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Abstract

In Finland, colorectal cancer (CRC) incidence rates have steadily increased over the last decades
and as of 2020, CRC is the second most common cancer in both males and females. CRC is a crucial
concern for the public health of Finland, highlighted by the recent implementation of a national
population screening program. In this paper, we optimize the screening test positivity cut-off levels
and the use of potential incentives for stratified populations to minimize cancer prevalence. The
optimization results, computed with the novel Decision Programming approach for discrete multi-
stage decision problems under uncertainty, show the optimal cut-off levels and uses of incentives
for Finnish target groups subject to different constraints on colonoscopy capacity. The outcomes of
these optimal strategies are estimated to determine the expected corresponding prevalences of CRC
and required colonoscopies, and expected third-party costs. Finally, measures describing different

equality perspectives are presented.

Keywords: OR in health services, colorectal cancer screening, optimization, influence diagrams,
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1. Introduction

Colorectal cancer (CRC), also referred to as bowel cancer, is cancer of the colon and/or rectum.
CRC incidence rates have steadily increased over the last decades with CRC currently being the
second most common cancer in adults in Finland, and the third most common worldwide (Finnish
Cancer Registry 2017, World Health Organization 2018). In 2020 CRC accounted for 2.3% of all
deaths in Finland and was the second most diagnosed cancer in both males and females, making it
a crucial concern to public health (Finnish Cancer Registry 2022, Advisory Board of OSF 2022).

Over 70% of colorectal cancers develop via the adenoma-carcinoma sequence (Hardy et al. 2000)
in which adenomas (i.e., growths on the epithelial tissue in the bowel) develop into cancer. This
sequence is a slow process that can take from several years to a decade (Simon 2016). Due to this,

early detection and removal of pre-cancerous adenomas can prevent progression to cancer, making
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CRC extremely suitable for population screening. Population screening of CRC using faecal occult
blood testing has long been shown to reduce later-stage CRC incidence and improve mortality
(Mandel et al. 1993, Kewenter et al. 1994, Kronborg et al. 1996, Mandel et al. 1999). Along with early
detection of adenomas, early diagnosis of cancer improves the probability of successful treatments
and outcomes by providing care at the earliest possible time. This has an important impact on
public health strategy as it helps avoid CRC-attributed deaths and morbidity, in addition to high
treatment and indirect costs associated with advanced cancer stages (World Health Organization
2017).

In 2019, Finland implemented a new CRC population screening program, which became na-
tionwide in 2022. The program invites entire age cohorts to screen using faecal immunochemical
testing (FIT) to first filter participants for further examination. Then, those program participants
whose FIT result exceeds a given cut-off level (hemoglobin level in the stool sample) are invited for
a colonoscopy (Finnish colorectal cancer screening expert groups 2021). Colonoscopy is an invasive
procedure, which allows the visual inspection of the colon to detect abnormalities such as polyps
or adenomas. If an abnormality is discovered, it can be removed via polypectomy and sent for
pathology assessment. Colonoscopies are resource intensive and may cause discomfort and adverse
effects (such as bleeding or perforation of the bowel) to the participant. It is therefore important
to develop cost-effective screening strategies in which scarce colonoscopy resources are allocated to
those participants for whom they yield the highest health benefits.

In the current program, the FIT cut-off level for a positive result is fixed based on the partici-
pant’s sex. Specifically, the Finnish program employs a cut-off level of 25 ug Hb/g for both females
and males, regardless of their age. In reality, however, the interpretation of the result should be dif-
ferentiated by participants’ risk profiles (i.e., age, sex, and family history of cancer; Selby et al. 2018,
Peng et al. 2020). Moreover, because a positive result leads to an invitation to a colonoscopy, the
cut-off level should also take into account the capacity to carry out colonoscopies. Consequently, the
program may not be the most cost-effective approach to reduce Finnish colorectal cancer incidence
and mortality.

The purpose of this paper is to build an optimization model for the Finnish CRC population
screening program with the aim of minimizing cancer prevalence (i.e., the probability of a population
member having CRC) in the target population with respect to a colonoscopy resource constraint. In
particular, for each segment of the population specified by the participants’ sex and age, we define
(i) whether the segment should be invited to screen or not, (i) what the optimal FIT cut-off levels
are, and (iii) whether it pays off to use incentives to boost participation. The results of our model
can be used to improve the current program in ways that help allocate scarce colonoscopy resources
in a more cost-effective manner.

The rest of the paper is structured as follows. Section 2 discusses related work and our contribu-
tions to the literature. Section 3 presents an overview of the current population screening program
used in Finland, and details the model used to optimize this program. The results of the model are

presented and discussed in Section 4, and Section 5 concludes.



2. Related work and contributions

Traditionally, cost-effectiveness evaluations of public health programs, such as population screen-
ing, are assessed through methods of cost-benefit analysis (e.g. Ellison et al. 2002), cost-utility anal-
ysis (e.g. Gupta et al. 2011, Dillon et al. 2018), or cost-effectiveness analysis (e.g. Ladabaum et al.
2019). Health economic methodologies such as these typically compare costs and health outcomes
of a given screening strategy to those of a baseline strategy (for example, no screening). Quality of
life indicators, such as quality-adjusted life-years (QALYs) and life-years saved/gained (LYS/LYG),
are frequently used to calculate the incremental cost-effectiveness ratio (ICER) for comparing al-
ternative strategies. In these analyses, strategies are not optimized in the mathematical sense, but
rather assessed in regard to their dominance. Consequently, such analyses tend to suggest strategies
that are infeasible due to a lack of resources or suboptimal in that (i) the resources could be reallo-
cated to achieve a better population-level health outcome or (ii) the same health outcome with less
resources.

Some studies have sought to overcome the above issues by investigating the cost-effectiveness
of a large set of alternative strategies so that the best-performing strategy within this set could be
assumed to be close to optimal (Wilschut et al. 2011, Van Der Meulen et al. 2017). For instance, a
recent study by Whyte et al. (2022) uses an existing CRC simulator to evaluate the cost-effectiveness
of over 60,000 screening strategies, which together cover a wide range of possible FIT cut-off values,
ages to start screening, and screening frequencies. Heinévaara et al. (2022) use a similar approach
to find cost-effective screening strategies when the FIT cut-off level can differ depending on the
participant’s sex. In particular, they develop separate MISCAN-Colon models for Finnish men and
women to evaluate the cost-effectiveness of 181 sex-specific strategies and 362 combinations thereof.
These kinds of approaches cannot, however, be utilized when the goal is to find screening strategies
in which FIT cut-off values as well as screening times are to be optimized for segments defined by
both age and sex. This is because in such settings, the number of possible strategies becomes so
large (e.g., close to 26 million in the setting described in this paper) that the probability of finding
an optimal strategy within a set of even tens of thousands of predetermined strategies becomes
vanishingly small.

The two most typical approaches for optimization-based design of screening programs are Par-
tially Observable Markov Decision Processes (POMDPs) and simulation-optimization. POMDPs,
in particular, have been popular in optimizing screening programs thanks to their ability to account
for development and uncertainty in patients’ states of health. Ayer et al. (2012) build a POMDP
model to optimize patient-specific mammography screening times, and Alagoz et al. (2013) provide
a tutorial in optimizing cancer screening using a POMDP approach.Cevik et al. (2018) present a
constrained POMDP model to study the optimal allocation of limited mammography resources to
screen a population. Lee et al. (2019) optimize the use of limited resources for the screening of a
population for hepatocellular carcinoma by modeling the problem as a family of restless bandits in
which each patient’s disease progression is assumed to evolve as a POMDP.

From the perspective of CRC screening, a particularly relevant approach is presented by Erenay



et al. (2014), who develop a POMDP model to optimize colonoscopy screening policies for CRC pre-
vention and surveillance in the U.S. context in view of maximizing total expected quality-adjusted
life years (TQALYs). In this model both static (sex and age) and dynamic risk factors (history
of CRC or adenomatous polyp) are considered in modeling disease progression. Input parame-
ters for the model are obtained from a simulation study based on Mayo Clinic-Rochester patient
records (Erenay et al. 2011), the SEER database!, and the literature. The model is validated based
on expert opinion as well as by comparing model outputs with statistics from reliable databases
and established simulation models. The optimal policies resulting from this model suggest that, for
instance, screening should occur more frequently than what is recommended by current guidelines,
especially for younger people. Moreover, while low-risk women should be screened less frequently
than low-risk men, women with a personal history of CRC should undergo colonoscopy more often
than men with a personal history of CRC.

