
Computers and Chemical Engineering 201 (2025) 109243

A
0

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/cace

Simulator-based surrogate optimisation employing adaptive

uncertainty-aware sampling
Yu Liu , Fabricio Oliveira ∗

Department of Mathematics and Systems Analysis, School of Science, Aalto University, Espoo, Finland

A R T I C L E I N F O

Dataset link: https://github.com/gamma-opt/a
daptive-surrogate-opt

Keywords:
Mathematical optimisation
Simulation
Mixed-integer programming
Neural networks

 A B S T R A C T

Optimisation problems involving computationally expensive, black-box functions derived from high-fidelity
engineering simulations remain challenging. To efficiently bridge the simulators and optimisation processes,
we introduce an adaptive framework for surrogate modelling and optimisation. Our method employs low-
discrepancy sequence sampling to select points, followed by training a surrogate model using a piecewise linear
neural network (NN) with rectified linear unit (ReLU) activation. Using mixed-integer programming (MIP), we
reformulate the ReLU NN as embedded components of an optimisation problem and solve it to find an optimal
simulator input. This is achieved by iteratively refining the solution via resampling the simulator, retraining
the surrogate model, and rebuilding and resolving the MIP problem. For resampling, an infill strategy that
incorporates uncertainty assessment and a solution pool is employed, balancing exploration and exploitation.
Moreover, computational efficiency is boosted by bound tightening, lossless model compression, and memory
structure reuse. Validation on practical engineering applications confirms significant optimisation efficiency
gains from the domain-refined strategy.
1. Introduction

The optimisation of complex functions is a frequently encountered
challenge in various high-fidelity simulations, where input/output data
is obtained through simulators. These simulators are intricately de-
signed to predict the behaviour of physical systems by resolving the
mathematical equations that describe underlying physical processes.
Employed extensively in diverse sectors, such as automotive engi-
neering to optimise combustion processes for improved fuel efficiency
(Aithal and Balaprakash, 2019), chemical engineering to enhance man-
ufacturing processes ensuring consistency and quality (Tsay, 2021;
Addis et al., 2023), and aerospace engineering to streamline the aero-
dynamic design of gas turbine blades (Zhang and Janeway, 2022),
simulator-based optimisation methods are instrumental in pushing the
boundaries of operational efficiency.

However, despite their precision and utility, the direct use of high-
fidelity simulators in optimisation tasks often entails prohibitive com-
putational costs and significant time investments, particularly when
exploring large parameter spaces or when multiple iterations are re-
quired. Additionally, many simulators are black-box systems and, as
such, obtaining the derivatives needed for gradient-based optimisation
methods is challenging, limiting the efficiency of these optimisation
strategies. These challenges are amplified in industrial applications

∗ Corresponding author.
E-mail address: fabricio.oliveira@aalto.fi (F. Oliveira).

where decision-making speed is crucial, and in research environments
where extensive explorations of theoretical models are necessary.

These shortcomings from direct optimisation using the simulator
expose the need for an alternative approach that maintains the integrity
of simulation outputs while mitigating the computational burdens.
One such approach is the development and use of surrogate mod-
els (Bhosekar and Ierapetritou, 2018), which offer a viable solution
by approximating the outputs of these complex simulators. Surrogate
models are built to capture the essential features and behaviours of
the original simulators. These models are conceived to be computa-
tionally cheaper to evaluate and smoothly integrate with optimisation
algorithms, providing faster convergence rates and facilitating more
dynamic exploration of parameter spaces.

Surrogate models come in various forms to leverage simulator-
generated data (Alizadeh et al., 2020). Polynomial regression is useful
for capturing polynomial relationships, including linear and quadratic
forms (Cheng et al., 2019); Kriging is ideal for modelling smooth and
continuous functions, providing a robust statistical foundation (Klei-
jnen, 2014); radial basis functions are used for multidimensional in-
terpolation problems, often applied when data lacks a structured grid
(Fasshauer and McCourt, 2012; Wendland, 2017); decision trees
provide a hierarchical structure for modelling nonlinear decision
boundaries by segmenting the input space (Hehn et al., 2020); neural
https://doi.org/10.1016/j.compchemeng.2025.109243
Received 17 October 2024; Received in revised form 10 June 2025; Accepted 10 J
vailable online 23 June 2025
098-1354/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
une 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/cace
https://www.elsevier.com/locate/cace
https://orcid.org/0000-0002-8600-4760
https://orcid.org/0000-0003-0300-9337
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
mailto:fabricio.oliveira@aalto.fi
https://doi.org/10.1016/j.compchemeng.2025.109243
https://doi.org/10.1016/j.compchemeng.2025.109243
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2025.109243&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Y. Liu and F. Oliveira Computers and Chemical Engineering 201 (2025) 109243
networks (NNs) are adept at modelling complex patterns and nonlinear
relationships within high-dimensional spaces (Canziani et al., 2017;
Advani et al., 2020).

Among these, NNs with rectified linear unit (ReLU) activation func-
tions present a unique advantage in optimisation tasks due to their
piecewise linear characteristics. When the network architecture and
parameters are fixed after training, a ReLU NN inherently represents a
piecewise linear function. This property means that optimisation prob-
lems incorporating such networks naturally take the form of piecewise
linear problems, simplifying the complexity involved in finding the
global optimum (Perakis and Tsiourvas, 2022). In addition to the ReLU
function and its variations, other most commonly used piecewise linear
activation functions include hard tanh and maxpooling (Tao et al.,
2022). Once an NN has been well trained, it can be employed for
optimisation tasks through several approaches. Gradient-based methods
directly extract gradients from the network and apply gradient-based
optimisation techniques (Laurent et al., 2019). Alternative strategies
include derivative-free methods, such as swarm optimisation or genetic
algorithms, which do not rely on gradients (Bhosekar and Ierapetritou,
2018).

In addition, mathematical programming formulations, particularly
mixed-integer programming (MIP), offer a powerful framework for
exact optimisation of nonconvex piecewise linear functions (Huchette
et al., 2023). ReLU NNs, an MIP-representable class of NNs, have
garnered increasing interest for optimising over a trained NN (Fis-
chetti and Jo, 2018; Grimstad and Andersson, 2019; Anderson et al.,
2020; Katz et al., 2020; Yang et al., 2022; Maragno et al., 2023;
Tong et al., 2024). Additionally, the use of mature off-the-shelf solvers
such as Gurobi (Gurobi Optimization, LLC, 2024a) ensures reliable
optimisation performance through efficient computation and rigorous
guarantees for globally optimal solutions within specified numerical
tolerances. The MIP-based approach, combined with mature solvers,
provides mathematically guaranteed optimal solutions for applications
demanding high solution quality.

While MIP-based optimisation over trained NNs offers optimality
guarantees, its effectiveness critically depends on infill strategies that
iteratively sample points to refine surrogate models (Martins and Ning,
2021). The ability to quantify prediction uncertainty plays a crucial role
in guiding efficient sampling (Hüllen et al., 2020).

Kriging is particularly favoured as a surrogate model for its ability to
provide both predictions and uncertainty estimates, enabling informed
sampling decisions (Lualdi et al., 2024). For Kriging-based methods,
several approaches have emerged: ensemble frameworks with adaptive
model selection (Lu et al., 2023), hybrid models combining global and
local basis functions (Hu et al., 2023), and evolutionary algorithms with
multiple infill sampling strategies (Zhu et al., 2024). Other advances
include uncertainty-driven approaches through grouping-based crite-
ria (Liu et al., 2021) and dual selection mechanisms based on lower
confidence bounds (Li et al., 2023). Nevertheless, while these Kriging-
based approaches offer uncertainty estimates, the computational re-
quirements associated with model fitting typically scale cubically with
the number of training points due to the associated covariance matrix
operations (Kleiber and Nychka, 2015), and, consequently, have limited
usefulness in settings with high-dimensional problems, often becom-
ing intractable for large-scale applications (Anahideh et al., 2022).
This computational limitation of Kriging methods has motivated re-
search into alternative approaches for uncertainty quantification in
high-dimensional settings. NNs present a promising direction, offering
both demonstrated favourable scaling properties with sample size and
dimension (Guo et al., 2022), as well as various methods for uncertainty
estimation such as ensemble techniques (Pearce et al., 2020), Bayesian
NNs (Magris and Iosifidis, 2023), and dropout-based approaches (Gal
and Ghahramani, 2016). However, despite these advantages, the po-
tential of NN uncertainty estimation in guiding sampling decisions has
been relatively unexplored in the context of optimisation. Additionally,
2
existing approaches have not exploited the mathematical rigour and
solution space insights available through MIP optimisation over NNs.

To address these limitations, we present several interconnected
contributions within a surrogate-based optimisation framework (Fig.
1). Our primary contribution is the development of an infill strategy
that leverages uncertainty estimation and solution pools to widen the
exploration–exploitation trade-off opportunities, encompassing both
active simulator resampling and static dataset analysis. Additionally,
we present the novel integration of adaptive sampling, NNs, and
MIP into a unified optimisation framework, demonstrating its efficacy
in simulation-dependent optimisation problems with respect to com-
putational demands and convergence stability. Specifically, adaptive
sampling helps to dynamically adjust the sampling process based on the
uncertainty associated with the NN’s predictions and incumbent MIP
solutions, thereby ensuring that new data points maximise potential
improvements in model accuracy.

Our paper is structured as follows, as illustrated in Fig. 1. Section 2
details the MIP modelling method for ReLU NNs, emphasising tech-
niques for efficient solving. Section 3 describes the infill strategy, which
utilises estimated uncertainty information and solution pools. Section 4
presents the proposed general framework for surrogate modelling and
optimisation. Section 5 presents the numerical experiments involving
two different scenarios. Section 6 concludes the paper, highlighting key
findings and opening research directions for further work.

2. Surrogate embeddings

In this section, we show the use of surrogate embeddings, focusing
on how pre-trained ReLU NNs can be embedded as constraints in
MIP formulations to optimise complex functions within simulations.
Additionally, we discuss techniques like bound tightening and lossless
model compression to boost computational efficiency.

