
Operations Research Letters 61 (2025) 107308

Available online 19 May 2025
0167-6377/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Risk-averse decision strategies for influence diagrams using rooted junction

trees

Olli Herrala , Topias Terho , Fabricio Oliveira ,∗

Department of Mathematics and Systems Analysis, Aalto University, School of Science, FI-00076 Aalto, Finland

A R T I C L E I N F O A B S T R A C T

Keywords:

Influence diagram

Mixed-integer programming

Risk-aversion

This paper presents how a mixed-integer programming (MIP) formulation for influence diagrams that is based
on their gradual rooted junction tree representation can be extended to incorporate more general modelling
features, such as risk considerations and problem-specific constraints. We propose two algorithms that enable
our reformulations by performing targeted modifications either to the underlying influence diagram or to the
associated gradual rooted junction tree representation. We present computational experiments highlighting the
superior computational performance of our reformulation against an alternative state-of-the-art MIP formulation
for influence diagrams that, by default, can accommodate those modelling features.

1. Introduction

An influence diagram (ID) [11] is an intuitive structural represen

tation of a decision problem with uncertainties and interdependencies
between random events, decisions and consequences. Traditional solu

tion methods for IDs [24] often require strong assumptions such as the
no-forgetting assumption. Lauritzen and Nilsson [16] present the notion
of a limited memory influence diagram (LIMID) that, albeit more general
in terms of representation capabilities, does not satisfy the no-forgetting
assumption and, therefore, is not amenable to these traditional methods.

The algorithms presented in the literature for solving decision prob

lems represented as IDs are mostly suited only to problems where an
expected utility function is maximized and risk is not explicitly con

strained. Thus, often risk considerations are encoded in the utility func

tion itself, by making it concave using, e.g., utility extraction techniques
[4,8,19]. Utility functions often represent monetary values, such as costs
or revenues. In that case, maximizing expected utility assumes that
the decision-maker has a risk-neutral stance. However, decision-makers
may still have different risk tolerance profiles, which must be repre

sented in the decision process.

There are numerous ways to incorporate risk aversion into deci

sion models without requiring utility extraction techniques. A typical
method is to minimize a risk measure instead of expected utility [18].
A commonly used measure is the conditional value-at-risk (CVaR), which
measures the expected value in the 𝛼-tail beyond the value-at-risk VaR𝛼 ,
with 𝛼 being a probability threshold parameter [21]. Another typical

* Corresponding author.

E-mail address: fabricio.oliveira@aalto.fi (F. Oliveira).

way of incorporating risk aversion is to use constraints such as those re

lated to chance events or budget violations [2]. Both mentioned methods
have been used widely in various applications (see, e.g., [6,13,26]). Di

rectly optimizing a risk measure within an ID is challenging because,
unlike expected utility, it prevents the use of methods that construct the
optimal strategy by computing locally optimal strategies at individual
decision nodes.

Recently, two different mixed-integer programming (MIP) reformu

lations for IDs have emerged, likely stemming from the considerable
computational improvements in MIP solution methods. The reformu

lation considered in this paper is originally presented by Parmentier
et al. [20], where the authors first show how to convert a LIMID repre

senting an expected utility maximization problem into a gradual rooted
junction tree. This junction tree consists of clusters of nodes from the
LIMID and is reformulated as a MIP problem using marginal proba

bility distributions of nodes within each cluster. However, Parmentier
et al. [20] only consider expected utility maximization and do not show
how risk can be accounted for in their formulation.

In contrast, Salo et al. [22] present decision programming, which
reformulates a LIMID as a mixed-integer linear programming (MILP)
formulation without the intermediate clustering step of forming a junc

tion tree. The decision programming formulation used in this paper is
the one presented in [10], which improves that originally proposed in
[22] by means of valid inequalities and reformulations.

In the context of MIP formulations for influence diagrams, the
main advantage of decision programming is that its formulation can be

https://doi.org/10.1016/j.orl.2025.107308

Received 21 December 2023; Received in revised form 15 April 2025; Accepted 15 May 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/orl
http://orcid.org/0000-0003-4819-2534
http://orcid.org/0009-0001-0256-143X
http://orcid.org/0000-0003-0300-9337
mailto:fabricio.oliveira@aalto.fi
https://doi.org/10.1016/j.orl.2025.107308
https://doi.org/10.1016/j.orl.2025.107308
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2025.107308&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Operations Research Letters 61 (2025) 107308

2

O. Herrala, T. Terho and F. Oliveira

adapted to minimize risk measures, including CVaR. Similarly, chance,
logical, and budget constraints can easily be incorporated into their
MILP formulation, as discussed by Hankimaa et al. [10]. However, flexi

bility comes at a cost of computational efficiency compared to the rooted
junction tree models in [20], which is demonstrated in our computa

tional experiments.

Against this backdrop, this paper presents how risk measures such
as CVaR and constraints such as the chance, budget, and logical con

straints in [22] can be incorporated into the rooted junction tree model,
which significantly reduces computational time compared to solving
risk-averse decision strategies with decision programming. To enable
our main contribution, the rooted junction tree from which the MIP is
generated needs to have a specific structure. We present how rooted
junction trees can be modified to achieve said structure. We also show
that this can be achieved indirectly by modifying the underlying ID,
which we see as more convenient from a user’s standpoint.

In Section 2, we present background on (LIM)IDs and the MIP re

formulations of such diagrams. Section 3 continues with extending
the rooted junction tree-based reformulation to consider the aforemen

tioned risk measures and constraints. Section 4 presents computational
results. Finally, Section 5 concludes the paper with ideas on future
research directions and the potential of reformulating IDs as MIP prob

lems.

2. Background

2.1. Pig farm problem

The pig farm problem [16] is a classical example of an influence dia

gram and is used throughout this paper as a running example to illustrate
the proposed developments. Readers should note that the pig farm prob

lem can alternatively be cast as a partially observable Markov decision
process (POMDP). Cohen and Parmentier [3] further discuss the mod

elling of POMDPs using the methodology from Parmentier et al. [20].
In contrast, our focus lies on the more general framework of influence
diagrams.

In the pig farm problem [16], a farmer is raising pigs for a period
of four months after which the pigs will be sold. During the breeding
period, a pig may develop a disease, which negatively affects the retail
price of the pig at the time they are sold. In the original formulation,
a healthy pig commands a price of 1000 DKK and an ill pig commands
a price of 300 DKK. During the first three months, a veterinarian vis

its the farm and tests the pigs for the disease. The specificity (or true
negative rate) of the test is 80%, whereas the sensitivity (true positive
rate) is 90%. Based on the test results, the farmer may decide to inject
a medicine, which costs 100 DKK. The medicine cures an ill pig with a
probability of 0.5, whereas an ill pig that is not treated is spontaneously
cured with a probability of 0.1. If the medicine is given to a healthy
pig, the probability of developing the disease in the subsequent month
is 0.1, whereas the probability without the injection is 0.2. In the first
month, a pig has the disease with a probability of 0.1.

