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 A B S T R A C T

Optimisation problems involving computationally expensive, black-box functions derived from high-fidelity 
engineering simulations remain challenging. To efficiently bridge the simulators and optimisation processes, 
we introduce an adaptive framework for surrogate modelling and optimisation. Our method employs low-
discrepancy sequence sampling to select points, followed by training a surrogate model using a piecewise linear 
neural network (NN) with rectified linear unit (ReLU) activation. Using mixed-integer programming (MIP), we 
reformulate the ReLU NN as embedded components of an optimisation problem and solve it to find an optimal 
simulator input. This is achieved by iteratively refining the solution via resampling the simulator, retraining 
the surrogate model, and rebuilding and resolving the MIP problem. For resampling, an infill strategy that 
incorporates uncertainty assessment and a solution pool is employed, balancing exploration and exploitation. 
Moreover, computational efficiency is boosted by bound tightening, lossless model compression, and memory 
structure reuse. Validation on practical engineering applications confirms significant optimisation efficiency 
gains from the domain-refined strategy.
1. Introduction

The optimisation of complex functions is a frequently encountered 
challenge in various high-fidelity simulations, where input/output data 
is obtained through simulators. These simulators are intricately de-
signed to predict the behaviour of physical systems by resolving the 
mathematical equations that describe underlying physical processes. 
Employed extensively in diverse sectors, such as automotive engi-
neering to optimise combustion processes for improved fuel efficiency 
(Aithal and Balaprakash, 2019), chemical engineering to enhance man-
ufacturing processes ensuring consistency and quality (Tsay, 2021; 
Addis et al., 2023), and aerospace engineering to streamline the aero-
dynamic design of gas turbine blades (Zhang and Janeway, 2022), 
simulator-based optimisation methods are instrumental in pushing the 
boundaries of operational efficiency.

However, despite their precision and utility, the direct use of high-
fidelity simulators in optimisation tasks often entails prohibitive com-
putational costs and significant time investments, particularly when 
exploring large parameter spaces or when multiple iterations are re-
quired. Additionally, many simulators are black-box systems and, as 
such, obtaining the derivatives needed for gradient-based optimisation 
methods is challenging, limiting the efficiency of these optimisation 
strategies. These challenges are amplified in industrial applications 
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where decision-making speed is crucial, and in research environments 
where extensive explorations of theoretical models are necessary.

These shortcomings from direct optimisation using the simulator 
expose the need for an alternative approach that maintains the integrity 
of simulation outputs while mitigating the computational burdens. 
One such approach is the development and use of surrogate mod-
els (Bhosekar and Ierapetritou, 2018), which offer a viable solution 
by approximating the outputs of these complex simulators. Surrogate 
models are built to capture the essential features and behaviours of 
the original simulators. These models are conceived to be computa-
tionally cheaper to evaluate and smoothly integrate with optimisation 
algorithms, providing faster convergence rates and facilitating more 
dynamic exploration of parameter spaces.

Surrogate models come in various forms to leverage simulator-
generated data (Alizadeh et al., 2020). Polynomial regression is useful 
for capturing polynomial relationships, including linear and quadratic 
forms (Cheng et al., 2019); Kriging is ideal for modelling smooth and 
continuous functions, providing a robust statistical foundation (Klei-
jnen, 2014); radial basis functions are used for multidimensional in-
terpolation problems, often applied when data lacks a structured grid 
(Fasshauer and McCourt, 2012; Wendland, 2017); decision trees
provide a hierarchical structure for modelling nonlinear decision
boundaries by segmenting the input space (Hehn et al., 2020); neural 
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networks (NNs) are adept at modelling complex patterns and nonlinear 
relationships within high-dimensional spaces (Canziani et al., 2017; 
Advani et al., 2020).

Among these, NNs with rectified linear unit (ReLU) activation func-
tions present a unique advantage in optimisation tasks due to their 
piecewise linear characteristics. When the network architecture and 
parameters are fixed after training, a ReLU NN inherently represents a 
piecewise linear function. This property means that optimisation prob-
lems incorporating such networks naturally take the form of piecewise 
linear problems, simplifying the complexity involved in finding the 
global optimum (Perakis and Tsiourvas, 2022). In addition to the ReLU 
function and its variations, other most commonly used piecewise linear 
activation functions include hard tanh and maxpooling (Tao et al., 
2022). Once an NN has been well trained, it can be employed for 
optimisation tasks through several approaches. Gradient-based methods 
directly extract gradients from the network and apply gradient-based 
optimisation techniques (Laurent et al., 2019). Alternative strategies 
include derivative-free methods, such as swarm optimisation or genetic 
algorithms, which do not rely on gradients (Bhosekar and Ierapetritou, 
2018).

In addition, mathematical programming formulations, particularly 
mixed-integer programming (MIP), offer a powerful framework for 
exact optimisation of nonconvex piecewise linear functions (Huchette 
et al., 2023). ReLU NNs, an MIP-representable class of NNs, have 
garnered increasing interest for optimising over a trained NN (Fis-
chetti and Jo, 2018; Grimstad and Andersson, 2019; Anderson et al., 
2020; Katz et al., 2020; Yang et al., 2022; Maragno et al., 2023; 
Tong et al., 2024). Additionally, the use of mature off-the-shelf solvers 
such as Gurobi (Gurobi Optimization, LLC, 2024a) ensures reliable 
optimisation performance through efficient computation and rigorous 
guarantees for globally optimal solutions within specified numerical 
tolerances. The MIP-based approach, combined with mature solvers, 
provides mathematically guaranteed optimal solutions for applications 
demanding high solution quality.

While MIP-based optimisation over trained NNs offers optimality 
guarantees, its effectiveness critically depends on infill strategies that 
iteratively sample points to refine surrogate models (Martins and Ning, 
2021). The ability to quantify prediction uncertainty plays a crucial role 
in guiding efficient sampling (Hüllen et al., 2020).

Kriging is particularly favoured as a surrogate model for its ability to 
provide both predictions and uncertainty estimates, enabling informed 
sampling decisions (Lualdi et al., 2024). For Kriging-based methods, 
several approaches have emerged: ensemble frameworks with adaptive 
model selection (Lu et al., 2023), hybrid models combining global and 
local basis functions (Hu et al., 2023), and evolutionary algorithms with 
multiple infill sampling strategies (Zhu et al., 2024). Other advances 
include uncertainty-driven approaches through grouping-based crite-
ria (Liu et al., 2021) and dual selection mechanisms based on lower 
confidence bounds (Li et al., 2023). Nevertheless, while these Kriging-
based approaches offer uncertainty estimates, the computational re-
quirements associated with model fitting typically scale cubically with 
the number of training points due to the associated covariance matrix 
operations (Kleiber and Nychka, 2015), and, consequently, have limited 
usefulness in settings with high-dimensional problems, often becom-
ing intractable for large-scale applications (Anahideh et al., 2022). 
This computational limitation of Kriging methods has motivated re-
search into alternative approaches for uncertainty quantification in 
high-dimensional settings. NNs present a promising direction, offering 
both demonstrated favourable scaling properties with sample size and 
dimension (Guo et al., 2022), as well as various methods for uncertainty 
estimation such as ensemble techniques (Pearce et al., 2020), Bayesian 
NNs (Magris and Iosifidis, 2023), and dropout-based approaches (Gal 
and Ghahramani, 2016). However, despite these advantages, the po-
tential of NN uncertainty estimation in guiding sampling decisions has 
been relatively unexplored in the context of optimisation. Additionally, 
2 
existing approaches have not exploited the mathematical rigour and 
solution space insights available through MIP optimisation over NNs.