2.1. Conceptual model

For a given simulation process governed by an underlying black-box
function 𝑓 , suppose we have a dataset  = {(𝑥(𝑖), 𝑦(𝑖))}𝑛s𝑖=1, obtained by
running the simulator with 𝑛s different inputs, where the inputs 𝑥(𝑖) for
each sample 𝑖 are drawn from the design space, i.e., the domain  ,
and 𝑦(𝑖) are corresponding outcomes of interest. This complex process
can be approximated and effectively replaced using a surrogate model
𝑓 , constructed based on 𝑛s samples from . We aim to optimise a
predefined function ℎ with the surrogate model 𝑓 embedded while
also considering the practical constraint 𝑔. The optimisation problem
is formulated as

min
𝑥∈R𝑛 ,𝑦∈R𝑚

ℎ(𝑥, 𝑦)

s.t.: 𝑔(𝑥, 𝑦) ≤ 0,

𝑦 = 𝑓(𝑥),

𝑥 ∈  .

(1)

The outcomes of interest 𝑦, could be constrained by a known
function 𝑔 and/or optimised within a known function ℎ, reflecting
their dependency on the simulation outcomes according to the specific
requirements of the application. To render the optimisation problem
(1) manageable from a computational standpoint, we assume that the
variables 𝑥 are bounded.

To be effectively incorporated into an optimisation strategy,
simulator-based surrogate optimisation requires two critical elements:
high accuracy and reasonable solution times. Misspecifications in the
learned surrogate can lead to sub-optimal outcomes; therefore, our
focus will be on enhancing the accuracy of the surrogate while ensuring
that the solution times remain practical. We will explore these aspects
in the subsequent sections.

Y. Liu and F. Oliveira Computers and Chemical Engineering 201 (2025) 109243
Fig. 1. Overview of the proposed simulator-based surrogate optimisation methodology.
2.2. MIP formulation

Given the need for efficient optimisation in complex simulation
processes, we turn to ReLU NNs as our tool of choice for surrogate
modelling as previously discussed in Section 1. We employ the big-M
formulation (Fischetti and Jo, 2018) for its implementation simplicity,
incorporating techniques to improve its tractability.

Here, we consider a ReLU NN with 𝐿 + 1 layer (numbered from 0
to 𝐿) to build the surrogate model of the simulator 𝑓 . For the input
layer, we have 𝑦0 = 𝑥. For the output layer we have 𝑦𝐿 = 𝑓(𝑥). The
activation of neurons 𝑖 = 1,… , 𝑁𝑙 in the hidden layer 𝑙 = 1,… , 𝐿 − 1
are calculated by

𝑦𝑙𝑖 = ReLU(𝑤
𝑙⊤
𝑖 𝑦𝑙−1 + 𝑏𝑙𝑖) = max(0, 𝑤𝑙⊤

𝑖 𝑦𝑙−1 + 𝑏𝑙𝑖), (2)

where 𝑤𝑙
𝑖 and 𝑏𝑙𝑖 denote the weight and bias of the corresponding

neuron, respectively. Suppose we are given the lower bounds 𝐿𝑙
𝑖 < 0

and upper bounds 𝑈 𝑙
𝑖 > 0 such that

𝐿𝑙
𝑖 ≤ 𝑤𝑙⊤

𝑖 𝑦𝑙−1 + 𝑏𝑙𝑖 ≤ 𝑈 𝑙
𝑖 .

Following Fischetti and Jo (2018), the ReLU operator can be en-
coded into mixed-integer linear constraints by introducing slack vari-
ables 𝑠𝑙𝑖 and binary variables 𝑧𝑙𝑖 for 𝑖 = 1,… , 𝑁𝑙 , 𝑙 = 1,… , 𝐿 − 1, which
is expressed as

𝑦𝑙𝑖 − 𝑠𝑙𝑖 = 𝑤𝑙⊤
𝑖 𝑦𝑙−1 + 𝑏𝑙𝑖 ,

0 ≤ 𝑦𝑙𝑖 ≤ 𝑈 𝑙
𝑖 𝑧

𝑙
𝑖 ,

0 ≤ 𝑠𝑙𝑖 ≤ −𝐿𝑙
𝑖
(

1 − 𝑧𝑙𝑖
)

,

𝑧𝑙𝑖 ∈ {0, 1} .

(3)

Combining these constraints (3) with input and output layer bounds

𝐿0 ≤ 𝑦0 ≤ 𝑈0, (4)

𝐿𝐿 ≤ 𝑦𝐿 = 𝑤𝐿⊤
𝑦𝐿−1 + 𝑏𝐿 ≤ 𝑈𝐿, (5)

we obtain the exact MIP model to embed the ReLU NN surrogate 𝑦 =
𝑓(𝑥) into the original optimisation problem (1).

The above transformation facilitates seamless integration of the
surrogate model into the optimisation framework, providing a direct
approach to handling the nonlinearities inherent to the simulator. By
leveraging the computational power of a state-of-the-art MIP solver, we
can explore the solution space more effectively. This approach ensures
that the optimal solution preserves the surrogate model’s fidelity in
approximating the complex system behaviour.
3
2.3. Techniques for efficiency improvement

The MIP formulation with ReLU NN surrogate embeddings relies on
a big-M formulation. The choice of the big-M constants 𝐿 and 𝑈 signifi-
cantly impacts the solution time of the MIP, potentially producing very
challenging mixed-integer instances that can test even state-of-the-art
solvers (Fischetti and Jo, 2018). Furthermore, this approach introduces
as many binary variables as there are ReLU nodes, meaning that the size
of the ReLU network directly influences the size of the MIP model. To
enhance the computational feasibility of MIP formulations in practical
applications, we employed several techniques in our framework.

One such technique involves reducing the big-M values associated
with some of the constraints by calculating the minimum and maxi-
mum activations of the individual neurons through optimisation. This
process, known as bound tightening, typically results in smaller big-M
values, leading to more efficient MIP formulations. More details on this
technique can be found in Grimstad and Andersson (2019).

Utilising these tighter activation bounds, the model can be com-
pressed losslessly by removing units and layers of the NN that do not
change the output. This involves removing units with constant outputs
regardless of the input, some stable units, and any layers with constant
output due to these types of units (Cheng et al., 2020). Consequently,
the size and depth of the model are reduced without losing any of its
predictive capabilities.

These techniques collectively enhance the computational efficiency
of the MIP formulation by addressing key challenges associated with
large ReLU networks and big-M constraints. By reducing the big-M
values and eliminating redundant units in the NN, the size and com-
plexity of the resulting MIP model are minimised. This not only speeds
up the solution process but also makes the framework more scalable
and practical for use in real-world applications where computational
resources may be limited.

3. Infill strategy

This section introduces the key elements of our infill strategy for
surrogate refinement, starting with uncertainty estimation to identify
areas in the design space that need further exploration. It then covers
the resampling procedure, which focuses on selecting new sampling
points based on uncertainty and existing solutions.

3.1. Uncertainty estimation

When embedding a trained NN into an optimisation problem, there
are two primary sources of uncertainty: the functional form of the

Y. Liu and F. Oliveira Computers and Chemical Engineering 201 (2025) 109243
surrogate model 𝑓 and the parameter estimates that define it (Maragno
et al., 2023). While simulator uncertainty from numerical approxima-
tions and inherent system randomness constitutes another source of
uncertainty, validation and calibration methods can effectively mitigate
these effects prior to the NN training (Roy, 2019). Since we are focusing
on ReLU NNs as the chosen surrogate model, assuming appropriately
validated simulator outputs, we narrow our discussion to parameter
uncertainty, the uncertainty in the estimates of the model’s parameters
such as weights and biases.

This uncertainty arises because 𝑓 is trained on a finite dataset
, which may not fully represent the underlying function 𝑓 . As a
result, the surrogate model might not perfectly capture the relation-
ship between the input variables 𝑥 and the output variables 𝑦. This
potential for model misspecification can lead to sub-optimal solutions
or even constraint violations in the original optimisation problem (1).
Traditionally, optimisation models assume deterministic outcomes, but
incorporating uncertainty allows for more robust solutions. Specifically,
by factoring in the variability or uncertainty in predictions, the optimi-
sation process can adjust accordingly, ensuring that solutions remain
valid even when the surrogate is imperfect.

To quantify the NN parameterisation uncertainty, we employ Monte
Carlo Dropout (Gal and Ghahramani, 2016), which introduces con-
trolled randomness into the model during inference (Algorithm 1).
Originally introduced as a regularisation method to prevent overfitting
during NN training, dropout works by randomly deactivating a subset
of neurons in the network based on a given dropout rate 𝑝 during each
training iteration (Hinton et al., 2012). When extended to the testing
phase, this approach, known as Monte Carlo Dropout, allows for the
generation of a distribution of predictions by performing 𝑀 multiple
forward passes with dropout enabled. The random nature of neuron
deactivation in each pass creates variability in the predictions, effec-
tively sampling from different possible network configurations. This
method is theoretically justified as an approximate Bayesian inference
in deep Gaussian processes, where the prediction variance at each input
point provides a local measure of the prediction uncertainty (Gal and
Ghahramani, 2016). The local uncertainty measures can be aggregated
across multiple input points to construct a comprehensive map of model
prediction confidence. We adopt this approach due to its theoretical
grounding in approximate Bayesian inference and seamless integra-
tion with existing NN architectures, making it particularly suitable for
optimisation frameworks requiring repeated uncertainty estimation.

By setting 𝑀 , the number of Monte Carlo samples, to a suffi-
ciently large value, the method can capture a broad range of possible
outcomes, thereby providing a more robust estimate of uncertainty.
However, there is a trade-off one must consider: increasing 𝑀 enhances
the accuracy of the uncertainty estimation but also increases the com-
putational cost. Therefore, 𝑀 must be chosen carefully based on the
available computational resources and the desired level of confidence in
the uncertainty estimates. Notably, this process is highly parallelisable,
allowing for a significant reduction in computational overhead when
implemented on multi-core processors or distributed systems, making
the use of a larger 𝑀 more feasible.

For each point 𝑥(𝑖) in the current sample set s, the surrogate
model 𝑓 with dropout rate 𝑝 is evaluated 𝑀 times under Monte Carlo
Dropout, producing a set of predictions 𝐹 (𝑖) = {𝑓1(𝑥(𝑖)), 𝑓2(𝑥(𝑖)),… ,
𝑓𝑀 (𝑥(𝑖))} (Line 12–19). To estimate uncertainty, the standard deviation
𝜎(𝑖) is computed from the set of predictions 𝐹 (𝑖) (Line 20) and then
appended to the set 𝛴, which stores the uncertainty for each point in s
(Line 21). A higher standard deviation 𝜎(𝑖) indicates greater uncertainty
in the model’s predictions at point 𝑥(𝑖), signalling regions in the design
space that may require additional sampling to improve the model’s
accuracy and reliability.