2.2. Influence diagrams

An influence diagram is a directed acyclic graph 𝐺 = (𝑁,𝐴), where
𝑁 is the set of nodes and 𝐴 is the set of arcs. Let 𝑁 =𝑁𝐶 ∪𝑁𝐷 ∪𝑁𝑉 be
the set of chance nodes 𝑁𝐶 , decision nodes 𝑁𝐷 , and value nodes 𝑁𝑉

in the ID. Let 𝐼(𝑗), ∀𝑗 ∈𝑁 , denote the information set (or parents) of 𝑗,
i.e., nodes from which there is an arc to 𝑗. It is typical to assume that
value nodes are not parents of other nodes. IDs can intuitively repre

sent complex decision problems with multiple periods, each containing
multiple (possibly interdependent) decisions and chance nodes. For a
selection of examples, see [10,16,20].

Each node 𝑗 ∈𝑁 has a discrete and finite state space 𝑆𝑗 representing
possible outcomes 𝑠𝑗 ∈ 𝑆𝑗 . Typically, state spaces can have any discrete
number of alternatives, as evidenced in the examples in [10,11,20]. For

𝐻1 𝐻2 𝐻3 𝐻4 𝑉4

𝑇1 𝑇2 𝑇3

𝐷1 𝐷2 𝐷3

𝑉1 𝑉2 𝑉3

Fig. 1. ID of the pig farm problem [16].

a subset of nodes 𝐶 ⊆𝑁 , the state space and the realized outcome are
defined as 𝑆𝐶 ∶=

⨉
𝑐∈𝐶 𝑆𝑐 and 𝑠𝐶 = (𝑠𝑐)𝑐∈𝐶 , respectively. The outcome

(i.e., state) 𝑠𝑗 of a stochastic node 𝑗 ∈𝑁𝐶 ∪𝑁𝑉 is a random variable
with a probability distribution ℙ(𝑠𝑗 ∣ 𝑠𝐼(𝑗)), which corresponds to the
probability of node 𝑗 being in state 𝑠𝑗 given that the parents 𝐼(𝑗) are
in state 𝑠𝐼(𝑗). We denote ℙ𝐺(𝑠𝑗 ∣ 𝑠𝐼(𝑗)) when we want to emphasize that
the probability distribution is associated with diagram 𝐺. The outcome
of a decision node 𝑑 ∈ 𝑁𝐷 is determined by a decision strategy 𝛿(𝑠𝑑 ∣
𝑠𝐼(𝑑)) ∶ 𝑆𝐼(𝑑)

⨉
𝑆𝑑 → {0,1}, where 𝛿(𝑠𝑑 ∣ 𝑠𝐼(𝑑)) = 1 means that state 𝑠𝑑

is selected if nodes 𝐼(𝑑) are in states 𝑠𝐼(𝑑). A feasible decision strategy
is such that for each 𝑠𝐼(𝑑) ∈ 𝑆𝐼(𝑑), exactly one element 𝑠𝑑 ∈ 𝑆𝑑 attains
𝛿(𝑠𝑑 ∣ 𝑠𝐼(𝑑)) = 1 and all other 𝑠′

𝑑
∈ 𝑆𝑑 ⧵{𝑠𝑑} attain 𝛿(𝑠′

𝑑
∣ 𝑠𝐼(𝑑)) = 0. States

𝑠𝑣 ∈ 𝑆𝑣 of a value node 𝑣 ∈𝑁𝑉 represent different outcomes that have
a utility value 𝑢(𝑠𝑣) associated with them. The total utility is calculated
as a sum over the different value nodes

∑
𝑣∈𝑁𝑣 𝑢(𝑠𝑣).

The ID of the pig farm problem is presented in Fig. 1. In the diagram,
nodes 𝐻𝑖 are chance nodes representing the health status of the pig;
chance nodes 𝑇𝑖 represent the test result, which is conditional on the
health status of the pig; decision nodes 𝐷𝑖 represent treatment decisions;
finally, value nodes 𝑉𝑖, for 𝑖 ≤ 3, represent treatment costs and the value
node 𝑉4 represents the pig’s market price.

The solution of an ID is a decision strategy that optimizes the de

sired metric, typically expected utility, at the value nodes. A common
additional assumption is perfect recall, meaning that previous decisions
can be recalled in later stages. Under this assumption, the optimal deci

sion strategy may be obtained by arc reversals and node removals [23]
or dynamic programming [25], for example.

Perfect recall is a rather strict assumption and in many applications,
it does not hold. This challenge is circumvented with LIMIDs [16].
Many algorithms for finding the decision strategy that maximizes the
expected utility have been developed, such as the single policy update
[16], multiple policy update [17], branch-and-bound search [12] and
the aforementioned methods converting the ID to a MI(L)P [20,22].

2.3. Rooted junction trees

To achieve a MIP formulation for the decision problem, its ID, repre

sented by the graph 𝐺 = (𝑁,𝐴), must first be transformed into a directed
tree called a gradual rooted junction tree (RJT) 𝒢 = (𝒱,𝒜) composed of
clusters 𝐶 ∈𝒱, which are subsets of the nodes of the ID (i.e., 𝐶 ⊆𝑁) and
directed arcs 𝒜 connecting the clusters so that each cluster only has one
parent. In an ID, the set of nodes 𝑁 consists of individual chance events,
decisions and consequences, while the clusters in 𝒱 comprise multiple
nodes, hence the notational distinction between 𝑁 and 𝒱. The clusters
are associated with a root node 𝑗 ∈𝑁 and we refer to clusters based on
the root node as the root cluster 𝐶𝑗 ∈𝒱 of node 𝑗 ∈𝑁 . Starting from an
ID, we create an RJT guided by Definition 2.1, which states its necessary
properties.

Operations Research Letters 61 (2025) 107308

3

O. Herrala, T. Terho and F. Oliveira

𝐻1 𝐻1𝑇1 𝐻1𝑇1𝐷1 𝐷1𝑉1

𝐻1𝐷1𝐻2 𝐻2𝑇2 𝐻2𝑇2𝐷2 𝐷2𝑉2

𝐻2𝐷2𝐻3 𝐻3𝑇3 𝐻3𝑇3𝐷3 𝐷3𝑉3

𝐻3𝐷3𝐻4 𝐻4𝑉4

Fig. 2. Gradual RJT of the pig farm problem.

Definition 2.1. A directed rooted tree 𝒢 = (𝒱,𝒜) consisting of clusters
𝐶𝑗 ∈𝒱 of nodes 𝑗 ∈𝑁 is a gradual rooted junction tree corresponding
to the influence diagram 𝐺 if

(a) given two clusters 𝐶𝑖 and 𝐶𝑗 in the junction tree, any cluster 𝐶𝑘 on
the unique undirected path between 𝐶𝑖 and 𝐶𝑗 satisfies 𝐶𝑖 ∩ 𝐶𝑗 ⊆
𝐶𝑘;

(b) each cluster 𝐶𝑗 ∈𝒱 is the root cluster of exactly one node 𝑗 ∈𝑁

(that is, the root of the subgraph induced by the clusters with node
𝑗) and all nodes 𝑗 ∈𝑁 appear in at least one of the clusters;

(c) and, for each cluster, 𝐼(𝑗) ∈ 𝐶𝑗 .