To address these limitations, we present several interconnected 
contributions within a surrogate-based optimisation framework (Fig. 
1). Our primary contribution is the development of an infill strategy 
that leverages uncertainty estimation and solution pools to widen the 
exploration–exploitation trade-off opportunities, encompassing both 
active simulator resampling and static dataset analysis. Additionally, 
we present the novel integration of adaptive sampling, NNs, and 
MIP into a unified optimisation framework, demonstrating its efficacy 
in simulation-dependent optimisation problems with respect to com-
putational demands and convergence stability. Specifically, adaptive 
sampling helps to dynamically adjust the sampling process based on the 
uncertainty associated with the NN’s predictions and incumbent MIP 
solutions, thereby ensuring that new data points maximise potential 
improvements in model accuracy.

Our paper is structured as follows, as illustrated in Fig.  1. Section 2 
details the MIP modelling method for ReLU NNs, emphasising tech-
niques for efficient solving. Section 3 describes the infill strategy, which 
utilises estimated uncertainty information and solution pools. Section 4 
presents the proposed general framework for surrogate modelling and 
optimisation. Section 5 presents the numerical experiments involving 
two different scenarios. Section 6 concludes the paper, highlighting key 
findings and opening research directions for further work.

2. Surrogate embeddings

In this section, we show the use of surrogate embeddings, focusing 
on how pre-trained ReLU NNs can be embedded as constraints in 
MIP formulations to optimise complex functions within simulations. 
Additionally, we discuss techniques like bound tightening and lossless 
model compression to boost computational efficiency.

2.1. Conceptual model

For a given simulation process governed by an underlying black-box 
function 𝑓 , suppose we have a dataset  = {(𝑥(𝑖), 𝑦(𝑖))}𝑛s𝑖=1, obtained by 
running the simulator with 𝑛s different inputs, where the inputs 𝑥(𝑖) for 
each sample 𝑖 are drawn from the design space, i.e., the domain  , 
and 𝑦(𝑖) are corresponding outcomes of interest. This complex process 
can be approximated and effectively replaced using a surrogate model 
𝑓 , constructed based on 𝑛s samples from . We aim to optimise a 
predefined function ℎ with the surrogate model 𝑓 embedded while 
also considering the practical constraint 𝑔. The optimisation problem 
is formulated as 

min
𝑥∈R𝑛 ,𝑦∈R𝑚

ℎ(𝑥, 𝑦)

s.t.: 𝑔(𝑥, 𝑦) ≤ 0,

𝑦 = 𝑓(𝑥),

𝑥 ∈  .

(1)

The outcomes of interest 𝑦, could be constrained by a known 
function 𝑔 and/or optimised within a known function ℎ, reflecting 
their dependency on the simulation outcomes according to the specific 
requirements of the application. To render the optimisation problem 
(1) manageable from a computational standpoint, we assume that the 
variables 𝑥 are bounded.

To be effectively incorporated into an optimisation strategy,
simulator-based surrogate optimisation requires two critical elements: 
high accuracy and reasonable solution times. Misspecifications in the 
learned surrogate can lead to sub-optimal outcomes; therefore, our 
focus will be on enhancing the accuracy of the surrogate while ensuring 
that the solution times remain practical. We will explore these aspects 
in the subsequent sections.
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Fig. 1. Overview of the proposed simulator-based surrogate optimisation methodology.
2.2. MIP formulation

Given the need for efficient optimisation in complex simulation 
processes, we turn to ReLU NNs as our tool of choice for surrogate 
modelling as previously discussed in Section 1. We employ the big-M 
formulation (Fischetti and Jo, 2018) for its implementation simplicity, 
incorporating techniques to improve its tractability.

Here, we consider a ReLU NN with 𝐿 + 1 layer (numbered from 0
to 𝐿) to build the surrogate model of the simulator 𝑓 . For the input 
layer, we have 𝑦0 = 𝑥. For the output layer we have 𝑦𝐿 = 𝑓(𝑥). The 
activation of neurons 𝑖 = 1,… , 𝑁𝑙 in the hidden layer 𝑙 = 1,… , 𝐿 − 1
are calculated by 

𝑦𝑙𝑖 = ReLU(𝑤
𝑙⊤
𝑖 𝑦𝑙−1 + 𝑏𝑙𝑖) = max(0, 𝑤𝑙⊤

𝑖 𝑦𝑙−1 + 𝑏𝑙𝑖), (2)

where 𝑤𝑙
𝑖 and 𝑏𝑙𝑖 denote the weight and bias of the corresponding 

neuron, respectively. Suppose we are given the lower bounds 𝐿𝑙
𝑖 < 0

and upper bounds 𝑈 𝑙
𝑖 > 0 such that

𝐿𝑙
𝑖 ≤ 𝑤𝑙⊤

𝑖 𝑦𝑙−1 + 𝑏𝑙𝑖 ≤ 𝑈 𝑙
𝑖 .

Following Fischetti and Jo (2018), the ReLU operator can be en-
coded into mixed-integer linear constraints by introducing slack vari-
ables 𝑠𝑙𝑖 and binary variables 𝑧𝑙𝑖 for 𝑖 = 1,… , 𝑁𝑙 , 𝑙 = 1,… , 𝐿 − 1, which 
is expressed as 

𝑦𝑙𝑖 − 𝑠𝑙𝑖 = 𝑤𝑙⊤
𝑖 𝑦𝑙−1 + 𝑏𝑙𝑖 ,

0 ≤ 𝑦𝑙𝑖 ≤ 𝑈 𝑙
𝑖 𝑧

𝑙
𝑖 ,

0 ≤ 𝑠𝑙𝑖 ≤ −𝐿𝑙
𝑖
(

1 − 𝑧𝑙𝑖
)

,

𝑧𝑙𝑖 ∈ {0, 1} .

(3)

Combining these constraints (3) with input and output layer bounds

𝐿0 ≤ 𝑦0 ≤ 𝑈0, (4)

𝐿𝐿 ≤ 𝑦𝐿 = 𝑤𝐿⊤
𝑦𝐿−1 + 𝑏𝐿 ≤ 𝑈𝐿, (5)

we obtain the exact MIP model to embed the ReLU NN surrogate 𝑦 =
𝑓(𝑥) into the original optimisation problem (1).

The above transformation facilitates seamless integration of the 
surrogate model into the optimisation framework, providing a direct 
approach to handling the nonlinearities inherent to the simulator. By 
leveraging the computational power of a state-of-the-art MIP solver, we 
can explore the solution space more effectively. This approach ensures 
that the optimal solution preserves the surrogate model’s fidelity in 
approximating the complex system behaviour.
3 
2.3. Techniques for efficiency improvement

The MIP formulation with ReLU NN surrogate embeddings relies on 
a big-M formulation. The choice of the big-M constants 𝐿 and 𝑈 signifi-
cantly impacts the solution time of the MIP, potentially producing very 
challenging mixed-integer instances that can test even state-of-the-art 
solvers (Fischetti and Jo, 2018). Furthermore, this approach introduces 
as many binary variables as there are ReLU nodes, meaning that the size 
of the ReLU network directly influences the size of the MIP model. To 
enhance the computational feasibility of MIP formulations in practical 
applications, we employed several techniques in our framework.

