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Quantum Mechanics can be 
understood through stochastic 
optimization on spacetimes
Jussi Lindgren1* & Jukka Liukkonen   2

The main contribution of this paper is to explain where the imaginary structure comes from in quantum 
mechanics. It is shown how the demand of relativistic invariance is key and how the geometric 
structure of the spacetime together with the demand of linearity are fundamental in understanding 
the foundations of quantum mechanics. We derive the Stueckelberg covariant wave equation from 
first principles via a stochastic control scheme. From the Stueckelberg wave equation a Telegrapher’s 
equation is deduced, from which the classical relativistic and nonrelativistic equations of quantum 
mechanics can be derived in a straightforward manner. We therefore provide meaningful insight into 
quantum mechanics by deriving the concepts from a coordinate invariant stochastic optimization 
problem, instead of just stating postulates.

Since the inception of Quantum Mechanics (QM), there has been an on-going discussion on the ontology of 
the theory and its interpretations. In particular, there has been recently an intense debate on the validity of the 
so-called statistical interpretation of QM, see1,2. The ontological problem of QM is manifested especially clearly 
in the measurement problem. Therefore, understanding the physical meaning of the wave function is paramount. 
To understand the wave function, one needs to understand the equations of quantum physics.

The celebrated Schrödinger equation is mathematically close to the ordinary diffusion equation. What is the 
main difference is that time is imaginary, there is the Wick rotation. This means that classical and quantum 
are related partly by a rotation of 90 degrees in the complex plane (multiplying by the imaginary unit). The 
Schrödinger equation is given by:
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For vectors we use the notation with bold fonts, so that for example x = (x, y, z). One of the key properties of 
the Schrödinger equation is that it is a linear, parabolic partial differential equation. Linearity is intimately related 
to the properties of de Broglie ‘matter’ waves. The Born rule then gives us the probability density as ρ φφ= ⁎tx( , ) , 
where the asterisk refers to complex conjugation.

The literature provides many heuristic ways to justify the equation, but most of the heuristics are not com-
pletely satisfactory in terms of understanding. The postulates of quantum mechanics are just stated, including 
and in particular the operator substitution rules for energy and momentum. Especially confusing is the imag-
inary nature of these differential operators. Even though the Schrödinger equation is adopted as a postulate of 
Quantum Mechanics in the literature, we argue that it can be derived in a meaningful manner and therefore from 
a didactical and pedagogical point of view, the postulate approach is not totally satisfying. The same challenges 
are omnipresent also in the sphere of relativistic quantum mechanics.

The stochastic optimal control approach to quantum mechanics can be traced back to Edward Nelson3. 
Among others, Yasue4 and Papiez5 have worked with stochastic control and quantum mechanics in the 1980s. 
Furthermore Rosenbrock and Ding have done quantum mechanics with control theory6. This study takes the con-
trol view as a starting point, where ultimately the Schrödinger equation is essentially the Hamilton-Jacobi-Bellman 
(HJB) equation from optimal control theory, when one takes into account relativistic coordinate-invariance of 
the action and demands linearity. Linearity of the Schrödinger equation is important due to the well-known 
properties of ‘matter’ waves, such as interference and superposition. The mathematical apparatus of linear oper-
ators yields also other useful tools such as spectral theory, eigenfunction expansions and so forth. In terms of 
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more recent research, see the paper by Ohsumi7. Alas, what is missing also from Ohsumi’s paper is a proper and 
physically meaningful explanation why the Schrödinger equation is the diffusion equation in imaginary time. It 
should also be noted that recently it has been shown that the famous Heisenberg uncertainty relations seem to be 
inherent to stochastic systems in general, and they are not unique to quantum mechanical systems, see the recent 
paper8. There is also thread of literature, where stochastic quantization is incorporated with Special Theory of 
Relativity, see for example9,10, but analytic continuation is not explained, again.

We work in units so that we choose the reduced Planck’s constant to be  = 1. There are three space dimen-
sions and one time dimension, i.e. we are working in the normal spacetime setting. Normal notation for contra-
variant and covariant tensors is used throughout, as well as the Einstein summation convention.

