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This paper presents how a mixed-integer programming (MIP) formulation for influence diagrams that is based 
on their gradual rooted junction tree representation can be extended to incorporate more general modelling 
features, such as risk considerations and problem-specific constraints. We propose two algorithms that enable 
our reformulations by performing targeted modifications either to the underlying influence diagram or to the 
associated gradual rooted junction tree representation. We present computational experiments highlighting the 
superior computational performance of our reformulation against an alternative state-of-the-art MIP formulation 
for influence diagrams that, by default, can accommodate those modelling features.

1. Introduction

An influence diagram (ID) [11] is an intuitive structural represen

tation of a decision problem with uncertainties and interdependencies 
between random events, decisions and consequences. Traditional solu

tion methods for IDs [24] often require strong assumptions such as the 
no-forgetting assumption. Lauritzen and Nilsson [16] present the notion 
of a limited memory influence diagram (LIMID) that, albeit more general 
in terms of representation capabilities, does not satisfy the no-forgetting 
assumption and, therefore, is not amenable to these traditional methods.

The algorithms presented in the literature for solving decision prob

lems represented as IDs are mostly suited only to problems where an 
expected utility function is maximized and risk is not explicitly con

strained. Thus, often risk considerations are encoded in the utility func

tion itself, by making it concave using, e.g., utility extraction techniques 
[4,8,19]. Utility functions often represent monetary values, such as costs 
or revenues. In that case, maximizing expected utility assumes that 
the decision-maker has a risk-neutral stance. However, decision-makers 
may still have different risk tolerance profiles, which must be repre

sented in the decision process.

There are numerous ways to incorporate risk aversion into deci

sion models without requiring utility extraction techniques. A typical 
method is to minimize a risk measure instead of expected utility [18]. 
A commonly used measure is the conditional value-at-risk (CVaR), which 
measures the expected value in the 𝛼-tail beyond the value-at-risk VaR𝛼 , 
with 𝛼 being a probability threshold parameter [21]. Another typical 
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way of incorporating risk aversion is to use constraints such as those re

lated to chance events or budget violations [2]. Both mentioned methods 
have been used widely in various applications (see, e.g., [6,13,26]). Di

rectly optimizing a risk measure within an ID is challenging because, 
unlike expected utility, it prevents the use of methods that construct the 
optimal strategy by computing locally optimal strategies at individual 
decision nodes.

Recently, two different mixed-integer programming (MIP) reformu

lations for IDs have emerged, likely stemming from the considerable 
computational improvements in MIP solution methods. The reformu

lation considered in this paper is originally presented by Parmentier 
et al. [20], where the authors first show how to convert a LIMID repre

senting an expected utility maximization problem into a gradual rooted 
junction tree. This junction tree consists of clusters of nodes from the 
LIMID and is reformulated as a MIP problem using marginal proba

bility distributions of nodes within each cluster. However, Parmentier 
et al. [20] only consider expected utility maximization and do not show 
how risk can be accounted for in their formulation.

In contrast, Salo et al. [22] present decision programming, which 
reformulates a LIMID as a mixed-integer linear programming (MILP) 
formulation without the intermediate clustering step of forming a junc

tion tree. The decision programming formulation used in this paper is 
the one presented in [10], which improves that originally proposed in 
[22] by means of valid inequalities and reformulations.

In the context of MIP formulations for influence diagrams, the 
main advantage of decision programming is that its formulation can be 
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adapted to minimize risk measures, including CVaR. Similarly, chance, 
logical, and budget constraints can easily be incorporated into their 
MILP formulation, as discussed by Hankimaa et al. [10]. However, flexi

bility comes at a cost of computational efficiency compared to the rooted 
junction tree models in [20], which is demonstrated in our computa

tional experiments.

Against this backdrop, this paper presents how risk measures such 
as CVaR and constraints such as the chance, budget, and logical con

straints in [22] can be incorporated into the rooted junction tree model, 
which significantly reduces computational time compared to solving 
risk-averse decision strategies with decision programming. To enable 
our main contribution, the rooted junction tree from which the MIP is 
generated needs to have a specific structure. We present how rooted 
junction trees can be modified to achieve said structure. We also show 
that this can be achieved indirectly by modifying the underlying ID, 
which we see as more convenient from a user’s standpoint.