A rooted tree satisfying part (a) in Definition 2.1 is said to satisfy
the running intersection property. As a consequence of property (a), a sub

graph induced by the clusters containing node 𝑗 is connected. Moreover,
as a consequence of property (b), we see that an RJT has as many clusters
as the original influence diagram has nodes, and all nodes in the influ

ence diagram are root nodes of exactly one cluster. Another consequence
is that a cluster can contain only one node that is not contained in its
parent cluster. Property (c) ensures that the root cluster contains all rel

evant nodes to evaluate 𝛿(𝑠𝑗 ∣ 𝑠𝐼(𝑗)) if 𝑗 is a decision node, or ℙ(𝑠𝑗 ∣ 𝑠𝐼(𝑗))
if 𝑗 is a chance node or a value node.

The RJT is created by a function 𝑓 ∶ (𝑁,𝐴)→ (𝒱,𝒜). Any function
that creates an RJT satisfying the properties in Definition 2.1 can be
used to derive the MIP formulation. In [20], the authors present two al

ternatives for 𝑓 . The first function uses a given topological ordering of
the nodes and builds the RJT starting from the root cluster of the last
node in the topological ordering and proceeding in the reverse direction
of this topological ordering. This function returns an RJT with minimum
treewidth given the ordering of nodes. The second function has an ad

ditional step of finding a ``good'' topological ordering that results in an
RJT with minimum treewidth. For simplicity, we chose to use the func

tion requiring a topological ordering. Using 𝐻1, 𝑇1,𝐷1, 𝑉1,𝐻2, ...,𝐻4, 𝑉4
as a topological ordering, the pig farm ID in Fig. 1 is transformed to the
gradual RJT in Fig. 2.

Formulating an optimization model based on the RJT representa

tion starts by introducing a vector of moments 𝜇𝐶𝑗 for each root cluster
𝐶𝑗 , ∀𝑗 ∈𝑁 . Parmentier et al. [20] show that for RJTs, we can impose
constraints so that these become moments of a distribution 𝜇𝑁 that fac

torizes according to 𝐺(𝑁,𝐴). The joint distribution ℙ is said to factorize
[14] according to 𝐺 if

ℙ(𝑠𝑁) =
∏
𝑗∈𝑁

ℙ(𝑠𝑗 ∣ 𝑠𝐼(𝑗)). (1)

In the formulation, 𝜇𝐶𝑗 (𝑠𝐶𝑗) represents the probability of the nodes
within the cluster 𝐶𝑗 being in states 𝑠𝐶𝑗 and part (c) of Definition 2.1

ensures that ℙ(𝑠𝑗 ∣ 𝑠𝐼(𝑗)) can thus be obtained from 𝜇𝐶𝑗 (𝑠𝐶𝑗) for each
𝑗 ∈𝑁 . The resulting MIP model is

max
∑
𝑣∈𝑁𝑉

∑
𝑠𝐶𝑣

∈𝑆𝐶𝑣

𝜇𝐶𝑣
(𝑠𝐶𝑣)𝑢(𝑠𝑣) (2)

s.t.
∑

𝑠𝐶𝑗
∈𝑆𝐶𝑗

𝜇𝐶𝑗
(𝑠𝐶𝑗) = 1, ∀𝑗 ∈𝑁 (3)

∑
{𝑠𝐶𝑖∈𝑆𝐶𝑖 ∣

𝑠𝐶𝑖∩𝐶𝑗 =𝑠
′
𝐶𝑖∩𝐶𝑗

}

𝜇𝐶𝑖
(𝑠𝐶𝑖) =

∑
{𝑠𝐶𝑗 ∈𝑆𝐶𝑗 ∣

𝑠𝐶𝑖∩𝐶𝑗=𝑠
′
𝐶𝑖∩𝐶𝑗

}

𝜇𝐶𝑗
(𝑠𝐶𝑗),

∀(𝐶𝑖,𝐶𝑗) ∈𝒜, 𝑠′
𝐶𝑖∩𝐶𝑗

∈ 𝑆𝐶𝑖∩𝐶𝑗 (4)

𝜇𝐶𝑗
(𝑠𝐶𝑗) = 𝜇

𝐶𝑗
(𝑠
𝐶𝑗
)ℙ(𝑠𝑗 ∣ 𝑠𝐼(𝑗)), ∀𝑗 ∈𝑁𝐶 ∪𝑁𝑉 , 𝑠𝐶𝑗

∈ 𝑆𝐶𝑗
(5)

𝜇𝐶𝑗
(𝑠𝐶𝑗) = 𝜇

𝐶𝑗
(𝑠
𝐶𝑗
)𝛿(𝑠𝑗 ∣ 𝑠𝐼(𝑗)), ∀𝑗 ∈𝑁𝐷,𝑠𝐶𝑗

∈ 𝑆𝐶𝑗
(6)

𝜇𝐶𝑗
(𝑠𝐶𝑗) ≥ 0, ∀𝑗 ∈𝑁,𝑠𝐶𝑗

∈ 𝑆𝐶𝑗
(7)

𝛿(𝑠𝑗 ∣ 𝑠𝐼(𝑗)) ∈ {0,1}, ∀𝑗 ∈𝑁𝐷,𝑠𝑗 ∈ 𝑆𝑗, 𝑠𝐼(𝑗) ∈ 𝑆𝐼(𝑗). (8)

The formulation (2)-(8) is an expected utility maximization problem
where the decision variables in the model are 𝛿 and 𝜇 and parameters
are 𝑢 and ℙ. In the objective function (2), 𝑠𝑣 is extracted from 𝑠𝐶𝑣 to
evaluate the utility of each state combination of nodes in 𝐶𝑣 . For nota

tional brevity, we use 𝐶𝑗 = 𝐶𝑗 ⧵ {𝑗} to represent cluster 𝐶𝑗 without the
root node 𝑗 in constraints (5) and (6) and 𝜇

𝐶𝑗
(𝑠
𝐶𝑗
) =

∑
𝑠𝑗∈𝑆𝑗 𝜇𝐶𝑗 (𝑠𝐶𝑗)

to represent the marginal distribution for cluster 𝐶𝑗 with the node 𝑗
marginalized out in constraints (5) and (6).

Combined, constraints (3) and (7) state that the variables 𝜇𝐶𝑗 must
represent valid probability distributions, with nonnegative probabilities
summing to one. Constraint (4) enforces local consistency between ad

jacent clusters, meaning that for a pair 𝐶𝑖,𝐶𝑗 of clusters connected by
an edge, the marginal distribution for the nodes in both 𝐶𝑖 and 𝐶𝑗 (that
is, 𝐶𝑖 ∩ 𝐶𝑗) must be the same when obtained from either 𝐶𝑖 or 𝐶𝑗 . For
example, for the RJT in Fig. 2, constraint (4) enforces that the joint
probability distribution for 𝐻3 and 𝐷3 is the same when evaluated from
clusters 𝐻3𝑇3𝐷3 and 𝐻3𝐷3𝐻4.

Constraint (6) enforces that 𝜇𝐶𝑗 (𝑠𝐶𝑗) either take value 0 or 𝜇
𝐶𝑗
(𝑠
𝐶𝑗
),

depending on the decided strategy. Constraint (5) enforces that 𝜇𝐶𝑗 (𝑠𝐶𝑗)
follows the defined conditional probability distribution for 𝑠𝑗 . For a
more extensive explanation of the RJT model formulation, see [20].