This method of uncertainty estimation is particularly useful in
surrogate-based optimisation, as it directs attention to areas where the
model is less confident, ensuring that subsequent sampling efforts are
concentrated where they are most beneficial.
4
Algorithm 1 Uncertainty Estimation
1: function MonteCarloDropout(𝑓,s,𝑀, 𝑝)
2: inputs:
3: 𝑓 : ReLU NN surrogate model
4: s: Set of data points {𝑥(1), 𝑥(2),… , 𝑥(𝑛)}
5: 𝑀 : Number of Monte Carlo samples
6: 𝑝: Dropout rate during inference
7: outputs:
8: 𝛴: Estimated uncertainty (standard deviations) for each point
in s

9: Initialise 𝛴 ← {} ⊳ Empty set to store uncertainties
10: for each 𝑥(𝑖) in s do
11: Initialise 𝐹 (𝑖) ← {} ⊳ Empty set for predictions of 𝑥(𝑖)
12: for 𝑛 = 1 to 𝑀 do
13: for each layer in 𝑓 do ⊳ Enable Dropout in 𝑓 during

inference
14: if the layer is a dropout layer then
15: Set the layer to training mode to activate dropout

with rate 𝑝
16: end if
17: end for
18: Append 𝑓 (𝑥(𝑖)) to 𝐹 (𝑖) ⊳ Store the prediction with

dropout enabled
19: end for
20: Compute 𝜎(𝑖) ← std(𝐹 (𝑖)) ⊳ Estimate uncertainty via

standard deviation
21: Append 𝜎(𝑖) to 𝛴
22: end for
23: return 𝛴 ⊳ Uncertainties for all points in s
24: end function

3.2. Resampling procedure

An effective infill strategy requires a careful balance between ex-
ploitation and exploration. Local exploitation focuses on well-
performing areas of the search space to enhance current optima, while
global exploration broadens the search to poorly represented areas to
uncover potential global optima.

During our optimisation process, we identify an optimal solution
𝑥̂∗, along with additional (sub-)optimal solutions kept in a solution
pool, represented as the set pool. The solution pool is a feature that
some MIP solvers provide, including Gurobi (Gurobi Optimization, LLC,
2024b). As the solver navigates the MIP search space, it identifies not
only the proven optimal solution but also alternative next-best feasible
solutions, which can be systematically retrieved and utilised. Specifi-
cally, the resampling is focused around multiple solutions from pool
and points with high uncertainty in the surrogate model’s predictions,
represented as the set  . Together, these points form our centre points
 that guide the resampling.

Within this framework, resampling around high-uncertainty points
 is aligned with exploration, as it focuses on regions with greater
uncertainty to identify potential new optima. Conversely, resampling
around 𝑥̂∗ and other solutions from the solution pool pool corresponds
to exploitation, as it seeks to improve the quality of the current best
solution by gathering more data in promising regions.

The resampling procedure is outlined in Algorithm 2. To implement
the resampling, the sampling radius and the number of samples are
adjusted based on the available computational resources, controlled by
the parameters 𝛼 and 𝛽, ensuring that the search space is effectively
covered.

A sampling radius 𝑟, defined around each centre point in the set 
(Line 12), is determined using the scaling factor 𝛼 and the difference

Y. Liu and F. Oliveira Computers and Chemical Engineering 201 (2025) 109243
between the lower (𝑥) and upper (𝑥̄) bounds of current sampling
parameterisation 𝜉:

𝑟 =
(𝑥̄ − 𝑥) ⋅ 𝛼

2
. (6)

The algorithm then adjusts the bounds for each centre point 𝑥(𝑖) in 
(Line 15), ensuring that new samples are generated within an appro-
priate range:
𝑥(𝑖) = max(𝑥, 𝑥(𝑖) − 𝑟(𝑖)), 𝑥̄(𝑖) = min(𝑥(𝑖) + 𝑟(𝑖), 𝑥̄). (7)

Algorithm 2 Resampling Procedure
1: function Resample(s,, 𝜉, 𝛼, 𝛽)
2: inputs:
3: s: Current sample set
4: : Centre points
5: 𝜉 = (𝑛s, 𝑥, 𝑥̄): Current sampling parameterisation
6: 𝛼, 𝛽: Scaling factors for radius and number of samples
7: outputs:
8: s: Enriched sample set
9: s: Corresponding simulator values
10: 𝜉 = (𝑛s, 𝑥, 𝑥̄): Updated sampling parameterisation
11: Initialise new ← {} ⊳ Store new samples
12: 𝑟 = (𝑥−𝑥̄)⋅𝛼

2 ⊳ Calculate the radius
13: 𝑛s =

𝑛s⋅𝛽
|| ⊳ Adjust sampling number

14: for each 𝑥(𝑖) in  do
15: 𝑥(𝑖) = max(𝑥, 𝑥(𝑖) − 𝑟), 𝑥̄(𝑖) = min(𝑥(𝑖) + 𝑟, 𝑥̄) ⊳ Set new bounds

around 𝑥(𝑖)
16: 𝜉(𝑖) ← (𝑛s, 𝑥(𝑖), 𝑥̄(𝑖)) ⊳ Resampling parameterisation for 𝑥(𝑖)
17:  (𝑖) ← Sample(𝜉(𝑖)) ⊳ Generate new samples
18: Append  (𝑖) to new
19: 𝑥 ← min(𝑥, 𝑥(𝑖)), 𝑥̄ ← max(𝑥̄, 𝑥̄(𝑖)) ⊳ Update global bounds
20: end for
21: 𝜉 ← (|

|

new|| , 𝑥, 𝑥̄) ⊳ Updated sampling parameterisation
22: (s,s) ← {(𝑥,Evaluate(𝑥)) ∣ 𝑥 ∈ s ∪ new, 𝑥 ≤ 𝑥 ≤ 𝑥̄} ⊳ Enrich

sample set
23: return (s,s, 𝜉)
24: end function

Using these updated bounds, the resampling parameterisation 𝜉(𝑖) =
(𝑛s, 𝑥(𝑖), 𝑥̄(𝑖)) for each centre point 𝑥(𝑖) is defined (Line 16), where 𝑛s
represents the number of samples allocated to each region, scaled by
the factor 𝛽 and divided by the cardinality of the set :

𝑛s ←
𝑛s ⋅ 𝛽
||

. (8)

New samples  (𝑖) are then generated around each centre point 𝑥(𝑖)
using the updated parameterisation through Sample(𝜉(𝑖)) (Line 17) and
then appended to the entire set new, which stores the resampled data
around all centre points. When relying on a pre-acquired simulation
data points (e.g., when querying the simulator in real-time is not
feasile), up to 𝑛s points are randomly selected within the defined sample
area around each centre point. If fewer points exist within that area
than 𝑛s, all of them are selected to enrich the sample set.

After generating the new samples new, the overall sampling param-
eterisation 𝜉 is updated to reflect the total number of samples and the
new combined bounds (Line 21). Instead of merging the entire existing
dataset s with the newly sampled data new, only the union of the
new samples and the previously sampled data within the new bounds
[𝑥, 𝑥̄] is merged (Line 22). The corresponding simulator values s are
obtained using Evaluate(⋅). This ensures that only the relevant data,
which lies within the updated bounds, is used to refine the surrogate
model.

By prioritising regions around the centre points during the resam-
pling procedure, the optimisation process can systematically reduce un-
certainty across the design space, leading to more reliable and accurate
outcomes.
5
4. Iterative optimisation framework

Building upon the infill strategy presented in Section 3.2, we de-
scribe our complete framework for simulator-based optimisation. The
framework integrates efficient sampling techniques, ReLU NNs, and
MIP to handle the challenges of high-fidelity simulations. We de-
tail the iterative processes along with strategies to streamline the
computational workload.

4.1. Framework overview

For conciseness, the outcome of the surrogate model for the simu-
lator, denoted as 𝑦, is directly taken as the objective in the following
description of the proposed framework, i.e., setting ℎ(𝑥, 𝑦) = 𝑦 in prob-
lem (1). All other settings and assumptions of the original optimisation
problem (1) remain unchanged. In practice, a custom objective function
involving the outcome of interest from the simulator can be defined
without affecting the implementation of the method.

The general framework for optimising complex simulations is illus-
trated in Fig. 2. The framework initiates with an efficient sampling
process using low-discrepancy sequences (quasirandom sequences),
which are deterministically constructed to achieve superior unifor-
mity in multi-dimensional spaces compared to pseudorandom sam-
ples (Kucherenko and Sytsko, 2005). We consider two scenarios: (i)
having access to the simulator for active resampling; or (ii) being
limited to pre-acquired datasets for data selection. If evaluating the
simulator is too expensive, low-discrepancy sample points can be pre-
generated to create a static dataset for future data selection. While
several low-discrepancy sequences exist, we employ Sobol sequences
due to their demonstrated superiority in numerous practical applica-
tions (L’Ecuyer and Lemieux, 2002). These sequences generate suc-
cessive points by considering binary fractions and systematically con-
structing primitive polynomials, which reduces the number of re-
quired evaluations and enhances the representativeness of the sample
points (Renardy et al., 2021).

The process of obtaining data points can be parallelised to en-
hance efficiency, particularly in large-scale simulations. Multiple sam-
ple points can be evaluated simultaneously by distributing simula-
tion runs across various computational nodes or processors, enabling
the concurrent execution of simulations (Ndih and Cherkaoui, 2015).
Techniques such as multithreading or distributed computing can be
employed to implement parallel processing, significantly accelerating
the sampling phase.

Once sampling is completed, the next phase involves building a
surrogate model using the obtained dataset. In this framework, a ReLU
NN is trained to develop the surrogate model. The choice of NN
architecture is crucial, as it balances computational efficiency with
the ability to approximate nonlinear relationships within the data. The
trained surrogate is then embedded into an MIP problem, as discussed
in Section 2. By solving the MIP formulation, we can determine an
optimal parameterisation of the simulator’s inputs based on the initial
surrogate, leveraging the exact optimisation capabilities of MIP meth-
ods. It is important to achieve a reasonably accurate surrogate from
the start, as a low-accuracy surrogate model embedded in the MIP may
lead to sub-optimal solutions in the initial stage, potentially steering
the subsequent optimisation towards a misleading direction.

The framework’s core strength lies in its iterative refinement process
driven by a resampling infill strategy as discussed in Section 3. This
iterative process forms a loop where resampling, ReLU NN surrogate
model retraining, MIP reformulation, and MIP resolving are repeated
until the termination conditions are met. Each iteration enriches the
model’s dataset, making the surrogate progressively more reliable,
while the use of MIP ensures that the optimisation leverages the most
accurate model available at each step.