Stochastic Classical Mechanics
We take classical mechanics as the starting point. In line with the existing literature, we assume that nature tries 
to minimize the classical action, so that
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over a finite time interval t ≤ s ≤ T and where the Lagrangian is the ordinary difference of kinetic and potential 
energies. Then one has the law of motion (Newton’s 2nd law) by inspecting the Euler-Lagrange equation. Instead, 
suppose that the path of the test particle obeys a Markov diffusion, so that


σ= +dX v ds dW (3)i i i i

where 

σi is a scaling parameter and Wi is the standard, independent Wiener process, for all i = 1, 2, 3. This will 

make the above action integral a stochastic variable, and therefore one can postulate that nature tries to minimize 
the expected value (ensemble) for the action, this will lead to
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With the initial data X(t) = x, and where the velocity v(s, x(s)) is the Markov control policy. The expectation for 
the observable, which is the classical action, is understood as a conditional expectation, where we have some ini-
tial distribution and a transition probability measure. In essence, the transition probability is obtained from the 
Chapman-Kolmogorov equation:

∫= |p y s p y s x t p x t dx( , ) ( , , ) ( , ) (5)

Which means that the transition probability density is to be obtained as a sum over all paths, given the initial 
distribution p(x, t). Then for some observable f(X(s)) we have the expectation

∫=E f X s f y p y s dy[ ( ( ))] ( ) ( , ) (6)

Which gives us the expected value for the observable again as a sum over all paths. There is an obvious link 
here with the path integral formulation of quantum mechanics. For good sources on the technical details of 
Markov processes and classical stochastic optimal control, see e.g.11–13. The key point is that the conditional 
expectation is an integral over space against a transition probability density. This is essential to understand when 
we require relativistic invariance from the action.

We therefore have a stochastic control problem which is linear-quadratic in control and it is straightforward 
to write down the corresponding HJB optimality PDE for the value function. The minimum value for the action 
with an optimal velocity path is denoted by J(x, t). The HJB equation can be shown to be
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with the optimal (Hamiltonian is minimized) velocity
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or denoting the linear momentum by p we have

= − ∇Jp ( ) (9)
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3
2 and Δ is the ordinary Laplacian. The HJB equation and its derivations can be found 

from the excellent textbook11. It is worthwhile to note that the velocity is a gradient, where the potential is the 
value function of the HJB equation. As a curiosity, differentiating the HJB equation with respect to x gives the 
hydrodynamic representation, basically the time-reversed Navier-Stokes equation.
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Coordinate Invariance, Diffusions in the Minkowski Spacetime and Wick rotation
As we argue that relativistic invariance is one of the building blocks in understanding quantum physics, we need 
to consider diffusions not in just three spatial dimensions, but we need to allow the time variable to obey a diffu-
sion process as well. This kind of reasoning makes sense: the time-dimension should be on an equal footing with 
the spatial dimensions. This kind of reasoning can be found for example in14. We therefore have the four-position 
describing events in the spacetime evolving according to the spatial diffusions as described above and additionally 
we have the temporal diffusion:

σ= +


d cX u ds dW( ) (10)0 0 0 0

where s is to be understood as the proper time, in line with special relativity. The factor c, i.e. speed of light, is 
needed also to balance the units, as in special relativity. We also have the spatial diffusions


σ= +dX u ds dW (11)i i i i

with i = 1, 2, 3. Therefore we have a 4-dimensional system that is to be controlled. The variable X0 represents time. 
A point or an event in the spacetime is represented by x = (cx0(s), x1(s), x2(s), x3(s)) in some reference frame so 
that events in the spacetime are parametrized by the proper time s.