In Section 2, we present background on (LIM)IDs and the MIP re

formulations of such diagrams. Section 3 continues with extending 
the rooted junction tree-based reformulation to consider the aforemen

tioned risk measures and constraints. Section 4 presents computational 
results. Finally, Section 5 concludes the paper with ideas on future 
research directions and the potential of reformulating IDs as MIP prob

lems.

2. Background

2.1. Pig farm problem

The pig farm problem [16] is a classical example of an influence dia

gram and is used throughout this paper as a running example to illustrate 
the proposed developments. Readers should note that the pig farm prob

lem can alternatively be cast as a partially observable Markov decision 
process (POMDP). Cohen and Parmentier [3] further discuss the mod

elling of POMDPs using the methodology from Parmentier et al. [20]. 
In contrast, our focus lies on the more general framework of influence 
diagrams.

In the pig farm problem [16], a farmer is raising pigs for a period 
of four months after which the pigs will be sold. During the breeding 
period, a pig may develop a disease, which negatively affects the retail 
price of the pig at the time they are sold. In the original formulation, 
a healthy pig commands a price of 1000 DKK and an ill pig commands 
a price of 300 DKK. During the first three months, a veterinarian vis

its the farm and tests the pigs for the disease. The specificity (or true 
negative rate) of the test is 80%, whereas the sensitivity (true positive 
rate) is 90%. Based on the test results, the farmer may decide to inject 
a medicine, which costs 100 DKK. The medicine cures an ill pig with a 
probability of 0.5, whereas an ill pig that is not treated is spontaneously 
cured with a probability of 0.1. If the medicine is given to a healthy 
pig, the probability of developing the disease in the subsequent month 
is 0.1, whereas the probability without the injection is 0.2. In the first 
month, a pig has the disease with a probability of 0.1.

2.2. Influence diagrams

An influence diagram is a directed acyclic graph 𝐺 = (𝑁,𝐴), where 
𝑁 is the set of nodes and 𝐴 is the set of arcs. Let 𝑁 =𝑁𝐶 ∪𝑁𝐷 ∪𝑁𝑉 be 
the set of chance nodes 𝑁𝐶 , decision nodes 𝑁𝐷 , and value nodes 𝑁𝑉

in the ID. Let 𝐼(𝑗), ∀𝑗 ∈𝑁 , denote the information set (or parents) of 𝑗, 
i.e., nodes from which there is an arc to 𝑗. It is typical to assume that 
value nodes are not parents of other nodes. IDs can intuitively repre

sent complex decision problems with multiple periods, each containing 
multiple (possibly interdependent) decisions and chance nodes. For a 
selection of examples, see [10,16,20].

Each node 𝑗 ∈𝑁 has a discrete and finite state space 𝑆𝑗 representing 
possible outcomes 𝑠𝑗 ∈ 𝑆𝑗 . Typically, state spaces can have any discrete 
number of alternatives, as evidenced in the examples in [10,11,20]. For 

𝐻1 𝐻2 𝐻3 𝐻4 𝑉4

𝑇1 𝑇2 𝑇3

𝐷1 𝐷2 𝐷3

𝑉1 𝑉2 𝑉3

Fig. 1. ID of the pig farm problem [16]. 

a subset of nodes 𝐶 ⊆𝑁 , the state space and the realized outcome are 
defined as 𝑆𝐶 ∶=

⨉
𝑐∈𝐶 𝑆𝑐 and 𝑠𝐶 = (𝑠𝑐)𝑐∈𝐶 , respectively. The outcome 

(i.e., state) 𝑠𝑗 of a stochastic node 𝑗 ∈𝑁𝐶 ∪𝑁𝑉 is a random variable 
with a probability distribution ℙ(𝑠𝑗 ∣ 𝑠𝐼(𝑗)), which corresponds to the 
probability of node 𝑗 being in state 𝑠𝑗 given that the parents 𝐼(𝑗) are 
in state 𝑠𝐼(𝑗). We denote ℙ𝐺(𝑠𝑗 ∣ 𝑠𝐼(𝑗)) when we want to emphasize that 
the probability distribution is associated with diagram 𝐺. The outcome 
of a decision node 𝑑 ∈ 𝑁𝐷 is determined by a decision strategy 𝛿(𝑠𝑑 ∣
𝑠𝐼(𝑑)) ∶ 𝑆𝐼(𝑑)