From the point of view of optimizing the Finnish CRC population screening program, the above
approach (as well as other POMDP approaches) is not entirely suitable. First, this approach
only considers a single screening tool (colonoscopy), and therefore cannot be used to optimize the
use of a pre-screening test (such as a FIT). Yet, in CRC screening, the FIT is used precisely to
avoid the unnecessary use of colonoscopies. Moreover, while the above approach accommodates
uncertainties regarding cancer state transitions, it ignores uncertainties related to adherence to
invitation, continued participation, and potential adverse events resulting from screening. These
aspects may, however, have significant impacts on the overall performance of the screening program.
The accommodation of a FIT and additional chance events in a POMDP model would likely lead to
computational intractability, at least when aiming to obtain exact optimal solutions (e.g. Li et al.
2009). Moreover, the approach by Erenay et al. (2014) does not admit constraints on the capacity
for carrying out colonoscopies. Such constraints are, however, relevant from the perspective of policy
making and directly affect optimal FIT cut-off levels, whereby they should ideally be accommodated.
Thus, for the purposes of our study, a different modeling approach is required.

Methods of simulation-optimization have been used to find optimal screening strategies even
in fairly complex settings and for different forms of cancer including, e.g., cervical (McLay et al.
2010), breast (Rauner et al. 2010), and prostate (Bertsimas et al. 2018) cancer. Underwood et al.
(2012), for instance, use simulation-optimization in the context of prostate cancer screening to find
optimal cut-off values for prostate-specific antigen used to determine whether a prostate biopsy is
necessary. Young et al. (2021) use derivative-free optimization coupled with microsimulation to
find an optimal CRC screening strategy for males, when a strategy is defined by the choice of a
single screening tool (FIT, sigmoidoscopy, or colonoscopy), a starting and ending age for screening,
and screening frequency. Yet, the optimization models used in these types of approaches are often
highly nonlinear, which typically necessitates the use of heuristics (such as a genetic algorithms

used by Underwood et al. 2012) to keep the problem computationally tractable, especially if the
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strategies themselves consist of a number of different decisions (see, e.g., Neuvonen et al. 2023).
Although such heuristics have been found to perform well in specific problem instances, there are
generally no guarantees for the optimality of the found solutions, or even the extent to which the
objective function values of these solutions deviate from the optimum. Moreover, the performance
of a heuristic is typically highly contingent on the characteristics of the optimization problem (see,
e.g., Young et al. 2021), whereby the suitability of a given heuristic in the context of optimizing a
given screening program may not be generalizable to other kinds of public health programs.

In this paper, we build an optimization model for the Finnish CRC population screening program
with the aim of minimizing cancer prevalence in the target population with respect to a colonoscopy
resource constraint. The optimization model is implemented in three levels. At the first level, we find
all segment-specific (segments defined by age and sex) Pareto optimal screening strategies in view of
maximizing the probability of detecting CRC, a large adenoma or a benign growth while minimizing
the probability of a colonoscopy. At the second level these results are used to find sex-specific Pareto
optimal screening strategies in view of minimizing the prevalence of CRC and the probability of
performing a colonoscopy. Finally, at the third level, we identify the combination of segment-specific
strategies that together minimize the prevalence of cancer in the target population, given a fixed
constraint on the total expected number of performed colonoscopies. To maintain computational
efficiency, dominated or infeasible strategies are eliminated along the way.

In building the model, we employ Decision Programming (Salo et al. 2022), a novel approach
to solving discrete multi-period decision problems under uncertainty. In this approach, Influence
Diagrams are built for each segment to capture decisions related to the screening strategy as well
as various uncertainties regarding, e.g., adherence to screening invitations, continued participation,
test results, and potential side effects from colonoscopy examination. Moreover, segment-specific
transition probabilities between different bowel states (alongside screening decisions) are used to
capture cancer progression. The Decision Programming framework can be used to formulate the
tasks of identifying Pareto optimal screening strategies for the segment-specific Influence Diagrams
as mixed-integer linear programming (MILP) problems, which are solved using a Modified Aug-
mented Weighted Tchebychev algorithm. Importantly, the ability of the Decision Programming
framework to accommodate multiple objectives — which would not be possible within a POMDP
framework — enables us to efficiently eliminate infeasible or dominated strategies, which leads to
improved computational performance.

Compared to existing approaches to optimizing screening programs, our approach offers several
benefits. First, it employs Influence Diagrams to capture decisions and uncertainties related to
screening strategies. Such diagrams resemble basic process flow charts and are, therefore, arguably
more easily understood by healthcare practitioners than, e.g., large decision trees used in POMDP
models. Second, our approach helps find optimal screening strategies under resource constraints
even in cases where these strategies consist of a number of different decisions the outcomes of which
are subject to various sources of uncertainty. Thus, the problem formulation does not need to be

simplified for computational purposes, which increases the legitimacy of decision recommendations.



Finally, the Decision Programming approach is flexible in that it can be used to accommodate
multiple objectives, deterministic constraints as well as probabilistic risk measures that can be
treated as objectives or constraints. Thus, our approach can be augmented to fit the purposes of
optimizing other kinds of screening programs as well.

In summary, the contribution of this paper to existing literature is threefold. First, we propose
a novel approach to optimizing CRC screening strategies that simultaneously accommodates 1)
multiple objectives, ii) optimization of segment-specific invitation decisions and FIT cut-off levels,
iii) detailed modeling of uncertainties related to the screening process, and iv) resource constraints.
Second, we use this approach to offer insights into how the CRC population screening program in
Finland could be improved. Finally, we demonstrate the usefulness of the Decision Programming

methodology in the healthcare context, in which it has not been applied.

3. Optimization of the Finnish CRC population screening program

3.1. Problem and model overview

In April 2019, Finland established a new CRC population screening program in volunteering
municipalities (see Finnish Cancer Registry 2019 for details). The program began with twelve out
of 311 municipalities in Finland volunteering to take part. The program became nationwide in 2022,
and by 2031 all people aged between 56 and 74 will be invited to screen. The program invites entire
age cohorts to screen using a feacal immunochemical test (FIT), after which those participants with
a positive FIT result are invited to a colonoscopy. In 2022 all 60-, 62-, 64-, 66- and 68-year-old males
and females in volunteering municipalities were invited to participate in the program. Participation
is free of charge for the invitee.

A central screening hub mails the screening invitations and FITs to participants. The FIT is
performed at home and returned in a pre-paid envelope to the screening hub. Once the laboratory
has analyzed the FIT sample, a written result is given to the participant via mail. Those with a
positive result are requested to contact a screening nurse in their municipality of residence to discuss
the need for further examination. This additional examination is usually a colonoscopy; however,
this may vary between municipalities depending on their standard procedure. If a growth is found
during the additional examination, a sample is taken and sent to a pathologist for analysis. Once
the pathologist’s findings have been reviewed, a decision on the need for further examination or
treatment is made. If necessary, the participant is referred to surgery. Treatment may be required
at this stage, but the ensuing treatment process is not within the scope of the screening program.
After treatment, patients participate in a separate surveillance program that usually lasts for five
years. A new invitation to the screening program is sent every two years to those participants who
have not received treatment in the previous round. Screening is continued in this periodic manner
as long as the invitee’s age is within the program limits.

In this section, we develop a model to determine optimal screening strategies for the Finnish

colorectal cancer population screening program in view of minimizing the prevalence of colorectal



cancers while adhering to a capacity constraint on the total expected number of performed colono-
scopies. In this model, a screening strategy consists of decisions for each segment of the target
population (defined by the participants’ age and sex) on (i) whether to send an invite to participate
in the program, (ii) whether to offer an incentive for participation, and (iii) which FIT cut-off level
to use. The inclusion of an incentive decision in our problem does not reflect the reality of the
program; however, it may be an option in other countries with similar programs.