One such technique involves reducing the big-M values associated 
with some of the constraints by calculating the minimum and maxi-
mum activations of the individual neurons through optimisation. This 
process, known as bound tightening, typically results in smaller big-M 
values, leading to more efficient MIP formulations. More details on this 
technique can be found in Grimstad and Andersson (2019).

Utilising these tighter activation bounds, the model can be com-
pressed losslessly by removing units and layers of the NN that do not 
change the output. This involves removing units with constant outputs 
regardless of the input, some stable units, and any layers with constant 
output due to these types of units (Cheng et al., 2020). Consequently, 
the size and depth of the model are reduced without losing any of its 
predictive capabilities.

These techniques collectively enhance the computational efficiency 
of the MIP formulation by addressing key challenges associated with 
large ReLU networks and big-M constraints. By reducing the big-M 
values and eliminating redundant units in the NN, the size and com-
plexity of the resulting MIP model are minimised. This not only speeds 
up the solution process but also makes the framework more scalable 
and practical for use in real-world applications where computational 
resources may be limited.

3. Infill strategy

This section introduces the key elements of our infill strategy for 
surrogate refinement, starting with uncertainty estimation to identify 
areas in the design space that need further exploration. It then covers 
the resampling procedure, which focuses on selecting new sampling 
points based on uncertainty and existing solutions.

3.1. Uncertainty estimation

When embedding a trained NN into an optimisation problem, there 
are two primary sources of uncertainty: the functional form of the 
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surrogate model 𝑓 and the parameter estimates that define it (Maragno 
et al., 2023). While simulator uncertainty from numerical approxima-
tions and inherent system randomness constitutes another source of 
uncertainty, validation and calibration methods can effectively mitigate 
these effects prior to the NN training (Roy, 2019). Since we are focusing 
on ReLU NNs as the chosen surrogate model, assuming appropriately 
validated simulator outputs, we narrow our discussion to parameter 
uncertainty, the uncertainty in the estimates of the model’s parameters 
such as weights and biases.

This uncertainty arises because 𝑓 is trained on a finite dataset 
, which may not fully represent the underlying function 𝑓 . As a 
result, the surrogate model might not perfectly capture the relation-
ship between the input variables 𝑥 and the output variables 𝑦. This 
potential for model misspecification can lead to sub-optimal solutions 
or even constraint violations in the original optimisation problem (1). 
Traditionally, optimisation models assume deterministic outcomes, but 
incorporating uncertainty allows for more robust solutions. Specifically, 
by factoring in the variability or uncertainty in predictions, the optimi-
sation process can adjust accordingly, ensuring that solutions remain 
valid even when the surrogate is imperfect.

To quantify the NN parameterisation uncertainty, we employ Monte 
Carlo Dropout (Gal and Ghahramani, 2016), which introduces con-
trolled randomness into the model during inference (Algorithm 1). 
Originally introduced as a regularisation method to prevent overfitting 
during NN training, dropout works by randomly deactivating a subset 
of neurons in the network based on a given dropout rate 𝑝 during each 
training iteration (Hinton et al., 2012). When extended to the testing 
phase, this approach, known as Monte Carlo Dropout, allows for the 
generation of a distribution of predictions by performing 𝑀 multiple 
forward passes with dropout enabled. The random nature of neuron 
deactivation in each pass creates variability in the predictions, effec-
tively sampling from different possible network configurations. This 
method is theoretically justified as an approximate Bayesian inference 
in deep Gaussian processes, where the prediction variance at each input 
point provides a local measure of the prediction uncertainty (Gal and 
Ghahramani, 2016). The local uncertainty measures can be aggregated 
across multiple input points to construct a comprehensive map of model 
prediction confidence. We adopt this approach due to its theoretical 
grounding in approximate Bayesian inference and seamless integra-
tion with existing NN architectures, making it particularly suitable for 
optimisation frameworks requiring repeated uncertainty estimation.

By setting 𝑀 , the number of Monte Carlo samples, to a suffi-
ciently large value, the method can capture a broad range of possible 
outcomes, thereby providing a more robust estimate of uncertainty. 
However, there is a trade-off one must consider: increasing 𝑀 enhances 
the accuracy of the uncertainty estimation but also increases the com-
putational cost. Therefore, 𝑀 must be chosen carefully based on the 
available computational resources and the desired level of confidence in 
the uncertainty estimates. Notably, this process is highly parallelisable, 
allowing for a significant reduction in computational overhead when 
implemented on multi-core processors or distributed systems, making 
the use of a larger 𝑀 more feasible.

For each point 𝑥(𝑖) in the current sample set s, the surrogate 
model 𝑓 with dropout rate 𝑝 is evaluated 𝑀 times under Monte Carlo 
Dropout, producing a set of predictions 𝐹 (𝑖) = {𝑓1(𝑥(𝑖)), 𝑓2(𝑥(𝑖)),… ,
𝑓𝑀 (𝑥(𝑖))} (Line 12–19). To estimate uncertainty, the standard deviation 
𝜎(𝑖) is computed from the set of predictions 𝐹 (𝑖) (Line 20) and then 
appended to the set 𝛴, which stores the uncertainty for each point in s
(Line 21). A higher standard deviation 𝜎(𝑖) indicates greater uncertainty 
in the model’s predictions at point 𝑥(𝑖), signalling regions in the design 
space that may require additional sampling to improve the model’s 
accuracy and reliability.

This method of uncertainty estimation is particularly useful in 
surrogate-based optimisation, as it directs attention to areas where the 
model is less confident, ensuring that subsequent sampling efforts are 
concentrated where they are most beneficial.
4 
Algorithm 1 Uncertainty Estimation
1: function MonteCarloDropout(𝑓,s,𝑀, 𝑝)
2:  inputs:
3:  𝑓 : ReLU NN surrogate model
4:  s: Set of data points {𝑥(1), 𝑥(2),… , 𝑥(𝑛)}
5:  𝑀 : Number of Monte Carlo samples
6:  𝑝: Dropout rate during inference
7:  outputs:
8:  𝛴: Estimated uncertainty (standard deviations) for each point 
in s

9:  Initialise 𝛴 ← {} ⊳ Empty set to store uncertainties
10:  for each 𝑥(𝑖) in s do
11:  Initialise 𝐹 (𝑖) ← {} ⊳ Empty set for predictions of 𝑥(𝑖)
12:  for 𝑛 = 1 to 𝑀 do 
13:  for each layer in 𝑓 do ⊳ Enable Dropout in 𝑓 during 

inference
14:  if the layer is a dropout layer then
15:  Set the layer to training mode to activate dropout 

with rate 𝑝
16:  end if
17:  end for
18:  Append 𝑓 (𝑥(𝑖)) to 𝐹 (𝑖) ⊳ Store the prediction with 

dropout enabled
19:  end for
20:  Compute 𝜎(𝑖) ← std(𝐹 (𝑖)) ⊳ Estimate uncertainty via 

standard deviation 
21:  Append 𝜎(𝑖) to 𝛴
22:  end for
23:  return 𝛴 ⊳ Uncertainties for all points in s
24: end function

3.2. Resampling procedure

An effective infill strategy requires a careful balance between ex-
ploitation and exploration. Local exploitation focuses on well-
performing areas of the search space to enhance current optima, while 
global exploration broadens the search to poorly represented areas to 
uncover potential global optima.

