because a positive result leads to an invitation to a colonoscopy,
ff level should also take into account the capacity to carry out colonoscopies. Consequently,
ram may not be the most cost-effective approach to reduce Finnish colorectal cancer incid
mortality.
he purpose of this paper is to build an optimization model for the Finnish CRC popula
ning program with the aim of minimizing cancer prevalence (i.e., the probability of a popula
ber having CRC) in the target population with respect to a colonoscopy resource constraint
cular, for each segment of the population specified by the participants’ sex and age, we de
hether the segment should be invited to screen or not, (ii) what the optimal FIT cut-off le
and (iii) whether it pays off to use incentives to boost participation. The results of our m
e used to improve the current program in ways that help allocate scarce colonoscopy resou

more cost-effective manner.
he rest of the paper is structured as follows. Section 2 discusses related work and our contr
to the literature. Section 3 presents an overview of the current population screening prog
in Finland, and details the model used to optimize this program. The results of the model
nted and discussed in Section 4, and Section 5 concludes.
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elated work and contributions

raditionally, cost-effectiveness evaluations of public health programs, such as population scr
are assessed through methods of cost-benefit analysis (e.g. Ellison et al. 2002), cost-utility a
(e.g. Gupta et al. 2011, Dillon et al. 2018), or cost-effectiveness analysis (e.g. Ladabaum e
). Health economic methodologies such as these typically compare costs and health outco
given screening strategy to those of a baseline strategy (for example, no screening). Qualit
dicators, such as quality-adjusted life-years (QALYs) and life-years saved/gained (LYS/LY

requently used to calculate the incremental cost-effectiveness ratio (ICER) for comparing
tive strategies. In these analyses, strategies are not optimized in the mathematical sense,
r assessed in regard to their dominance. Consequently, such analyses tend to suggest strate
are infeasible due to a lack of resources or suboptimal in that (i) the resources could be re
to achieve a better population-level health outcome or (ii) the same health outcome with

rces.
ome studies have sought to overcome the above issues by investigating the cost-effective
large set of alternative strategies so that the best-performing strategy within this set could

ed to be close to optimal (Wilschut et al. 2011, Van Der Meulen et al. 2017). For instanc
t study by Whyte et al. (2022) uses an existing CRC simulator to evaluate the cost-effective
er 60,000 screening strategies, which together cover a wide range of possible FIT cut-off val
to start screening, and screening frequencies. Heinävaara et al. (2022) use a similar appro
d cost-effective screening strategies when the FIT cut-off level can differ depending on
cipant’s sex. In particular, they develop separate MISCAN-Colon models for Finnish men
en to evaluate the cost-effectiveness of 181 sex-specific strategies and 362 combinations ther
e kinds of approaches cannot, however, be utilized when the goal is to find screening strate
hich FIT cut-off values as well as screening times are to be optimized for segments defined
age and sex. This is because in such settings, the number of possible strategies become
(e.g., close to 26 million in the setting described in this paper) that the probability of fin

ptimal strategy within a set of even tens of thousands of predetermined strategies beco
hingly small.
he two most typical approaches for optimization-based design of screening programs are
Observable Markov Decision Processes (POMDPs) and simulation-optimization. POMD

rticular, have been popular in optimizing screening programs thanks to their ability to acco
evelopment and uncertainty in patients’ states of health. Ayer et al. (2012) build a POM
el to optimize patient-specific mammography screening times, and Alagoz et al. (2013) pro
orial in optimizing cancer screening using a POMDP approach.Cevik et al. (2018) prese
rained POMDP model to study the optimal allocation of limited mammography resource
n a population. Lee et al. (2019) optimize the use of limited resources for the screening
lation for hepatocellular carcinoma by modeling the problem as a family of restless bandit
h each patient’s disease progression is assumed to evolve as a POMDP.
rom the perspective of CRC screening, a particularly relevant approach is presented by Ere
3
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(2014), who develop a POMDP model to optimize colonoscopy screening policies for CRC
on and surveillance in the U.S. context in view of maximizing total expected quality-adju
ears (TQALYs). In this model both static (sex and age) and dynamic risk factors (his
RC or adenomatous polyp) are considered in modeling disease progression. Input para
for the model are obtained from a simulation study based on Mayo Clinic-Rochester pat
ds (Erenay et al. 2011), the SEER database1, and the literature. The model is validated b
xpert opinion as well as by comparing model outputs with statistics from reliable datab
established simulation models. The optimal policies resulting from this model suggest that
nce, screening should occur more frequently than what is recommended by current guideli
ially for younger people. Moreover, while low-risk women should be screened less freque
low-risk men, women with a personal history of CRC should undergo colonoscopy more o
men with a personal history of CRC.
rom the point of view of optimizing the Finnish CRC population screening program, the ab
oach (as well as other POMDP approaches) is not entirely suitable. First, this appro
considers a single screening tool (colonoscopy), and therefore cannot be used to optimize
f a pre-screening test (such as a FIT). Yet, in CRC screening, the FIT is used precisel
the unnecessary use of colonoscopies. Moreover, while the above approach accommod

rtainties regarding cancer state transitions, it ignores uncertainties related to adherenc
ation, continued participation, and potential adverse events resulting from screening. T
cts may, however, have significant impacts on the overall performance of the screening progr
accommodation of a FIT and additional chance events in a POMDP model would likely lea
utational intractability, at least when aiming to obtain exact optimal solutions (e.g. Li e

). Moreover, the approach by Erenay et al. (2014) does not admit constraints on the capa
rrying out colonoscopies. Such constraints are, however, relevant from the perspective of po
ng and directly affect optimal FIT cut-off levels, whereby they should ideally be accommoda
, for the purposes of our study, a different modeling approach is required.
ethods of simulation-optimization have been used to find optimal screening strategies e

irly complex settings and for different forms of cancer including, e.g., cervical (McLay e
), breast (Rauner et al. 2010), and prostate (Bertsimas et al. 2018) cancer. Underwood e
), for instance, use simulation-optimization in the context of prostate cancer screening to
al cut-off values for prostate-specific antigen used to determine whether a prostate biops
sary. Young et al. (2021) use derivative-free optimization coupled with microsimulatio
an optimal CRC screening strategy for males, when a strategy is defined by the choice
e screening tool (FIT, sigmoidoscopy, or colonoscopy), a starting and ending age for screen
screening frequency. Yet, the optimization models used in these types of approaches are o
y nonlinear, which typically necessitates the use of heuristics (such as a genetic algorit
by Underwood et al. 2012) to keep the problem computationally tractable, especially if

ttps://seer.cancer.gov/
4
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egies themselves consist of a number of different decisions (see, e.g., Neuvonen et al. 20
ough such heuristics have been found to perform well in specific problem instances, there
rally no guarantees for the optimality of the found solutions, or even the extent to which
tive function values of these solutions deviate from the optimum. Moreover, the performa

heuristic is typically highly contingent on the characteristics of the optimization problem (
Young et al. 2021), whereby the suitability of a given heuristic in the context of optimizin
screening program may not be generalizable to other kinds of public health programs.