In our model, we assume that a participant’s bowel state b € B = {N, B, L, R} is either Normal
(N), Benign growth (B), Large adenoma (L) or CRC (R). Benign growths are growths that do not
pose a high risk of developing into cancerous growths in the near future, whereas large adenomas
do, even though they are not cancerous at the moment nor will they necessarily develop into such.
This classification of growths is based on the adenoma-carcinoma sequence, which is a common
assumption in the literature on CRC (Silva-Illanes & Espinoza 2018, Diedrich et al. 2023). A similar
classification is used by, e.g., Gyrd-Hansen et al. (1997), Heitman et al. (2010), and Pence et al.
(2013). Transition probabilities between bowel states are assumed to depend on the participant’s
sex and age. In this way, our model incorporates more specific information on cancer progression
than most studies on CRC population screening, in which differences in transition probabilities are
assumed to depend on age only (Silva-Illanes & Espinoza 2018, Lansdorp-Vogelaar et al. 2022).

In the model, we allow the strategy for any segment of the target population to be chosen
independently of other segments, but assume that once chosen, the same strategy will be used for
all participant groups of same sex and age, i.e., same segment. For instance, the same strategy is
applied to all 62-year old males regardless of the year they enter the screening program. We also
assume that from year to year a segment (e.g., 60-year-old females) contains the same number of
participants. Under these simplifying yet reasonable assumptions, we can focus on finding Pareto
optimal sex-specific screening strategies for only a single group of participants entering the program
at the age of 60. Thus, segments can be defined by combinations (g, k), where g € {F,M} is the
participant’s sex (female or male) and k € {1,...,5} is the screening period which corresponds to
a participant’s age in 2-year intervals so that period k = 1 refers to 60-year-olds, period k = 2 to
62-year-olds etc. We also assume that the population segments are internally homogeneous in that
participants within a given segment are not differentiated from one another based on, e.g., family
history. In this sense, our model operates on average representatives for the segments. This is in
line with the general idea of population screening, i.e., testing a large segment of the population
regardless of their detailed state of health.

Under the above assumptions, we model the problem of finding optimal screening strategies via
three levels. A schematic description of this model is illustrated in Figure 1. At level 1 (performed
separately for all screening periods of both males and females), influence diagrams (IDs) are used
to capture how abnormal bowel states are found, colonoscopies are performed, and costs are gen-
erated in a given period as a function of screening decisions. These IDs are used to find Pareto
optimal screening strategies for each segment with respect to minimizing the expected number of

colonoscopies and maximizing the expected number of detected abnormal bowel states. At level



2, these segment-specific strategies are combined to produce sex-specific strategies that minimize
the prevalence of CRC in all age groups combined while minimizing the number of colonoscopies
performed. At level 3, those two Pareto optimal sex-specific strategies are identified that together
minimize the expected prevalence of cancer in the screened population subject to a constraint on
the total expected number of colonoscopies.

Our model is implemented through five steps, as illustrated in Process 1. The first four steps
correspond to level 2 (the identification of Pareto optimal sex-specific strategies) and include level
1 (the identification of Pareto optimal segment-specific strategies) as the first step. These four
steps are carried out iteratively for all five screening periods so that on each iteration round k, a
set of strategies Z, . € {Z, -,}F© is found that are Pareto optimal up to period k. Then, level
3 (the identification of sex-specific strategies that together minimize the expected population-level
CRC prevalence subject to a constraint on the total expected number of colonoscopies performed)
is carried out in step 5. The tasks associated with each step are detailed in Sections 3.2-3.4. Tables

of notation related to the screening process and IDs are presented in the Supplementary material.

8.2. Level 1: Identification of Pareto optimal segment-specific strategies

At level 1 (step 1 in Process 1), segment-specific ID models are used to find Pareto optimal
screening strategies for each segment in view of minimizing the expected number of colonoscopies
and maximizing the expected number of abnormal bowel states. In what follows, we will give
a detailed description of (i) the segment-specific ID model and (ii) the Decision Programming

formulation for finding Pareto optimal segment-specific strategies for the ID model.

3.2.1. Segment-specific ID model

An ID is a discrete acyclic graph constructed of three types of nodes N represented as sets;
decision D, chance C and utility nodes U, with dependencies shown by directed arcs A C {(4,7)]i,j €
N,i # j}. Every chance node j € C and decision node j € D has a finite set of discrete states
sj € §;. The state s; € S; of a given node j € C UD represents a chance or decision alternative.
An arc (i,7) € A, represented by an arrow, indicates that node i is the predecessor of node j, and
that the state s; at node j is conditionally dependent on the state s; at the preceding node i.

The ID corresponding to the Finnish population screening program is shown in Figure 1. Here,
decision nodes in the screening pathway are represented by squares, uncertainties (i.e., chance nodes)
in the screening process are represented by circles, and the utilities that are to be optimized are
represented by diamonds. The differences between segments in the target population are reflected in
the parameter values of the segment-specific IDs (please see the Supplementary material for details
on these parameters).

The decision nodes 1, 2, and 3 in the ID of Figure 1 correspond to decisions about 1) what
FIT test cut-off value to use to select patients for a colonoscopy in the given target segment, 2)
whether to use an incentive to boost participation among invitees in this segment (specifically,

we assume that an incentive worth 10 euros halves the number of non-returned samples) and 3)



SCREENING OPTIMIZATION ALGORITHM

PECIFIC OPTIMIZATIO

Period 2 - 62 yo: : Period 5 - 68 yo: 1) Combine sex-specific
—Female...; ! strategies into
Period-specific Period-specific : Period-specific strategies
optimization for each optimization for each : optimization for each
sex with starting sex with starting : sex with starting 2) Remove dominated
prevalence based on Mal prevalences based on | Male ... prevalences based on strategies based on
data 60 yo results. : 66 yo results. CRC prevalence and
total cost objectives

Period 1 - 60 yo:

Y

Female

Y

LEVEL 2 - SEX-SPECIFIC OPTIMIZATION (period k)  Alternative

solutions
Starting | Solution: Changes Updated starting prevalences for next period,
prevalences Multi-objective optimization "--1 in prevalence and updated total prevalence in screening
and (solved by MAWT) probabilitiy of population, and total used colonoscopies (up to
olonoscopie: colonoscopy and including age segment)

Prevalence update and alternative
starting prevalences and colonoscopies for period k+1

" LEVEL 1 - INFLUENCE DIAGRAM

NODES: STATES

Node 1 Node 1: FIT cut-off 10/25/40/55/70
Node 2: Incentive yes/ no

—_— Node 3: Invite yes / no
Node 4: Good sample returned yes /no

Node 2 Node 5: FIT test result NA/+/-
N v Node 6: Continued participation yes /no
Node 7: Examination yes/ no

Node 3 Node 4 Node 5 Node 6 Node 8: Examination result NA/N/B/L/R
Node 9: Polyps and polypectomy NA/yes/no

[ Node 10: Adverse effect nothing / bleed / perforation

Node 7

Figure 1: Schematic description of the multistage optimization approach to solve the CRC screening optimization
problem.

whether to invite the target segment to the screening program. The corresponding sets of decision
alternatives are So = S3 = {Yes,No} and &1 = {10, 25,40, 55,70} pug Hb/g of blood in the stool
sample. We use binary decision variables z(s;) to indicate whether an alternative is chosen or not.

A segment-specific strategy Z, 1 = [2(s;)]jep is defined as a vector of such decision variables.



Process 1: Steps in the process of optimizing the Finnish CRC screening program

Level 2 (including level 1)

1. In the first step (level 1), segment-specific IDs are utilized to find strategies Z, ) that are
Pareto optimal in view of minimizing the expected share of invitees for whom a colonoscopy is
performed while maximizing the expected share of invitees with detected cancers and abnormal
bowel states in segment (g, k). As input parameters, these segment-specific IDs use starting
prevalences v, 1 of different bowel states b € B, which are either estimated from data
(period k = 1) or computed based on screening decisions corresponding to each Pareto optimal
strategy Zg -1 € {Zg,_ﬂc_l}Po up to the previous period alongside information on natural
cancer progression due to aging (periods k = 2,...,5; see step 3).

2. In step 2, the set of Pareto optimal strategies found in step 1 is combined with the correspond-
ing Zy k-1 to obtain set {Z; 1 }. The vector of expected shares of invitees with detected
cancers and abnormal bowel states corresponding to strategy Z, ., in this set is denoted by
Vo k(Zg k) = [WgkB(Zg k), Vg L(Zg k), Yok R(Zg k)]

3. The third step is to compute for each Z, 1, € {Z; 1} (i) the updated starting prevalences
g k(Zg 1) for the next period by accounting for the impacts of screening as well as natural
cancer progression due to aging, and (ii) the combined cancer prevalence W, 1 r(Z4—) for
segments comprising sex g and age groups corresponding to screening periods 1,..., k.