During our optimisation process, we identify an optimal solution 
𝑥̂∗, along with additional (sub-)optimal solutions kept in a solution 
pool, represented as the set pool. The solution pool is a feature that 
some MIP solvers provide, including Gurobi (Gurobi Optimization, LLC, 
2024b). As the solver navigates the MIP search space, it identifies not 
only the proven optimal solution but also alternative next-best feasible 
solutions, which can be systematically retrieved and utilised. Specifi-
cally, the resampling is focused around multiple solutions from pool
and points with high uncertainty in the surrogate model’s predictions, 
represented as the set  . Together, these points form our centre points
 that guide the resampling.

Within this framework, resampling around high-uncertainty points 
  is aligned with exploration, as it focuses on regions with greater 
uncertainty to identify potential new optima. Conversely, resampling 
around 𝑥̂∗ and other solutions from the solution pool pool corresponds 
to exploitation, as it seeks to improve the quality of the current best 
solution by gathering more data in promising regions.

The resampling procedure is outlined in Algorithm 2. To implement 
the resampling, the sampling radius and the number of samples are 
adjusted based on the available computational resources, controlled by 
the parameters 𝛼 and 𝛽, ensuring that the search space is effectively 
covered.

A sampling radius 𝑟, defined around each centre point in the set 
(Line 12), is determined using the scaling factor 𝛼 and the difference 
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between the lower (𝑥) and upper (𝑥̄) bounds of current sampling 
parameterisation 𝜉: 

𝑟 =
(𝑥̄ − 𝑥) ⋅ 𝛼

2
. (6)

The algorithm then adjusts the bounds for each centre point 𝑥(𝑖) in 
(Line 15), ensuring that new samples are generated within an appro-
priate range: 
𝑥(𝑖) = max(𝑥, 𝑥(𝑖) − 𝑟(𝑖)), 𝑥̄(𝑖) = min(𝑥(𝑖) + 𝑟(𝑖), 𝑥̄). (7)

Algorithm 2 Resampling Procedure
1: function Resample(s,, 𝜉, 𝛼, 𝛽)
2:  inputs:
3:  s: Current sample set
4:  : Centre points
5:  𝜉 = (𝑛s, 𝑥, 𝑥̄): Current sampling parameterisation
6:  𝛼, 𝛽: Scaling factors for radius and number of samples
7:  outputs:
8:  s: Enriched sample set
9:  s: Corresponding simulator values
10:  𝜉 = (𝑛s, 𝑥, 𝑥̄): Updated sampling parameterisation
11:  Initialise new ← {} ⊳ Store new samples
12:  𝑟 = (𝑥−𝑥̄)⋅𝛼

2 ⊳ Calculate the radius 
13:  𝑛s =

𝑛s⋅𝛽
|| ⊳ Adjust sampling number

14:  for each 𝑥(𝑖) in  do
15:  𝑥(𝑖) = max(𝑥, 𝑥(𝑖) − 𝑟), 𝑥̄(𝑖) = min(𝑥(𝑖) + 𝑟, 𝑥̄) ⊳ Set new bounds 

around 𝑥(𝑖)
16:  𝜉(𝑖) ← (𝑛s, 𝑥(𝑖), 𝑥̄(𝑖)) ⊳ Resampling parameterisation for 𝑥(𝑖)
17:   (𝑖) ← Sample(𝜉(𝑖)) ⊳ Generate new samples 
18:  Append  (𝑖) to new
19:  𝑥 ← min(𝑥, 𝑥(𝑖)), 𝑥̄ ← max(𝑥̄, 𝑥̄(𝑖)) ⊳ Update global bounds
20:  end for
21:  𝜉 ← (|

|

new|| , 𝑥, 𝑥̄) ⊳ Updated sampling parameterisation 
22:  (s,s) ← {(𝑥,Evaluate(𝑥)) ∣ 𝑥 ∈ s ∪ new, 𝑥 ≤ 𝑥 ≤ 𝑥̄} ⊳ Enrich 

sample set 
23:  return (s,s, 𝜉)
24: end function

Using these updated bounds, the resampling parameterisation 𝜉(𝑖) =
(𝑛s, 𝑥(𝑖), 𝑥̄(𝑖)) for each centre point 𝑥(𝑖) is defined (Line 16), where 𝑛s
represents the number of samples allocated to each region, scaled by 
the factor 𝛽 and divided by the cardinality of the set : 

𝑛s ←
𝑛s ⋅ 𝛽
||

. (8)

New samples  (𝑖) are then generated around each centre point 𝑥(𝑖)
using the updated parameterisation through Sample(𝜉(𝑖)) (Line 17) and 
then appended to the entire set new, which stores the resampled data 
around all centre points. When relying on a pre-acquired simulation 
data points (e.g., when querying the simulator in real-time is not 
feasile), up to 𝑛s points are randomly selected within the defined sample 
area around each centre point. If fewer points exist within that area 
than 𝑛s, all of them are selected to enrich the sample set.

After generating the new samples new, the overall sampling param-
eterisation 𝜉 is updated to reflect the total number of samples and the 
new combined bounds (Line 21). Instead of merging the entire existing 
dataset s with the newly sampled data new, only the union of the 
new samples and the previously sampled data within the new bounds 
[𝑥, 𝑥̄] is merged (Line 22). The corresponding simulator values s are 
obtained using Evaluate(⋅). This ensures that only the relevant data, 
which lies within the updated bounds, is used to refine the surrogate 
model.

By prioritising regions around the centre points during the resam-
pling procedure, the optimisation process can systematically reduce un-
certainty across the design space, leading to more reliable and accurate 
outcomes.
5 
4. Iterative optimisation framework

Building upon the infill strategy presented in Section 3.2, we de-
scribe our complete framework for simulator-based optimisation. The 
framework integrates efficient sampling techniques, ReLU NNs, and 
MIP to handle the challenges of high-fidelity simulations. We de-
tail the iterative processes along with strategies to streamline the 
computational workload.

4.1. Framework overview

For conciseness, the outcome of the surrogate model for the simu-
lator, denoted as 𝑦, is directly taken as the objective in the following 
description of the proposed framework, i.e., setting ℎ(𝑥, 𝑦) = 𝑦 in prob-
lem (1). All other settings and assumptions of the original optimisation 
problem (1) remain unchanged. In practice, a custom objective function 
involving the outcome of interest from the simulator can be defined 
without affecting the implementation of the method.