It should be noted that constraint (6) involves a product of two vari

ables, and is thus not linear. Since we are limiting ourselves to settings
with deterministic strategies (i.e., 𝛿(𝑠𝑑 ∣ 𝑠𝐼(𝑑)) ∶ 𝑆𝐼(𝑑)

⨉
𝑆𝑑 → {0,1}),

these constraints become indicator constraints and can be efficiently
handled by solvers such as Gurobi [9]. We note that this would not be the
case for more general strategies of the form 𝛿(𝑠𝑑 ∣ 𝑠𝐼(𝑑)) ∶ 𝑆𝐼(𝑑)

⨉
𝑆𝑑 →

[0,1].
The number of constraints (4)-(6) grows exponentially with respect

to the number of nodes within a single cluster. This highlights the need
to find a gradual RJT representation where the clusters are as small as
possible (i.e., with minimal treewidth).

3. Our contributions

3.1. Extracting the utility distribution

For problems with multiple value nodes, e.g., multi-stage decision
problems, the expected utility has the property that the total expected
utility is the sum of expected utilities in each value node. This property
can be exploited in the solution process, and for this reason, many so

lution methods for IDs, including the RJT approach in [20], only tackle
maximum expected utility (MEU) problems.

Operations Research Letters 61 (2025) 107308

4

O. Herrala, T. Terho and F. Oliveira

In contrast, risk measures (such as CVaR) require that the full prob

ability distribution of the consequences is explicitly represented in the
model. However, such representations are lost when the value nodes
are placed in separate clusters, as in Fig. 2, since probability distribu

tions are only defined for each cluster separately. For example, in the
pig farm problem described in Section 2.1, the joint distribution of 𝑉1
and 𝑉2 cannot be inferred from the probability distributions of clusters
𝐶𝑉1

and 𝐶𝑉2 , as we cannot assume the probabilities of consequences in
𝑉1 and 𝑉2 to be independent.

The issue can be circumvented by generating the RJT based on an
alternative equivalent ID 𝐺 = (𝑁,𝐴) that collects all consequences un

der a single value node. We present Algorithm 1, which transforms an
ID into a single-value-node diagram that is equivalent to the original ID
in terms of how joint probabilities and utilities are calculated. First, we
formalize the notion of equivalence between IDs in Definition 3.1.

Definition 3.1. We say that two IDs 𝐺1 = (𝑁1,𝐴1) and 𝐺2 = (𝑁2,𝐴2)
are equivalent if

(a) 𝐺1 and 𝐺2 share the same chance and decision nodes, and arcs to
these nodes.

(b) There exists a bijection 𝑔 ∶ 𝑆𝑁1
→ 𝑆𝑁2

such that for any 𝛿(𝑠𝑑 ∣
𝑠𝐼(𝑑)),∀𝑑 ∈ 𝑁𝐷

1 , the following holds:
∏

𝑛∈𝑁1
ℙ(𝑠𝑛 ∣ 𝑠𝐼(𝑛)) = ∏

𝑛∈𝑁2
ℙ(𝑠̄𝑛 ∣ 𝑠̄𝐼(𝑛)) and

∑
𝑣∈𝑁𝑣

1
𝑢(𝑠𝑣) =

∑
𝑣∈𝑁𝑣

2
𝑢(𝑠̄𝑣), where 𝑠̄ = 𝑔(𝑠)

for each 𝑠 ∈ 𝑆𝑁1
.

Part (b) in Definition 3.1 implies that for each possible state com

bination of value nodes from one diagram (say, 𝐺1), an equivalent
combination in the other diagram (𝐺2), that evaluates to the same prob

ability and utility, must exist. For instance, if a diagram 𝐺1 has two value
nodes with two states each, an equivalent ID 𝐺2 could have one value
node with four states that correspond to all possible combinations of the
two value nodes in 𝐺1.

Algorithm 1 Single-value-node conversion.

1: Require 𝐺 = (𝑁,𝐴)
2: Initialize 𝐺 = (𝑁 = ∅,𝐴 = ∅)
3: Add 𝑁𝐶 ∪𝑁𝐷 to 𝑁
4: Set ℙ

𝐺
(𝑠𝑗 ∣ 𝑠𝐼(𝑗)) = ℙ𝐺(𝑠𝑗 ∣ 𝑠𝐼(𝑗)),∀𝑗 ∈𝑁𝐶

5: Add {(𝑎, 𝑏) ∈𝐴 ∣ 𝑏 ∈𝑁𝐶 ∪𝑁𝐷} to 𝐴
6: Create node 𝑣 such that 𝑆𝑣 =

⨉
𝑣∈𝑁𝑣 𝑆𝑣, add 𝑣∈𝑁

7: Add (𝑎, 𝑣) to 𝐴 for each 𝑎∈ 𝐼(𝑣) such that 𝑣∈𝑁𝑉

8: Set 𝑢(𝑠𝑣) =
∑

𝑣∈𝑁𝑉 𝑢(𝑠𝑣)
9: Set ℙ(𝑠𝑣 ∣ 𝑠𝐼(𝑣)) =

∏
𝑣∈𝑁𝑣 ℙ(𝑠𝑣 ∣ 𝑠𝐼(𝑣))

10: Return 𝐺

Proposition 3.2. Let 𝐺 = (𝑁,𝐴) be an ID with |𝑁𝑉 | > 1. An ID 𝐺 =
(𝑁,𝐴) constructed using Algorithm 1 is equivalent to 𝐺 (cf. Definition 3.1).

Proof. See Appendix A. □

When applying Algorithm 1 and transforming the ID into an RJT, ac

cording to Definition 2.1, part (c), we have that
⋃

𝑣∈𝑉 𝐼(𝑣) ⊆ 𝐶𝑣̄, where
𝑣̄ represents the unique value node in the new diagram. Consequently,
the marginal probability distribution 𝜇𝐶𝑣̄ contains information on the
joint probability distribution of the consequences ℙ(𝑠𝑣 ∣ 𝑠𝐼(𝑣)) and this
can be used to expose the probability distribution of the utility values.
Following this approach, the modified ID of the pig farm problem is
presented in Fig. 3 and the corresponding gradual RJT in Fig. 4.

However, this incurs in computationally more demanding versions
of model (2)-(8). In the single-value-node version of the pig farm prob

lem, all decision nodes 𝐷𝑘, 𝑘 = 1,2,3, are in the information set of 𝑉 .
It follows from the running intersection property that 𝐷𝑘 must be con

tained in every cluster that is in the undirected path between 𝐶𝐷𝑘
and

𝐻1 𝐻2 𝐻3 𝐻4 𝑉

𝑇1 𝑇2 𝑇3

𝐷1 𝐷2 𝐷3

Fig. 3. The pig farm problem reformulated ID.

𝐻1 𝐻1𝑇1 𝐻1𝑇1𝐷1

𝐻1𝐷1𝐻2 𝐷1𝐻2𝑇2 𝐷1𝐻2𝑇2𝐷2

𝐷1𝐻2𝐷2𝐻3 𝐷1𝐷2𝐻3𝑇3 𝐷1𝐷2𝐻3𝑇3𝐷3

𝐷1𝐷2𝐻3𝐷3𝐻4 𝐷1𝐷2𝐷3𝐻4𝑉

Fig. 4. Gradual RJT of the reformulated pig farm problem.