Y. Liu and F. Oliveira Computers and Chemical Engineering 201 (2025) 109243
Fig. 2. Flowchart of the optimisation process, outlining key steps: beginning with sampling, followed by training the ReLU NN surrogate model, formulating and solving the MIP
(middle), and iteratively (right) optimising the simulator inputs.
4.2. Algorithm implementation

The implementation of the simulator-based surrogate optimisation
framework is outlined in Algorithm 3, focusing on the specific proce-
dural steps and iterative mechanisms. Unlike the broader conceptual
discussion in Section 3.1, this section emphasises the algorithm’s tech-
nical elements, including initialisation, iterative resampling, model
retraining, and convergence criteria.

The algorithm starts with defining the necessary input parameters.
These include the initial sampling configuration 𝜉 which sets the num-
ber of samples 𝑛s and the bounds [𝑥, 𝑥̄] within which the algorithm will
explore. The ReLU NN parameters 𝜃 specify the architecture and train-
ing specifics, ensuring the surrogate model is appropriately configured
to approximate the simulator’s outputs. Other critical inputs involve
the Monte Carlo Dropout rate 𝑝 for uncertainty estimation, the number
of Monte Carlo samples 𝑀 , and parameters for adaptive resampling,
including the number of high-uncertainty points to target (𝑁) and the
scaling factors (𝛼, 𝛽) used to dynamically adjust the sampling density.

The algorithm proceeds with an initialisation phase where initial
samples s are drawn within the defined bounds using Sample(𝜉) (Line
14) and evaluated using either the high-fidelity simulator or a pre-
existing dataset with Evaluate(s) (Line 15). The dataset (s,s) is
then used to train the initial surrogate model 𝑓 , a ReLU NN, which
approximates the simulator’s behaviour using TrainNN(s,s, 𝜃) (Line
16). This surrogate model is then embedded into the MIP problem
MIP, allowing the algorithm to build a solution pool pool by solving
it using Solve(MIP) (Line 18) and identify an initial optimal solution
𝑥̂∗.

After building the initial solution pool, the algorithm estimates the
uncertainty in the surrogate model’s predictions using Monte Carlo
Dropout, implemented as MonteCarloDropout(𝑓,s,𝑀, 𝑝) (Line 23).
The algorithm then selects points from  and pool, forming our centre
points  for resampling (Line 25). This focused resampling enriches the
dataset by adding new, informative points using Resample(s,, 𝜉, 𝛼, 𝛽)
(Line 26). The enriched dataset is used to retrain the NN. The updated
surrogate model is then reformulated as a new MIP problem, and the
optimisation process is repeated to identify a potentially improved
solution using Solve(MIP) (Line 28–29).

The looped process continues until the algorithm meets the con-
vergence criteria, which are based on either the relative improvement
in the objective function or the maximum number of iterations (Line
6
22). Convergence is assessed by comparing the predicted optimum
𝑓 ∗ with a reference value 𝑓ref. For cases with access to the simula-
tor, 𝑓ref is the actual simulated value obtained through Assess(𝑥̂∗) at
the current best point 𝑥̂∗ (Line 30). For pre-acquired datasets, 𝑓ref is
the predicted optimum from the previous iteration, obtained similarly
through Assess(𝑥̂∗). Convergence is reached when the relative difference
between 𝑓 ∗ and 𝑓ref falls below a predefined tolerance, 𝜏, indicating
that further iterations are unlikely to significantly enhance the solution.
This condition suggests that the optimisation has plateaued, and the
algorithm is terminated.

4.3. Memory structure reuse

The computational efficiency of the iterative process, described in
Algorithm 3, is enhanced through the reuse of memory structures.
A crucial aspect of this strategy is freezing the initial layers of the
NN during the retraining phase. By maintaining the weights of the
first few layers, the algorithm retains the features and representations
learned from earlier iterations, while adapting to the new data. These
layers typically capture fundamental patterns and structures in the
data, which remain relevant as new data is introduced through resam-
pling (Yosinski et al., 2014). This reuse of memory not only reduces
the computational cost associated with retraining the entire network
but also stabilises the training process while incorporating the latest
data for improved accuracy.

In addition to NN layer freezing, the reuse of the existing MIP
model plays a necessary role in streamlining the optimisation process.
Once the MIP formulation has been established for the initial surrogate
model, it can be efficiently adapted for subsequent iterations. This reuse
minimises the overhead associated with rebuilding the MIP model from
scratch in each iteration. Instead, the existing structure is modified to
incorporate the updated surrogate model, allowing the algorithm to
focus computational efforts on solving the optimisation problem rather
than repeatedly reformulating it.

These memory reuse techniques, freezing NN layers and reusing
the MIP model, are integral to enhancing the computational fea-
sibility of the optimisation, especially in complex scenarios where
high-dimensional data and large-scale simulations are involved. In
the broader context of the surrogate-based optimisation framework,

Y. Liu and F. Oliveira Computers and Chemical Engineering 201 (2025) 109243
Algorithm 3 Simulator-based Surrogate Optimisation
1: inputs:
2: 𝜉 = (𝑛s, 𝑥, 𝑥̄): Initial sampling parameterisation (number of
samples, lower and upper bounds)

3: 𝜃: ReLU NN parameterisation (layers’ architecture, loss function,
optimiser, dropout rate, batch size and number of epochs)

4: 𝑝: Dropout rate for Monte Carlo Dropout
5: 𝑀 : Number of Monte Carlo Dropout samples
6: 𝑁 : Number of points with the highest uncertainty to identify
7: 𝛼, 𝛽: scaling factors for number of samples and radius
8: 𝑘max: Maximum number of iterations
9: 𝜏: Convergence tolerance
10: outputs:
11: 𝑥̂∗: Best point identified
12: 𝑓 ∗: Corresponding surrogate outputs
13: initialise:
14: s ← Sample(𝜉) ⊳ Sample initial points within bounds
15: s ← Evaluate(s) ⊳ Evaluate function using simulator or

referring to pre-acquired dataset
16: 𝑓 ← TrainNN(s,s, 𝜃) ⊳ Train a ReLU NN and store the trained

model
17: Formulate MIP(𝑓, 𝑥̄, 𝑥) ⊳ Covert ReLU NN to MIP
18: pool ← Solve(MIP) ⊳ Solve MIP and build solution pool
19: 𝑥̂∗ ← best point in pool, 𝑓 ∗ = 𝑓 (𝑥̂∗)
20: 𝑓ref ← Assess(𝑥̂∗) ⊳ Reference value for convergence check
21: 𝑘 ← 0
22: while 𝑘 < 𝑘max and |𝑓

∗−𝑓ref|
|𝑓ref|

> 𝜏 do ⊳ Convergence criteria
23: 𝛴 = MonteCarloDropout(𝑓,s,𝑀, 𝑝) ⊳ Estimate uncertainty of

each point
24:  ← top 𝑁 points with highest uncertainty from s based on

𝛴
25:  ←  ∪ pool ⊳ Identify centre points
26: (s,s, 𝜉) = Resample(s,, 𝜉, 𝛼, 𝛽) ⊳ Enrich sample set
27: Formulate MIP(𝑓, 𝑥̄, 𝑥) ⊳ Reformulate MIP with updated

model
28: pool ← Solve(MIP) ⊳ Solve MIP and update solution pool
29: 𝑥̂∗ ← best point in pool, 𝑓 ∗ = 𝑓 (𝑥̂∗)
30: 𝑓ref ← Assess(𝑥̂∗) ⊳ Update reference value for next iteration
31: 𝑘 = 𝑘 + 1 ⊳ Increment iteration counter
32: end while
33: return (𝑥̂∗, 𝑓 ∗)

these strategies ensure that each iteration builds upon the progress
made in previous steps, accelerating convergence while maintaining the
robustness of the optimisation process.

5. Numerical experiments

This section presents numerical experiments to assess the effective-
ness of the proposed framework through two real-world simulator-
based engineering applications: a jet engine turbine blade design prob-
lem (The MathWorks, Inc., 2024b) with an accessible simulator and an
auto-thermal reformer process optimisation (Miller et al., 2018) using
pre-acquired simulator data. In addition, we provide further numerical
validation concerning our method’s global optimisation capabilities
through the benchmark Rastrigin function (Surjanovic and Bingham,
2013), presented in the Supplementary Materials, Section 1.

5.1. Setup and tools

All experiments were conducted on a computing platform equipped
with an Intel Core i5-1145G7 processor running at 2.60 GHz, paired
7
with 32 GB of RAM. The optimisation and modelling tasks were imple-
mented in Julia 1.10.3 (Bezanson et al., 2017), utilising Gurobi 11.0.2
solver (Gurobi Optimization, LLC, 2024a) for solving MIP problems.
For supervised learning tasks, Flux 0.14.15 library (Innes, 2018) was
employed to train the ReLU NN surrogate.

The MIP models were formulated using Gogeta.jl package (Reijonen
et al., 2024), a Julia package designed to represent machine learn-
ing models within a mathematical programming framework. In our
experiments, we utilised the package’s key features of bound tighten-
ing and lossless model compression to improve the efficiency of the
optimisation process, as introduced in Section 2.3.

Specifically, we employed feasibility-based bound tightening (Be-
lotti et al., 2012), leveraging interval arithmetic, which is computa-
tionally efficient. This technique computes bounds on constraint ac-
tivations over the variable domains (forward propagation) (Gleixner
et al., 2017), considering the variables and constraints defined up to the
previous layer of the neuron undergoing bound tightening. Addition-
ally, lossless model compression was used to simplify the NN surrogate,
reducing the complexity of the corresponding MIP formulation without
losing crucial information. This was achieved by pruning stably active
or inactive neurons, adjusting the weights and biases accordingly,
and reconstructing the network with the remaining neurons while
preserving local equivalence (Serra et al., 2020).

For the visual analysis of unstructured data, the Makie.jl (Danisch
and Krumbiegel, 2021) data visualisation ecosystem was utilised. Its
tricontour function, which employs Delaunay triangulation (Ito, 2015),
enables continuous surface representations through linear interpolation
of scattered data points, facilitating interpretable visualisation of the
optimisation outcomes.

5.2. Case 1: Having access to the simulator

In this experiment, we apply the proposed optimisation framework
to the design of a jet engine turbine blade. In a jet engine, the turbine
converts energy from high-temperature exhaust gases into mechanical
work (Gowreesh et al., 2012). However, the turbine blades must endure
extremely harsh thermal conditions. Controlling the blade’s maximum
temperature is critical to ensuring the reliability and longevity of the
engine during the turbine blade design process.