The general framework for optimising complex simulations is illus-
trated in Fig.  2. The framework initiates with an efficient sampling 
process using low-discrepancy sequences (quasirandom sequences), 
which are deterministically constructed to achieve superior unifor-
mity in multi-dimensional spaces compared to pseudorandom sam-
ples (Kucherenko and Sytsko, 2005). We consider two scenarios: (i) 
having access to the simulator for active resampling; or (ii) being 
limited to pre-acquired datasets for data selection. If evaluating the 
simulator is too expensive, low-discrepancy sample points can be pre-
generated to create a static dataset for future data selection. While 
several low-discrepancy sequences exist, we employ Sobol sequences 
due to their demonstrated superiority in numerous practical applica-
tions (L’Ecuyer and Lemieux, 2002). These sequences generate suc-
cessive points by considering binary fractions and systematically con-
structing primitive polynomials, which reduces the number of re-
quired evaluations and enhances the representativeness of the sample 
points (Renardy et al., 2021).

The process of obtaining data points can be parallelised to en-
hance efficiency, particularly in large-scale simulations. Multiple sam-
ple points can be evaluated simultaneously by distributing simula-
tion runs across various computational nodes or processors, enabling 
the concurrent execution of simulations (Ndih and Cherkaoui, 2015). 
Techniques such as multithreading or distributed computing can be 
employed to implement parallel processing, significantly accelerating 
the sampling phase.

Once sampling is completed, the next phase involves building a 
surrogate model using the obtained dataset. In this framework, a ReLU 
NN is trained to develop the surrogate model. The choice of NN 
architecture is crucial, as it balances computational efficiency with 
the ability to approximate nonlinear relationships within the data. The 
trained surrogate is then embedded into an MIP problem, as discussed 
in Section 2. By solving the MIP formulation, we can determine an 
optimal parameterisation of the simulator’s inputs based on the initial 
surrogate, leveraging the exact optimisation capabilities of MIP meth-
ods. It is important to achieve a reasonably accurate surrogate from 
the start, as a low-accuracy surrogate model embedded in the MIP may 
lead to sub-optimal solutions in the initial stage, potentially steering 
the subsequent optimisation towards a misleading direction.

The framework’s core strength lies in its iterative refinement process 
driven by a resampling infill strategy as discussed in Section 3. This 
iterative process forms a loop where resampling, ReLU NN surrogate 
model retraining, MIP reformulation, and MIP resolving are repeated 
until the termination conditions are met. Each iteration enriches the 
model’s dataset, making the surrogate progressively more reliable, 
while the use of MIP ensures that the optimisation leverages the most 
accurate model available at each step.
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Fig. 2. Flowchart of the optimisation process, outlining key steps: beginning with sampling, followed by training the ReLU NN surrogate model, formulating and solving the MIP 
(middle), and iteratively (right) optimising the simulator inputs.
4.2. Algorithm implementation

The implementation of the simulator-based surrogate optimisation 
framework is outlined in Algorithm 3, focusing on the specific proce-
dural steps and iterative mechanisms. Unlike the broader conceptual 
discussion in Section 3.1, this section emphasises the algorithm’s tech-
nical elements, including initialisation, iterative resampling, model 
retraining, and convergence criteria.

The algorithm starts with defining the necessary input parameters. 
These include the initial sampling configuration 𝜉 which sets the num-
ber of samples 𝑛s and the bounds [𝑥, 𝑥̄] within which the algorithm will 
explore. The ReLU NN parameters 𝜃 specify the architecture and train-
ing specifics, ensuring the surrogate model is appropriately configured 
to approximate the simulator’s outputs. Other critical inputs involve 
the Monte Carlo Dropout rate 𝑝 for uncertainty estimation, the number 
of Monte Carlo samples 𝑀 , and parameters for adaptive resampling, 
including the number of high-uncertainty points to target (𝑁) and the 
scaling factors (𝛼, 𝛽) used to dynamically adjust the sampling density.

The algorithm proceeds with an initialisation phase where initial 
samples s are drawn within the defined bounds using Sample(𝜉) (Line 
14) and evaluated using either the high-fidelity simulator or a pre-
existing dataset with Evaluate(s) (Line 15). The dataset (s,s) is 
then used to train the initial surrogate model 𝑓 , a ReLU NN, which 
approximates the simulator’s behaviour using TrainNN(s,s, 𝜃) (Line 
16). This surrogate model is then embedded into the MIP problem 
MIP, allowing the algorithm to build a solution pool pool by solving 
it using Solve(MIP) (Line 18) and identify an initial optimal solution 
𝑥̂∗.

After building the initial solution pool, the algorithm estimates the 
uncertainty in the surrogate model’s predictions using Monte Carlo 
Dropout, implemented as MonteCarloDropout(𝑓,s,𝑀, 𝑝) (Line 23). 
The algorithm then selects points from   and pool, forming our centre 
points  for resampling (Line 25). This focused resampling enriches the 
dataset by adding new, informative points using Resample(s,, 𝜉, 𝛼, 𝛽) 
(Line 26). The enriched dataset is used to retrain the NN. The updated 
surrogate model is then reformulated as a new MIP problem, and the 
optimisation process is repeated to identify a potentially improved 
solution using Solve(MIP) (Line 28–29).

The looped process continues until the algorithm meets the con-
vergence criteria, which are based on either the relative improvement 
in the objective function or the maximum number of iterations (Line 
6 
22). Convergence is assessed by comparing the predicted optimum 
𝑓 ∗ with a reference value 𝑓ref. For cases with access to the simula-
tor, 𝑓ref is the actual simulated value obtained through Assess(𝑥̂∗) at 
the current best point 𝑥̂∗ (Line 30). For pre-acquired datasets, 𝑓ref is 
the predicted optimum from the previous iteration, obtained similarly 
through Assess(𝑥̂∗). Convergence is reached when the relative difference 
between 𝑓 ∗ and 𝑓ref falls below a predefined tolerance, 𝜏, indicating 
that further iterations are unlikely to significantly enhance the solution. 
This condition suggests that the optimisation has plateaued, and the 
algorithm is terminated.

4.3. Memory structure reuse

The computational efficiency of the iterative process, described in 
Algorithm 3, is enhanced through the reuse of memory structures. 
A crucial aspect of this strategy is freezing the initial layers of the 
NN during the retraining phase. By maintaining the weights of the 
first few layers, the algorithm retains the features and representations 
learned from earlier iterations, while adapting to the new data. These 
layers typically capture fundamental patterns and structures in the 
data, which remain relevant as new data is introduced through resam-
pling (Yosinski et al., 2014). This reuse of memory not only reduces 
the computational cost associated with retraining the entire network 
but also stabilises the training process while incorporating the latest 
data for improved accuracy.

In addition to NN layer freezing, the reuse of the existing MIP 
model plays a necessary role in streamlining the optimisation process. 
Once the MIP formulation has been established for the initial surrogate 
model, it can be efficiently adapted for subsequent iterations. This reuse 
minimises the overhead associated with rebuilding the MIP model from 
scratch in each iteration. Instead, the existing structure is modified to 
incorporate the updated surrogate model, allowing the algorithm to 
focus computational efforts on solving the optimisation problem rather 
than repeatedly reformulating it.