⨉
𝑆𝑑 → {0,1}, where 𝛿(𝑠𝑑 ∣ 𝑠𝐼(𝑑)) = 1 means that state 𝑠𝑑

is selected if nodes 𝐼(𝑑) are in states 𝑠𝐼(𝑑). A feasible decision strategy 
is such that for each 𝑠𝐼(𝑑) ∈ 𝑆𝐼(𝑑), exactly one element 𝑠𝑑 ∈ 𝑆𝑑 attains 
𝛿(𝑠𝑑 ∣ 𝑠𝐼(𝑑)) = 1 and all other 𝑠′

𝑑
∈ 𝑆𝑑 ⧵{𝑠𝑑} attain 𝛿(𝑠′

𝑑
∣ 𝑠𝐼(𝑑)) = 0. States 

𝑠𝑣 ∈ 𝑆𝑣 of a value node 𝑣 ∈𝑁𝑉 represent different outcomes that have 
a utility value 𝑢(𝑠𝑣) associated with them. The total utility is calculated 
as a sum over the different value nodes 

∑
𝑣∈𝑁𝑣 𝑢(𝑠𝑣).

The ID of the pig farm problem is presented in Fig. 1. In the diagram, 
nodes 𝐻𝑖 are chance nodes representing the health status of the pig; 
chance nodes 𝑇𝑖 represent the test result, which is conditional on the 
health status of the pig; decision nodes 𝐷𝑖 represent treatment decisions; 
finally, value nodes 𝑉𝑖, for 𝑖 ≤ 3, represent treatment costs and the value 
node 𝑉4 represents the pig’s market price.

The solution of an ID is a decision strategy that optimizes the de

sired metric, typically expected utility, at the value nodes. A common 
additional assumption is perfect recall, meaning that previous decisions 
can be recalled in later stages. Under this assumption, the optimal deci

sion strategy may be obtained by arc reversals and node removals [23] 
or dynamic programming [25], for example.

Perfect recall is a rather strict assumption and in many applications, 
it does not hold. This challenge is circumvented with LIMIDs [16]. 
Many algorithms for finding the decision strategy that maximizes the 
expected utility have been developed, such as the single policy update 
[16], multiple policy update [17], branch-and-bound search [12] and 
the aforementioned methods converting the ID to a MI(L)P [20,22].

2.3. Rooted junction trees

To achieve a MIP formulation for the decision problem, its ID, repre

sented by the graph 𝐺 = (𝑁,𝐴), must first be transformed into a directed 
tree called a gradual rooted junction tree (RJT) 𝒢 = (𝒱,𝒜) composed of 
clusters 𝐶 ∈𝒱, which are subsets of the nodes of the ID (i.e., 𝐶 ⊆𝑁) and 
directed arcs 𝒜 connecting the clusters so that each cluster only has one 
parent. In an ID, the set of nodes 𝑁 consists of individual chance events, 
decisions and consequences, while the clusters in 𝒱 comprise multiple 
nodes, hence the notational distinction between 𝑁 and 𝒱. The clusters 
are associated with a root node 𝑗 ∈𝑁 and we refer to clusters based on 
the root node as the root cluster 𝐶𝑗 ∈𝒱 of node 𝑗 ∈𝑁 . Starting from an 
ID, we create an RJT guided by Definition 2.1, which states its necessary 
properties.
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𝐻1 𝐻1𝑇1 𝐻1𝑇1𝐷1 𝐷1𝑉1

𝐻1𝐷1𝐻2 𝐻2𝑇2 𝐻2𝑇2𝐷2 𝐷2𝑉2

𝐻2𝐷2𝐻3 𝐻3𝑇3 𝐻3𝑇3𝐷3 𝐷3𝑉3

𝐻3𝐷3𝐻4 𝐻4𝑉4

Fig. 2. Gradual RJT of the pig farm problem. 