𝐶𝑣̄. Therefore, the clusters become larger as the parents of value nodes
are ``carried over'', instead of evaluating separable components of the
utility function at different value nodes. As discussed in [20], this in

creases the computational complexity of the resulting model.

3.2. Modifying the RJT

A single-value-node ID guarantees that the full probability distribu

tion of the consequences can be exposed in the MIP model to optimize
or constrain different risk metrics. However, decision-makers may not
only be interested in imposing risk constraints on consequences. For in

stance, in the pig farm problem, the farmer may want to impose chance
constraints to ensure that pigs stay healthy throughout the breeding pe

riod with a certain likelihood. This requires that the joint probability
distribution of the health states of a pig in all periods is available. That
is, one needs an RJT that has a cluster containing all health status nodes
𝐻1, ...,𝐻4, which is not found in the RJTs created with functions from
[20] or with Algorithm 1 (Figs. 2 and 4).

A way to generate a cluster that exposes the desired probability dis

tribution is to directly modify an RJT obtained following [20] while
ensuring that the modified RJT fulfils Definition 2.1. Assume that there
exists a topological ordering among the nodes of the RJT 𝒢 = (𝒱,𝒜).
Suppose one wants to create a cluster that exposes the joint probabil

ity distribution of nodes 𝑀 ⊆𝑁 . Then, one needs to generate an RJT
𝒢 = (𝒱̄,𝒜) such that ∃𝐶 ′

𝑣
∈ 𝒱̄ such that 𝑀 ⊆ 𝐶 ′

𝑣
. Let ≼ represent a

topological order of the nodes 𝑁 and max≼𝑀 return the node with the
highest topological order in set 𝑀 . Let

𝑃 (𝐶1,𝐶𝑘) ∶= {𝐶𝑗 ∈𝒱 ∣ ∃(𝐶1, ...,𝐶𝑗 , ...,𝐶𝑘)

with (𝐶𝑙,𝐶𝑙+1) ∈𝒜,∀𝑙 ∈ {1,… , 𝑘}}

be the set of clusters that are contained on any directed path be

tween clusters 𝐶1 and 𝐶𝑘 (including themselves). Let 𝐹 (𝑗) ∶= {𝑘 ∈𝑁 ∣
𝑃 (𝐶𝑗,𝐶𝑘) ≠ ∅} be the set of nodes, whose root cluster can be reached

Operations Research Letters 61 (2025) 107308

5

O. Herrala, T. Terho and F. Oliveira

𝐻1 𝐻1𝑇1 𝐻1𝑇1𝐷1 𝐷1𝑉1

𝐻1𝐷1𝐻2 𝐻1𝐻2𝑇2 𝐻1𝐻2𝑇2𝐷2 𝐷2𝑉2

𝐻1𝐻2𝐷2𝐻3 𝐻1𝐻2𝐻3𝑇3 𝐻1𝐻2𝐻3𝑇3𝐷3 𝐷3𝑉3

𝐻1𝐻2𝐻3𝐷3𝐻4 𝐻4𝑉4

Fig. 5. Gradual RJT for pig farm problem with a cluster that contains nodes
𝐻1, ...,𝐻4.

via a directed path starting from cluster 𝐶𝑗 . Then, Algorithm 2 leads to
an RJT with the desired structure, as stated in Proposition 3.3.

Algorithm 2 RJT modification.

1: Require 𝑀 ⊆𝑁 , topological order ≼
2: Initialize 𝒢 = (𝒱̄,𝒜) equal to 𝒢 and denote 𝐶 ′

𝑛
as the root cluster of 𝑛 ∈𝑁

in 𝒢
3: Find 𝑚=max≼𝑀
4: For 𝑛∈𝑀 ⧵ {𝑚} such that 𝑛∉ 𝐶𝑚 do:

5: If 𝑚 ∉ 𝐹 (𝑛)
6: Find 𝑒=𝑚𝑎𝑥≼{𝑗 ∈𝑁 ∣ 𝑛,𝑚 ∈ 𝐹 (𝑗)}
7: Find 𝑔 ∈𝑁 such that (𝐶𝑒,𝐶𝑔) ∈𝒜,𝑚 ∈ 𝐹 (𝑔), 𝑛∉ 𝐹 (𝑔)
8: Set 𝐶 ′

𝑒
∩𝐶 ′

𝑔
∈ 𝐶 ′

𝑐
,∀𝐶 ′

𝑐
∈ 𝑃 (𝐶𝑒,𝐶𝑛)

9: Set (𝐶 ′
𝑒
,𝐶 ′

𝑔
) ∉𝒜, (𝐶 ′

𝑛
,𝐶 ′

𝑔
) ∈𝒜

10: Set 𝑛 ∈ 𝐶 ′
𝑎
,∀𝐶 ′

𝑎
∈ 𝑃 (𝐶 ′

𝑛
,𝐶 ′

𝑚
)

11: Return 𝒢

Proposition 3.3. Assume that an RJT 𝒢 = (𝒱,𝒜) satisfies Definition 2.1.
The RJT 𝒢 = (𝒱̄,𝒜) generated from 𝒢 using Algorithm 2 satisfies Defini

tion 2.1.

Proof. See Appendix A. □

As an example, we can apply Algorithm 2 to the RJT in Fig. 2, which
is created by a function given in [20], to include a cluster that contains
nodes 𝐻1, ...,𝐻4. The output of Algorithm 2 is the diagram presented in
Fig. 5. The cluster that exposes the desired joint probability distribution
for nodes 𝐻1, ...,𝐻4 is the root cluster of 𝐻4. A more detailed example
of applying Algorithm 2 can be found in Appendix A.

3.3. Imposing chance, logical, and budget constraints

Our proposed developments allow one to expose the joint probabil

ity distribution of any combination of nodes in the ID, which in turn,
enables the formulation of a broad range of risk-aversion-related con

straints.

Chance constraints for the joint probability of nodes 𝑀 ⊆𝑁 can be
imposed on the marginal probability distribution of a cluster 𝐶𝑛 such
that 𝑀 ⊆ 𝐶𝑛. If no such cluster exists in the generated RJT, a suitable
cluster can be created with Algorithm 2, or regenerating the RJT based
on an ID created with Algorithm 1 if 𝑀 only contains value nodes and
their parents. Then, chance constraints can be imposed as follows:

∑
𝑠𝐶𝑛

∈𝑆𝐶𝑛 ∣𝑠𝑛∈𝑆
𝑜
𝑛

𝜇(𝑠𝐶𝑛) ≤ 𝑝, (9)

where 𝑆𝑜
𝑛

is the set of outcomes that the decision maker wishes to con

strain and 𝑝 ∈ [0,1] represents a threshold. For instance, assume that a
decision-maker wishes to enforce that the probability of the payout of
the process being less than some fixed limit 𝑏 is at most 𝑝. Then, a suit

able RJT can be generated based on an ID created with Algorithm 1.
Constraints can then be enforced for the root cluster of the single value
node 𝐶𝑣̄ and 𝑆𝑜

𝑣̄
would contain all states 𝑠𝑣̄ such that 𝑢(𝑠𝑣̄) < 𝑏. Note that

this formulation can be enforced for any cluster 𝐶𝑘 such that 𝑀 ⊆𝐶𝑘.