n this paper, we build an optimization model for the Finnish CRC population screening prog
the aim of minimizing cancer prevalence in the target population with respect to a colonosc
rce constraint. The optimization model is implemented in three levels. At the first level, we
gment-specific (segments defined by age and sex) Pareto optimal screening strategies in vie
mizing the probability of detecting CRC, a large adenoma or a benign growth while minimi
robability of a colonoscopy. At the second level these results are used to find sex-specific Pa
al screening strategies in view of minimizing the prevalence of CRC and the probabilit

rming a colonoscopy. Finally, at the third level, we identify the combination of segment-spe
egies that together minimize the prevalence of cancer in the target population, given a fi
raint on the total expected number of performed colonoscopies. To maintain computati
ency, dominated or infeasible strategies are eliminated along the way.
n building the model, we employ Decision Programming (Salo et al. 2022), a novel appro
lving discrete multi-period decision problems under uncertainty. In this approach, Influ
rams are built for each segment to capture decisions related to the screening strategy as
rious uncertainties regarding, e.g., adherence to screening invitations, continued participat
results, and potential side effects from colonoscopy examination. Moreover, segment-spe
ition probabilities between different bowel states (alongside screening decisions) are use
re cancer progression. The Decision Programming framework can be used to formulate
of identifying Pareto optimal screening strategies for the segment-specific Influence Diagr

ixed-integer linear programming (MILP) problems, which are solved using a Modified A
ed Weighted Tchebychev algorithm. Importantly, the ability of the Decision Programm
ework to accommodate multiple objectives – which would not be possible within a POM
ework – enables us to efficiently eliminate infeasible or dominated strategies, which lead
oved computational performance.
ompared to existing approaches to optimizing screening programs, our approach offers sev
fits. First, it employs Influence Diagrams to capture decisions and uncertainties relate
ning strategies. Such diagrams resemble basic process flow charts and are, therefore, argu
easily understood by healthcare practitioners than, e.g., large decision trees used in POM

els. Second, our approach helps find optimal screening strategies under resource constra
in cases where these strategies consist of a number of different decisions the outcomes of w
ubject to various sources of uncertainty. Thus, the problem formulation does not need to
lified for computational purposes, which increases the legitimacy of decision recommendati
5
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lly, the Decision Programming approach is flexible in that it can be used to accommo
iple objectives, deterministic constraints as well as probabilistic risk measures that can
ed as objectives or constraints. Thus, our approach can be augmented to fit the purpose
izing other kinds of screening programs as well.

n summary, the contribution of this paper to existing literature is threefold. First, we prop
vel approach to optimizing CRC screening strategies that simultaneously accommodate
iple objectives, ii) optimization of segment-specific invitation decisions and FIT cut-off le
etailed modeling of uncertainties related to the screening process, and iv) resource constra
nd, we use this approach to offer insights into how the CRC population screening program
nd could be improved. Finally, we demonstrate the usefulness of the Decision Programm
odology in the healthcare context, in which it has not been applied.

ptimization of the Finnish CRC population screening program

Problem and model overview

n April 2019, Finland established a new CRC population screening program in voluntee
icipalities (see Finnish Cancer Registry 2019 for details). The program began with twelve
1 municipalities in Finland volunteering to take part. The program became nationwide in 2
y 2031 all people aged between 56 and 74 will be invited to screen. The program invites en
ohorts to screen using a feacal immunochemical test (FIT), after which those participants w
itive FIT result are invited to a colonoscopy. In 2022 all 60-, 62-, 64-, 66- and 68-year-old m

females in volunteering municipalities were invited to participate in the program. Participa
e of charge for the invitee.
central screening hub mails the screening invitations and FITs to participants. The FI

rmed at home and returned in a pre-paid envelope to the screening hub. Once the labora
nalyzed the FIT sample, a written result is given to the participant via mail. Those wi
ive result are requested to contact a screening nurse in their municipality of residence to dis
eed for further examination. This additional examination is usually a colonoscopy; howe

may vary between municipalities depending on their standard procedure. If a growth is fo
g the additional examination, a sample is taken and sent to a pathologist for analysis. O
athologist’s findings have been reviewed, a decision on the need for further examinatio
ment is made. If necessary, the participant is referred to surgery. Treatment may be requ
is stage, but the ensuing treatment process is not within the scope of the screening progr
treatment, patients participate in a separate surveillance program that usually lasts for

. A new invitation to the screening program is sent every two years to those participants
not received treatment in the previous round. Screening is continued in this periodic man
ng as the invitee’s age is within the program limits.
n this section, we develop a model to determine optimal screening strategies for the Fin
ectal cancer population screening program in view of minimizing the prevalence of colore
6
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ers while adhering to a capacity constraint on the total expected number of performed col
es. In this model, a screening strategy consists of decisions for each segment of the ta
lation (defined by the participants’ age and sex) on (i) whether to send an invite to partici
e program, (ii) whether to offer an incentive for participation, and (iii) which FIT cut-off l
e. The inclusion of an incentive decision in our problem does not reflect the reality of
ram; however, it may be an option in other countries with similar programs.
n our model, we assume that a participant’s bowel state b ∈ B = {N,B,L,R} is either Nor
Benign growth (B), Large adenoma (L) or CRC (R). Benign growths are growths that do
a high risk of developing into cancerous growths in the near future, whereas large adeno
ven though they are not cancerous at the moment nor will they necessarily develop into s
classification of growths is based on the adenoma-carcinoma sequence, which is a com
ption in the literature on CRC (Silva-Illanes & Espinoza 2018, Diedrich et al. 2023). A sim

ification is used by, e.g., Gyrd-Hansen et al. (1997), Heitman et al. (2010), and Pence e
). Transition probabilities between bowel states are assumed to depend on the participa
nd age. In this way, our model incorporates more specific information on cancer progres
most studies on CRC population screening, in which differences in transition probabilities
ed to depend on age only (Silva-Illanes & Espinoza 2018, Lansdorp-Vogelaar et al. 2022)

n the model, we allow the strategy for any segment of the target population to be ch
endently of other segments, but assume that once chosen, the same strategy will be used

articipant groups of same sex and age, i.e., same segment. For instance, the same strateg
ed to all 62-year old males regardless of the year they enter the screening program. We
e that from year to year a segment (e.g., 60-year-old females) contains the same numbe

cipants. Under these simplifying yet reasonable assumptions, we can focus on finding Pa
al sex-specific screening strategies for only a single group of participants entering the prog

e age of 60. Thus, segments can be defined by combinations (g, k), where g ∈ {F,M} is
cipant’s sex (female or male) and k ∈ {1, . . . , 5} is the screening period which correspond
rticipant’s age in 2-year intervals so that period k = 1 refers to 60-year-olds, period k =

ar-olds etc. We also assume that the population segments are internally homogeneous in
cipants within a given segment are not differentiated from one another based on, e.g., fam
ry. In this sense, our model operates on average representatives for the segments. This
with the general idea of population screening, i.e., testing a large segment of the popula
dless of their detailed state of health.
nder the above assumptions, we model the problem of finding optimal screening strategies
levels. A schematic description of this model is illustrated in Figure 1. At level 1 (perfor
ately for all screening periods of both males and females), influence diagrams (IDs) are u
pture how abnormal bowel states are found, colonoscopies are performed, and costs are
d in a given period as a function of screening decisions. These IDs are used to find Pa
al screening strategies for each segment with respect to minimizing the expected numbe
oscopies and maximizing the expected number of detected abnormal bowel states. At l
7
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ese segment-specific strategies are combined to produce sex-specific strategies that minim
revalence of CRC in all age groups combined while minimizing the number of colonosco
rmed. At level 3, those two Pareto optimal sex-specific strategies are identified that toge
mize the expected prevalence of cancer in the screened population subject to a constrain
otal expected number of colonoscopies.
ur model is implemented through five steps, as illustrated in Process 1. The first four s
spond to level 2 (the identification of Pareto optimal sex-specific strategies) and include l
e identification of Pareto optimal segment-specific strategies) as the first step. These
are carried out iteratively for all five screening periods so that on each iteration round

f strategies Zg,→k ∈ {Zg,→k}PO is found that are Pareto optimal up to period k. Then, l
e identification of sex-specific strategies that together minimize the expected population-l
prevalence subject to a constraint on the total expected number of colonoscopies perform

rried out in step 5. The tasks associated with each step are detailed in Sections 3.2-3.4. Ta
tation related to the screening process and IDs are presented in the Supplementary mater

Level 1: Identification of Pareto optimal segment-specific strategies

t level 1 (step 1 in Process 1), segment-specific ID models are used to find Pareto opt
ning strategies for each segment in view of minimizing the expected number of colonosco
maximizing the expected number of abnormal bowel states. In what follows, we will
tailed description of (i) the segment-specific ID model and (ii) the Decision Programm
ulation for finding Pareto optimal segment-specific strategies for the ID model.