Definition 2.1. A directed rooted tree 𝒢 = (𝒱,𝒜) consisting of clusters 
𝐶𝑗 ∈𝒱 of nodes 𝑗 ∈𝑁 is a gradual rooted junction tree corresponding 
to the influence diagram 𝐺 if

(a) given two clusters 𝐶𝑖 and 𝐶𝑗 in the junction tree, any cluster 𝐶𝑘 on 
the unique undirected path between 𝐶𝑖 and 𝐶𝑗 satisfies 𝐶𝑖 ∩ 𝐶𝑗 ⊆
𝐶𝑘;

(b) each cluster 𝐶𝑗 ∈𝒱 is the root cluster of exactly one node 𝑗 ∈𝑁

(that is, the root of the subgraph induced by the clusters with node 
𝑗) and all nodes 𝑗 ∈𝑁 appear in at least one of the clusters;

(c) and, for each cluster, 𝐼(𝑗) ∈ 𝐶𝑗 .

A rooted tree satisfying part (a) in Definition 2.1 is said to satisfy 
the running intersection property. As a consequence of property (a), a sub

graph induced by the clusters containing node 𝑗 is connected. Moreover, 
as a consequence of property (b), we see that an RJT has as many clusters 
as the original influence diagram has nodes, and all nodes in the influ

ence diagram are root nodes of exactly one cluster. Another consequence 
is that a cluster can contain only one node that is not contained in its 
parent cluster. Property (c) ensures that the root cluster contains all rel

evant nodes to evaluate 𝛿(𝑠𝑗 ∣ 𝑠𝐼(𝑗)) if 𝑗 is a decision node, or ℙ(𝑠𝑗 ∣ 𝑠𝐼(𝑗))
if 𝑗 is a chance node or a value node.

The RJT is created by a function 𝑓 ∶ (𝑁,𝐴)→ (𝒱,𝒜). Any function 
that creates an RJT satisfying the properties in Definition 2.1 can be 
used to derive the MIP formulation. In [20], the authors present two al

ternatives for 𝑓 . The first function uses a given topological ordering of 
the nodes and builds the RJT starting from the root cluster of the last 
node in the topological ordering and proceeding in the reverse direction 
of this topological ordering. This function returns an RJT with minimum 
treewidth given the ordering of nodes. The second function has an ad

ditional step of finding a ``good'' topological ordering that results in an 
RJT with minimum treewidth. For simplicity, we chose to use the func

tion requiring a topological ordering. Using 𝐻1, 𝑇1,𝐷1, 𝑉1,𝐻2, ...,𝐻4, 𝑉4
as a topological ordering, the pig farm ID in Fig. 1 is transformed to the 
gradual RJT in Fig. 2.

Formulating an optimization model based on the RJT representa

tion starts by introducing a vector of moments 𝜇𝐶𝑗 for each root cluster 
𝐶𝑗 , ∀𝑗 ∈𝑁 . Parmentier et al. [20] show that for RJTs, we can impose 
constraints so that these become moments of a distribution 𝜇𝑁 that fac

torizes according to 𝐺(𝑁,𝐴). The joint distribution ℙ is said to factorize 
[14] according to 𝐺 if

ℙ(𝑠𝑁 ) =
∏
𝑗∈𝑁

ℙ(𝑠𝑗 ∣ 𝑠𝐼(𝑗)). (1)

In the formulation, 𝜇𝐶𝑗 (𝑠𝐶𝑗 ) represents the probability of the nodes 
within the cluster 𝐶𝑗 being in states 𝑠𝐶𝑗 and part (c) of Definition 2.1

ensures that ℙ(𝑠𝑗 ∣ 𝑠𝐼(𝑗)) can thus be obtained from 𝜇𝐶𝑗 (𝑠𝐶𝑗 ) for each 
𝑗 ∈𝑁 . The resulting MIP model is

max
∑
𝑣∈𝑁𝑉

∑
𝑠𝐶𝑣

∈𝑆𝐶𝑣

𝜇𝐶𝑣
(𝑠𝐶𝑣 )𝑢(𝑠𝑣) (2)

s.t. 
∑

𝑠𝐶𝑗
∈𝑆𝐶𝑗

𝜇𝐶𝑗
(𝑠𝐶𝑗 ) = 1, ∀𝑗 ∈𝑁 (3)