To tackle this challenge, a thermal analysis based on Finite Element
Analysis (FEA) using the Partial Differential Equation Toolbox (The
MathWorks, Inc., 2024a) of MATLAB is conducted. FEA models the
turbine blade geometry by discretising it into smaller elements, allow-
ing for the simulation and analysis of temperature distributions under
different thermal loads. Fig. 3 presents both the structural model of the
turbine blade and the corresponding temperature distribution predicted
by the FEA. The structural model illustrates the physical geometry of
the blade, while the FEA predicts how the blade responds to thermal
loads under different operating conditions.

The simulation is treated as a black box, focusing solely on the
relationship between the six input variables and the output. The inputs
include the cooling air temperature 𝑇air, gas temperature 𝑇gas, and heat
transfer coefficients for different regions of the blade. Specifically, the
heat transfer coefficients correspond to various faces of the structural
model shown on the left-hand side of Fig. 3. These include coefficients
for interior cooling (covering faces 15, 12, and 14), as well as for the
pressure side (face 11), the suction side (face 10), and the tip (face 13)
of the blade.

The objective of the optimisation is to minimise the maximum
temperature that the blade will experience under various conditions.
The optimisation framework explores the design space within defined
bounds for these six input variables. The initial bounds are set at [120,
900, 20, 40, 30, 10] for the lower bounds and [180, 1200, 40, 60, 50,
30] for the upper bounds (Guo, 2021), ensuring a comprehensive range
of operating conditions is covered.

Y. Liu and F. Oliveira Computers and Chemical Engineering 201 (2025) 109243
Fig. 3. The structural model used in this experiment (left) and a temperature (℃) distribution example after Finite Element Analysis (FEA) (right).
Table 1
Iterative optimisation results: Number of resampled points, total dataset size, and Mean Absolute Percentage Error (MAPE)
for training and test sets, along with the relative optimisation gap.
 Iteration step Resampled points Training MAPE (%) Test MAPE (%) Relative gap (%)
 Initial – 0.445 0.427 1.842
 1 300 0.357 0.368 0.606
 2 96 0.288 0.299 0.387
 3 33 0.196 0.197 0.025
The surrogate model was initially trained using 1000 data points,
where the input values were generated using a Sobol sequence within
the defined bounds and the corresponding outputs were obtained by
evaluating these inputs with the simulator. The ReLU NN used for the
surrogate model had an architecture of 6 → 50 → 50 → 1, and it
was trained using the Adam optimiser (Kingma and Ba, 2017) with a
learning rate schedule of exponential decay. The Mean Squared Error
(MSE) was used as the loss function. During retraining, the first hidden
layer was intentionally frozen.

To estimate uncertainty, we utilised Monte Carlo Dropout with the
following parameters: 𝑀 = 100 for the number of Monte Carlo samples,
and a dropout rate of 𝑝 = 0.1. During each iteration, the framework
identified 𝑁 = 10 points with the highest standard deviation among
the samples. The resampling was controlled by scaling factors set as
𝛼 = 0.10 for the radius and 𝛽 = 0.3 for the number of samples,
determining the scope and density of the additional data points sampled
during each iteration.

After three iterations of resampling, surrogate retraining, and MIP
reformulating and resolving, the algorithm converged, meeting the
termination condition of 𝜏 = 0.1%. Table 1 summaries the iterative
optimisation process, detailing the number of resampled points, the
total dataset size used for the ReLU NN training, and the Mean Absolute
Percentage Error (MAPE) for both the training and test sets at each
step. The table also includes the relative gap, which is the difference
between the predicted optimum 𝑓 ∗ and the actual simulated value 𝑓 ∗

at the current best point, serving as the termination condition for the
optimisation process.

The iterative optimisation process shows a significant reduction
in both the training and test MAPE as the optimisation progresses,
indicating that the surrogate model becomes increasingly accurate with
each iteration. The number of resampled points decreases with each
step, reflecting the framework’s ability to focus on the most informative
regions of the design space. The relative gap also narrows, indicating
the model’s convergence towards an optimal solution.

For the sake of illustration, we selected the first two of the six input
variables, 𝑥1 and 𝑥2, to further illustrate the optimisation process. Fig.
4 highlights the initial step’s optimum and the 10 highest-uncertainty
points within the sample set. Fig. 5 shows the resampled points during
the 3rd iteration, emphasising how the framework hones in on centre
8
points to improve model accuracy. Fig. 6 presents the final optimi-
sation results after the 3rd iteration, where the optimisation process
converged, meeting the termination condition.

The framework effectively handled this complex problem through
iterative surrogate model refinement and optimisation. Starting with
a surrogate model trained on 1000 Sobol-sampled data points from
the black-box simulator, the framework iteratively refined the model.
The convergence was visually confirmed in the final iteration (Fig. 6),
where the contours of the surrogate model closely matched those of the
simulator, and the optimal solution was accurately pinpointed.

5.3. Case 2: Being limited to pre-acquired datasets

In this case, the optimisation framework operates under the con-
straint of relying solely on pre-acquired datasets, without the ability
to interact with a simulator in real-time. This scenario is common in
industrial and engineering contexts where generating new simulator
data is costly or impractical. The framework’s performance is evaluated
using an optimisation problem involving an auto-thermal reformer
process, a complex example from process engineering.

The reformer process generates synthesis gas (syngas) from air,
steam, and natural gas (NG) inputs, as depicted in Fig. 7, which is
subsequently used in a solid-oxide fuel cell. The process involves 12
outputs of interest, including the steam flow rate, the reformer duty,
and the properties of the outlet stream. The two operating (input) vari-
ables are the fraction of NG that bypasses the reformer, 𝑥1, ranging from
[0.1, 0.8], and the steam to NG flow ratio, 𝑥2, ranging from [0.8, 1.2].

The optimisation setup follows the OMLT (Optimisation and Ma-
chine Learning Toolkit) (Ceccon et al., 2022) implementation, which is
a toolkit designed to integrate machine learning models with optimisa-
tion frameworks. In this case, the constraints ensure that the nitrogen
(N2) concentration in the product stream remains below 34 mol%. The
objective function to be maximised is hydrogen (H2) production.

In the implementation of OMLT, the surrogate model is trained
using 2800 static simulated data points generated via a grid sampling
method. The ReLU NN, consisting of layers sized 2 → 10 → 10 →

10 → 10 → 12 neurons, is optimised using the Adam optimiser with
MSE as the loss function. OMLT supports the integration of the NN
within the optimisation problem by offering various formulations for
machine learning models, including the MIP approach. The ReLU NN

Y. Liu and F. Oliveira Computers and Chemical Engineering 201 (2025) 109243
Fig. 4. Contours of the simulator and surrogate model, highlighting the current optimal solution point and 10 highest-uncertainty points.
Fig. 5. Data points used in the 2nd iteration and newly resampled data points from
the 3rd iteration, focusing on regions around .

surrogate is incorporated into the optimisation problem using the big-
M method, and the problem is subsequently solved using an MIP solver
to determine the optimal operating conditions that satisfy the specified
constraints.

A key distinction between our method and the OMLT implemen-
tation is that their optimisation is performed on the initially trained
surrogate model, using the full pre-acquired dataset without any further
updates or resampling. In contrast, our proposed framework focuses on
refining the sampling strategy to make more efficient use of the dataset,
minimising the need for additional data points. We use the OMLT
implementation as a baseline for evaluating our algorithm, applying the
same simulated dataset and NN parameters as in the OMLT example.
While our algorithm is implemented in Julia and OMLT in Python,
we emphasise that our comparative analysis focuses on the relative
magnitude of performance differences rather than exact numerical
equivalencies. This comparison helps demonstrate how our framework
handles optimisation with finite and fixed data, underscoring the ef-
fectiveness of our approach in surrogate modelling and data selection
under constrained conditions.

In the initial sampling phase, 1000 data points were randomly
selected from the entire 2800-point dataset. To estimate uncertainty,
Monte Carlo Dropout was applied with a dropout rate of 𝑝 = 0.2,
generating 𝑀 = 100 predictions for each data point. As shown in Fig.
8, the highest uncertainty points were primarily located in the upper
right corner of the plot, highlighting regions where the model exhibited
9
lower confidence. Conversely, the model showed greater confidence
in predictions at the initial solution point. To balance the need for
precision improvement in the most uncertain regions while avoiding
unnecessary computational overhead, the process concentrated on the
top 10 points with the highest uncertainty rather than considering a
larger candidate set with, i.e., 50 points.

Points are then randomly selected from the remaining pre-acquired
dataset within the defined sample area surrounding the points from
pool and  identified earlier. The bounds for the variables were
updated accordingly to focus the search in these critical regions. Fig. 9
shows the original and resampled data points during the first iteration,
with new samples concentrated around . As before, the first layer of
the NN was frozen during retraining to preserve the features learned in
the previous training phase. An analysis of the model’s performance
with and without layer freezing is presented in the Supplementary
Materials, Section 2.

The iterative process of resampling, retraining the NN, reformulat-
ing the MIP, and resolving the optimisation problem continued until
convergence (tolerance 𝜏 = 0.1%) was achieved after four iterations.
During each iteration, the data was normalised to enhance training per-
formance by ensuring that the input features are on a comparable scale,
which helps in faster convergence. Fig. 10 presents the contours of both
the simulator and the surrogate model, along with the solution points
from pool following the initial and final (4th) iterations. These figures
visually confirm the model’s improved accuracy and the progressive
refinement of the optimal solution region as the iterations advanced.

The iterative optimisation results are summarised in Table 2, high-
lighting the number of resampled points, training and test MSEs, and
the relative optimisation gap. As the iterations progressed, both the
training and test MSEs decreased significantly, indicating a marked
improvement in the model’s accuracy. Additionally, the relative gap
narrowed progressively, demonstrating the framework’s effectiveness
in efficiently converging towards an optimal solution.