4. In the fourth step, those Z; _,;, are removed from the set {Z, } which are infeasible with
respect to the constraint on the maximum number of colonoscopies, or dominated in view
of minimizing i) the expected prevalence of benign growths in the current segment, ii) the
expected prevalence of large growths in the current segment, iii) the total expected prevalence
of CRC in the sex-specific population screened up to and including this period, and iv) the
total expected number of colonoscopies required by segments corresponding to sex g up to and

including this period. The remaining solutions form the set Z;g ;. of Pareto optimal strategies
for sex g from period 1 to period k.

These four steps are repeated for both sexes g € {F, M} until all periods have been optimized. This
results in sets {Z,}F0 = {Z,  k}T© of Pareto optimal sex-specific strategies.

Level 3

5. The fifth step finds the pair of sex-specific strategies from sets {Zp}'© and {Zy}F© that
minimizes the expected population-level cancer prevalence subject to a constraint on the total
expected number of performed colonoscopies.

Chance nodes in the ID correspond to returning a FIT sample, FIT results, continued partic-
ipation, the discovery of polyps and removal of polyps via polypectomy during a colonosopy, and
adverse effects from the colonoscopy (such as perforation and bleeding). The conditional probabili-
ties for these chance nodes have been obtained from the literature (see the Supplementary material
for details).

Utility nodes in Figure 1 correspond to costs, health outcomes and treatment decisions resulting

from the screening process of a single participant. Specifically, the values at these utility nodes
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are captured by variables Uc, Ugr, Uy, U, and Upcel, where Uc € R refers to the direct costs
incurred by the participant’s screening process (see the Supplementary material for details on costs),
Ur, U, Up € {0,1} to detected cancers and growths so that each variable obtains a value of 1
if and only if cancer (R), large growth (L), or benign growth (B) is detected, and Upco € {0, 1}
to performed colonoscopies so that the variable obtains a value of 1 if and only if a colonoscopy is
performed.

The values of the utility node variables depend on the adopted strategy Z, (i.e., decision node
alternatives) as well as the realizations of different chance events that are compatible with this
strategy (i.e., chance node alternatives). A combination of uniquely defined values for all chance
and decision node alternatives s; € S; V5 € CUD is called a scenario path s € S, where S is the

set of all possible scenario paths. For example, one possible scenario path is
s = (40, No, Yes, Yes, Positive, Yes, Colonoscopy, Benign Growth, Polypectomy, None).

The above scenario path describes a sequence of events in which a person is invited (s3 = Yes) to
the screening program without monetary incentive (s2 = No) using a FIT with a cut-off level value
of 40 ug/Hb g (s1 = 40). The invitee returns a usable sample (s4 = Yes) that tests over 40 ug/Hb g
and is thus scored as positive (s; = Positive), and contact is established with the local nurse (s¢ =
Yes). A further examination is chosen to be a colonoscopy (s7 = Colonoscopy), the result of which
indicates a benign growth in the bowel (sg = Benign Growth). During the colonoscopy, the growth
is removed from the bowel (s9 = Polypectomy) and no adverse event occurs (sj90 = None). This
path results in utility node values Ug = 585.37 €, Ur = U, =0, Ug = 1, and Upgo = 1.

8.2.2. Decision Programming formulation for optimizing the 1D model

The aim of the ID optimization model is to find Pareto optimal strategies Z, ), for each segment-
specific ID in view of minimizing the expected number of performed colonoscopies and maximizing
the expected shares of the target segment for whom a benign growth, large adenoma, or cancer has
been detected. Thus, the performance of a given strategy Z,; depends on (i) the values of utility
nodes U;, i € {PCol,R,L,B} corresponding to different scenario paths that are compatible with
this strategy, and (ii) the probabilities of such scenario paths. To compute these probabilities, we
define an information set Z(j) as the set of direct predecessors of a given node j, i.e. Z(j) = {i €
N|(i,7) € A} (Salo et al. 2022). For instance, in Figure 1 the information set of node j = 5 (FIT
result) consists of nodes j =1 (FIT cut-off level) and j = 4 (usable sample is returned).

An information state sz(;) € Sz(;) is defined as the combination of states s; for all nodes of the
information set ¢ € Z(j). In our previous example, the set of possible information states for node
J=5is 875 = Hiez(5) Si = &1 x 84 For chance nodes, the probability of outcome s; depends on
these information states. Specifically, the conditional probability of s; € S; (where j € C) occurring
is P[X; = sj|Xz(;) = sz(;j)], where X7(;) are random variables X; denoting the values of nodes in
the information set @ € Z(j). For example, in Figure 1 the conditional probabilities for different

outcomes in node 4 (i.e., whether a usable sample is returned) depend on the decision in node 3
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(i.e., whether the person has been invited to screen) and decision in node 2 (i.e., whether they were
offered an incentive). The conditional probability tables for each chance node in Figure 1 can be
found in the Supplementary material.

For the optimization model, we define auxiliary variables 7(s), which refer to probabilities of
scenario paths s that are compatible with strategy Z, i = [2(s;)]jep. These auxiliary variables are

linked to the decision variables z(s;) through

p(s) = I P(X; = 5;|Xz(5) = s7(5)); if 2(sz(;)) = s; Vj € D
m(s) = jec (1)
0, otherwise,

where s; and Z(j) are taken from path s. For example, if on scenario path s’ the decision alternatives
are s; = 10,s9 = No, but strategy Z,, = [2(sj)]jep corresponds to decision alternatives s; =
40, s3 = No, then 7(s’) = 0, as the first decision for s’ does not match the current strategy. These
auxiliary variables can be used to define the four objectives of the optimization problem, of which

the first is to be minimized and the rest are to be maximized:

Expected share of target segment who undergo colonoscopy: P! = Z m(s)Upcol(s) (2)

S

Expected share of target segment with detected benign adenoma: Up = Z m(s)Us(s) (3)
S

Expected share of target segment with detected large adenoma: U, = Z w(s)Un(s) (4)
S

Expected share of target segment with detected cancer: VR = Z w(s)Ur(s). (5)

S

We formulate this multiobjective optimization problem of finding Pareto optimal strategies Z
for the ID of segment (g, k) as a Decision Programming model (Salo et al. 2022). Our formulation
is both discrete and linear in outcomes, linear in the auxiliary decision variables 7(s), and utilizes
a Modified Augmented Weighted Tchebychev (MAWT) norm approach (Holzmann & Smith 2018)
to convert a multiobjective mixed-integer linear programming (MOMILP) problem into a single-

objective problem. Technically, the problem is formulated as follows:

min 6
min - p (6)
subject to

1> wolO — ¢ + ¢ Z wor|0' — ¢, VO eO={P ip, L, Ur} (7)

0’'eO

> a(sy) =1, Vj €D, sy € S1(j) (8)
0 <m(s) <p(s), VseS 9)
7(s) < z(sj), VseS,jeD (10)
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w(s) = p(s)+ > z(s;) — D], VseS (11)
j€D

z(s;), Ui(s), € {0,1}, VjeD, se8, ie{PCol,B,L,R} (12)

(s) eR VsesS. (13)

In this formulation, the single objective function in Equation (6) is represented by variable pu.
This variable together with constraints (7) specifies the MAWT norm that is used to measure the
distance of the original objective function vector [PCOI, 15 B, 15 L 1[1 r| from a utopian point putoria con-
sisting of objective function values that could be obtained by optimizing each objective individually.
A more detailed description of the MAWT norm and the computation of parameters w and ¢ is
presented by Holzmann & Smith (2018). Constraints (8)-(13) correspond to the Decision Program-
ming formulation, and their purpose is to give a linear representation of Equation (1) linking the
auxiliary decision variables m(s) with the actual decision variables z(s;), j € D. For details on these
constraints, we refer the reader to Salo et al. (2022).

The optimization problem (6)-(13) is solved iteratively as summarized in the Supplementary
material and detailed in Holzmann & Smith (2018), and produces the complete set of Pareto optimal
solutions Z, j, for segment (g, k). For brevity, we denote the set {Z, 1} of Pareto optimal solutions

corresponding to a given strategy Z; 1 up to period k —1 as
{Zgx} = MAWT(ID(g, k, g k—1(Zg,—k-1)), (14)

where g 11(Zg,—k—1) is the starting prevalence vector corresponding to strategy Z, ;1. Each
solution Z, ), € {Zg7k} is combined with Z; ;1 to obtain a set of Pareto optimal strategies Z, .

up to and including period k. The objective function values corresponding to these strategies are
denoted by chf’,j(Zgﬁk) and ¥, 5(Zy k), b€ {B,L,R}.