. Segment-specific ID model

n ID is a discrete acyclic graph constructed of three types of nodes N represented as
ion D, chance C and utility nodes U , with dependencies shown by directed arcs A ⊆ {(i, j)|i
̸= j}. Every chance node j ∈ C and decision node j ∈ D has a finite set of discrete st
Sj . The state sj ∈ Sj of a given node j ∈ C ∪ D represents a chance or decision alterna
rc (i, j) ∈ A, represented by an arrow, indicates that node i is the predecessor of node j,
the state sj at node j is conditionally dependent on the state si at the preceding node i.
he ID corresponding to the Finnish population screening program is shown in Figure 1. H
ion nodes in the screening pathway are represented by squares, uncertainties (i.e., chance no
e screening process are represented by circles, and the utilities that are to be optimized
sented by diamonds. The differences between segments in the target population are reflecte
arameter values of the segment-specific IDs (please see the Supplementary material for de
ese parameters).
he decision nodes 1, 2, and 3 in the ID of Figure 1 correspond to decisions about 1) w
test cut-off value to use to select patients for a colonoscopy in the given target segment
her to use an incentive to boost participation among invitees in this segment (specific
ssume that an incentive worth 10 euros halves the number of non-returned samples) an
8
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e 1: Schematic description of the multistage optimization approach to solve the CRC screening optimiz
em.

her to invite the target segment to the screening program. The corresponding sets of deci
natives are S2 = S3 = {Yes,No} and S1 = {10, 25, 40, 55, 70} µg Hb/g of blood in the s
le. We use binary decision variables z(sj) to indicate whether an alternative is chosen or

gment-specific strategy Zg,k = [z(sj)]j∈D is defined as a vector of such decision variables.
9
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Process 1: Steps in the process of optimizing the Finnish CRC screening program

l 2 (including level 1)

In the first step (level 1), segment-specific IDs are utilized to find strategies Zg,k that
Pareto optimal in view of minimizing the expected share of invitees for whom a colonoscop
performed while maximizing the expected share of invitees with detected cancers and abnor
bowel states in segment (g, k). As input parameters, these segment-specific IDs use star
prevalences ψg,k−1,b of different bowel states b ∈ B, which are either estimated from d
(period k = 1) or computed based on screening decisions corresponding to each Pareto opt
strategy Zg,→k−1 ∈ {Zg,→k−1}PO up to the previous period alongside information on nat
cancer progression due to aging (periods k = 2, . . . , 5; see step 3).
In step 2, the set of Pareto optimal strategies found in step 1 is combined with the correspo
ing Zg,→k−1 to obtain set {Zg,→k}. The vector of expected shares of invitees with dete
cancers and abnormal bowel states corresponding to strategy Zg,→k in this set is denoted
ψ̃g,k(Zg,→k) = [ψ̃g,k,B(Zg,→k), ψ̃g,k,L(Zg,→k), ψ̃g,k,R(Zg,→k)].
The third step is to compute for each Zg,→k ∈ {Zg,→k} (i) the updated starting prevale
ψg,k(Zg,→k) for the next period by accounting for the impacts of screening as well as nat
cancer progression due to aging, and (ii) the combined cancer prevalence Ψg,k,R(Zg→k)
segments comprising sex g and age groups corresponding to screening periods 1, . . . , k.
In the fourth step, those Zg,→k are removed from the set {Zg,→k} which are infeasible w
respect to the constraint on the maximum number of colonoscopies, or dominated in v
of minimizing i) the expected prevalence of benign growths in the current segment, ii)
expected prevalence of large growths in the current segment, iii) the total expected preval
of CRC in the sex-specific population screened up to and including this period, and iv)
total expected number of colonoscopies required by segments corresponding to sex g up to
including this period. The remaining solutions form the set ZPO

g,→k of Pareto optimal strate
for sex g from period 1 to period k.

e four steps are repeated for both sexes g ∈ {F,M} until all periods have been optimized. T
ts in sets {Zg}PO = {Zg,→K}PO of Pareto optimal sex-specific strategies.

l 3

The fifth step finds the pair of sex-specific strategies from sets {ZF}PO and {ZM}PO

minimizes the expected population-level cancer prevalence subject to a constraint on the t
expected number of performed colonoscopies.

hance nodes in the ID correspond to returning a FIT sample, FIT results, continued pa
on, the discovery of polyps and removal of polyps via polypectomy during a colonosopy,
rse effects from the colonoscopy (such as perforation and bleeding). The conditional proba
or these chance nodes have been obtained from the literature (see the Supplementary mat
etails).
tility nodes in Figure 1 correspond to costs, health outcomes and treatment decisions resul
the screening process of a single participant. Specifically, the values at these utility no
10
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aptured by variables UC, UR, UL, UB, and UPCol, where UC ∈ R+ refers to the direct c
red by the participant’s screening process (see the Supplementary material for details on co
UL, UB ∈ {0, 1} to detected cancers and growths so that each variable obtains a value
d only if cancer (R), large growth (L), or benign growth (B) is detected, and UPCol ∈ {0
rformed colonoscopies so that the variable obtains a value of 1 if and only if a colonoscop
rmed.
he values of the utility node variables depend on the adopted strategy Zg,k (i.e., decision n
natives) as well as the realizations of different chance events that are compatible with
egy (i.e., chance node alternatives). A combination of uniquely defined values for all cha
decision node alternatives sj ∈ Sj ∀j ∈ C ∪ D is called a scenario path s ∈ S, where S is
f all possible scenario paths. For example, one possible scenario path is

s = (40,No, Yes, Yes, Positive, Yes, Colonoscopy, Benign Growth, Polypectomy, None).

above scenario path describes a sequence of events in which a person is invited (s3 = Yes
creening program without monetary incentive (s2 = No) using a FIT with a cut-off level v
µg/Hb g (s1 = 40). The invitee returns a usable sample (s4 = Yes) that tests over 40 µg/H

is thus scored as positive (s5 = Positive), and contact is established with the local nurse (s
A further examination is chosen to be a colonoscopy (s7 = Colonoscopy), the result of w

ates a benign growth in the bowel (s8 = Benign Growth). During the colonoscopy, the gro
oved from the bowel (s9 = Polypectomy) and no adverse event occurs (s10 = None). T

results in utility node values UC = 585.37 €, UR = UL = 0, UB = 1, and UPCol = 1.