The performance comparison between our proposed algorithm and
the OMLT implementation is presented in Table 3. We provide two
variants of our method: one with (‘‘Our Alg.’’) and one without (‘‘Our
Alg. reduced’’) considering uncertainty quantification. By presenting
this reduced variant, our objective is to measure the importance of
uncertainty quantification and infill sampling in the performance of
our approach. Although our full algorithm utilised fewer than half the
data points compared to OMLT, leading to a significant reduction in
training time, it achieved comparable final loss values, underscoring
the effectiveness of our method in maintaining high accuracy while
being resource-efficient. In contrast, the reduced variant, despite using
a similar number of data points to our full algorithm, required three
times more iterations (12 versus 4) to achieve convergence and resulted
in a substantially higher loss value. This performance degradation

Y. Liu and F. Oliveira Computers and Chemical Engineering 201 (2025) 109243
Fig. 6. Final optimisation results after the 3rd iteration, showing simulator and surrogate model contours with the optimal solution point and another solution stored in pool
(which is less optimal). The optimisation process converged after meeting the termination condition 𝜏 = 0.1%.
Table 2
Summary of iterative optimisation results, showing the number of resampled points, training and test MSE, and the relative
optimisation gap across iterations.
 Iteration step Resampled points Training MSE Test MSE Relative gap (%)
 Initial – 0.503186 0.444885 –
 1 73 0.000930 0.001071 2.03
 2 68 0.000463 0.000375 0.79
 3 10 0.000438 0.000325 0.41
 4 7 0.000184 0.000351 0.04
Fig. 7. The auto-thermal reformer flowsheet as modelled in Turcani and Sadler (2024).

Fig. 8. Initial uncertainty estimation in predictions, with current optimum and 50
highest-uncertainty points highlighted.
10
Fig. 9. Original and resampled data points during the 1st iteration, highlighting the
new samples added around .

not only indicates the crucial role of uncertainty quantification in
solution quality but also suggests that relying solely on solution pool
information yields less enriched resampling strategies. Notably, our
approach reduced the total execution time by an order of magnitude
compared to OMLT, primarily in the training phase. Though the re-
duced variant achieved faster resampling, its poor solution quality
makes it impractical for reliable applications.

The final optimisation solutions obtained from both our algorithm
and the OMLT implementation are compared in Table 4. Both methods
produced nearly identical outcomes for the operating variables and the
output variables of interest. Importantly, both approaches successfully
maintained the N2 concentration below 34 mol% while maximising H2
production, confirming that our method is effective in achieving the
key optimisation objectives.

Y. Liu and F. Oliveira Computers and Chemical Engineering 201 (2025) 109243
Fig. 10. Normalised simulator and surrogate model contours with solution points from pool after the initial iteration (top) and the final 4th iteration (bottom). These figures
illustrate the convergence of the optimisation process and the progressive refinement of the surrogate model.
Table 3
Comparative performance between our algorithm and the OMLT implementation: data usage, final loss, and computational time.
 Method Data used Final loss Time (s)a
 Uncertainty estimation Resampling Training MIP solving Total
 Our Alg. 1158 0.000184 1.32 0.52 1.08 0.73 3.65
 Our Alg. reduced 1106 0.591645 – 0.04 3.78 1.26 5.07
 OMLTb 2800 0.000169 – – 18.3 0.77 19.07
a All reported times represent the sum of execution times across iterations; Our Alg. converged in 4 iterations while the reduced variant
required 12 iterations.
b Coded in Python 3.10.13 (Pyomo 6.7.1, TensorFlow 2.16.1, Keras 3.3.3); solved with Gurobi 11.0.2.
Table 4
Comparison of optimisation solutions between our algorithm and the OMLT implementation, showing the key variables.
 Method Operating variables Output variables of interest
 𝑥1: Bypass fraction 𝑥2: NG steam ratio N2 Concentrationa H2 Concentrationb
 Our Alg. 0.1 1.174901 0.34 0.333138
 OMLT 0.1 1.132608 0.34 0.332007
a The N2 concentration is constrained below 34 mol%.
b The objective is to maximise H2 production.
This experiment demonstrates the effectiveness of our proposed
optimisation framework when operating with pre-acquired datasets.
The comparison with the OMLT implementation highlights the frame-
work’s capability to deliver comparable performance metrics with less
computational effort and fewer resources.
11
6. Conclusions

This paper introduces a framework that effectively connects sim-
ulators with optimisation processes, representing an advancement in
surrogate-based optimisation across various engineering domains.

Y. Liu and F. Oliveira Computers and Chemical Engineering 201 (2025) 109243
Specifically, the framework is best suited to optimisation problems
involving deterministic simulation models where gradients are compu-
tationally expensive or unavailable.

The iterative nature of the framework, which combines adaptive re-
sampling, uncertainty-informed retraining, and MIP reformulation, not
only optimises data usage but also significantly reduces the computa-
tional burden associated with complex simulations. Furthermore, by in-
corporating techniques like bound tightening, lossless model compres-
sion, and memory structure reuse, the framework is equipped to handle
large-scale, high-dimensional problems with increased efficiency.

Future work should focus on addressing challenges associated with
undesirably distributed pre-acquired datasets and extending the ap-
plication across various complex systems. There is also potential for
exploring alternative NN architectures, different mathematical pro-
gramming formulations, such as strong MIP formulations (Anderson
et al., 2020) and P-split approaches (Kronqvist et al., 2022), and
advanced sampling strategies, along with parallelisation techniques
where applicable. Our work establishes a foundation for more intricate
algorithmic design, which lies beyond the scope of this study but offers
a promising direction for future research.

CRediT authorship contribution statement

Yu Liu: Writing – review & editing, Writing – original draft, Vi-
sualization, Validation, Software, Methodology, Investigation, Formal
analysis, Conceptualization. Fabricio Oliveira: Writing – review &
editing, Writing – original draft, Validation, Resources, Project ad-
ministration, Methodology, Investigation, Funding acquisition, Formal
analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

Fabricio Oliveira gratefully acknowledges the support of the Re-
search Council of Finland, decision number 348094. Yu Liu gratefully
acknowledges the support from the China Scholarship Council, China,
grant number 202206260034.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.compchemeng.2025.109243.

Data availability

The data and code are available at a GitHub repository https://
github.com/gamma-opt/adaptive-surrogate-opt.

References

Addis, B., Castel, C., Macali, A., Misener, R., Piccialli, V., 2023. Data augmentation
driven by optimization for membrane separation process synthesis. Comput. Chem.
Eng. 177, 108342. http://dx.doi.org/10.1016/j.compchemeng.2023.108342.

Advani, M.S., Saxe, A.M., Sompolinsky, H., 2020. High-dimensional dynamics of
generalization error in neural networks. Neural Netw. 132, 428–446. http://dx.
doi.org/10.1016/j.neunet.2020.08.022.

Aithal, S.M., Balaprakash, P., 2019. MaLTESE: Large-scale simulation-driven machine
learning for transient driving cycles. In: High Performance Computing. Springer
International Publishing, Cham, pp. 186–205. http://dx.doi.org/10.1007/978-3-
030-20656-7_10.

Alizadeh, R., Allen, J.K., Mistree, F., 2020. Managing computational complexity using
surrogate models: a critical review. Res. Eng. Des. 31 (3), 275–298. http://dx.doi.
org/10.1007/s00163-020-00336-7.
12
Anahideh, H., Rosenberger, J., Chen, V., 2022. High-dimensional black-box optimization
under uncertainty. Comput. Oper. Res. 137, 105444. http://dx.doi.org/10.1016/j.
cor.2021.105444.

Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P., 2020. Strong
mixed-integer programming formulations for trained neural networks. Math.
Program. 183 (1), 3–39. http://dx.doi.org/10.1007/s10107-020-01474-5.

Belotti, P., Cafieri, S., Lee, J., Liberti, L., 2012. On feasibility based bounds tightening.
URL: https://optimization-online.org/?p=11891.

Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B., 2017. Julia: A fresh approach
to numerical computing. SIAM Rev. 59 (1), 65–98. http://dx.doi.org/10.1137/
141000671.

Bhosekar, A., Ierapetritou, M., 2018. Advances in surrogate based modeling, feasibility
analysis, and optimization: A review. Comput. Chem. Eng. 108, 250–267. http:
//dx.doi.org/10.1016/j.compchemeng.2017.09.017.

Canziani, A., Paszke, A., Culurciello, E., 2017. An analysis of deep neural network
models for practical applications. http://dx.doi.org/10.48550/arXiv.1605.07678.

Ceccon, F., Jalving, J., Haddad, J., Thebelt, A., Tsay, C., Laird, C.D., Misener, R., 2022.
OMLT: Optimization & machine learning toolkit. J. Mach. Learn. Res. 23 (349), 1–8,
URL: http://jmlr.org/papers/v23/22-0277.html.

Cheng, X., Khomtchouk, B., Matloff, N., Mohanty, P., 2019. Polynomial regression as
an alternative to neural nets. http://dx.doi.org/10.48550/arXiv.1806.06850.

Cheng, Y., Wang, D., Zhou, P., Zhang, T., 2020. A survey of model compression
and acceleration for deep neural networks. http://dx.doi.org/10.48550/arXiv.1710.
09282.

Danisch, S., Krumbiegel, J., 2021. Makie.jl: Flexible high-performance data visualization
for Julia. J. Open Source Softw. 6 (65), 3349. http://dx.doi.org/10.21105/joss.
03349.

Fasshauer, G.E., McCourt, M.J., 2012. Stable evaluation of gaussian radial basis function
interpolants. SIAM J. Sci. Comput. 34 (2), A737–A762. http://dx.doi.org/10.1137/
110824784.

Fischetti, M., Jo, J., 2018. Deep neural networks and mixed integer linear optimization.
Constraints 23 (3), 296–309. http://dx.doi.org/10.1007/s10601-018-9285-6.

Gal, Y., Ghahramani, Z., 2016. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In: Proceedings of the 33rd International
Conference on Machine Learning. vol. 48, PMLR, New York, USA, pp. 1050–1059,
URL: https://proceedings.mlr.press/v48/gal16.html.

Gleixner, A.M., Berthold, T., Müller, B., Weltge, S., 2017. Three enhancements for
optimization-based bound tightening. J. Global Optim. 67, 731–757. http://dx.doi.
org/10.1007/s10898-016-0450-4.

Gowreesh, S., Pravin, V.K., Rajagopal, K., Veena, P.H., 2012. Thermal stresses in-
vestigation of a gas turbine blade. AIP Conf. Proc. 1440 (1), 374–383. http:
//dx.doi.org/10.1063/1.4704239.

Grimstad, B., Andersson, H., 2019. ReLU networks as surrogate models in mixed-integer
linear programs. Comput. Chem. Eng. 131, 106580. http://dx.doi.org/10.1016/j.
compchemeng.2019.106580.

Guo, S., 2021. An introduction to Surrogate modeling, Part II: Case study. URL:
https://towardsdatascience.com/an-introduction-to-surrogate-modeling-part-ii-case-
study-426d8035179e.