∑
{𝑠𝐶𝑖∈𝑆𝐶𝑖 ∣

𝑠𝐶𝑖∩𝐶𝑗 =𝑠
′
𝐶𝑖∩𝐶𝑗

}

𝜇𝐶𝑖
(𝑠𝐶𝑖 ) =

∑
{𝑠𝐶𝑗 ∈𝑆𝐶𝑗 ∣

𝑠𝐶𝑖∩𝐶𝑗=𝑠
′
𝐶𝑖∩𝐶𝑗

}

𝜇𝐶𝑗
(𝑠𝐶𝑗 ),

∀(𝐶𝑖,𝐶𝑗 ) ∈𝒜, 𝑠′
𝐶𝑖∩𝐶𝑗

∈ 𝑆𝐶𝑖∩𝐶𝑗 (4)

𝜇𝐶𝑗
(𝑠𝐶𝑗 ) = 𝜇

𝐶𝑗
(𝑠
𝐶𝑗
)ℙ(𝑠𝑗 ∣ 𝑠𝐼(𝑗)), ∀𝑗 ∈𝑁𝐶 ∪𝑁𝑉 , 𝑠𝐶𝑗

∈ 𝑆𝐶𝑗
(5)

𝜇𝐶𝑗
(𝑠𝐶𝑗 ) = 𝜇

𝐶𝑗
(𝑠
𝐶𝑗
)𝛿(𝑠𝑗 ∣ 𝑠𝐼(𝑗)), ∀𝑗 ∈𝑁𝐷,𝑠𝐶𝑗

∈ 𝑆𝐶𝑗
(6)

𝜇𝐶𝑗
(𝑠𝐶𝑗 ) ≥ 0, ∀𝑗 ∈𝑁,𝑠𝐶𝑗

∈ 𝑆𝐶𝑗
(7)

𝛿(𝑠𝑗 ∣ 𝑠𝐼(𝑗)) ∈ {0,1}, ∀𝑗 ∈𝑁𝐷,𝑠𝑗 ∈ 𝑆𝑗, 𝑠𝐼(𝑗) ∈ 𝑆𝐼(𝑗). (8)

The formulation (2)-(8) is an expected utility maximization problem 
where the decision variables in the model are 𝛿 and 𝜇 and parameters 
are 𝑢 and ℙ. In the objective function (2), 𝑠𝑣 is extracted from 𝑠𝐶𝑣 to 
evaluate the utility of each state combination of nodes in 𝐶𝑣 . For nota

tional brevity, we use 𝐶𝑗 = 𝐶𝑗 ⧵ {𝑗} to represent cluster 𝐶𝑗 without the 
root node 𝑗 in constraints (5) and (6) and 𝜇

𝐶𝑗
(𝑠
𝐶𝑗
) =

∑
𝑠𝑗∈𝑆𝑗 𝜇𝐶𝑗 (𝑠𝐶𝑗 )

to represent the marginal distribution for cluster 𝐶𝑗 with the node 𝑗
marginalized out in constraints (5) and (6).

Combined, constraints (3) and (7) state that the variables 𝜇𝐶𝑗 must 
represent valid probability distributions, with nonnegative probabilities 
summing to one. Constraint (4) enforces local consistency between ad

jacent clusters, meaning that for a pair 𝐶𝑖,𝐶𝑗 of clusters connected by 
an edge, the marginal distribution for the nodes in both 𝐶𝑖 and 𝐶𝑗 (that 
is, 𝐶𝑖 ∩ 𝐶𝑗 ) must be the same when obtained from either 𝐶𝑖 or 𝐶𝑗 . For 
example, for the RJT in Fig. 2, constraint (4) enforces that the joint 
probability distribution for 𝐻3 and 𝐷3 is the same when evaluated from 
clusters 𝐻3𝑇3𝐷3 and 𝐻3𝐷3𝐻4.