. Decision Programming formulation for optimizing the ID model

he aim of the ID optimization model is to find Pareto optimal strategies Zg,k for each segm
fic ID in view of minimizing the expected number of performed colonoscopies and maximi
xpected shares of the target segment for whom a benign growth, large adenoma, or cancer
detected. Thus, the performance of a given strategy Zg,k depends on (i) the values of ut
s Ui, i ∈ {PCol,R,L,B} corresponding to different scenario paths that are compatible w
strategy, and (ii) the probabilities of such scenario paths. To compute these probabilities
e an information set I(j) as the set of direct predecessors of a given node j, i.e. I(j) =
, j) ∈ A} (Salo et al. 2022). For instance, in Figure 1 the information set of node j = 5 (
t) consists of nodes j = 1 (FIT cut-off level) and j = 4 (usable sample is returned).
n information state sI(j) ∈ SI(j) is defined as the combination of states si for all nodes of
mation set i ∈ I(j). In our previous example, the set of possible information states for n
is SI(5) =

∏
i∈I(5) Si = S1 × S4. For chance nodes, the probability of outcome sj depend

information states. Specifically, the conditional probability of sj ∈ Sj (where j ∈ C) occur
Xj = sj |XI(j) = sI(j)], where XI(j) are random variables Xi denoting the values of node
nformation set i ∈ I(j). For example, in Figure 1 the conditional probabilities for diffe
mes in node 4 (i.e., whether a usable sample is returned) depend on the decision in no
11
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whether the person has been invited to screen) and decision in node 2 (i.e., whether they w
ed an incentive). The conditional probability tables for each chance node in Figure 1 can
d in the Supplementary material.
or the optimization model, we define auxiliary variables π(s), which refer to probabilitie
rio paths s that are compatible with strategy Zg,k = [z(sj)]j∈D. These auxiliary variables
d to the decision variables z(sj) through

π(s) =





p(s) =
∏
j∈C

P(Xj = sj |XI(j) = sI(j)), if z(sI(j)) = sj ∀j ∈ D

0, otherwise,

e sj and I(j) are taken from path s. For example, if on scenario path s′ the decision alternat

1 = 10, s2 = No, but strategy Zg,k = [z(sj)]j∈D corresponds to decision alternatives s

2 = No, then π(s′) = 0, as the first decision for s′ does not match the current strategy. T
iary variables can be used to define the four objectives of the optimization problem, of w
rst is to be minimized and the rest are to be maximized:

Expected share of target segment who undergo colonoscopy: P col =
∑

s

π(s)UPCol(s)

pected share of target segment with detected benign adenoma: ψ̃B =
∑

s

π(s)UB(s)

xpected share of target segment with detected large adenoma: ψ̃L =
∑

s

π(s)UL(s)

Expected share of target segment with detected cancer: ψ̃R =
∑

s

π(s)UR(s).

e formulate this multiobjective optimization problem of finding Pareto optimal strategies
he ID of segment (g, k) as a Decision Programming model (Salo et al. 2022). Our formula
th discrete and linear in outcomes, linear in the auxiliary decision variables π(s), and uti
dified Augmented Weighted Tchebychev (MAWT) norm approach (Holzmann & Smith 2
nvert a multiobjective mixed-integer linear programming (MOMILP) problem into a sin
tive problem. Technically, the problem is formulated as follows:

min
z(sj)

µ

ubject to

≥ wO|O − ϕutopiaO |+ ϵ
∑

O′∈O
wO′ |O′ − ϕutopiaO′ |, ∀ O ∈ O = {P col, ψ̃B, ψ̃L, ψ̃R}

∑

s

z(sj) = 1, ∀ j ∈ D, sI(j) ∈ SI(j)

≤ π(s) ≤ p(s), ∀ s ∈ S
(s) ≤ z(sj), ∀ s ∈ S, j ∈ D
12
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(s) ≥ p(s) +
∑

j∈D
z(sj)− |D|, ∀ s ∈ S

(sj), Ui(s),∈ {0, 1}, ∀ j ∈ D, s ∈ S, i ∈ {PCol,B,L,R}
(s) ∈ R ∀ s ∈ S.

n this formulation, the single objective function in Equation (6) is represented by variabl
variable together with constraints (7) specifies the MAWT norm that is used to measure
nce of the original objective function vector [P col, ψ̃B, ψ̃L, ψ̃R] from a utopian point ϕutopia

g of objective function values that could be obtained by optimizing each objective individu
ore detailed description of the MAWT norm and the computation of parameters w and
nted by Holzmann & Smith (2018). Constraints (8)-(13) correspond to the Decision Progr
formulation, and their purpose is to give a linear representation of Equation (1) linking

iary decision variables π(s) with the actual decision variables z(sj), j ∈ D. For details on t
raints, we refer the reader to Salo et al. (2022).
he optimization problem (6)-(13) is solved iteratively as summarized in the Supplemen
rial and detailed in Holzmann & Smith (2018), and produces the complete set of Pareto opt
ions Zg,k for segment (g, k). For brevity, we denote the set {Zg,k} of Pareto optimal solut
sponding to a given strategy Zg,→k−1 up to period k − 1 as

{Zg,k} = MAWT(ID(g, k, ψg,k−1(Zg,→k−1)),

e ψg,k−1(Zg,→k−1) is the starting prevalence vector corresponding to strategy Zg,→k−1. E
ion Zg,k ∈ {Zg,k} is combined with Zg,→k−1 to obtain a set of Pareto optimal strategies Z
and including period k. The objective function values corresponding to these strategies

ted by P col
g,k (Zg,→k) and ψ̃g,k,b(Zg,→k), b ∈ {B,L,R}.

Level 2: Identification of Pareto optimal sex-specific strategies

evel 2 combines the segment-specific strategies Zg,k ∈ {Zg,k}, k ∈ {1, . . . ,K} found on l
produce sex-specific strategies Zg,→K that minimize the prevalence of cancer in all age gro
ined, while minimizing the number of colonoscopies performed to ensure that the populat
strategies identified on level 3 use colonoscopy resources efficiently. Additional objective

mizing the segment-specific prevalences of benign growths and large adenomas are inclu
sure that the natural progression between different bowel states does not lead to domin
egies in terms of total cancer prevalence at the end of Level 2. Moreover, a constrain
xpected number of performed colonoscopies is imposed to prune out strategies that would
sible on level 3. Taken together, the aim of level 2 for sex g ∈ {F,M} can be formulated
iobjective optimization problem:

min
Zg,→K

. Ψg,R(Zg,→K), ψg,L(Zg,→K), ψg,B(Zg,→K), N col
g,K(Zg,→K)
13
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subject to N col
g,K(Zg,→K) ≤ N col,max,

e Ψg,R(Zg,→K) is the combined cancer prevalence in all age groups, ψg,b(Zg,→K), b ∈ {B
e prevalence of bowel state b in segment (g,K), N col

g,K(Zg,→K) is the expected total numbe
oscopies performed in all age groups, and N col,max is the maximum number of colonosco
can be carried out.
roblem (15)-(16) is solved by iterating through steps 1-4 in Process 1 for all k ∈ {1, . . . ,
algorithm for carrying out this task is presented and discussed in Section 3.3.1. Sec
presents the equations through which the prevalences ψg,k−1,b of different bowel states
,L,R} are updated between screening periods k−1 and k to account for the impact of scr
s well as natural cancer progression due to aging (step 3 in Process 1).