Guo, M., Manzoni, A., Amendt, M., Conti, P., Hesthaven, J.S., 2022. Multi-fidelity
regression using artificial neural networks: Efficient approximation of parameter-
dependent output quantities. Comput. Methods Appl. Mech. Engrg. 389, 114378.
http://dx.doi.org/10.1016/j.cma.2021.114378.

Gurobi Optimization, LLC, 2024a. Gurobi optimizer reference manual. URL: https:
//www.gurobi.com.

Gurobi Optimization, LLC, 2024b. Solution pool - gurobi optimization. URL: https:
//www.gurobi.com/documentation/current/refman/solution_pool.html.

Hehn, T.M., Kooij, J.F.P., Hamprecht, F.A., 2020. End-to-end learning of decision trees
and forests. Int. J. Comput. Vis. 128 (4), 997–1011. http://dx.doi.org/10.1007/
s11263-019-01237-6.

Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012.
Improving neural networks by preventing co-adaptation of feature detectors. http:
//dx.doi.org/10.48550/arXiv.1207.0580.

Hu, C., Zeng, S., Li, C., 2023. A framework of global exploration and local exploitation
using surrogates for expensive optimization. Knowl.-Based Syst. 280, 111018. http:
//dx.doi.org/10.1016/j.knosys.2023.111018.

Huchette, J., Muñoz, G., Serra, T., Tsay, C., 2023. When deep learning meets polyhedral
theory: A survey. http://dx.doi.org/10.48550/arXiv.2305.00241.

Hüllen, G., Zhai, J., Kim, S.H., Sinha, A., Realff, M.J., Boukouvala, F., 2020. Managing
uncertainty in data-driven simulation-based optimization. Comput. Chem. Eng. 136,
106519. http://dx.doi.org/10.1016/j.compchemeng.2019.106519.

Innes, M., 2018. Flux: Elegant machine learning with Julia. J. Open Source Softw. 3
(25), 602. http://dx.doi.org/10.21105/joss.00602.

Ito, Y., 2015. Delaunay triangulation. In: Engquist, B. (Ed.), Encyclopedia of Applied
and Computational Mathematics. Springer, Berlin, Heidelberg, pp. 332–334. http:
//dx.doi.org/10.1007/978-3-540-70529-1_314.

Katz, J., Pappas, I., Avraamidou, S., Pistikopoulos, E.N., 2020. Integrating deep learning
models and multiparametric programming. Comput. Chem. Eng. 136, 106801.
http://dx.doi.org/10.1016/j.compchemeng.2020.106801.

Kingma, D.P., Ba, J., 2017. Adam: A method for stochastic optimization. URL: https:
//arxiv.org/abs/1412.6980.

https://doi.org/10.1016/j.compchemeng.2025.109243
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
https://github.com/gamma-opt/adaptive-surrogate-opt
http://dx.doi.org/10.1016/j.compchemeng.2023.108342
http://dx.doi.org/10.1016/j.neunet.2020.08.022
http://dx.doi.org/10.1016/j.neunet.2020.08.022
http://dx.doi.org/10.1016/j.neunet.2020.08.022
http://dx.doi.org/10.1007/978-3-030-20656-7_10
http://dx.doi.org/10.1007/978-3-030-20656-7_10
http://dx.doi.org/10.1007/978-3-030-20656-7_10
http://dx.doi.org/10.1007/s00163-020-00336-7
http://dx.doi.org/10.1007/s00163-020-00336-7
http://dx.doi.org/10.1007/s00163-020-00336-7
http://dx.doi.org/10.1016/j.cor.2021.105444
http://dx.doi.org/10.1016/j.cor.2021.105444
http://dx.doi.org/10.1016/j.cor.2021.105444
http://dx.doi.org/10.1007/s10107-020-01474-5
https://optimization-online.org/?p=11891
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1016/j.compchemeng.2017.09.017
http://dx.doi.org/10.1016/j.compchemeng.2017.09.017
http://dx.doi.org/10.1016/j.compchemeng.2017.09.017
http://dx.doi.org/10.48550/arXiv.1605.07678
http://jmlr.org/papers/v23/22-0277.html
http://dx.doi.org/10.48550/arXiv.1806.06850
http://dx.doi.org/10.48550/arXiv.1710.09282
http://dx.doi.org/10.48550/arXiv.1710.09282
http://dx.doi.org/10.48550/arXiv.1710.09282
http://dx.doi.org/10.21105/joss.03349
http://dx.doi.org/10.21105/joss.03349
http://dx.doi.org/10.21105/joss.03349
http://dx.doi.org/10.1137/110824784
http://dx.doi.org/10.1137/110824784
http://dx.doi.org/10.1137/110824784
http://dx.doi.org/10.1007/s10601-018-9285-6
https://proceedings.mlr.press/v48/gal16.html
http://dx.doi.org/10.1007/s10898-016-0450-4
http://dx.doi.org/10.1007/s10898-016-0450-4
http://dx.doi.org/10.1007/s10898-016-0450-4
http://dx.doi.org/10.1063/1.4704239
http://dx.doi.org/10.1063/1.4704239
http://dx.doi.org/10.1063/1.4704239
http://dx.doi.org/10.1016/j.compchemeng.2019.106580
http://dx.doi.org/10.1016/j.compchemeng.2019.106580
http://dx.doi.org/10.1016/j.compchemeng.2019.106580
https://towardsdatascience.com/an-introduction-to-surrogate-modeling-part-ii-case-study-426d8035179e
https://towardsdatascience.com/an-introduction-to-surrogate-modeling-part-ii-case-study-426d8035179e
https://towardsdatascience.com/an-introduction-to-surrogate-modeling-part-ii-case-study-426d8035179e
http://dx.doi.org/10.1016/j.cma.2021.114378
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com/documentation/current/refman/solution_pool.html
https://www.gurobi.com/documentation/current/refman/solution_pool.html
https://www.gurobi.com/documentation/current/refman/solution_pool.html
http://dx.doi.org/10.1007/s11263-019-01237-6
http://dx.doi.org/10.1007/s11263-019-01237-6
http://dx.doi.org/10.1007/s11263-019-01237-6
http://dx.doi.org/10.48550/arXiv.1207.0580
http://dx.doi.org/10.48550/arXiv.1207.0580
http://dx.doi.org/10.48550/arXiv.1207.0580
http://dx.doi.org/10.1016/j.knosys.2023.111018
http://dx.doi.org/10.1016/j.knosys.2023.111018
http://dx.doi.org/10.1016/j.knosys.2023.111018
http://dx.doi.org/10.48550/arXiv.2305.00241
http://dx.doi.org/10.1016/j.compchemeng.2019.106519
http://dx.doi.org/10.21105/joss.00602
http://dx.doi.org/10.1007/978-3-540-70529-1_314
http://dx.doi.org/10.1007/978-3-540-70529-1_314
http://dx.doi.org/10.1007/978-3-540-70529-1_314
http://dx.doi.org/10.1016/j.compchemeng.2020.106801
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Y. Liu and F. Oliveira Computers and Chemical Engineering 201 (2025) 109243
Kleiber, W., Nychka, D.W., 2015. Equivalent kriging. Spat. Stat. 12, 31–49. http:
//dx.doi.org/10.1016/j.spasta.2015.01.004.

Kleijnen, J.P.C., 2014. Simulation-optimization via Kriging and bootstrapping: A survey.
J. Simul. 8 (4), 241–250. http://dx.doi.org/10.1057/jos.2014.4.

Kronqvist, J., Misener, R., Tsay, C., 2022. P-split formulations: A class of intermediate
formulations between big-M and convex hull for disjunctive constraints. http:
//dx.doi.org/10.48550/arXiv.2202.05198.

Kucherenko, S., Sytsko, Y., 2005. Application of deterministic low-discrepancy se-
quences in global optimization. Comput. Optim. Appl. 30 (3), 297–318. http:
//dx.doi.org/10.1007/s10589-005-4615-1.

Laurent, L., Le Riche, R., Soulier, B., Boucard, P.-A., 2019. An overview of gradient-
enhanced metamodels with applications. Arch. Comput. Methods Eng. 26 (1),
61–106. http://dx.doi.org/10.1007/s11831-017-9226-3.

L’Ecuyer, P., Lemieux, C., 2002. Recent advances in randomized Quasi-Monte Carlo
methods. In: Dror, M., L’Ecuyer, P., Szidarovszky, F. (Eds.), Modeling Uncertainty:
an Examination of Stochastic Theory, Methods, and Applications. Springer US, New
York, NY, pp. 419–474. http://dx.doi.org/10.1007/0-306-48102-2_20.

Li, F., Yang, Y., Shang, Z., Li, S., Ouyang, H., 2023. Kriging-assisted indicator-
based evolutionary algorithm for expensive multi-objective optimization. Appl. Soft
Comput. 147, 110736. http://dx.doi.org/10.1016/j.asoc.2023.110736.

Liu, Q., Wu, X., Lin, Q., Ji, J., Wong, K.-C., 2021. A novel surrogate-assisted
evolutionary algorithm with an uncertainty grouping based infill criterion. Swarm
Evol. Comput. 60, 100787. http://dx.doi.org/10.1016/j.swevo.2020.100787.

Lu, Q., Polyzos, K.D., Li, B., Giannakis, G.B., 2023. Surrogate modeling for Bayesian
optimization beyond a single Gaussian process. IEEE Trans. Pattern Anal. Mach.
Intell. 45 (9), 11283–11296. http://dx.doi.org/10.1109/TPAMI.2023.3264741.

Lualdi, P., Sturm, R., Camero, A., Siefkes, T., 2024. An uncertainty-based objective
function for hyperparameter optimization in Gaussian processes applied to expen-
sive black-box problems. Appl. Soft Comput. 154, 111325. http://dx.doi.org/10.
1016/j.asoc.2024.111325.

Magris, M., Iosifidis, A., 2023. Bayesian learning for neural networks: an algorith-
mic survey. Artif. Intell. Rev. 56 (10), 11773–11823. http://dx.doi.org/10.1007/
s10462-023-10443-1.

Maragno, D., Wiberg, H., Bertsimas, D., Birbil, Ş.İ., den Hertog, D., Fajemisin, A.O.,
2023. Mixed-integer optimization with constraint learning. Oper. Res. http://dx.
doi.org/10.1287/opre.2021.0707.

Martins, J.R.R.A., Ning, A., 2021. Surrogate-based optimization. In: Engineering Design
Optimization, first ed. Cambridge University Press, pp. 373–419. http://dx.doi.org/
10.1017/9781108980647.