Before we consider the HJB equation any further, we need to make sure that when performing stochastic 
optimal control on spacetimes, the expectation over spacetime is invariant with respect to coordinate transforma-
tions between reference frames. This demand means that the laws of physics are to be the same in any coordinate 
system, cf. general relativity and special theory of relativity. Given that there is an expectation operator, there 
is an integral over the spacetime with respect to a transition probability density (see the discussion above) and 
therefore one could consider the stochastic control problem as a classical field theory, where one integrates over 
spacetime. We can keep the multiple integral coordinate invariant by considering the general invariant scalar 
volume form:

=dV g dcx dx dx dx (12)0 1 2 3

It is important to note that the volume form includes the effect of the metric tensor. The g inside the square 
root is the determinant of the metric tensor. We assume that we have the Minkowski spacetime, as it holds always 
locally on smooth Lorentzian manifolds, which is indeed relevant at Planck scales. The metric tensor can be rep-
resented by a diagonal matrix with entries

=
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The determinant g is clearly −1 and =g i and the line-element in the spacetime is:
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The line-element is a scalar as there are two contravariant vectors paired with the covariant metric tensor.
In order to form a relativistically invariant integral, we consider the four-velocity invariant as in14: 

||u||2 = gijuiuj. We then form the relativistically invariant integral as a direct extension of the classical mechanics 
Lagrangian in 4-dimensional spacetime (which is an expectation):

S mg u u V dsp s dVx x1
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with the invariant volume form: =dV g dcx dx dx dx0 1 2 3. Note that the value of the potential does not depend on 
the coordinate system chosen as it is an invariant scalar.

Therefore, the first key idea in this paper is that the Wick rotation or the analytic continuation to the imagi-
nary axis in quantum mechanics and in the Schrödinger equation in particular comes from the invariant volume 
form on Lorentzian manifolds, as we have:
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With the initial condition X(τ) = x. Therefore the inclusion of the Minkowskian metric volume form brings 
about the integrand which includes the imaginary unit. This is the essence how we can transform ourselves from 
the classical realm into the quantum world.

The Hamiltonian and optimal feedback control.  In this section we construct the Hamiltonian of the 
system. We follow the conventions as in11. The Hamiltonian function for the stochastic control problem is given by:

H L
U

= −∇ −μ
μ

∈μ
Jusup ( )

(17)u

Where the Lagrangian is  = −νμ
ν μ( )i mg u u V x( )1

2
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The optimal control is the one that maximizes the Hamiltonian, so as a necessary condition, we demand:

∂
∂

=μu
0 (18)

Solving for the optimal feedback control, we have

−∇ − =μ μ
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Raising an index using the metric tensor, we obtain
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Substituting this optimal control back into the Hamiltonian, we get
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The Hamiltonian is the kinetic energy (four-vectors instead of ordinary vectors) plus the potential energy, 
analytically continued due to the imaginary unit from the invariant volume form on Minkowski spacetime.

Coordinate Invariance Together with Linearity Leads to Quantum Mechanics
We have specified a four-dimensional diffusion for the spacetime coordinates and now one needs to consider 
the respective Hamilton-Jacobi-Bellman equation. In principle it is straightforward, we follow11,14. In essence, 
we need to be careful with two things: first, we need to remember that the inner product is determined by the 
Minkowski metric so that covariant and contravariant objects are generally different, as the sign changes in the 
time-coordinate. Second, what used to be time, is now proper time. Additionally, we need to insert the imaginary 
unit properly into the HJB equation, due to the invariant volume form and thus due to the imaginary Hamiltonian 
and imaginary Lagrangian. Taking all this into account, the HJB equation is:

τ
σ∂

∂
− − ∇ ∇ + ∇ ∇ =μ

μ
μ

μJ iV
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J J Jx( ) 1
2

1
2

0 (25)
2

Notice how in the equation we have both the contravariant and the covariant nabla operator and hence the 
Laplacian is the Laplace-Beltrami operator, although in this case as the metric tensor does not depend on the 
coordinates in the Minkowski spacetime, it is just the d’Alembertian. We have used Einstein summation conven-
tion and the index μ to represent the coordinates.

We can understand the equation better, when we notice that the nonlinear term is just representing the kinetic 
energy of the system via the four-momentum:
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where = μ
μ

K
P P

m2
 and Pμ = i▽μJ is four-momentum. The momentum comes from the optimal feedback control 

policy: = − ∇ ⇐ = ∇μ μ μ μu J mu i J
im
1

Note how this definition for linear momentum explains the operator substitution postulate. The sign is 
reverted due to the fact that the HJB equation is solved backwards in time. Instead of postulating the operator 
substitution rules in a completely ad hoc manner, here we have derived them in a meaningful way.