. Algorithm

he algorithm for solving problem (15)-(16) is presented in pseudocode in Algorithm 1.
inputs, the algorithm requires 1) the ID describing the screening process for each segment (g
ed by age and sex, 2) vectors ψg,0 = [ψg,0,b]b∈B of starting prevalences for the first age segm
per sex) and 3) K, the number of periods to be included. Algorithm 1 provides two sets of
fic strategies (one for each sex g ∈ {F,M}) that are Pareto optimal in view of minimizing
lence of cancer in all age groups combined as well as the number of colonoscopies perform
he algorithm starts by initialising empty sets of efficient solutions (one per sex). The sexes
led separately (line 2). The algorithm then proceeds on line 3 to compute the set of Pa
al strategies {Zg,→1}PO for sex g for the first period (cf. Equation (15)) based on star
lences ψg,0 estimated from data. For each strategy Zg,→1 ∈ {Zg,→1}PO, the updated star
lences ψ1(Zg,→1) are computed on line 4 by accounting for the impact of screening as we

ral cancer progression due to aging (see Section 3.3.2 for a detailed description of preval
te). On line 6, the total cancer prevalence Ψg,→1(Zg,→1) corresponding to strategy Zg,→
roups up to and including period 1 is defined simply as the cancer prevalence in the cur
ent. Then, the total expected number N col

g,→1(Zg,→1) of colonoscopies carried out so fa
uted on line 6 for each Zg,→1 ∈ {Zg,→1}PO as the product of the expected share P col

g,1 (Zg,1

t segment who undergo colonoscopy in the given strategy and the number Ng,1 of invitee
arget segment.
he computation of strategies for the remaining periods k ∈ {2, . . . , 5} starts on line 7.
Pareto optimal strategy Zg,→k−1 ∈ {Zg,→k−1}PO up to the previous period, the set {Zg,k

to optimal strategies for the current segment (g, k) is solved using the MAWT algorithm w
ing prevalences ψ(Zg,→k−1) on line 9 (cf. Equation (15)). Then, each strategy Zg,k in
combined with Zg,→k−1 on line 10 to obtain a strategy up to and including period k.
lences of different bowel states are then updated on line 12 as in the first period. On

he total cancer prevalence Ψg,k,R(Zg,→k) is computed in segments corresponding to sex g
roups up to and including period k (see Section 3.3.2 for details). The total expected num
lonoscopies carried out so far for sex g is updated on line 14 by adding to the total expe
14
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periods k ∈ {1 . . .K}
Output: Sex-specific Pareto optimal sets {ZF}PO and {ZM}PO, and the related objective values

ΨR,g(Zg), g ∈ {F,M}.
{ZF,→k}PO, {ZM,→k}PO = ∅ ∀k ∈ [1 . . .K] ; // Initialize set of efficient solutions
as empty sets.

for g ∈ {F,M} do
// First period, k = 1, handled separately.
// Compute Pareto optimal solutions for first period
{Zg,→1}PO ← MAWT (ID(g, 1), ψg,0)) ; // ψg,k = [ψg,k,b]b∈B
ψg,1(Zg,→1)← UpdatePrevalences(Zg,1, ψg,0) ∀Zg,1 ∈ {Zg,1}PO ;
Ψg,→1,R(Zg,→1)← ψg,1,R(Zg,1) ∀Zg,1 ∈ {Zg,1}PO ;
N col

g,→1(Zg,1)← Ng,1P
col
g,1 (Zg,1) ∀Zg,1 ∈ {Zg,1}PO ;

for k ∈ {2, . . . ,K} do
for Zg,→k−1 ∈ {Zg,→k−1}PO do

// Compute Pareto optimal solutions for period k based on preceding
strategy Zg,→k−1

{Zg,k} ← MAWT (ID(g, k, ψg,k−1(Zg,→k−1)));
for Zg,k ∈ {Zg,k} do

Zg,→k ← (Zg,→k−1, Zg,k) ; // Extend Zg,→k−1 by Zg,k into a new strategy
Zg,→k, covering steps until k
ψg,k(Zg,→k)← UpdatePrevalences(Zg,→k, ψg,k−1) ;
Ψg,→k,R(Zg,→k)← TotalPrevalences (ψg,k,R(Zg,→k),Ψg,→k−1,R(Zg,→k−1));
// Add new colonoscopies from Zg,k to preceding colonoscopies.
N col

g,→k(Zg,→k)← N col
g,→k−1(Zg,→k−1) +Ng,kP

col
g,k(Zg,k) ;

if N col
g,→k(Zg,→k) ≤ N col,max then
{Zg,→k}PO ← {Zg,→k}PO

⋃
Zg,→k ; // Collect found strategies for

step k.
end

end
end
{Zg,→k}PO ← RemoveDom’d({Zg,→k}PO,Ψg,→k,R(·), ψg,k,B(·), ψg,k,L(·), N col

g,→k(·)) ;
end

end
{ZF}PO ← {ZF,→K}PO, {ZM}PO ← {ZM,→K}PO ;

Algorithm 1: Level 2 algorithm
15
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er of colonoscopies carried out up to the previous period the product of the expected s
Zg,→k) of the target segment who undergo colonoscopy in the given strategy and the num
of invitees in the current target segment.
n lines 14-16, those strategies that are feasible with respect to a constraint on the total expe
er of colonoscopies (line 15) are collected in set {Zg,→k}PO. Once the feasible, Pareto opt

egies Zg,→k have been found corresponding to all Pareto optimal strategies Zg,→k−1 from
ious period, those strategies are removed (using pairwise dominance checks) on line 20 f
et {Zg→k}PO of Pareto optimal strategies which are dominated in view of minimizing (i)
cted prevalence ψg,k,B of benign growths in the current segment, (ii) the expected preval

L of large growths in the current segment, (iii) the total expected prevalence Ψg,→k,R of CR
opulation of sex g screened up to and including period k, and (iv) the total expected num

k of colonoscopies required by segments corresponding to sex g up to and including perio
removal of strategies that would most likely become infeasible or dominated in the upcom
ds helps to maintain computational efficiency. It can also be motivated by these plaus
irements concerning the performance of strategies up to and including period k. Yet, i
inciple, possible that some of these strategies could be parts of feasible and Pareto-opt
egies in the final period K. The characterization of those combinations of parameter value
h this may occur is left as a topic for further work.

. Prevalence update

tep 3 in Process 1 (i.e., lines 4, 5, 12 and 13 in Algorithm 1) corresponds to computing
ing prevalences ψg,k,b of different bowel states b ∈ B for sex g in period k. To do this,
account for both the impact of screening as well as natural cancer progression through ag

ccommodate the impact of screening, we assume that any benign growth, large adeno
RC found during the screening pathway is removed and that the bowel returns to a nor
2. The updated prevalence of bowel state b ∈ {N,B,L,R} corresponding to screening stra
∈ {Zg,k} is denoted by ψ̃g,k,b(Zg,k). Natural cancer progression due to aging is reflected in
el by transition probability Tg,k

b,b′ , i.e., the probability that the bowel state of a participant of
′ in period k + 1 given that it was b in period k. We assume that this progression follows
oma-carcinoma sequence, meaning the transition through bowel states can be represented
r recurrence relation. Based on discussions with the Finnish cancer registry, these assumpt
e deemed acceptable for the purposes of this paper. However, more refined transition mo
be integrated into this modeling approach to improve accuracy.

aking into account both the impact of screening as well as natural cancer progression,
ing prevalences ψg,k,b of different bowel states b ∈ B for sex g in period k can be compu

n individual receiving treatment will move on to a separate surveillance program and will no longer be a
population screening program. The assumption of the bowel returning to a normal state after the remov

ign growth, large adenoma, or CRC can be seen to reflect the average dynamics of disease progression in
population of the screening program.
16
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the following difference equations:

g,k,B(Zg,→k) = (ψg,k−1,B − ψ̃g,k,B(Zg,→k))(1− Tg,k
B,L) + ψg,k−1,NTg,k

N,B

ψg,k,L(Zg,→k) = (ψg,k−1,L − ψ̃g,k,L(Zg,→k))(1− Tg,k
L,R) + (ψg,k−1,B − ψ̃g,k,B(Zg,→k))Tg,k

B,L

ψg,k,R(Zg,→k) = ψg,k−1,R − ψ̃g,k,R(Zg,→k) + (ψg,k−1,L − ψ̃g,k,L(Zg,→k))Tg,k
L,R

ψg,k,N(Zg,→k) = 1−
∑

b∈{B,L,R}
ψg,k,b(Zg,→k) .