Miller, D.C., Siirola, J.D., Agarwal, D., Burgard, A.P., Lee, A., Eslick, J.C., Nichol-
son, B., Laird, C., Biegler, L.T., Bhattacharyya, D., Sahinidis, N.V., Grossmann, I.E.,
Gounaris, C.E., Gunter, D., 2018. Next generation multi-scale process systems
engineering framework. Comput. Aided Chem. Eng. 44, 2209–2214. http://dx.doi.
org/10.1016/B978-0-444-64241-7.50363-3.

Ndih, E.D.N., Cherkaoui, S., 2015. Simulation methods, techniques and tools of com-
puter systems and networks. In: Modeling and Simulation of Computer Networks
and Systems. Morgan Kaufmann, Boston, pp. 485–504. http://dx.doi.org/10.1016/
B978-0-12-800887-4.00017-1.

Pearce, T., Leibfried, F., Brintrup, A., 2020. Uncertainty in neural networks: Approx-
imately bayesian ensembling. In: Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics. URL: https://proceedings.mlr.
press/v108/pearce20a.html.
13
Perakis, G., Tsiourvas, A., 2022. Optimizing objective functions from trained relu neural
networks via sampling. http://dx.doi.org/10.48550/arXiv.2205.14189.

Reijonen, E., Begantsova, M., Toivonen, V., Belyak, N., Linkola, J., Oliveira, F., 2024.
Gogeta.jl. URL: https://github.com/gamma-opt/Gogeta.jl.

Renardy, M., Joslyn, L.R., Millar, J.A., Kirschner, D.E., 2021. To Sobol or not to Sobol?
The effects of sampling schemes in systems biology applications. Math. Biosci. 337,
108593. http://dx.doi.org/10.1016/j.mbs.2021.108593.

Roy, C.J., 2019. Errors and uncertainties: Their sources and treatment. In: Beis-
bart, C., Saam, N.J. (Eds.), Computer Simulation Validation: Fundamental Concepts,
Methodological Frameworks, and Philosophical Perspectives. Springer International
Publishing, Cham, pp. 119–141. http://dx.doi.org/10.1007/978-3-319-70766-2_5.

Serra, T., Kumar, A., Ramalingam, S., 2020. Lossless compression of deep neural
networks. In: Hebrard, E., Musliu, N. (Eds.), Integration of Constraint Programming,
Artificial Intelligence, and Operations Research. Springer International Publishing,
Cham, pp. 417–430. http://dx.doi.org/10.1007/978-3-030-58942-4_27.

Surjanovic, S., Bingham, D., 2013. Optimization test problems: Rastrigin function. URL:
https://www.sfu.ca/~ssurjano/rastr.html.

Tao, Q., Li, L., Huang, X., Xi, X., Wang, S., Suykens, J.A.K., 2022. Piecewise linear
neural networks and deep learning. Nat. Rev. Methods Prim. 2 (1), 1–17. http:
//dx.doi.org/10.1038/s43586-022-00125-7.

The MathWorks, Inc., 2024a. MATLAB partial differential equation toolbox, R2024a.
URL: https://se.mathworks.com/products/pde.html.

The MathWorks, Inc., 2024b. Thermal stress analysis of jet engine turbine blade -
MATLAB & simulink - mathworks nordic. URL: https://se.mathworks.com/help/
pde/ug/thermal-stress-analysis-of-jet-engine-turbine-blade.html.

Tong, J., Cai, J., Serra, T., 2024. Optimization over trained neural networks: Taking
a relaxing walk. In: Dilkina, B. (Ed.), Integration of Constraint Programming,
Artificial Intelligence, and Operations Research. Springer Nature Switzerland,
Cham, pp. 221–233. http://dx.doi.org/10.1007/978-3-031-60599-4_14.

Tsay, C., 2021. Sobolev trained neural network surrogate models for optimization. Com-
put. Chem. Eng. 153, 107419. http://dx.doi.org/10.1016/j.compchemeng.2021.
107419.

Turcani, L., Sadler, J., 2024. ML surrogates for chemical processes with
OMLT. URL: https://github.com/cog-imperial/OMLT/blob/main/docs/notebooks/
neuralnet/auto-thermal-reformer-relu.ipynb.

Wendland, H., 2017. Multiscale radial basis functions. In: Pesenson, I., Le Gia, Q.T.,
Mayeli, A., Mhaskar, H., Zhou, D.-X. (Eds.), Frames and Other Bases in Abstract
and Function Spaces: Novel Methods in Harmonic Analysis, Volume 1. Springer
International Publishing, Cham, pp. 265–299. http://dx.doi.org/10.1007/978-3-
319-55550-8_12.

Yang, D., Balaprakash, P., Leyffer, S., 2022. Modeling design and control problems
involving neural network surrogates. Comput. Optim. Appl. 83 (3), 759–800.
http://dx.doi.org/10.1007/s10589-022-00404-9.

Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How transferable are features in
deep neural networks?. http://dx.doi.org/10.48550/arXiv.1411.1792.

Zhang, C., Janeway, M., 2022. Optimization of turbine blade aerodynamic designs using
CFD and neural network models. Int. J. Turbomach. Propuls. Power 7 (3), 20.
http://dx.doi.org/10.3390/ijtpp7030020.

Zhu, Q., Kang, G., Wu, X., Lin, Q., Tang, H., Chen, J., 2024. A Kriging-assisted
evolutionary algorithm with multiple infill sampling for expensive many-objective
optimization. Eng. Appl. Artif. Intell. 135, 108505. http://dx.doi.org/10.1016/j.
engappai.2024.108505.

http://dx.doi.org/10.1016/j.spasta.2015.01.004
http://dx.doi.org/10.1016/j.spasta.2015.01.004
http://dx.doi.org/10.1016/j.spasta.2015.01.004
http://dx.doi.org/10.1057/jos.2014.4
http://dx.doi.org/10.48550/arXiv.2202.05198
http://dx.doi.org/10.48550/arXiv.2202.05198
http://dx.doi.org/10.48550/arXiv.2202.05198
http://dx.doi.org/10.1007/s10589-005-4615-1
http://dx.doi.org/10.1007/s10589-005-4615-1
http://dx.doi.org/10.1007/s10589-005-4615-1
http://dx.doi.org/10.1007/s11831-017-9226-3
http://dx.doi.org/10.1007/0-306-48102-2_20
http://dx.doi.org/10.1016/j.asoc.2023.110736
http://dx.doi.org/10.1016/j.swevo.2020.100787
http://dx.doi.org/10.1109/TPAMI.2023.3264741
http://dx.doi.org/10.1016/j.asoc.2024.111325
http://dx.doi.org/10.1016/j.asoc.2024.111325
http://dx.doi.org/10.1016/j.asoc.2024.111325
http://dx.doi.org/10.1007/s10462-023-10443-1
http://dx.doi.org/10.1007/s10462-023-10443-1
http://dx.doi.org/10.1007/s10462-023-10443-1
http://dx.doi.org/10.1287/opre.2021.0707
http://dx.doi.org/10.1287/opre.2021.0707
http://dx.doi.org/10.1287/opre.2021.0707
http://dx.doi.org/10.1017/9781108980647
http://dx.doi.org/10.1017/9781108980647
http://dx.doi.org/10.1017/9781108980647
http://dx.doi.org/10.1016/B978-0-444-64241-7.50363-3
http://dx.doi.org/10.1016/B978-0-444-64241-7.50363-3
http://dx.doi.org/10.1016/B978-0-444-64241-7.50363-3
http://dx.doi.org/10.1016/B978-0-12-800887-4.00017-1
http://dx.doi.org/10.1016/B978-0-12-800887-4.00017-1
http://dx.doi.org/10.1016/B978-0-12-800887-4.00017-1
https://proceedings.mlr.press/v108/pearce20a.html
https://proceedings.mlr.press/v108/pearce20a.html
https://proceedings.mlr.press/v108/pearce20a.html
http://dx.doi.org/10.48550/arXiv.2205.14189
https://github.com/gamma-opt/Gogeta.jl
http://dx.doi.org/10.1016/j.mbs.2021.108593
http://dx.doi.org/10.1007/978-3-319-70766-2_5
http://dx.doi.org/10.1007/978-3-030-58942-4_27
https://www.sfu.ca/~ssurjano/rastr.html
http://dx.doi.org/10.1038/s43586-022-00125-7
http://dx.doi.org/10.1038/s43586-022-00125-7
http://dx.doi.org/10.1038/s43586-022-00125-7
https://se.mathworks.com/products/pde.html
https://se.mathworks.com/help/pde/ug/thermal-stress-analysis-of-jet-engine-turbine-blade.html
https://se.mathworks.com/help/pde/ug/thermal-stress-analysis-of-jet-engine-turbine-blade.html
https://se.mathworks.com/help/pde/ug/thermal-stress-analysis-of-jet-engine-turbine-blade.html
http://dx.doi.org/10.1007/978-3-031-60599-4_14
http://dx.doi.org/10.1016/j.compchemeng.2021.107419
http://dx.doi.org/10.1016/j.compchemeng.2021.107419
http://dx.doi.org/10.1016/j.compchemeng.2021.107419
https://github.com/cog-imperial/OMLT/blob/main/docs/notebooks/neuralnet/auto-thermal-reformer-relu.ipynb
https://github.com/cog-imperial/OMLT/blob/main/docs/notebooks/neuralnet/auto-thermal-reformer-relu.ipynb
https://github.com/cog-imperial/OMLT/blob/main/docs/notebooks/neuralnet/auto-thermal-reformer-relu.ipynb
http://dx.doi.org/10.1007/978-3-319-55550-8_12
http://dx.doi.org/10.1007/978-3-319-55550-8_12
http://dx.doi.org/10.1007/978-3-319-55550-8_12
http://dx.doi.org/10.1007/s10589-022-00404-9
http://dx.doi.org/10.48550/arXiv.1411.1792
http://dx.doi.org/10.3390/ijtpp7030020
http://dx.doi.org/10.1016/j.engappai.2024.108505
http://dx.doi.org/10.1016/j.engappai.2024.108505
http://dx.doi.org/10.1016/j.engappai.2024.108505

	Simulator-based surrogate optimisation employing adaptive uncertainty-aware sampling
	Introduction
	Surrogate embeddings
	Conceptual model
	MIP formulation
	Techniques for efficiency improvement

	Infill strategy
	Uncertainty estimation
	Resampling procedure

	Iterative optimisation framework
	Framework overview
	Algorithm implementation
	Memory structure reuse

	Numerical experiments
	Setup and tools
	Case 1: Having access to the simulator
	Case 2: Being limited to pre-acquired datasets

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	Data availability
	References