We are looking for a linear PDE in general, as we are looking an equation describing ‘matter waves’, therefore 
we need to couple the scaling factor in such a way that the PDE

τ
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becomes linear and we therefore choose:

σ = = −
i

m im
1

(29)
2

where the the variance term in the HJB equation is the following sum of the individual variances of the each 
diffusion component in the Minkowski spacetime (see the determination of σ2 in the book11):
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Note the minus sign stemming from the Minkowski metric. Then we must have

σ σ σ σ σ= − + + + =
   

i
m (31)

2
0
2

1
2

2
2

3
2

Let

  
σ σ σ+ + = ∈R (32)1

2
2
2

3
2 

We can choose in particular σ = +


R
im0

2 1  . Then this particular variance structure of the Minkowski space-
time implies that the variances are real in the spatial coordinates and that the diffusion scaling factor in the time 
coordinate is a proper complex number. This could be of further interest as such, because as 


σ = +R

im0
1  is a 

proper complex number with real and imaginary parts, it implies that time can be understood as a 
two-dimensional object - it lives in the complex plane - and it has both a real component and a purely imaginary 
component. This can be seen from the temporal diffusion model:


σ= + = + +d cX u ds dW u ds R

im
dW( ) 1

(33)0 0 0 0 0 0

This ‘complex time’ is a mathematical consequence and requirement to linearise the HJB equation. The wave 
function is also complex-valued, but it is still a useful object in physics, whether or not it is ontologically ‘real’.

These considerations turn the HJB equation into

τ
∂
∂

− − ∇ ∇ + ∇ ∇ =μ
μ

μ
μJ iV

im
J J Jx( ) 1

2
( ) 0 (34)

Let us invoke a (Hopf-Cole) logarithmic transformation, so that φ=J log  then the HJB equation becomes 
linear.
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Finally, multiplying through with φi , we obtain the following PDE:

φ
τ

φ φ∂
∂

= −i
m

Vx x x x( ) 1
2

( ) ( ) ( ) (36)

where ☐ is the d’Alembertian partial differential operator. From this we can see that we have actually obtained the 
(time-reversed) Stueckelberg wave equation, which was invented already in 1941, see15. It can be understood as 
the Schrödinger equation in four dimensional Minkowski spacetime. Stueckelberg did not unfortunately explain 
either the imaginary structure of his generalised relativistic wave equation, he just postulated it. Stueckelberg’s 
wave equation is the foundation for what is called the approach of ‘Parameterized Relativistic Dynamics (PRD)’, 
see e.g.16.

The spacetime diffusion approach seems to be therefore connected also to considerations of antiparticles and 
particles15, where charge-reversal is related to time reversal. Nonlocality and the possible link with gravitation 
is considered for example in papers17,18 and references therein. In none of these papers, however, the current 
approach of coordinate invariant stochastic optimization is utilised as a teleological explanation for the resulting 
(complex) Stueckelberg field equations.

The missing link between the Stueckelberg equation and the Dirac equation: the Telegrapher’s 
equation.  In this section we derive the Telegrapher’s equation from the Stueckelberg equation above. 
Telegrapher’s equation is very important as it is a hyperbolic PDE from which Klein-Gordon and Dirac equations 
can be derived from, see19. We recall that in Special Relativity the proper time τ is defined as:

τ = −d v
c

dt1
(37)

2

2

Therefore the Stueckelberg equation becomes
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Or in a more convenient form
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This shows that the HJB equation reduces to the Telegrapher’s equation in the present relativistic setting of 
optimal control. The Telegrapher’s equation is indeed appropriate, due to its property of finite speed of propaga-
tion, see e.g.20. This is required for a causal theory and therefore the present model of spacetime diffusion is supe-
rior to canonical stochastic control models in R3, as the respective HJB equation is in those contexts parabolic, 
thus leading to infinite speed of propagation. Moving into a relativistic optimal control setting hence represents 
somewhat a similar procedure as has been done in other physical contexts, such as in relativistic thermodynamics, 
see e.g.21.