instance, in Equation (17) the prevalence estimate for benign growth (B) is updated b
uting the remaining prevalence after applying strategy Zg,→k by subtracting the expe
of found benign growths ψ̃g,k,B(Zg,→k) from the previous prevalence estimate ψg,k−1,B

iplying this remaining prevalence with the share of participants whose benign adenoma
develop into large adenomas (1 − Tg,k

B,L), and finally 3) adding the share of participant
egment who will develop benign adenomas from previously normal bowels. The logic for b
s L (large growths) and R (cancer) is similar, with the exception of there not being further b
s to which to develop from state R. Equation (20) simply states that participants with nor
l states are those whose bowel sates are not B, L, or R. Equations (17)-(20) are compa
sented on line 12 of Algorithm 1 by function

UpdatePrevalences(Zg,→k, ψg,k−1(Zg,→k−1))

he total prevalence Ψg,→k+1,R of cancer in the target population is updated on line 1
rithm 1 through function TotalPrevalences(·), defined as

,→k,R(Zg,→k) = TotalPrevalences(ψg,k,R(Zg,→k),Ψg,→k−1,R(Zg,→k−1))

=
Ψg,→k−1,R(Zg,→k−1) · (

∑k−1
i=1 Ng,i) + ψg,k,RNg,k∑k

i=1Ng,i

.

first term in the numerator is the expected number of cancer cases in segments correspon
x g and age groups up to and including period k − 1, while the second term is the expe
er of cancer cases in the current segment (g, k). The denominator is the total numbe

cipants in segments corresponding to sex g and all age groups up to and including period

Level 3: Identification of an optimal screening strategy.

he aim of level 3 (step 5 in Process 1) is to choose the two Pareto optimal sex-specific strate

K ∈ {ZF}PO and ZM,→K ∈ {ZM}PO identified on level 2 that together minimize the expe
prevalence in the entire screening population subject to a constraint on the expected t
er of colonoscopies performed. Let JF = |{ZF}PO| and JM = |{ZM}PO| be the numbe

to optimal strategies for females and males, respectively. Let xF,j ∈ {0, 1}, j ∈ {1, . . . ,
xM,j ∈ {0, 1}, j ∈ {1, . . . , JM} be binary decision variables each of which obtains a valu
17



Journal Pre-proof

1 if Let
Ψj

g,→ y j.
The ated
as th

(23)

(24)

(25)

(26)

(27)

wher otal
popu and
N col, ion.

4. R m

I tion
with ning
prog ning
prog ving
the c ups.
Furt ning
strat rent
Finn g to
the h s as
well ions
of di and
costs und
betw city
are c The
inpu ate,
FIT s of
differ
 Jo

ur
na

l P
re

-p
ro

of

and only if the j-th strategy is selected from the set {ZF }PO or {ZM}PO, respectively.

K,R denote the total cancer prevalence in all age groups of sex g corresponding to strateg
task of identifying the optimal pair of sex-specific screening strategies can now be formul
e binary linear programming problem

min
xF,j , xM,j

. ΨR =
NF

N
·Ψj

F,→K,R · xF,j +
NM

N
·Ψj

M,→K,R · xM,j

subject to N col
F,jxF,j +N col

M,jxM,j ≤ N col,max,
∑

j

xg,j = 1, ∀g ∈ {F,M}

xM,j ∈ {0, 1}, ∀j ∈ {1, . . . , JM}
xF,j ∈ {0, 1}, ∀j ∈ {1, . . . , JF},

e Ng =
∑K

k=1Ng,k is the number of persons of sex g in the total population, N is the t
lation size, N col

g,j is the expected number of colonoscopies performed in strategy j for sex g,
max is the maximum number of colonoscopies that can be performed for the entire populat

esults and recommendations for improving the Finnish CRC screening progra

n this Section, we present optimal CRC screening strategies for the Finnish target popula
and without the possibility of using monetary incentives to boost participation in the scree
ram. The case in which incentives are not available reflects the current Finnish CRC scree
ram. Hence, results corresponding to this case will provide recommendations for impro
urrent program by suggesting optimal FIT cut-off levels for different age and sex gro

hermore, these results will reveal information on the expected costs of both the current scree
egy as well as the optimized strategies. To our knowledge, no other cost analysis for the cur
ish CRC screening program has been published in the public domain. Results correspondin
ypothetical case in which monetary incentives are available help assess the potential benefit
as costs of such incentives, if they were to be utilized in the future. To examine the implicat
fferent colonoscopy resource constraints on optimal screening strategies, health outcomes
, we compute the results by varying the maximum number of colonoscopies per screening ro
een 3,000 and 12,000. Strategies corresponding to these different values of colonoscopy capa
ompared to the baseline case of no screening as well as the current screening program.
t parameters used to compute the results (including target segment sizes, participation r
and colonoscopy sensitivities and specificities, probabilities of adverse events, prevalence
ent bowel states, and costs) are in the Supplementary material.
18
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he number of potential screening strategies was 1110 ≈ 29.5 billion3. Pareto optimal
fic strategies were computed using a Julia-based algorithm on Aalto University’s Triton H
er. Computation time for males was 3 days and 21 hours, and for females over 6 days du
her number of feasible strategies. The memory requirements were approximately 4.4 and
or males and females, respectively. Altogether 6,389 and 15,194 Pareto-optimal strategies w
ified for males and females, respectively. The identification of those two Pareto-optimal
fic strategies that together minimized the expected CRC prevalence subject to a colonosc
rce constraint (i.e., level 3) consumed significantly less resources and could be performed
ar laptop computer.

Pareto optimal screening strategies

he sex-specific Pareto optimal screening strategies (i.e., the results of level 2) with and with
tary incentives are presented for females and males in Figures 2a and 2b respectively. In b
es, the current strategy (in which a FIT cut-off level of 25 µg Hb/g is used for all segm
no monetary incentives are used) is depicted with a green square. For both sexes the in
ed strategies dominate the non-incentivized, except for cases in which very few colonosco
erformed. This is because incentives help boost participation in those segments where col
es yield the highest health benefits: in particular, being able to detect abnormal bowel state
ger segments not only decreases cancer prevalence in these segments, but also decreases the
nign growths and large adenomas developing into cancers in subsequent periods. For fem
urrent screening strategy is practically Pareto optimal. Yet, for males, the current strateg
ly dominated, implying that a lower CRC prevalence could be obtained with the same num
lonoscopies performed.
he expected CRC prevalences for the optimal population-level screening strategies (i.e.,
mes of level 3) for different values of the maximum expected number of colonoscopies

ed are depicted in Figure 3 by blue (incentivized case) and yellow circles (non-incentiv
. The optimal strategies did not change after increasing the maximum expected numbe
oscopies beyond 14,000, implying that this amount of colonoscopy resources would be suffic
inimizing cancer prevalence in the population. The current strategy corresponding to 9

cted colonoscopies and an expected cancer prevalence of 0.51% is marked by a green squ
outcome of not screening at all (zero colonoscopies and a cancer prevalence of 1.07%) is depi
red cross. A comparison between the current strategy and Pareto optimal strategies sugg
the use of sex- and age-specific FIT cut-off levels could result in (i) an equal level of ca
lence with significantly fewer colonoscopies (i.e., 8,000 vs. 9,693) or (ii) a significant reduc
ncer prevalence with approximately the same number of colonoscopies, especially if meas
e taken to increase participation in the screening program.