8.3. Level 2: Identification of Pareto optimal sex-specific strategies
Level 2 combines the segment-specific strategies Z, 1 € {Z, 1}, k € {1,..., K} found on level

1 to produce sex-specific strategies Z, _,x that minimize the prevalence of cancer in all age groups
combined, while minimizing the number of colonoscopies performed to ensure that the population-
level strategies identified on level 3 use colonoscopy resources efficiently. Additional objectives of
minimizing the segment-specific prevalences of benign growths and large adenomas are included
to ensure that the natural progression between different bowel states does not lead to dominated
strategies in terms of total cancer prevalence at the end of Level 2. Moreover, a constraint on
the expected number of performed colonoscopies is imposed to prune out strategies that would be
infeasible on level 3. Taken together, the aim of level 2 for sex g € {F,M} can be formulated as a

multiobjective optimization problem:

min . Vg p(Zg k), Vg.0(Zg k), Yg.8(Zg—k), Nik(Zg—K) (15)

Zg,HK
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subject to N;%(Zgﬁ;() < Neolmax (16)

where ¥, p(Z, K ) is the combined cancer prevalence in all age groups, 144(Z4 k), b € {B,L}
is the prevalence of bowel state b in segment (g, K), Ngcy"}((ZgﬁK) is the expected total number of

Neobmax jg the maximum number of colonoscopies

colonoscopies performed in all age groups, and
that can be carried out.

Problem (15)-(16) is solved by iterating through steps 1-4 in Process 1 for all k € {1,..., K}.
The algorithm for carrying out this task is presented and discussed in Section 3.3.1. Section
3.3.2 presents the equations through which the prevalences v, ,_1 of different bowel states b €
{N,B,L,R} are updated between screening periods k£ — 1 and k to account for the impact of screen-

ing as well as natural cancer progression due to aging (step 3 in Process 1).

8.8.1. Algorithm

The algorithm for solving problem (15)-(16) is presented in pseudocode in Algorithm 1. As
main inputs, the algorithm requires 1) the ID describing the screening process for each segment (g, k)
defined by age and sex, 2) vectors ¥4 0 = [¥g 05| Of starting prevalences for the first age segments
(one per sex) and 3) K, the number of periods to be included. Algorithm 1 provides two sets of sex-
specific strategies (one for each sex g € {F,M}) that are Pareto optimal in view of minimizing the
prevalence of cancer in all age groups combined as well as the number of colonoscopies performed.

The algorithm starts by initialising empty sets of efficient solutions (one per sex). The sexes are
handled separately (line 2). The algorithm then proceeds on line 3 to compute the set of Pareto
optimal strategies {Z, 1}F© for sex g for the first period (cf. Equation (15)) based on starting
prevalences 1, o estimated from data. For each strategy Z, .1 € {Zgﬁl}PO, the updated starting
prevalences 11 (Zy 1) are computed on line 4 by accounting for the impact of screening as well as
natural cancer progression due to aging (see Section 3.3.2 for a detailed description of prevalence
update). On line 6, the total cancer prevalence W, _,i(Z, 1) corresponding to strategy Z, 1 in
age groups up to and including period 1 is defined simply as the cancer prevalence in the current
segment. Then, the total expected number Ng,(il(zgﬁl) of colonoscopies carried out so far is

}PO

as the product of the expected share P;?ll(ngl) of

target segment who undergo colonoscopy in the given strategy and the number Ny 1 of invitees in

computed on line 6 for each Z; 1 € {Zg’_>1

the target segment.

The computation of strategies for the remaining periods k € {2,...,5} starts on line 7. For
each Pareto optimal strategy Z, 11 € {Z, ﬁk,l}PO up to the previous period, the set {Z,} of
Pareto optimal strategies for the current segment (g, k) is solved using the MAWT algorithm with
starting prevalences ¢¥(Z, ,5—1) on line 9 (cf. Equation (15)). Then, each strategy Z,; in this
set is combined with Z, ;1 on line 10 to obtain a strategy up to and including period k. The
prevalences of different bowel states are then updated on line 12 as in the first period. On line
13, the total cancer prevalence Vg 1 r(Z, ) is computed in segments corresponding to sex g and
age groups up to and including period k (see Section 3.3.2 for details). The total expected number

of colonoscopies carried out so far for sex g is updated on line 14 by adding to the total expected
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Inputs : Process model as Influence Diagram (ID), prevalence vectors ¢ o, ¥nm,0, SCreening

periods k € {1... K}

Output: Sex-specific Pareto optimal sets {Zp }F'© and {Z1}F©, and the related objective values

‘I/R_’g(Zg),g € {FJVI}

1 {Zp 1 )P0 {2k }f9 =2 Vke[l...K]; // Initialize set of efficient solutions

as empty sets.

2 for g € {F,M} do

o N o o oA~ W

10

11

12
13

14

15

16

17

18

19

20

21

22

23

// First period, k=1, handled separately.
// Compute Pareto optimal solutions for first period

{Zg,—1}FO < MAWT (ID(g,1),%4,0)) ; /7] gk = [y kbloeB

Vg.1(Z4 1) < UpdatePrevalences(Z,1,%,0) YZg1 € {Zy1}F°;
\I/g-,—>1-,R(Zg,—>1) A wg,l,R(Zg,l) VZg,l € {Z ,I}PO )
Ngc,(il(Zg-,l) A Ng,lpg?ll(zg,l) VZg1 € {Zg,l}PO 3
for ke {2,...,K} do
for Z, ;-1 € {Zy51-1}F° do
// Compute Pareto optimal solutions for period k based on preceding
strategy Zy k-1
{Zgr} < MAWT (ID(g,k, g k-1(Zg,—k-1)));
for Z,, € {Z,1} do
Zg. sk (Zg k-1,Zg1); // Extend Zy ,;_1 by Zy) into a new strategy
Zg Kk, covering steps until k
Yg.1u(Zg 1) < UpdatePrevalences(Zy i, Vg.k—1) ;
Uy sk r(Zg,—k) < TotalPrevalences (¢g 1 r(Zg —k)s Vg —k—1R(Zg,—k-1));
// Add new colonoscopies from Z;; to preceding colonoscopies.
N (Zg k) = N 1(Zg k1) + Ny PG (Zg i) 5
if Ngc’ol)k(Zgﬁk) < Neohmax then
{Zy 5k }F0 {2, 51} UZy -k ; // Collect found strategies for
step k.
end
end
end
{24,137 ¢ RemoveDom’d({Zy, 1}, Wy, R () g k,8()s Yo .1 (); No2hy () 3
end

end
{Zp}PO — {Zp k}PO {ZMm}TC + {Zm -k }FO 5

Algorithm 1: Level 2 algorithm
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number of colonoscopies carried out up to the previous period the product of the expected share
P;%(ng_)k) of the target segment who undergo colonoscopy in the given strategy and the number
Ny . of invitees in the current target segment.

On lines 14-16, those strategies that are feasible with respect to a constraint on the total expected
number of colonoscopies (line 15) are collected in set {Z,; 1 }F'©. Once the feasible, Pareto optimal
strategies Z, _,; have been found corresponding to all Pareto optimal strategies Z, ;1 from the
previous period, those strategies are removed (using pairwise dominance checks) on line 20 from
the set {Z, 1 }F© of Pareto optimal strategies which are dominated in view of minimizing (i) the
expected prevalence 1, g of benign growths in the current segment, (ii) the expected prevalence
g 1.1, of large growths in the current segment, (iii) the total expected prevalence ¥, _,; g of CRC in
the population of sex g screened up to and including period k, and (iv) the total expected number
Ngfik of colonoscopies required by segments corresponding to sex g up to and including period k.
This removal of strategies that would most likely become infeasible or dominated in the upcoming
periods helps to maintain computational efficiency. It can also be motivated by these plausible
requirements concerning the performance of strategies up to and including period k. Yet, it is,
in principle, possible that some of these strategies could be parts of feasible and Pareto-optimal
strategies in the final period K. The characterization of those combinations of parameter values for

which this may occur is left as a topic for further work.