The Klein-Gordon equation and the Dirac equation are closely related and even obtained from the 
Telegrapher’s equation, see the profound paper19. In this profound paper it is interesting that the authors also 
seem to struggle with the problem of the analytic continuation when they derive the Telegrapher’s equation using 
Poisson processes, see other approaches by22,23 and24. In the present paper no ad hoc analytic continuation is 
needed, as the imaginary unit comes naturally from the invariant volume form. It should be also noted that the 
Klein-Gordon equation is the stationary equation when one sets the partial derivative with respect to proper time 
to zero:

φ φ− =mVx x x( ) 2 ( ) ( ) 0 (40)

Which is a hyperbolic PDE and manifestly Lorentz-covariant.

Obtaining the Schrödinger equation in the nonrelativistic limit and the relationship between 
probability and energy.  Consider the Telegrapher’s equation above:
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Passing to the nonrelativistic limit, c→∞, the proper time is just the ordinary time and the first term of the 
d’Alembertian goes to zero. This in turn gives us

φ φ φ∂
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Which is the Schrödinger equation with time reversed, but from the time-symmetry properties of the 
Schrödinger equation we know that if φ satisfies the above equation then its complex conjugate satisfies the 
canonical Schrödinger equation

⁎
⁎ ⁎φ φ φ∂

∂
= − Δ +i

t m
Vx x x( ) 1

2
( ) ( ) (43)

Finally, it is worth considering that there is an interesting natural link between the Born rule and the minimal 
expected action, because we have the complex algebraic identity φ=⁎ ⁎J log , from which it immediately follows 
that the Born rule gives φφ= =⁎p e a2  where we assume that the value function is of the form J = a(x, y, z, t) +  
ib(x, y, z, t).

Conclusion and Discussion
This study shows that the imaginary nature of various variables in quantum mechanics is due to the structure of 
the Minkowski metric. This paper derives the Stueckelberg relativistic wave equation and analytically continued 
Telegrapher’s equation directly from a stochastic optimal control scheme, where the four-position evolves in a 
random way. The equations are obtained as a transformed solution of the HJB equation, when one demands coor-
dinate invariance and couples the amplitude of the noise to the mass of the particle in such a way that the logarith-
mic transformation gives a linear HJB equation. In terms of future research, perhaps one should try to establish 
the wave equation in a general curved spacetime and thus generalise the metric into a more general form. The 
method of choice could be stochastic geometric control. This could be a way to combine general relativity and 
quantum mechanics, perhaps.

In line with1, the results presented in this paper do not therefore support the interpretative thesis given by the 
PBR theorem, which claims to rule out the statistical interpretation of the quantum state2. Thus, we advocate for 
a realistic interpretation of quantum mechanics. The model presented in this paper suggests that the test particle 
is moving under the influence of an external random spacetime force. This random movement of the particle 
induces the transition probability distribution. This means that quantum mechanics can be understood as a sta-
tistical theory. In literature there are some conjectures what could be the reason for this random force. See for 
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example the profound paper25 as well as26. Therefore, one could make the conjecture that quantum mechanics or 
quantum field theory is only a phenomenological theory and the reason for the statistical nature lies within the 
stochastic nature of the spacetime itself27. If the spacetime and its metric is stochastic at Planck scales, it could 
produce the illusion of random movement, which could be phenomenologically modelled with stochastic dif-
ferential equations in the spacetime. In line with General Relativity, this could mean in essence that the energy 
sources in the space-time have a random character ie. the stress-energy tensor has a random character, see28, 
which could come from various disturbances, such as vacuum or zero field radiation. Future research avenues in 
this regard should include at least random metrics, i.e. metric tensors represented by random matrices.

As elaborated in27, the origin of the Born rule has been somewhat ambiguous till today. According to the 
stochastic control paradigm presented in this paper, the Born rule for the test particle is related naturally to real 
part of the minimal expected action. This connection between probability, the optimal action and thus the wave 
function can be understood by noting that the optimal diffusion drift velocity depends on the negative gradient 
of the value function. The spacetime diffusion process takes the route which minimizes the expected action; this 
is the essence of how (transition) probability is tied to energy minimization. We firmly base our beliefs on the 
realistic philosophy of quantum mechanics, where reality exists independently of the observer. This inclination is 
put forward especially lucidly by Sir Karl Popper29.
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