here are altogether 10 segments (g, k) corresponding to five screening periods k for both sexes g. For
nt, there are 11 possible strategies comprising a no-screening strategy and 10 screening strategies (five
levels, each with an option to use or not use incentives). Together, this results in 1110 potential strategi
19
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(b) Incentivized and non-incentivized Pareto opti
strategies for males.

ure 2: Sex-specific outcomes for Pareto-optimal strategies for both incentivized and non-incentivized case

n the Supplementary material, we present the results of sensitivity analyses examining
cts of varying the values of all model parameters on expected CRC prevalence, the expe
number of colonoscopies, and expected total costs for optimal strategies corresponding to 3
0, and 14,000 colonoscopies. Expected cancer prevalence as well as expected total costs
sensitive to changes in bowel state transition probabilities – faster transitions result in m

ers and, thus, higher treatment costs within the program. The expected number of colonosco
st sensitive to FIT specificity; the lower the specificity (i.e., the higher the chance of a f
ive FIT result), the more colonoscopies will be carried out. Special attention should thu
to obtaining accurate estimates for FIT specificity to mitigate the risk of exceeding colonosc
city.
igure 4 shows the total direct costs together with the total number of colonoscopies for a
screening, the current strategy, and optimized strategies corresponding to different va

e maximum expected number of colonoscopies. Here, the direct costs are incurred by,
reparation and analysis of FITs, colonoscopies, and treatment (see the Supplementary m
or details). These costs were not explicitly minimized in the analysis but may neverthe
an important role in decision making due to, e.g., decision-makers wanting to avoid sig
cost increases compared to current practices. Figure 4a shows that while the optimal us
tives provides benefits in terms of the selected objectives, it also leads to significantly hi
compared to the current strategy, except in cases in which the expected number of perfor
oscopies is low. This is due to the extra costs incurred by the incentives, the increased num
lonoscopies (and adverse events related to these colonoscopies) resulting from higher par
n rate, and higher treatment costs due to a higher number of detected cancers. In the
n-incentivized strategies, the total costs of an optimized strategy with a maximum of 7
cted colonoscopies coincide with those of the current strategy, in which only 6,482 are to be
d. This suggests that the use of sex- and age-specific FIT cut-off levels could help decrease
20



Journal Pre-proof

Figur lable
colon

total that
the m pies
incre tect
a lar ated
costs

F on-
incen re-
sourc lues
help ono-
scopi tion
pays the
scree nger
segm lier-
stage ell.
Neve ore
thoro e 4)
of su

E ides
inter FIT
Jo
ur

na
l P

re
-p

ro
of

0 2500 5000 7500 10000 12500
Expected colonoscopies

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011
Ex

pe
ct
ed

 C
RC

 p
re
va

le
nc
e

Incentives
No incentives
Current strategy
No Screening

e 3: Outcomes of strategies that minimize cancer prevalence in the target population depending on avai
oscopies.

costs even if the number of colonoscopies would remain the same. Finally, Figure 4 shows
arginal increase in total costs decreases as the maximum number of expected colonosco

ases. This can be explained by the fact that a higher level of colonoscopy resources helps de
ger number of non-cancerous growths early on, which results in a decrease in cancer-rel
.
inally, Tables 1 and 2 show the optimal segment-specific screening strategies for the n
tivized and incentivized case, respectively. In both cases, a higher level of colonoscopy
es translates to lower FIT cut-off values. This is to be expected, since lower FIT cut-off va
detect and prevent more cancers due to the increased test sensitivity, but require more col
es to be performed. By comparing Tables 1 and 2, it can be seen that boosting participa
off in almost all target segments. Encouraging younger age segments to participate in
ning program is particularly effective: screening a higher number of people in the you
ents decreases not only cancer prevalence in these segments, but also the prevalence of ear
growths and adenomas, which translates into lower cancer prevalence in later periods as w

rtheless, determining whether the use of incentives is cost-effective would necessitate a m
ugh comparison between the added health benefits (Figure 3) and the added costs (Figur
ch incentives.
xamining the optimal, non-incentivized strategy corresponding to 10,000 colonoscopies prov
esting insights into how the current screening strategy with 9,693 colonoscopies and a fixed
21
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Figure 4: Development of direct costs vs. number of colonoscopies.

ff level of 25 µg Hb/g for both sexes could be improved by adjusting the FIT cut-off le
rticular, the optimized strategy suggests that the cut-off level for females should be decre
s all age groups. Consequently, to satisfy the constraint on the maximum expected numbe
oscopies, the cut-off level should be increased in older age segments for males. In summ

f the above results suggest that efforts should be taken to detect abnormal bowel states i
people and as early as possible to help minimize overall cancer prevalence in the populat

1: Optimized screening policies with no option of incentive: FIT cut-off level in µg Hb/g, no invite represe
colonoscopy performed when positive FIT.

Maximum colonoscopies Sex Age 60 Age 62 Age 64 Age 66 Age 68
3,000 Male 70 70 70 - -

Female 10 55 - - -
4,000 Male 70 70 70 70 -

Female 10 55 70 - -
5,000 Male 55 70 70 70 -

Female 10 10 40 - -
6,000 Male 40 40 55 70 -

Female 10 10 10 - -
7,000 Male 25 40 70 70 -

Female 10 10 10 10 -
8,000 Male 25 25 55 70 70

Female 10 10 10 10 -
10,000 Male 10 25 25 55 70

Female 10 10 10 10 10
12,000 Male 10 10 10 10 40

Female 10 10 10 10 10
14,000 Male 10 10 10 10 10

Female 10 10 10 10 10
22
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2: Optimized screening policies with option of incentive (+i): FIT cut-off level in µg Hb/g, no invite represe
colonoscopy performed when positive FIT.

Maximum colonoscopies Sex Age 60 Age 62 Age 64 Age 66 Age 68
3,000 Male 70 70+i 70+i - -

Female 25 55 - - -
4,000 Male 55+i 55+i 70+i - -

Female 10+i 70 70 - -
5,000 Male 55+i 55+i 70+i 70 -

Female 10+i 70 25 40 -
6,000 Male 40+i 70+i 70+i 70+i -

Female 10+i 10+i 25 - -
7,000 Male 40+i 55+i 70+i 70+i -

Female 10+i 10+i 10+i 55 -
8,000 Male 40+i 25+i 55+i 70+i -

Female 10+i 10+i 10+i 25 -
10,000 Male 25+i 25+i 25+i 55+i 70

Female 10+i 10+i 10+i 10+i -
12,000 Male 10+i 10+i 25+i 25+i 70

Female 10+i 10+i 10+i 10+i 40
14,000 Male 10+i 10+i 10+i 25+i 10

Female 10+i 10+i 10+i 10+i 40

Distribution of resources and benefits between segments

e also study the distribution of resources and benefits between segments to understand whe
roposed strategies might pose a problem from an equality perspective. Toward this end, Fig
6 show the distribution of (i) colonoscopies, (ii) the expected share of remaining cases of C

e target population after screening, and (iii) the expected share of reduction in cancers comp
screening by segment for non-incentivized and incentivized strategies, respectively. Differe

een age groups are not considered relevant from an equality perspective since all particip
ssumed to proceed from the first age group to the last. Therefore, we limit our discussion
lity issues to differences between the sexes.
n both incentivized and non-incentivized strategies, males receive a slightly higher shar
oscopies and a larger share of reduction in cancers. This is because the FIT sensitivity
s is much higher for all abnormal bowel states and all FIT cut-off levels compared to fem
, males receive a positive FIT result more often than females, whereby they are also m
to undergo a colonoscopy examination and be treated for cancer. Consequently, the shar

ining cancers is higher for females, especially when incentives are used to boost participat
is explained by our assumption that using an incentive for a given segment halves the numb
adherent persons in that segment. Because the share of non-adherent persons in male segm
ger than that in female segments, incentives have a stronger effect in reducing cancers in m
y comparing the current strategy with 9,693 colonoscopies to the optimal non-incentiv
egy with 10,000 colonoscopies, it can be seen that the use of optimized segment-specific
ff levels would (i) increase the share of colonoscopies carried out for females from 38.5%
, (ii) decrease the share of remaining cancers in females from 59.0% to 55.5%, and (iii) incr

hare of reduction in all cancers in females from 37.8% to 41.8%. Thus, it can be conclu
23
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e 6: Distribution of expected colonoscopies, cancer prevalence and health benefits between segments w
tives can be used to increase participation rate.
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the use of optimal (non-incentivized) strategies could help improve the current strategy f
uality perspective as well.