These memory reuse techniques, freezing NN layers and reusing 
the MIP model, are integral to enhancing the computational fea-
sibility of the optimisation, especially in complex scenarios where 
high-dimensional data and large-scale simulations are involved. In 
the broader context of the surrogate-based optimisation framework,
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Algorithm 3 Simulator-based Surrogate Optimisation
1: inputs:
2: 𝜉 = (𝑛s, 𝑥, 𝑥̄): Initial sampling parameterisation (number of 
samples, lower and upper bounds)

3: 𝜃: ReLU NN parameterisation (layers’ architecture, loss function, 
optimiser, dropout rate, batch size and number of epochs)

4: 𝑝: Dropout rate for Monte Carlo Dropout
5: 𝑀 : Number of Monte Carlo Dropout samples
6: 𝑁 : Number of points with the highest uncertainty to identify
7: 𝛼, 𝛽: scaling factors for number of samples and radius
8: 𝑘max: Maximum number of iterations
9: 𝜏: Convergence tolerance
10: outputs:
11: 𝑥̂∗: Best point identified
12: 𝑓 ∗: Corresponding surrogate outputs
13: initialise:
14: s ← Sample(𝜉) ⊳ Sample initial points within bounds 
15: s ← Evaluate(s) ⊳ Evaluate function using simulator or 

referring to pre-acquired dataset 
16: 𝑓 ← TrainNN(s,s, 𝜃) ⊳ Train a ReLU NN and store the trained 

model 
17:  Formulate MIP(𝑓, 𝑥̄, 𝑥) ⊳  Covert ReLU NN to MIP
18: pool ← Solve(MIP) ⊳ Solve MIP and build solution pool 
19: 𝑥̂∗ ← best point in pool, 𝑓 ∗ = 𝑓 (𝑥̂∗)
20: 𝑓ref ← Assess(𝑥̂∗) ⊳ Reference value for convergence check
21: 𝑘 ← 0
22: while 𝑘 < 𝑘max and |𝑓

∗−𝑓ref|
|𝑓ref|

> 𝜏 do ⊳ Convergence criteria 
23:  𝛴 = MonteCarloDropout(𝑓,s,𝑀, 𝑝) ⊳ Estimate uncertainty of 

each point 
24:   ← top 𝑁 points with highest uncertainty from s based on 

𝛴
25:   ←  ∪ pool ⊳ Identify centre points 
26:  (s,s, 𝜉) = Resample(s,, 𝜉, 𝛼, 𝛽) ⊳ Enrich sample set 
27:  Formulate MIP(𝑓, 𝑥̄, 𝑥) ⊳ Reformulate MIP with updated 

model
28:  pool ← Solve(MIP) ⊳ Solve MIP and update solution pool 
29:  𝑥̂∗ ← best point in pool, 𝑓 ∗ = 𝑓 (𝑥̂∗)
30:  𝑓ref ← Assess(𝑥̂∗) ⊳ Update reference value for next iteration 
31:  𝑘 = 𝑘 + 1 ⊳ Increment iteration counter
32: end while
33: return (𝑥̂∗, 𝑓 ∗)

these strategies ensure that each iteration builds upon the progress 
made in previous steps, accelerating convergence while maintaining the 
robustness of the optimisation process.

5. Numerical experiments

This section presents numerical experiments to assess the effective-
ness of the proposed framework through two real-world simulator-
based engineering applications: a jet engine turbine blade design prob-
lem (The MathWorks, Inc., 2024b) with an accessible simulator and an 
auto-thermal reformer process optimisation (Miller et al., 2018) using 
pre-acquired simulator data. In addition, we provide further numerical 
validation concerning our method’s global optimisation capabilities 
through the benchmark Rastrigin function (Surjanovic and Bingham, 
2013), presented in the Supplementary Materials, Section 1.

5.1. Setup and tools

All experiments were conducted on a computing platform equipped 
with an Intel Core i5-1145G7 processor running at 2.60 GHz, paired 
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with 32 GB of RAM. The optimisation and modelling tasks were imple-
mented in Julia 1.10.3 (Bezanson et al., 2017), utilising Gurobi 11.0.2 
solver (Gurobi Optimization, LLC, 2024a) for solving MIP problems. 
For supervised learning tasks, Flux 0.14.15 library (Innes, 2018) was 
employed to train the ReLU NN surrogate.

The MIP models were formulated using Gogeta.jl package (Reijonen 
et al., 2024), a Julia package designed to represent machine learn-
ing models within a mathematical programming framework. In our 
experiments, we utilised the package’s key features of bound tighten-
ing and lossless model compression to improve the efficiency of the 
optimisation process, as introduced in Section 2.3.

Specifically, we employed feasibility-based bound tightening (Be-
lotti et al., 2012), leveraging interval arithmetic, which is computa-
tionally efficient. This technique computes bounds on constraint ac-
tivations over the variable domains (forward propagation) (Gleixner 
et al., 2017), considering the variables and constraints defined up to the 
previous layer of the neuron undergoing bound tightening. Addition-
ally, lossless model compression was used to simplify the NN surrogate, 
reducing the complexity of the corresponding MIP formulation without 
losing crucial information. This was achieved by pruning stably active 
or inactive neurons, adjusting the weights and biases accordingly, 
and reconstructing the network with the remaining neurons while 
preserving local equivalence (Serra et al., 2020).

For the visual analysis of unstructured data, the Makie.jl (Danisch 
and Krumbiegel, 2021) data visualisation ecosystem was utilised. Its 
tricontour function, which employs Delaunay triangulation (Ito, 2015), 
enables continuous surface representations through linear interpolation 
of scattered data points, facilitating interpretable visualisation of the 
optimisation outcomes.

5.2. Case 1: Having access to the simulator

In this experiment, we apply the proposed optimisation framework 
to the design of a jet engine turbine blade. In a jet engine, the turbine 
converts energy from high-temperature exhaust gases into mechanical 
work (Gowreesh et al., 2012). However, the turbine blades must endure 
extremely harsh thermal conditions. Controlling the blade’s maximum 
temperature is critical to ensuring the reliability and longevity of the 
engine during the turbine blade design process.

To tackle this challenge, a thermal analysis based on Finite Element 
Analysis (FEA) using the Partial Differential Equation Toolbox (The 
MathWorks, Inc., 2024a) of MATLAB is conducted. FEA models the 
turbine blade geometry by discretising it into smaller elements, allow-
ing for the simulation and analysis of temperature distributions under 
different thermal loads. Fig.  3 presents both the structural model of the 
turbine blade and the corresponding temperature distribution predicted 
by the FEA. The structural model illustrates the physical geometry of 
the blade, while the FEA predicts how the blade responds to thermal 
loads under different operating conditions.

The simulation is treated as a black box, focusing solely on the 
relationship between the six input variables and the output. The inputs 
include the cooling air temperature 𝑇air, gas temperature 𝑇gas, and heat 
transfer coefficients for different regions of the blade. Specifically, the 
heat transfer coefficients correspond to various faces of the structural 
model shown on the left-hand side of Fig.  3. These include coefficients 
for interior cooling (covering faces 15, 12, and 14), as well as for the 
pressure side (face 11), the suction side (face 10), and the tip (face 13) 
of the blade.