Constraint (6) enforces that 𝜇𝐶𝑗 (𝑠𝐶𝑗 ) either take value 0 or 𝜇
𝐶𝑗
(𝑠
𝐶𝑗
), 

depending on the decided strategy. Constraint (5) enforces that 𝜇𝐶𝑗 (𝑠𝐶𝑗 )
follows the defined conditional probability distribution for 𝑠𝑗 . For a 
more extensive explanation of the RJT model formulation, see [20].

It should be noted that constraint (6) involves a product of two vari

ables, and is thus not linear. Since we are limiting ourselves to settings 
with deterministic strategies (i.e., 𝛿(𝑠𝑑 ∣ 𝑠𝐼(𝑑)) ∶ 𝑆𝐼(𝑑)

⨉
𝑆𝑑 → {0,1}), 

these constraints become indicator constraints and can be efficiently 
handled by solvers such as Gurobi [9]. We note that this would not be the 
case for more general strategies of the form 𝛿(𝑠𝑑 ∣ 𝑠𝐼(𝑑)) ∶ 𝑆𝐼(𝑑)

⨉
𝑆𝑑 →

[0,1].
The number of constraints (4)-(6) grows exponentially with respect 

to the number of nodes within a single cluster. This highlights the need 
to find a gradual RJT representation where the clusters are as small as 
possible (i.e., with minimal treewidth).

3. Our contributions

3.1. Extracting the utility distribution

For problems with multiple value nodes, e.g., multi-stage decision 
problems, the expected utility has the property that the total expected 
utility is the sum of expected utilities in each value node. This property 
can be exploited in the solution process, and for this reason, many so

lution methods for IDs, including the RJT approach in [20], only tackle 
maximum expected utility (MEU) problems.
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In contrast, risk measures (such as CVaR) require that the full prob

ability distribution of the consequences is explicitly represented in the 
model. However, such representations are lost when the value nodes 
are placed in separate clusters, as in Fig. 2, since probability distribu

tions are only defined for each cluster separately. For example, in the 
pig farm problem described in Section 2.1, the joint distribution of 𝑉1
and 𝑉2 cannot be inferred from the probability distributions of clusters 
𝐶𝑉1

and 𝐶𝑉2 , as we cannot assume the probabilities of consequences in 
𝑉1 and 𝑉2 to be independent.

The issue can be circumvented by generating the RJT based on an 
alternative equivalent ID 𝐺 = (𝑁,𝐴) that collects all consequences un

der a single value node. We present Algorithm 1, which transforms an 
ID into a single-value-node diagram that is equivalent to the original ID 
in terms of how joint probabilities and utilities are calculated. First, we 
formalize the notion of equivalence between IDs in Definition 3.1.

Definition 3.1. We say that two IDs 𝐺1 = (𝑁1,𝐴1) and 𝐺2 = (𝑁2,𝐴2)
are equivalent if

(a) 𝐺1 and 𝐺2 share the same chance and decision nodes, and arcs to 
these nodes.

(b) There exists a bijection 𝑔 ∶ 𝑆𝑁1
→ 𝑆𝑁2

such that for any 𝛿(𝑠𝑑 ∣
𝑠𝐼(𝑑)),∀𝑑 ∈ 𝑁𝐷

1 , the following holds: 
∏

𝑛∈𝑁1
ℙ(𝑠𝑛 ∣ 𝑠𝐼(𝑛)) = ∏

𝑛∈𝑁2
ℙ(𝑠̄𝑛 ∣ 𝑠̄𝐼(𝑛)) and 

∑
𝑣∈𝑁𝑣

1
𝑢(𝑠𝑣) =

∑
𝑣∈𝑁𝑣

2
𝑢(𝑠̄𝑣), where 𝑠̄ = 𝑔(𝑠)

for each 𝑠 ∈ 𝑆𝑁1
.