Logical constraints can be seen as a special case of chance con

straints. For example, in the pig farm problem (in Section 2), the farmer
may wish to attain an optimal decision strategy while ensuring that the
number of injections is at most two per pig due to, e.g., potential side
effects. Then, 𝑆𝑜

𝑣̄
would contain all realizations of the nodes in 𝐶𝑣̄ that

would lead to a violation of the constraint, i.e., the state combinations in
which three injections would be given to a pig. In that case, constraint
(10) that makes these scenarios infeasible could be imposed.

∑
𝑠𝐶𝑣̄

∈𝑆𝐶𝑣̄ ∣𝑠𝑣̄∈𝑆
𝑜
𝑣̄

𝜇(𝑠𝐶𝑣) ≤ 0. (10)

Budget constraints are analogous to logical constraints, as the farmer
could instead have an injection budget, say 200 DKK per pig. Then,
𝑆𝑜
𝑣̄

should contain all states 𝑠𝑣̄, where more than 200 DKK is used for
treating a pig, with the constraint enforced similarly as in (10).

3.4. Conditional value-at-risk (CVaR)

In addition to a number of risk constraints, the proposed reformula

tions also enable the consideration of alternative risk measures. Next, we
focus our presentation on how to maximize CVaR, given its widespread
adoption in the context of decision making under uncertainty. How

ever, we highlight that other risk metrics, such as absolute or lower
semi-absolute deviation [22], or the entropic risk measure [7] can, in
principle, be used.

The proposed formulation for CVaR maximization is analogous to the
method developed for decision programming in [22]. It assumes that the
joint probability distribution of utility values is available, and hence, an
RJT generated based on the single-value-node representation of the ID
is sufficient for generating a suitable cluster. Let us assume that the deci

sion problem has a single value node 𝑣̄with possible utility values 𝑢 ∈𝑈 .
Let 𝑝(𝑢) be the probability of attaining utility value 𝑢. In the presence
of a single value node, we would define 𝑝(𝑢) =

∑
𝑠𝐶𝑣̄

∈𝑆𝐶𝑣̄ |𝑈 (𝑠𝐶𝑣̄)=𝑢
𝜇(𝑠𝐶𝑣̄)

and pose the constraints

𝜂 − 𝑢 ≤𝑀𝜆(𝑢), ∀𝑢 ∈𝑈 (11)

𝜂 − 𝑢 ≥ (𝑀 + 𝜖)𝜆(𝑢) −𝑀, ∀𝑢 ∈𝑈 (12)

𝜂 − 𝑢 ≤ (𝑀 + 𝜖)𝜆(𝑢) − 𝜖, ∀𝑢 ∈𝑈 (13)

𝜂 − 𝑢 ≥𝑀(𝜆(𝑢) − 1), ∀𝑢 ∈𝑈 (14)

𝜌(𝑢) ≤ 𝜆(𝑢), ∀𝑢 ∈𝑈 (15)

𝑝(𝑢) − (1 − 𝜆(𝑢)) ≤ 𝜌(𝑢) ≤ 𝜆(𝑢), ∀𝑢 ∈𝑈 (16)

𝜌(𝑢) ≤ 𝜌(𝑢) ≤ 𝑝(𝑢), ∀𝑢 ∈𝑈 (17)∑
𝑢∈𝑈

𝜌(𝑢) = 𝛼 (18)

𝜆(𝑢), 𝜆(𝑢) ∈ {0,1}, ∀𝑢 ∈𝑈 (19)

𝜌(𝑢), 𝜌(𝑢) ∈ [0,1], ∀𝑢 ∈𝑈 (20)

𝜂 ∈ℝ, (21)

where 𝛼 is the probability threshold in VaR𝛼 . Table 1 describes which
values the decision variables take due to the constraints (11)-(21).

Operations Research Letters 61 (2025) 107308

6

O. Herrala, T. Terho and F. Oliveira

Table 1
Variables and the corresponding values that
satisfy (11)-(20).

Variable Value
𝜂 VaR𝛼

𝜆(𝑢) 1 if 𝑢 < 𝜂

𝜆(𝑢) 0 if 𝑢 > 𝜂

𝜌(𝑢) 0 if 𝜆(𝑢) = 0, 𝑝(𝑢) otherwise

𝜌(𝑢)
⎧⎪⎨⎪⎩

𝑝(𝑢) if 𝑢 < 𝜂,

𝛼 −
∑

𝑢∈𝑈 𝑝(𝑢) if 𝑢 = 𝜂,

0 if 𝑢 > 𝜂 (𝜆̄(𝑢) = 0)

In constraints (11)-(20), 𝑀 is a large positive number and 𝜖 is a small
positive number. The parameter 𝜖 is used to model strict inequalities,
which cannot be directly used in mathematical optimization solvers.
For example, 𝑥 ≥ 𝜖 is assumed to be equivalent to 𝑥 > 0. In practice, it
is enough to set 𝜖 strictly smaller than the minimum difference of dis

tinct utility values. In [22], the authors use 𝜖 = 1
2 min{|𝑈 (𝑠𝑣) −𝑈 (𝑠′

𝑣
)| ∶

|𝑈 (𝑠𝑣) − 𝑈 (𝑠′
𝑣
)| > 0, 𝑠𝑣, 𝑠′𝑣 ∈ 𝑆𝑣}. When 𝜆(𝑢) = 0, constraints (11) and

(12) become −𝑀 ≤ 𝜂 − 𝑢 ≤ 0, or 𝜂 ≤ 𝑢. When 𝜆(𝑢) = 1, they instead be

come 𝜖 ≤ 𝜂−𝑢 ≤𝑀 , or 𝜂 > 𝑢. Constraints (13) and (14) can be examined
similarly to obtain the results in Table 1.

The correct behaviour of variables 𝜌(𝑢) is enforced by (16) and (17).
If 𝜆(𝑢) = 0, constraint (16) forces 𝜌(𝑢) to zero. If 𝜆(𝑢) = 1, then 𝜌(𝑢) =
𝑝(𝑢). Finally, assuming 𝜂 is equal to VaR𝛼 and 𝜌(𝑢) equal to 𝑝(𝑢) for all
𝑢 < 𝜂, the value of 𝜌(𝑢) must be 𝛼 −

∑
𝑢∈𝑈 𝜌(𝑢) for 𝑢 = 𝜂. It is easy to see

that 𝜂 must be equal to VaR𝛼 for there to be a feasible solution for the
other variables. For an equivalence proof, see Salo et al. [22, Appendix
A].

By introducing constraints (11)-(20), the CVaR for a probability
threshold 𝛼 (𝐶𝑉 𝑎𝑅𝛼) can then be obtained as

𝐶𝑉 𝑎𝑅𝛼 =
1
𝛼

∑
𝑢∈𝑈

𝜌(𝑢)𝑢.

This can be either used as in the objective function or as a part of the
constraints of the problem. We also note that the described approach is
very versatile in that 𝑢 can be selected to be, e.g., a stage-specific utility
function, thus allowing us to limit risk in specific stages of a multi-stage
problem. Krokhmal et al. [15] discusses the implications of stage-wise
CVaR constraints in detail.