3.8.2. Prevalence update

Step 3 in Process 1 (i.e., lines 4, 5, 12 and 13 in Algorithm 1) corresponds to computing the
starting prevalences 14 of different bowel states b € B for sex g in period k. To do this, one
must account for both the impact of screening as well as natural cancer progression through aging.
To accommodate the impact of screening, we assume that any benign growth, large adenoma,
or CRC found during the screening pathway is removed and that the bowel returns to a normal
state?. The updated prevalence of bowel state b € {N, B, L, R} corresponding to screening strategy
Zgi € {Zgx} is denoted by ”z,ZNJgk’b(Zg,k). Natural cancer progression due to aging is reflected in our
model by transition probability Tz”l]f,, i.e., the probability that the bowel state of a participant of sex
g is b’ in period k + 1 given that it was b in period k. We assume that this progression follows the
adenoma-carcinoma sequence, meaning the transition through bowel states can be represented by a
linear recurrence relation. Based on discussions with the Finnish cancer registry, these assumptions
can be deemed acceptable for the purposes of this paper. However, more refined transition models
could be integrated into this modeling approach to improve accuracy.

Taking into account both the impact of screening as well as natural cancer progression, the

starting prevalences v, 1 p, of different bowel states b € B for sex g in period k can be computed

2An individual receiving treatment will move on to a separate surveillance program and will no longer be a part
of the population screening program. The assumption of the bowel returning to a normal state after the removal of
a benign growth, large adenoma, or CRC can be seen to reflect the average dynamics of disease progression in the
target population of the screening program.
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using the following difference equations:

- k k
Vg,k,B(Zg,—k) = (Vg k—1,8 — Vg k,B(Zg—k)) (1 — TgB’,L) + q/’g,k—l,Nﬂ%,B
- k - k
Zg k) = (Vg -1,L — Vg 1(Zg—k))(1 = TLR) + (Vg 1,8 — Vg k.8(Zg,—~k)) TH Y,
Zg k) = Ygr-1R — Vghr(Zg k) + (gr-1.L — &g,k,L(Zg,—)k))T%,];{

YorNZgsk) =1 = D> Ugri(Zg k)
be{B,L,R}

77Z]g,k,L

Yg.k R

(
(
(
(

For instance, in Equation (17) the prevalence estimate for benign growth (B) is updated by 1)
computing the remaining prevalence after applying strategy Z, i by subtracting the expected
share of found benign growths ﬁg,k,B(Zg,_,k) from the previous prevalence estimate 1,118, 2)
multiplying this remaining prevalence with the share of participants whose benign adenomas do
not develop into large adenomas (1 — TgB’fi), and finally 3) adding the share of participants in
this segment who will develop benign adenomas from previously normal bowels. The logic for bowel
states L (large growths) and R (cancer) is similar, with the exception of there not being further bowel
states to which to develop from state R. Equation (20) simply states that participants with normal
bowel states are those whose bowel sates are not B, L, or R. Equations (17)-(20) are compactly

represented on line 12 of Algorithm 1 by function

UpdatePrevalences(Zy, sk, Vgx—1(Zg,—k-1)) (21)

The total prevalence W, 41 r of cancer in the target population is updated on line 13 of
Algorithm 1 through function TotalPrevalences(-), defined as

U, kr(Zg k) = TotalPrevalences(¢g k R(Zg, k), Vg, —k—1,R(Zg,—k—1))
k—
= \Ijgﬁ’fflvﬁ(zgﬁkfl) : (Zi:ll Ng,i) + Vg,k,R Vg k (22)
: )
Zi:l Ny

The first term in the numerator is the expected number of cancer cases in segments corresponding

to sex g and age groups up to and including period k — 1, while the second term is the expected
number of cancer cases in the current segment (g, k). The denominator is the total number of

participants in segments corresponding to sex g and all age groups up to and including period k.

3.4. Level 3: Identification of an optimal screening strategy.

The aim of level 3 (step 5 in Process 1) is to choose the two Pareto optimal sex-specific strategies
ZFr—K € {Zp}PO and MK € {Z\}PO identified on level 2 that together minimize the expected
CRC prevalence in the entire screening population subject to a constraint on the expected total
number of colonoscopies performed. Let Jp = |{Zp}FC| and Ju = |{Zm}FC| be the number of
Pareto optimal strategies for females and males, respectively. Let zr; € {0,1}, j € {1,...,Jr}
and v ; € {0,1}, j € {1,...,Jum} be binary decision variables each of which obtains a value of
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1 if and only if the j-th strategy is selected from the set {Zr}F© or {Z)/}F'©, respectively. Let
\IJ; KR denote the total cancer prevalence in all age groups of sex g corresponding to strategy j.
The task of identifying the optimal pair of sex-specific screening strategies can now be formulated

as the binary linear programming problem

xF?}iﬁ“_ - Yr= % : \II{;“,—J(,R “Zpjt % : ‘I’{ﬁ,—ﬂ(,R "M, j (23)
subject to Nﬁ?}xp,j + Nﬁ/ﬁlij,j < Neobmax, (24)
Y wg;=1,  Vge{F,M} (25)

j
TM,j € {0,1}, Vj c {1,...,JM} (26)
T, € {0,1}, Vi e {1,...,.]1:‘}, (27)

where N, = Zszl Ny i, is the number of persons of sex g in the total population, N is the total

population size, N;‘;»I

is the maximum number of colonoscopies that can be performed for the entire population.

is the expected number of colonoscopies performed in strategy j for sex g, and

Ncol,max

4. Results and recommendations for improving the Finnish CRC screening program

In this Section, we present optimal CRC screening strategies for the Finnish target population
with and without the possibility of using monetary incentives to boost participation in the screening
program. The case in which incentives are not available reflects the current Finnish CRC screening
program. Hence, results corresponding to this case will provide recommendations for improving
the current program by suggesting optimal FIT cut-off levels for different age and sex groups.
Furthermore, these results will reveal information on the expected costs of both the current screening
strategy as well as the optimized strategies. To our knowledge, no other cost analysis for the current
Finnish CRC screening program has been published in the public domain. Results corresponding to
the hypothetical case in which monetary incentives are available help assess the potential benefits as
well as costs of such incentives, if they were to be utilized in the future. To examine the implications
of different colonoscopy resource constraints on optimal screening strategies, health outcomes and
costs, we compute the results by varying the maximum number of colonoscopies per screening round
between 3,000 and 12,000. Strategies corresponding to these different values of colonoscopy capacity
are compared to the baseline case of no screening as well as the current screening program. The
input parameters used to compute the results (including target segment sizes, participation rate,
FIT and colonoscopy sensitivities and specificities, probabilities of adverse events, prevalences of

different bowel states, and costs) are in the Supplementary material.
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The number of potential screening strategies was 11'° =~ 29.5 billion3. Pareto optimal sex-
specific strategies were computed using a Julia-based algorithm on Aalto University’s Triton HPC
cluster. Computation time for males was 3 days and 21 hours, and for females over 6 days due to
a higher number of feasible strategies. The memory requirements were approximately 4.4 and 4.8
Gb for males and females, respectively. Altogether 6,389 and 15,194 Pareto-optimal strategies were
identified for males and females, respectively. The identification of those two Pareto-optimal sex-
specific strategies that together minimized the expected CRC prevalence subject to a colonoscopy
resource constraint (i.e., level 3) consumed significantly less resources and could be performed on a

regular laptop computer.

4.1. Pareto optimal screening strategies

The sex-specific Pareto optimal screening strategies (i.e., the results of level 2) with and without
monetary incentives are presented for females and males in Figures 2a and 2b respectively. In both
figures, the current strategy (in which a FIT cut-off level of 25 ug Hb/g is used for all segments
and no monetary incentives are used) is depicted with a green square. For both sexes the incen-
tivized strategies dominate the non-incentivized, except for cases in which very few colonoscopies
are performed. This is because incentives help boost participation in those segments where colono-
scopies yield the highest health benefits: in particular, being able to detect abnormal bowel states in
younger segments not only decreases cancer prevalence in these segments, but also decreases the risk
of benign growths and large adenomas developing into cancers in subsequent periods. For females,
the current screening strategy is practically Pareto optimal. Yet, for males, the current strategy is
clearly dominated, implying that a lower CRC prevalence could be obtained with the same number
of colonoscopies performed.