Part (b) in Definition 3.1 implies that for each possible state com

bination of value nodes from one diagram (say, 𝐺1), an equivalent 
combination in the other diagram (𝐺2), that evaluates to the same prob

ability and utility, must exist. For instance, if a diagram 𝐺1 has two value 
nodes with two states each, an equivalent ID 𝐺2 could have one value 
node with four states that correspond to all possible combinations of the 
two value nodes in 𝐺1.

Algorithm 1 Single-value-node conversion.

1: Require 𝐺 = (𝑁,𝐴)
2: Initialize 𝐺 = (𝑁 = ∅,𝐴 = ∅)
3: Add 𝑁𝐶 ∪𝑁𝐷 to 𝑁
4: Set ℙ

𝐺
(𝑠𝑗 ∣ 𝑠𝐼(𝑗)) = ℙ𝐺(𝑠𝑗 ∣ 𝑠𝐼(𝑗)),∀𝑗 ∈𝑁𝐶

5: Add {(𝑎, 𝑏) ∈𝐴 ∣ 𝑏 ∈𝑁𝐶 ∪𝑁𝐷} to 𝐴
6: Create node 𝑣 such that 𝑆𝑣 =

⨉
𝑣∈𝑁𝑣 𝑆𝑣, add 𝑣∈𝑁

7: Add (𝑎, 𝑣) to 𝐴 for each 𝑎∈ 𝐼(𝑣) such that 𝑣∈𝑁𝑉

8: Set 𝑢(𝑠𝑣) =
∑

𝑣∈𝑁𝑉 𝑢(𝑠𝑣)
9: Set ℙ(𝑠𝑣 ∣ 𝑠𝐼(𝑣)) =

∏
𝑣∈𝑁𝑣 ℙ(𝑠𝑣 ∣ 𝑠𝐼(𝑣))

10: Return 𝐺

Proposition 3.2. Let 𝐺 = (𝑁,𝐴) be an ID with |𝑁𝑉 | > 1. An ID 𝐺 =
(𝑁,𝐴) constructed using Algorithm 1 is equivalent to 𝐺 (cf. Definition 3.1).

Proof. See Appendix A. □

When applying Algorithm 1 and transforming the ID into an RJT, ac

cording to Definition 2.1, part (c), we have that 
⋃

𝑣∈𝑉 𝐼(𝑣) ⊆ 𝐶𝑣̄, where 
𝑣̄ represents the unique value node in the new diagram. Consequently, 
the marginal probability distribution 𝜇𝐶𝑣̄ contains information on the 
joint probability distribution of the consequences ℙ(𝑠𝑣 ∣ 𝑠𝐼(𝑣)) and this 
can be used to expose the probability distribution of the utility values. 
Following this approach, the modified ID of the pig farm problem is 
presented in Fig. 3 and the corresponding gradual RJT in Fig. 4.

However, this incurs in computationally more demanding versions 
of model (2)-(8). In the single-value-node version of the pig farm prob

lem, all decision nodes 𝐷𝑘, 𝑘 = 1,2,3, are in the information set of 𝑉 . 
It follows from the running intersection property that 𝐷𝑘 must be con

tained in every cluster that is in the undirected path between 𝐶𝐷𝑘
and 

𝐻1 𝐻2 𝐻3 𝐻4 𝑉

𝑇1 𝑇2 𝑇3

𝐷1 𝐷2 𝐷3

Fig. 3. The pig farm problem reformulated ID. 

𝐻1 𝐻1𝑇1 𝐻1𝑇1𝐷1

𝐻1𝐷1𝐻2 𝐷1𝐻2𝑇2 𝐷1𝐻2𝑇2𝐷2

𝐷1𝐻2𝐷2𝐻3 𝐷1𝐷2𝐻3𝑇3 𝐷1𝐷2𝐻3𝑇3𝐷3

𝐷1𝐷2𝐻3𝐷3𝐻4 𝐷1𝐷2𝐷3𝐻4𝑉

Fig. 4. Gradual RJT of the reformulated pig farm problem. 