The objective of the optimisation is to minimise the maximum 
temperature that the blade will experience under various conditions. 
The optimisation framework explores the design space within defined 
bounds for these six input variables. The initial bounds are set at [120, 
900, 20, 40, 30, 10] for the lower bounds and [180, 1200, 40, 60, 50, 
30] for the upper bounds (Guo, 2021), ensuring a comprehensive range 
of operating conditions is covered.
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Fig. 3. The structural model used in this experiment (left) and a temperature (℃) distribution example after Finite Element Analysis (FEA) (right).
Table 1
Iterative optimisation results: Number of resampled points, total dataset size, and Mean Absolute Percentage Error (MAPE) 
for training and test sets, along with the relative optimisation gap.
 Iteration step Resampled points Training MAPE (%) Test MAPE (%) Relative gap (%) 
 Initial – 0.445 0.427 1.842  
 1 300 0.357 0.368 0.606  
 2 96 0.288 0.299 0.387  
 3 33 0.196 0.197 0.025  
The surrogate model was initially trained using 1000 data points, 
where the input values were generated using a Sobol sequence within 
the defined bounds and the corresponding outputs were obtained by 
evaluating these inputs with the simulator. The ReLU NN used for the 
surrogate model had an architecture of 6 → 50 → 50 → 1, and it 
was trained using the Adam optimiser (Kingma and Ba, 2017) with a 
learning rate schedule of exponential decay. The Mean Squared Error 
(MSE) was used as the loss function. During retraining, the first hidden 
layer was intentionally frozen.

To estimate uncertainty, we utilised Monte Carlo Dropout with the 
following parameters: 𝑀 = 100 for the number of Monte Carlo samples, 
and a dropout rate of 𝑝 = 0.1. During each iteration, the framework 
identified 𝑁 = 10 points with the highest standard deviation among 
the samples. The resampling was controlled by scaling factors set as 
𝛼 = 0.10 for the radius and 𝛽 = 0.3 for the number of samples, 
determining the scope and density of the additional data points sampled 
during each iteration.

After three iterations of resampling, surrogate retraining, and MIP 
reformulating and resolving, the algorithm converged, meeting the 
termination condition of 𝜏 = 0.1%. Table  1 summaries the iterative 
optimisation process, detailing the number of resampled points, the 
total dataset size used for the ReLU NN training, and the Mean Absolute 
Percentage Error (MAPE) for both the training and test sets at each 
step. The table also includes the relative gap, which is the difference 
between the predicted optimum 𝑓 ∗ and the actual simulated value 𝑓 ∗

at the current best point, serving as the termination condition for the 
optimisation process.

The iterative optimisation process shows a significant reduction 
in both the training and test MAPE as the optimisation progresses, 
indicating that the surrogate model becomes increasingly accurate with 
each iteration. The number of resampled points decreases with each 
step, reflecting the framework’s ability to focus on the most informative 
regions of the design space. The relative gap also narrows, indicating 
the model’s convergence towards an optimal solution.

For the sake of illustration, we selected the first two of the six input 
variables, 𝑥1 and 𝑥2, to further illustrate the optimisation process. Fig. 
4 highlights the initial step’s optimum and the 10 highest-uncertainty 
points within the sample set. Fig.  5 shows the resampled points during 
the 3rd iteration, emphasising how the framework hones in on centre 
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points to improve model accuracy. Fig.  6 presents the final optimi-
sation results after the 3rd iteration, where the optimisation process 
converged, meeting the termination condition.

The framework effectively handled this complex problem through 
iterative surrogate model refinement and optimisation. Starting with 
a surrogate model trained on 1000 Sobol-sampled data points from 
the black-box simulator, the framework iteratively refined the model. 
The convergence was visually confirmed in the final iteration (Fig.  6), 
where the contours of the surrogate model closely matched those of the 
simulator, and the optimal solution was accurately pinpointed.

5.3. Case 2: Being limited to pre-acquired datasets

In this case, the optimisation framework operates under the con-
straint of relying solely on pre-acquired datasets, without the ability 
to interact with a simulator in real-time. This scenario is common in 
industrial and engineering contexts where generating new simulator 
data is costly or impractical. The framework’s performance is evaluated 
using an optimisation problem involving an auto-thermal reformer 
process, a complex example from process engineering.

The reformer process generates synthesis gas (syngas) from air, 
steam, and natural gas (NG) inputs, as depicted in Fig.  7, which is 
subsequently used in a solid-oxide fuel cell. The process involves 12 
outputs of interest, including the steam flow rate, the reformer duty, 
and the properties of the outlet stream. The two operating (input) vari-
ables are the fraction of NG that bypasses the reformer, 𝑥1, ranging from 
[0.1, 0.8], and the steam to NG flow ratio, 𝑥2, ranging from [0.8, 1.2].

The optimisation setup follows the OMLT (Optimisation and Ma-
chine Learning Toolkit) (Ceccon et al., 2022) implementation, which is 
a toolkit designed to integrate machine learning models with optimisa-
tion frameworks. In this case, the constraints ensure that the nitrogen 
(N2) concentration in the product stream remains below 34 mol%. The 
objective function to be maximised is hydrogen (H2) production.

In the implementation of OMLT, the surrogate model is trained 
using 2800 static simulated data points generated via a grid sampling 
method. The ReLU NN, consisting of layers sized 2 → 10 → 10 →

10 → 10 → 12 neurons, is optimised using the Adam optimiser with 
MSE as the loss function. OMLT supports the integration of the NN 
within the optimisation problem by offering various formulations for 
machine learning models, including the MIP approach. The ReLU NN 
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Fig. 4. Contours of the simulator and surrogate model, highlighting the current optimal solution point and 10 highest-uncertainty points.
Fig. 5. Data points used in the 2nd iteration and newly resampled data points from 
the 3rd iteration, focusing on regions around .

surrogate is incorporated into the optimisation problem using the big-
M method, and the problem is subsequently solved using an MIP solver 
to determine the optimal operating conditions that satisfy the specified 
constraints.

A key distinction between our method and the OMLT implemen-
tation is that their optimisation is performed on the initially trained 
surrogate model, using the full pre-acquired dataset without any further 
updates or resampling. In contrast, our proposed framework focuses on 
refining the sampling strategy to make more efficient use of the dataset, 
minimising the need for additional data points. We use the OMLT 
implementation as a baseline for evaluating our algorithm, applying the 
same simulated dataset and NN parameters as in the OMLT example. 
While our algorithm is implemented in Julia and OMLT in Python, 
we emphasise that our comparative analysis focuses on the relative 
magnitude of performance differences rather than exact numerical 
equivalencies. This comparison helps demonstrate how our framework 
handles optimisation with finite and fixed data, underscoring the ef-
fectiveness of our approach in surrogate modelling and data selection 
under constrained conditions.

In the initial sampling phase, 1000 data points were randomly 
selected from the entire 2800-point dataset. To estimate uncertainty, 
Monte Carlo Dropout was applied with a dropout rate of 𝑝 = 0.2, 
generating 𝑀 = 100 predictions for each data point. As shown in Fig. 
8, the highest uncertainty points were primarily located in the upper 
right corner of the plot, highlighting regions where the model exhibited 
9 
lower confidence. Conversely, the model showed greater confidence 
in predictions at the initial solution point. To balance the need for 
precision improvement in the most uncertain regions while avoiding 
unnecessary computational overhead, the process concentrated on the 
top 10 points with the highest uncertainty rather than considering a 
larger candidate set with, i.e., 50 points.