The expected CRC prevalences for the optimal population-level screening strategies (i.e., the
outcomes of level 3) for different values of the maximum expected number of colonoscopies per-
formed are depicted in Figure 3 by blue (incentivized case) and yellow circles (non-incentivized
case). The optimal strategies did not change after increasing the maximum expected number of
colonoscopies beyond 14,000, implying that this amount of colonoscopy resources would be sufficient
for minimizing cancer prevalence in the population. The current strategy corresponding to 9,693
expected colonoscopies and an expected cancer prevalence of 0.51% is marked by a green square.
The outcome of not screening at all (zero colonoscopies and a cancer prevalence of 1.07%) is depicted
by a red cross. A comparison between the current strategy and Pareto optimal strategies suggests
that the use of sex- and age-specific FIT cut-off levels could result in (i) an equal level of cancer
prevalence with significantly fewer colonoscopies (i.e., 8,000 vs. 9,693) or (ii) a significant reduction
in cancer prevalence with approximately the same number of colonoscopies, especially if measures

can be taken to increase participation in the screening program.

3There are altogether 10 segments (g, k) corresponding to five screening periods k for both sexes g. For each
segment, there are 11 possible strategies comprising a no-screening strategy and 10 screening strategies (five FIT
cut-off levels, each with an option to use or not use incentives). Together, this results in 11'% potential strategies.
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Figure 2: Sex-specific outcomes for Pareto-optimal strategies for both incentivized and non-incentivized cases.

In the Supplementary material, we present the results of sensitivity analyses examining the
impacts of varying the values of all model parameters on expected CRC prevalence, the expected
total number of colonoscopies, and expected total costs for optimal strategies corresponding to 3000,
10,000, and 14,000 colonoscopies. Expected cancer prevalence as well as expected total costs are
most sensitive to changes in bowel state transition probabilities — faster transitions result in more
cancers and, thus, higher treatment costs within the program. The expected number of colonoscopies
is most sensitive to FIT specificity; the lower the specificity (i.e., the higher the chance of a false
positive FIT result), the more colonoscopies will be carried out. Special attention should thus be
paid to obtaining accurate estimates for FIT specificity to mitigate the risk of exceeding colonoscopy
capacity.

Figure 4 shows the total direct costs together with the total number of colonoscopies for a case
of no screening, the current strategy, and optimized strategies corresponding to different values
of the maximum expected number of colonoscopies. Here, the direct costs are incurred by, e.g.,
the preparation and analysis of FITs, colonoscopies, and treatment (see the Supplementary mate-
rial for details). These costs were not explicitly minimized in the analysis but may nevertheless
play an important role in decision making due to, e.g., decision-makers wanting to avoid signifi-
cant cost increases compared to current practices. Figure 4a shows that while the optimal use of
incentives provides benefits in terms of the selected objectives, it also leads to significantly higher
costs compared to the current strategy, except in cases in which the expected number of performed
colonoscopies is low. This is due to the extra costs incurred by the incentives, the increased number
of colonoscopies (and adverse events related to these colonoscopies) resulting from higher partici-
pation rate, and higher treatment costs due to a higher number of detected cancers. In the case
of non-incentivized strategies, the total costs of an optimized strategy with a maximum of 7,000
expected colonoscopies coincide with those of the current strategy, in which only 6,482 are to be ex-

pected. This suggests that the use of sex- and age-specific FIT cut-off levels could help decrease the
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Figure 3: Outcomes of strategies that minimize cancer prevalence in the target population depending on available
colonoscopies.

total costs even if the number of colonoscopies would remain the same. Finally, Figure 4 shows that
the marginal increase in total costs decreases as the maximum number of expected colonoscopies
increases. This can be explained by the fact that a higher level of colonoscopy resources helps detect
a larger number of non-cancerous growths early on, which results in a decrease in cancer-related
costs.

Finally, Tables 1 and 2 show the optimal segment-specific screening strategies for the non-
incentivized and incentivized case, respectively. In both cases, a higher level of colonoscopy re-
sources translates to lower FIT cut-off values. This is to be expected, since lower FIT cut-off values
help detect and prevent more cancers due to the increased test sensitivity, but require more colono-
scopies to be performed. By comparing Tables 1 and 2, it can be seen that boosting participation
pays off in almost all target segments. Encouraging younger age segments to participate in the
screening program is particularly effective: screening a higher number of people in the younger
segments decreases not only cancer prevalence in these segments, but also the prevalence of earlier-
stage growths and adenomas, which translates into lower cancer prevalence in later periods as well.
Nevertheless, determining whether the use of incentives is cost-effective would necessitate a more
thorough comparison between the added health benefits (Figure 3) and the added costs (Figure 4)
of such incentives.

Examining the optimal, non-incentivized strategy corresponding to 10,000 colonoscopies provides

interesting insights into how the current screening strategy with 9,693 colonoscopies and a fixed FIT
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Figure 4: Development of direct costs vs. number of colonoscopies.
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cut-off level of 25 ug Hb/g for both sexes could be improved by adjusting the FIT cut-off levels.

In particular, the optimized strategy suggests that the cut-off level for females should be decreased

across all age groups. Consequently, to satisfy the constraint on the maximum expected number of

colonoscopies, the cut-off level should be increased in older age segments for males. In summary,

all of the above results suggest that efforts should be taken to detect abnormal bowel states in as

many people and as early as possible to help minimize overall cancer prevalence in the population.

Table 1: Optimized screening policies with no option of incentive: FIT cut-off level in pug Hb/g, no invite represented
by -, colonoscopy performed when positive FIT.

Maximum colonoscopies  Sex Age 60 Age 62 Age64 Age66 Age 68
3,000 Male 70 70 70 - -
Female 10 55 - - -
4,000 Male 70 70 70 70 -
Female 10 55 70 - -
5,000 Male 55 70 70 70 -
Female 10 10 40 - -
6,000 Male 40 40 55 70 -
Female 10 10 10 - -
7,000 Male 25 40 70 70 -
Female 10 10 10 10 -
8,000 Male 25 25 55 70 70
Female 10 10 10 10 -
10,000 Male 10 25 25 55 70
Female 10 10 10 10 10
12,000 Male 10 10 10 10 40
Female 10 10 10 10 10
14,000 Male 10 10 10 10 10
Female 10 10 10 10 10
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Table 2: Optimized screening policies with option of incentive (+i): FIT cut-off level in ug Hb/g, no invite represented
by -, colonoscopy performed when positive FIT.

Maximum colonoscopies  Sex Age 60 Age 62 Age64 Age66 Age 68
3,000 Male 70 70+i 70-+i - -
Female 25 55 - - -
4,000 Male 55-+i 55+i 70-+i - -
Female 10-+i 70 70 - -
5,000 Male 55-+i 551 70-+i 70 -
Female 10+i 70 25 40 -
6,000 Male 40+i 70+ 70-+i 70+ -
Female 1041 1041 25 - -
7,000 Male 40+1 551 70-+i 70+i -
Female 10+i 10+i 10+i 55 -
8,000 Male 40+i 25+i 55-+i 70+ -
Female 10-+i1 10-+i1 10-+i 25 -
10,000 Male 25+ 25+1 25-+i1 55-+i 70
Female 10+i 10+i 10+i 10-+i -
12,000 Male 10+i 10+i 25-+i 25+ 70
Female 10-+i1 10-+i1 10+i1 10-+i 40
14,000 Male 10+i 10+i 10+i 25-+i 10
Female 10+i 10+i 10+i 10+i 40

4.2. Distribution of resources and benefits between segments

We also study the distribution of resources and benefits between segments to understand whether
the proposed strategies might pose a problem from an equality perspective. Toward this end, Figures
5 and 6 show the distribution of (i) colonoscopies, (ii) the expected share of remaining cases of CRC
in the target population after screening, and (iii) the expected share of reduction in cancers compared
to no screening by segment for non-incentivized and incentivized strategies, respectively. Differences
between age groups are not considered relevant from an equality perspective since all participants
are assumed to proceed from the first age group to the last. Therefore, we limit our discussion on
equality issues to differences between the sexes.

In both incentivized and non-incentivized strategies, males receive a slightly higher share of
colonoscopies and a larger share of reduction in cancers. This is because the FIT sensitivity for
males is much higher for all abnormal bowel states and all FIT cut-off levels compared to females.
Thus, males receive a positive FIT result more often than females, whereby they are also more
likely to undergo a colonoscopy examination and be treated for cancer. Consequently, the share of
remaining cancers is higher for females, especially when incentives are used to boost participation.
This is explained by our assumption that using an incentive for a given segment halves the number of
non-adherent persons in that segment. Because the share of non-adherent persons in male segments
is larger than that in female segments, incentives have a stronger effect in reducing cancers in males.