4. Computational experiments

To assess the computational performance of the model (2)-(8), we
use the pig farm problem described earlier. We compare two different
versions of the pig farm problem: one with the RJT formulation and the
other with the decision programming formulation from [10]. An addi

tional computational example and an analysis of the resulting model
sizes from each formulation can be found in Appendix A. All problems
were solved using a single thread on an Intel E5-2680 CPU at 2.5 GHz
and 16 GB of RAM, provided by the Aalto University School of Sci

ence ``Science-IT'' project. The models were implemented using Julia
v1.10.3 [1] and JuMP v1.23.0 [5] and solved with the Gurobi solver
v11.0.2 [9]. The code and data used in this section are available at
www.github.com/gamma-opt/risk-averse-RJT.

4.1. Risk-averse pig farm problem

A risk-averse version of the pig farm problem, which maximizes
CVaR for an 85%-confidence level (i.e., 𝛼 = 0.15 as we wish to maxi

mize CVaR) is solved for different numbers of breeding periods. We use
the RJT based on the single-value-node ID from Fig. 4 to create the op

timization model and add the constraints described in Section 3.4 to
represent CVaR. The solution times using our RJT-based formulation
are compared to the solution times derived using the decision program

ming formulation from [10]. For practical reasons, we solve the same

Fig. 6. Mean solution times and standard deviations (bars) for 50 random in

stances in the risk-averse pig farm problem with 2-5 breeding periods on a
logarithmic scale.

single-value-node version of the pig farm problem to compare the solu

tions. In practice, decision programming can maximize CVaR in IDs with
any number of value nodes. However, decision programming creates the
exact same MILP model regardless of the number of value nodes.

The solution times of 50 randomly generated instances of the risk

averse pig farm problem with different sizes are presented in Fig. 6. The
RJT-based formulation consistently offers better computational perfor

mance than decision programming for the pig farm problem. In larger
pig farm instances, the RJT-based formulation is three orders of mag

nitude faster than the decision programming formulation. However,
the RJT-based formulation still grows exponentially with respect to the
number of breeding periods, which could result in computational chal

lenges for larger instances. Still, this exponential growth of the RJT
model can be seen as a worst-case scenario, while many problems,
including the original pig farm problem (Fig. 1), exhibit treewidth in

dependence of the number of stages. In contrast, for decision program

ming, as discussed in [10], the number of constraints is exponential in
the number of nodes.

4.2. Chance-constrained pig farm problem

In addition, we analyze the computational performance of our for

mulations on a chance-constrained version of the pig farm problem with
different numbers of breeding periods. We use the RJT in Fig. 5 and
assign chance constraints to the root cluster of 𝐻4 enforcing that the
probability of a pig being ill at any time during the breeding period
must be less than 40%. Chance constraints are enforced as described in
Section 3.3. In Fig. 7, we compare the results by solving the same prob

lem with decision programming [10].

The optimization model created based on RJT solves the chance

constrained problem faster than the corresponding decision program

ming model. In accordance with the results of the risk-averse pig farm
problem, RJT is an order of magnitude faster than the corresponding
decision programming model.

5. Conclusions

In this paper, we have described a MIP reformulation of decision
problems presented as IDs, originally proposed in [20]. Our main con

tribution is to extend the modelling framework proposed by Parmentier
et al. [20] to embed it with more general modelling capabilities. We il
lustrate how chance constraints and CVaR can be incorporated into the
formulation. We demonstrate how suitable RJTs can be generated, ei

ther by modifying the underlying ID (Algorithm 1) or directly modifying
the RJT (Algorithm 2).

https://github.com/gamma-opt/risk-averse-RJT

Operations Research Letters 61 (2025) 107308

7

O. Herrala, T. Terho and F. Oliveira

Fig. 7. Mean solution times and standard deviations (bars) for 50 random in

stances in the chance-constrained pig farm problem with 2-5 breeding periods
on a logarithmic scale.

We show that the model in [20] can be extended beyond expected
utility maximization problems to incorporate most of the constraints
and objective functions present in decision programming, the alternative
MILP reformulation based on LIMIDs described by Salo et al. [22] and
Hankimaa et al. [10]. The advantage of using the models described in
this paper is that, in terms of model size, decision programming models
grow exponentially with respect to the number of nodes, whereas the
RJT model grows exponentially with respect to treewidth, which is only
indirectly influenced by the number of nodes.

We also present computational results comparing the computational
performance of decision programming and our extension of the RJT
model when applied to risk-averse and chance-constrained variants of
the pig farm problem. The computational results indicate that risk

averse decision strategies for IDs can be solved considerably faster by
using the RJT formulation.

Although this paper furthers the state-of-the-art for MIPs solving risk

averse IDs, typically the resulting MIP is a large-scale model, which in
turn limits the size of the problems that can be solved. Hence, future
research should concentrate on improving the computational tractabil

ity of the MIP model by developing specialized decomposition methods
and more efficient formulations.

CRediT authorship contribution statement

Olli Herrala: Writing -- review & editing, Writing -- original draft,
Visualization, Validation, Software, Methodology, Investigation, For

mal analysis, Conceptualization. Topias Terho: Writing -- review &
editing, Writing -- original draft, Visualization, Validation, Software,
Methodology, Investigation, Formal analysis, Conceptualization. Fabri

cio Oliveira: Writing -- review & editing, Writing -- original draft, Su

pervision, Project administration, Investigation, Funding acquisition.

Acknowledgements

This work was supported by the Research Council of Finland (deci

sion 332180). We are also thankful for the contributions from Prof. Ahti
Salo and the computer resources from the Aalto University School of
Science ``Science-IT'' project.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.orl.2025.107308.

Data availability

All data and implementations are available in a repository referenced
in the paper

References

[1] J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah, Julia: a fresh approach to numer

ical computing, SIAM Rev. 59 (2017) 65--98.

[2] A. Charnes, W. Cooper, Chance constrained programming, Manag. Sci. 6 (1959)
73--79.

[3] V. Cohen, A. Parmentier, Future memories are not needed for large classes of
POMDPs, Oper. Res. Lett. 51 (2023) 270--277.

[4] D. Davidson, P. Suppes, S. Siegel, Decision Making; an Experimental Approach, Stan

ford University Press, Pages, 1957, p. 121.

[5] I. Dunning, J. Huchette, M. Lubin, JuMP: a modeling language for mathematical
optimization, SIAM Rev. 59 (2017) 295--320.

[6] C. Filippi, G. Guastaroba, M. Speranza, Conditional value-at-risk beyond finance: a
survey, Int. Trans. Oper. Res. 27 (2020) 1277--1319.

[7] H. Föllmer, T. Knispel, Entropic risk measures: coherence vs. convexity, model am

biguity and robust large deviations, Stoch. Dyn. 11 (2011) 333--351.

[8] S. Geissel, J. Sass, F.T. Seifried, Optimal expected utility risk measures, Stat. Risk.
Model. 35 (2018) 73--87.

[9] Gurobi Optimization, LLC, Gurobi optimizer reference manual, https://www.gurobi.

com, 2022.