iscussion and Conclusions

e have proposed a novel multilevel optimization model for improving the Finnish CRC
. In the model, influence diagrams are utilized to capture the decisions, uncertainties,
mes related to the screening program for each segment of the target population defined by
cipants’ sex and age. Then, an algorithm based on Decision Programming is used to iden
to optimal screening strategies for both sexes in view of minimizing the prevalence of C
the probability of performing colonoscopies. Finally, a binary linear programming proble
ulated to identify the combination of sex-specific strategies that together minimize the pr
of CRC in the entire target population subject to a constraint on the total expected num

lonoscopies performed.
ompared to existing approaches, our model enables the identification of optimal scree
egies under resource constraints even in cases where these strategies consist of a numbe
ent decisions the outcomes of which are subject to several chance events. In particular,

el makes it possible to determine for each segment separately (i) the optimal FIT cut-off le
erforming a colonoscopy and (ii) whether it pays off to use incentives to boost participa
e program. In this way, the model can help allocate scarce colonoscopy resources in a m
effective way.
ur results offer several insights into how the Finnish CRC population screening program c
proved. First, the FIT cut-off level for females should be decreased, especially in you
roups. A similar result is obtained by Heinävaara et al. (2022), who use simulation to st
ost-effectiveness of different CRC screening strategies in the Finnish context. Yet, to sa
onstraint on the maximum expected number of colonoscopies, our model suggests that
ff level should be increased in older age segments, especially for males. Moreover, boos
cipation pays off in almost all target segments, and encouraging younger age segment
cular to participate in the screening program is highly effective. This is also in line with
ts presented by Güneş et al. (2015) and Ladabaum et al. (2019), who suggest that increa
ning compliance is beneficial. In summary, efforts should be taken to detect abnormal b
s in as many people and as early as possible to help minimize overall cancer prevalence in
lation.
t present, our model has some limitations. First, our assumptions on disease progression
ively strong. Improvements in the ways in which these processes are modeled could lea
accurate estimates of the model parameters and, thereby, better strategy recommendati

nd, due to lack of detailed data on the connection between CRC-related deaths and prevale
e different adenoma-carcinoma stages, we did not include the minimization of mortality a
tive. Nevertheless, taking this objective into account (or even demonstrating the impact
al strategies on CRC-related mortality, as is done by Erenay et al. 2014) would be rele
25
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could have an impact on the recommended strategies. We therefore suggest that the mod
sted accordingly when the required data becomes available.

third limitation of our proposed model is that we have assumed that no information ab
ticipant’s risk level for abnormal bowel states is available beyond their sex and age. Yet,
level is known to be elevated for people with a history of CRC or adenomatous polyps. T
is not highly relevant for the current paper, which focuses on population screening and
illance. If screening and surveillance were to be optimized as a whole, our model could
ded to cover different risk levels for each segment, as has been done by Erenay et al. (20
levels for abnormal bowel states are also known to depend on factors such as family hist
rbidity, and the presence of high- or moderate-impact pathogenic variants in CRC susce
genes (Fuchs et al. 1994, Boakye et al. 2018, Tamlander et al. 2024). Population scree

rams have traditionally been purposefully designed not to require such detailed information
articipants’ risk levels – rather, increased risk due to factors such as family history or comor
to be detected via other health pathways, which may result in suggestions for more frequ

or even colonoscopies. Yet, if the model were to be used to develop a targeted, risk-b
ning program (as has been advocated in recent studies by, e.g., Lansdorp-Vogelaar et al. 2
Tamlander et al. 2024), information on different risk factors could be integrated by introdu
dimensions to the segmenting of the target population. Computationally, however, the mo
ting from such an integration would be less tractable.
ourth, we have used a limited, discrete scale for possible FIT cut-off values. The use
er discretization or even a continuous scale could suggest strategies that offer greater he
fits with the same capacity for colonoscopies. Yet, these kinds of modifications would req
ithmic efforts to keep the computation time manageable or, in the case of continuous cu
s, modifications to the Decision Programming framework. Finally, our proposed multilevel
ation model is computationally quite intensive as it, in practice, generates a multi-peri
ion tree to be solved. However, due to the nature of the algorithm, the main memory requ
is set by the structure of the influence diagram, i.e., the segment-specific model, whereas
ion of periods increases only the computation time. Furthermore, the introduction of a m
led segment structure (to accommodate, e.g., the impacts of family history or comorbidity
rticipant’s risk for abnormal bowel states) would not increase the computation time eithe
iple computer units or nodes are available for computation. This is because the Pareto opt
egies can be computed separately for all segments over all screening periods, after which
al combination of these segment-specific strategies can be determined on level 3 by sol
ary linear programming problem. Nevertheless, if computation time becomes an issue,
duction of problem-specific constraints that would cut off infeasible or suboptimal bran
the decision tree can be useful. In the context of this paper, for instance, we have elimin
egy branches that exhaust capacity constraints for colonoscopies before the final period, or
evalences of abnormal bowel states that would almost certainly lead to suboptimal outco
rms of cancer prevalence in the final period.
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his paper opens several avenues for future research. First, despite our efforts to find
sources for the assumptions underlying our model and its input parameters, continued w
eded to validate it further. At the time of writing this paper, the screening program
running only for two years, and consequently we were only able to use data on the first
ent (60-year-olds) to validate whether our model produces realistic results on the numbe
oscopies and identified cancers. For a more thorough validation, data on all segments
l state prevalences would be needed to ensure that the predictions made by our model coin
observed evidence. Such data would be useful in calibrating the model, particularly in te
taining more accurate information on FIT sensitivities and transition probabilities, wh
on our sensitivity analyses, are the key parameters affecting the performance of the optim

egies.
n the meantime, our results could be validated by using, e.g., the MISCAN model, whic
ly used in cancer screening research. Whereas running the strategies identified in this pa
ISCAN should be relatively straightforward, implementing similar optimization capabil
tly in MISCAN would likely require the use of heuristic approaches, such as genetic algorith
could prove beneficial if there is a large difference in the performance of the found strate
by our model and the MISCAN model. Moreover, a similar modeling approach to the

osed in this paper could be applied to the screening of CRC as well as other cancers and slo
loping diseases in Finland or in other countries. Here the Decision Programming framework
e to be quite flexible as defining the process is relatively intuitive using IDs and the optimiza
ithms require updates only to objectives and constraints. It also allows flexible objective
raint definitions. Finally, fully leveraging the probabilistic constraint capabilities of Deci
ramming over periods and segments still lacks a rigorously justified approach, which c
e useful in, e.g., risk mitigation.
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We develop a model to optimize strategies for two-stage colorectal cancer screening
The model accounts for different cutoffs for first-stage tests based on age and sex
Optimal strategies under colonoscopy constraints are found by Decision Programming
Identified Pareto-optimal strategies minimize cancer prevalence and colonoscopies
The results offer insights into improving the Finnish cancer screening program
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