By comparing the current strategy with 9,693 colonoscopies to the optimal non-incentivized
strategy with 10,000 colonoscopies, it can be seen that the use of optimized segment-specific FIT
cut-off levels would (i) increase the share of colonoscopies carried out for females from 38.5% to
48.5%, (ii) decrease the share of remaining cancers in females from 59.0% to 55.5%, and (iii) increase

the share of reduction in all cancers in females from 37.8% to 41.8%. Thus, it can be concluded
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Figure 5: Distribution of expected colonoscopies, cancer prevalence and health benefits between segments, when no

incentives are allowed.
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Figure 6: Distribution of expected colonoscopies, cancer prevalence and health benefits between segments when

incentives can be used to increase participation rate.
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that the use of optimal (non-incentivized) strategies could help improve the current strategy from

an equality perspective as well.

5. Discussion and Conclusions

We have proposed a novel multilevel optimization model for improving the Finnish CRC pro-
gram. In the model, influence diagrams are utilized to capture the decisions, uncertainties, and
outcomes related to the screening program for each segment of the target population defined by the
participants’ sex and age. Then, an algorithm based on Decision Programming is used to identify
Pareto optimal screening strategies for both sexes in view of minimizing the prevalence of CRC
and the probability of performing colonoscopies. Finally, a binary linear programming problem is
formulated to identify the combination of sex-specific strategies that together minimize the preva-
lence of CRC in the entire target population subject to a constraint on the total expected number
of colonoscopies performed.

Compared to existing approaches, our model enables the identification of optimal screening
strategies under resource constraints even in cases where these strategies consist of a number of
different decisions the outcomes of which are subject to several chance events. In particular, our
model makes it possible to determine for each segment separately (i) the optimal FIT cut-off levels
for performing a colonoscopy and (ii) whether it pays off to use incentives to boost participation
in the program. In this way, the model can help allocate scarce colonoscopy resources in a more
cost-effective way.

Our results offer several insights into how the Finnish CRC population screening program could
be improved. First, the FIT cut-off level for females should be decreased, especially in younger
age groups. A similar result is obtained by Heinédvaara et al. (2022), who use simulation to study
the cost-effectiveness of different CRC screening strategies in the Finnish context. Yet, to satisfy
the constraint on the maximum expected number of colonoscopies, our model suggests that the
cut-off level should be increased in older age segments, especially for males. Moreover, boosting
participation pays off in almost all target segments, and encouraging younger age segments in
particular to participate in the screening program is highly effective. This is also in line with the
results presented by Giines et al. (2015) and Ladabaum et al. (2019), who suggest that increasing
screening compliance is beneficial. In summary, efforts should be taken to detect abnormal bowel
states in as many people and as early as possible to help minimize overall cancer prevalence in the
population.

At present, our model has some limitations. First, our assumptions on disease progression are
relatively strong. Improvements in the ways in which these processes are modeled could lead to
more accurate estimates of the model parameters and, thereby, better strategy recommendations.
Second, due to lack of detailed data on the connection between CRC-related deaths and prevalences
of the different adenoma-carcinoma stages, we did not include the minimization of mortality as an
objective. Nevertheless, taking this objective into account (or even demonstrating the impacts of

optimal strategies on CRC-related mortality, as is done by Erenay et al. 2014) would be relevant
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and could have an impact on the recommended strategies. We therefore suggest that the model is
adjusted accordingly when the required data becomes available.

A third limitation of our proposed model is that we have assumed that no information about
a participant’s risk level for abnormal bowel states is available beyond their sex and age. Yet, this
risk level is known to be elevated for people with a history of CRC or adenomatous polyps. This
issue is not highly relevant for the current paper, which focuses on population screening and not
surveillance. If screening and surveillance were to be optimized as a whole, our model could be
extended to cover different risk levels for each segment, as has been done by Erenay et al. (2014).
Risk levels for abnormal bowel states are also known to depend on factors such as family history,
comorbidity, and the presence of high- or moderate-impact pathogenic variants in CRC suscepti-
bility genes (Fuchs et al. 1994, Boakye et al. 2018, Tamlander et al. 2024). Population screening
programs have traditionally been purposefully designed not to require such detailed information on
the participants’ risk levels — rather, increased risk due to factors such as family history or comorbid-
ity is to be detected via other health pathways, which may result in suggestions for more frequent
FIT or even colonoscopies. Yet, if the model were to be used to develop a targeted, risk-based
screening program (as has been advocated in recent studies by, e.g., Lansdorp-Vogelaar et al. 2022
and Tamlander et al. 2024), information on different risk factors could be integrated by introducing
new dimensions to the segmenting of the target population. Computationally, however, the models
resulting from such an integration would be less tractable.

Fourth, we have used a limited, discrete scale for possible FIT cut-off values. The use of a
denser discretization or even a continuous scale could suggest strategies that offer greater health
benefits with the same capacity for colonoscopies. Yet, these kinds of modifications would require
algorithmic efforts to keep the computation time manageable or, in the case of continuous cut-off
levels, modifications to the Decision Programming framework. Finally, our proposed multilevel op-
timization model is computationally quite intensive as it, in practice, generates a multi-periodic
decision tree to be solved. However, due to the nature of the algorithm, the main memory require-
ment is set by the structure of the influence diagram, i.e., the segment-specific model, whereas the
addition of periods increases only the computation time. Furthermore, the introduction of a more
detailed segment structure (to accommodate, e.g., the impacts of family history or comorbidity on
a participant’s risk for abnormal bowel states) would not increase the computation time either, if
multiple computer units or nodes are available for computation. This is because the Pareto optimal
strategies can be computed separately for all segments over all screening periods, after which the
optimal combination of these segment-specific strategies can be determined on level 3 by solving
a binary linear programming problem. Nevertheless, if computation time becomes an issue, the
introduction of problem-specific constraints that would cut off infeasible or suboptimal branches
from the decision tree can be useful. In the context of this paper, for instance, we have eliminated
strategy branches that exhaust capacity constraints for colonoscopies before the final period, or lead
to prevalences of abnormal bowel states that would almost certainly lead to suboptimal outcomes

in terms of cancer prevalence in the final period.

26



This paper opens several avenues for future research. First, despite our efforts to find reli-
able sources for the assumptions underlying our model and its input parameters, continued work
is needed to validate it further. At the time of writing this paper, the screening program had
been running only for two years, and consequently we were only able to use data on the first age
segment (60-year-olds) to validate whether our model produces realistic results on the number of
colonoscopies and identified cancers. For a more thorough validation, data on all segments and
bowel state prevalences would be needed to ensure that the predictions made by our model coincide
with observed evidence. Such data would be useful in calibrating the model, particularly in terms
of obtaining more accurate information on FIT sensitivities and transition probabilities, which,
based on our sensitivity analyses, are the key parameters affecting the performance of the optimized
strategies.

In the meantime, our results could be validated by using, e.g., the MISCAN model, which is
widely used in cancer screening research. Whereas running the strategies identified in this paper
in MISCAN should be relatively straightforward, implementing similar optimization capabilities
directly in MISCAN would likely require the use of heuristic approaches, such as genetic algorithms.
This could prove beneficial if there is a large difference in the performance of the found strategies
given by our model and the MISCAN model. Moreover, a similar modeling approach to the one
proposed in this paper could be applied to the screening of CRC as well as other cancers and slowly
developing diseases in Finland or in other countries. Here the Decision Programming framework can
prove to be quite flexible as defining the process is relatively intuitive using IDs and the optimization
algorithms require updates only to objectives and constraints. It also allows flexible objective and
constraint definitions. Finally, fully leveraging the probabilistic constraint capabilities of Decision
Programming over periods and segments still lacks a rigorously justified approach, which could

prove useful in, e.g., risk mitigation.
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High

lights

We develop a model to optimize strategies for two-stage colorectal cancer screening
The model accounts for different cutoffs for first-stage tests based on age and sex
Optimal strategies under colonoscopy constraints are found by Decision Programming
Identified Pareto-optimal strategies minimize cancer prevalence and colonoscopies
The results offer insights into improving the Finnish cancer screening program
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