[10] H. Hankimaa, O. Herrala, F. Oliveira, J. Tollander de Balsch, Solving influence dia

grams via efficient mixed-integer programming formulations and heuristics, arXiv:

2307.13299, 2023.

[11] R.A. Howard, J.E. Matheson, Influence diagrams, Decis. Anal. 2 (2005) 127--143.

[12] A. Khaled, E.A. Hansen, C. Yuan, Solving limited-memory influence diagrams using
branch-and-bound search, in: Uncertainty in Artificial Intelligence (UAI-13), AUAI
Press, Arlington, Virginia, USA, 2013, pp. 331--341.

[13] A. Khassiba, F. Bastin, S. Cafieri, B. Gendron, M. Mongeaua, Two-stage stochastic
mixed-integer programming with chance constraints for extended aircraft arrival
management, Transp. Sci. 54 (2020) 897--919.

[14] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques,
MIT Press, 2009.

[15] P. Krokhmal, J. Palmquist, S. Uryasev, Portfolio optimization with conditional value

at-risk objective and constraints, J. Risk 4 (2002) 43--68.

[16] S.L. Lauritzen, D. Nilsson, Representing and solving decision problems with limited
information, Manag. Sci. 47 (2001) 1235--1251.

[17] D.D. Mauà, C.P. de Campos, M. Zaffalon, Solving limited memory influence dia

grams, J. Artif. Intell. Res. 44 (2012) 97--140.

[18] T. Homem-de Mello, B.K. Pagnoncelli, Risk aversion in multistage stochastic pro

gramming: a modeling and algorithmic perspective, Eur. J. Oper. Res. 249 (2016)
188--199.

[19] T.D. Nielsen, F.V. Jensen, Learning a decision maker’s utility function from (possibly)
inconsistent behavior, Artif. Intell. 160 (2004) 53--78.

[20] A. Parmentier, V. Cohen, V. Leclère, G. Obozinski, J. Salmon, Integer programming
on the junction tree polytope for influence diagrams, INFORMS J. Optim. 2 (2020)
209--228.

[21] R. Rockafellar, S. Uryasev, Optimization of conditional value-at-risk, J. Risk 2 (2000)
21--42.

[22] A. Salo, J. Andelmin, F. Oliveira, Decision programming for mixed-integer multi

stage optimization under uncertainty, Eur. J. Oper. Res. 299 (2022) 550--565.

[23] R.D. Shachter, Evaluating influence diagrams, Oper. Res. 34 (1986) 871--882.

[24] R.D. Shachter, D. Bhattacharjya, Solving influence diagrams: Exact algorithms, 2010.

[25] J.A. Tatman, R.D. Shachter, Dynamic programming and influence diagrams, IEEE
Trans. Syst. Man Cybern. 30 (1990) 365--379.

[26] B. Xu, S.E. Boyce, Y. Zhang, Q. Liu, L. Guo, P.A. Zhong, Stochastic programming
with a joint chance constraint model for reservoir refill operation considering flood
risk, J. Water Resour. Plan. Manag. 143 (2017).

https://doi.org/10.1016/j.orl.2025.107308
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibC5A10AE1E0FA845DFCB5B37F35EE7EBBs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibC5A10AE1E0FA845DFCB5B37F35EE7EBBs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib68F7241A0268B9572E25055B67539CC9s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib68F7241A0268B9572E25055B67539CC9s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibCAA000B2A214A3F51DFA3F98F21034AEs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibCAA000B2A214A3F51DFA3F98F21034AEs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib4813ADECFECEA8DECDC4028F6CDCCC11s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib4813ADECFECEA8DECDC4028F6CDCCC11s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib37A9CC6237561ABEE35D5A55D0383410s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib37A9CC6237561ABEE35D5A55D0383410s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib385F39BCC2A5837E5A1910C0FD9F983Ds1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib385F39BCC2A5837E5A1910C0FD9F983Ds1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib91CE2191A8377BC8C3651A3076A00D87s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib91CE2191A8377BC8C3651A3076A00D87s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib35F90EAF150282CEEB2219169538A4EEs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib35F90EAF150282CEEB2219169538A4EEs1
https://www.gurobi.com
https://www.gurobi.com
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibEECA7A56D755D7A860264018D32DD82As1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibEECA7A56D755D7A860264018D32DD82As1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibEECA7A56D755D7A860264018D32DD82As1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibC021DE14CC048A77A54CFCF0217B269Bs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib8B10E7226F71C1240797CB66FFF9ECFFs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib8B10E7226F71C1240797CB66FFF9ECFFs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib8B10E7226F71C1240797CB66FFF9ECFFs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib3104D52F8D82B0FA8804EF13B04A1FF0s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib3104D52F8D82B0FA8804EF13B04A1FF0s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib3104D52F8D82B0FA8804EF13B04A1FF0s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib5A9029278BDD1052B087D2FFE61DF3ABs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib5A9029278BDD1052B087D2FFE61DF3ABs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibE2D005A5E887DE1BD96E58B62617CAC8s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibE2D005A5E887DE1BD96E58B62617CAC8s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib8489A278D86D52AF5EFD1CB0DFF0CC4As1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib8489A278D86D52AF5EFD1CB0DFF0CC4As1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibCF634ECD6B901BF71A0C80DDD31C7440s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibCF634ECD6B901BF71A0C80DDD31C7440s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib6949884D1A489F68EF7ED1833433464Bs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib6949884D1A489F68EF7ED1833433464Bs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib6949884D1A489F68EF7ED1833433464Bs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibC8A865873380D978AA865C8DF503F06Fs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibC8A865873380D978AA865C8DF503F06Fs1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib06A2078E72B9FE8194576481FC9969A3s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib06A2078E72B9FE8194576481FC9969A3s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib06A2078E72B9FE8194576481FC9969A3s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib7F734B78DC75E8450E5DC9BA4ADB749Ds1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib7F734B78DC75E8450E5DC9BA4ADB749Ds1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib74568614B3CB1C4886449EAEC7702D85s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib74568614B3CB1C4886449EAEC7702D85s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bibEC87E666D0C6B335337AEBD4F1FE22F7s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib4B9536FBA82B44DF27254A00EABBAA70s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib59A4131A4D478F8B0FFB2D9FD8A653A9s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib59A4131A4D478F8B0FFB2D9FD8A653A9s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib04706F366F1F54CEF1E8A62FF7A25129s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib04706F366F1F54CEF1E8A62FF7A25129s1
http://refhub.elsevier.com/S0167-6377(25)00069-0/bib04706F366F1F54CEF1E8A62FF7A25129s1

	Risk-averse decision strategies for influence diagrams using rooted junction trees
	1 Introduction
	2 Background
	2.1 Pig farm problem
	2.2 Influence diagrams
	2.3 Rooted junction trees

	3 Our contributions
	3.1 Extracting the utility distribution
	3.2 Modifying the RJT
	3.3 Imposing chance, logical, and budget constraints
	3.4 Conditional value-at-risk (CVaR)

	4 Computational experiments
	4.1 Risk-averse pig farm problem
	4.2 Chance-constrained pig farm problem

	5 Conclusions
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Supplementary material
	Data availability
	References