Points are then randomly selected from the remaining pre-acquired 
dataset within the defined sample area surrounding the points from 
pool and   identified earlier. The bounds for the variables were 
updated accordingly to focus the search in these critical regions. Fig.  9 
shows the original and resampled data points during the first iteration, 
with new samples concentrated around . As before, the first layer of 
the NN was frozen during retraining to preserve the features learned in 
the previous training phase. An analysis of the model’s performance 
with and without layer freezing is presented in the Supplementary 
Materials, Section 2.

The iterative process of resampling, retraining the NN, reformulat-
ing the MIP, and resolving the optimisation problem continued until 
convergence (tolerance 𝜏 = 0.1%) was achieved after four iterations. 
During each iteration, the data was normalised to enhance training per-
formance by ensuring that the input features are on a comparable scale, 
which helps in faster convergence. Fig.  10 presents the contours of both 
the simulator and the surrogate model, along with the solution points 
from pool following the initial and final (4th) iterations. These figures 
visually confirm the model’s improved accuracy and the progressive 
refinement of the optimal solution region as the iterations advanced.

The iterative optimisation results are summarised in Table  2, high-
lighting the number of resampled points, training and test MSEs, and 
the relative optimisation gap. As the iterations progressed, both the 
training and test MSEs decreased significantly, indicating a marked 
improvement in the model’s accuracy. Additionally, the relative gap 
narrowed progressively, demonstrating the framework’s effectiveness 
in efficiently converging towards an optimal solution.

The performance comparison between our proposed algorithm and 
the OMLT implementation is presented in Table  3. We provide two 
variants of our method: one with (‘‘Our Alg.’’) and one without (‘‘Our 
Alg. reduced’’) considering uncertainty quantification. By presenting 
this reduced variant, our objective is to measure the importance of 
uncertainty quantification and infill sampling in the performance of 
our approach. Although our full algorithm utilised fewer than half the 
data points compared to OMLT, leading to a significant reduction in 
training time, it achieved comparable final loss values, underscoring 
the effectiveness of our method in maintaining high accuracy while 
being resource-efficient. In contrast, the reduced variant, despite using 
a similar number of data points to our full algorithm, required three 
times more iterations (12 versus 4) to achieve convergence and resulted 
in a substantially higher loss value. This performance degradation 
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Fig. 6. Final optimisation results after the 3rd iteration, showing simulator and surrogate model contours with the optimal solution point and another solution stored in pool
(which is less optimal). The optimisation process converged after meeting the termination condition 𝜏 = 0.1%.
Table 2
Summary of iterative optimisation results, showing the number of resampled points, training and test MSE, and the relative 
optimisation gap across iterations.
 Iteration step Resampled points Training MSE Test MSE Relative gap (%) 
 Initial – 0.503186 0.444885 –  
 1 73 0.000930 0.001071 2.03  
 2 68 0.000463 0.000375 0.79  
 3 10 0.000438 0.000325 0.41  
 4 7 0.000184 0.000351 0.04  
Fig. 7. The auto-thermal reformer flowsheet as modelled in Turcani and Sadler (2024).

Fig. 8. Initial uncertainty estimation in predictions, with current optimum and 50 
highest-uncertainty points highlighted.
10 
Fig. 9. Original and resampled data points during the 1st iteration, highlighting the 
new samples added around .

not only indicates the crucial role of uncertainty quantification in 
solution quality but also suggests that relying solely on solution pool 
information yields less enriched resampling strategies. Notably, our 
approach reduced the total execution time by an order of magnitude 
compared to OMLT, primarily in the training phase. Though the re-
duced variant achieved faster resampling, its poor solution quality 
makes it impractical for reliable applications.

The final optimisation solutions obtained from both our algorithm 
and the OMLT implementation are compared in Table  4. Both methods 
produced nearly identical outcomes for the operating variables and the 
output variables of interest. Importantly, both approaches successfully 
maintained the N2 concentration below 34 mol% while maximising H2
production, confirming that our method is effective in achieving the 
key optimisation objectives.
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Fig. 10. Normalised simulator and surrogate model contours with solution points from pool after the initial iteration (top) and the final 4th iteration (bottom). These figures 
illustrate the convergence of the optimisation process and the progressive refinement of the surrogate model.
Table 3
Comparative performance between our algorithm and the OMLT implementation: data usage, final loss, and computational time.
 Method Data used Final loss Time (s)a
 Uncertainty estimation Resampling Training MIP solving Total  
 Our Alg. 1158 0.000184 1.32 0.52 1.08 0.73 3.65  
 Our Alg. reduced 1106 0.591645 – 0.04 3.78 1.26 5.07  
 OMLTb 2800 0.000169 – – 18.3 0.77 19.07 
a All reported times represent the sum of execution times across iterations; Our Alg. converged in 4 iterations while the reduced variant 
required 12 iterations.
b Coded in Python 3.10.13 (Pyomo 6.7.1, TensorFlow 2.16.1, Keras 3.3.3); solved with Gurobi 11.0.2.
Table 4
Comparison of optimisation solutions between our algorithm and the OMLT implementation, showing the key variables.
 Method Operating variables Output variables of interest
 𝑥1: Bypass fraction 𝑥2: NG steam ratio N2 Concentrationa H2 Concentrationb 
 Our Alg. 0.1 1.174901 0.34 0.333138  
 OMLT 0.1 1.132608 0.34 0.332007  
a The N2 concentration is constrained below 34 mol%.
b The objective is to maximise H2 production.
This experiment demonstrates the effectiveness of our proposed 
optimisation framework when operating with pre-acquired datasets. 
The comparison with the OMLT implementation highlights the frame-
work’s capability to deliver comparable performance metrics with less 
computational effort and fewer resources.
11 
6. Conclusions

This paper introduces a framework that effectively connects sim-
ulators with optimisation processes, representing an advancement in 
surrogate-based optimisation across various engineering domains.
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Specifically, the framework is best suited to optimisation problems 
involving deterministic simulation models where gradients are compu-
tationally expensive or unavailable.

The iterative nature of the framework, which combines adaptive re-
sampling, uncertainty-informed retraining, and MIP reformulation, not 
only optimises data usage but also significantly reduces the computa-
tional burden associated with complex simulations. Furthermore, by in-
corporating techniques like bound tightening, lossless model compres-
sion, and memory structure reuse, the framework is equipped to handle 
large-scale, high-dimensional problems with increased efficiency.

Future work should focus on addressing challenges associated with 
undesirably distributed pre-acquired datasets and extending the ap-
plication across various complex systems. There is also potential for 
exploring alternative NN architectures, different mathematical pro-
gramming formulations, such as strong MIP formulations (Anderson 
et al., 2020) and P-split approaches (Kronqvist et al., 2022), and 
advanced sampling strategies, along with parallelisation techniques 
where applicable. Our work establishes a foundation for more intricate 
algorithmic design, which lies beyond the scope of this study but offers 
a promising direction for future research.
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