𝐶𝑣̄. Therefore, the clusters become larger as the parents of value nodes 
are ``carried over'', instead of evaluating separable components of the 
utility function at different value nodes. As discussed in [20], this in

creases the computational complexity of the resulting model.

3.2. Modifying the RJT

A single-value-node ID guarantees that the full probability distribu

tion of the consequences can be exposed in the MIP model to optimize 
or constrain different risk metrics. However, decision-makers may not 
only be interested in imposing risk constraints on consequences. For in

stance, in the pig farm problem, the farmer may want to impose chance 
constraints to ensure that pigs stay healthy throughout the breeding pe

riod with a certain likelihood. This requires that the joint probability 
distribution of the health states of a pig in all periods is available. That 
is, one needs an RJT that has a cluster containing all health status nodes 
𝐻1, ...,𝐻4, which is not found in the RJTs created with functions from 
[20] or with Algorithm 1 (Figs. 2 and 4).

A way to generate a cluster that exposes the desired probability dis

tribution is to directly modify an RJT obtained following [20] while 
ensuring that the modified RJT fulfils Definition 2.1. Assume that there 
exists a topological ordering among the nodes of the RJT 𝒢 = (𝒱,𝒜). 
Suppose one wants to create a cluster that exposes the joint probabil

ity distribution of nodes 𝑀 ⊆𝑁 . Then, one needs to generate an RJT 
𝒢 = (𝒱̄,𝒜) such that ∃𝐶 ′

𝑣
∈ 𝒱̄ such that 𝑀 ⊆ 𝐶 ′

𝑣
. Let ≼ represent a 

topological order of the nodes 𝑁 and max≼𝑀 return the node with the 
highest topological order in set 𝑀 . Let

𝑃 (𝐶1,𝐶𝑘) ∶= {𝐶𝑗 ∈𝒱 ∣ ∃(𝐶1, ...,𝐶𝑗 , ...,𝐶𝑘)

with (𝐶𝑙,𝐶𝑙+1) ∈𝒜,∀𝑙 ∈ {1,… , 𝑘}}

be the set of clusters that are contained on any directed path be

tween clusters 𝐶1 and 𝐶𝑘 (including themselves). Let 𝐹 (𝑗) ∶= {𝑘 ∈𝑁 ∣
𝑃 (𝐶𝑗,𝐶𝑘) ≠ ∅} be the set of nodes, whose root cluster can be reached 
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𝐻1 𝐻1𝑇1 𝐻1𝑇1𝐷1 𝐷1𝑉1

𝐻1𝐷1𝐻2 𝐻1𝐻2𝑇2 𝐻1𝐻2𝑇2𝐷2 𝐷2𝑉2

𝐻1𝐻2𝐷2𝐻3 𝐻1𝐻2𝐻3𝑇3 𝐻1𝐻2𝐻3𝑇3𝐷3 𝐷3𝑉3

𝐻1𝐻2𝐻3𝐷3𝐻4 𝐻4𝑉4

Fig. 5. Gradual RJT for pig farm problem with a cluster that contains nodes 
𝐻1, ...,𝐻4.

via a directed path starting from cluster 𝐶𝑗 . Then, Algorithm 2 leads to 
an RJT with the desired structure, as stated in Proposition 3.3.

Algorithm 2 RJT modification.

1: Require 𝑀 ⊆𝑁 , topological order ≼
2: Initialize 𝒢 = (𝒱̄,𝒜) equal to 𝒢 and denote 𝐶 ′

𝑛
as the root cluster of 𝑛 ∈𝑁

in 𝒢
3: Find 𝑚=max≼𝑀
4: For 𝑛∈𝑀 ⧵ {𝑚} such that 𝑛∉ 𝐶𝑚 do:

5: If 𝑚 ∉ 𝐹 (𝑛)
6: Find 𝑒=𝑚𝑎𝑥≼{𝑗 ∈𝑁 ∣ 𝑛,𝑚 ∈ 𝐹 (𝑗)}
7: Find 𝑔 ∈𝑁 such that (𝐶𝑒,𝐶𝑔) ∈𝒜,𝑚 ∈ 𝐹 (𝑔), 𝑛∉ 𝐹 (𝑔)
8: Set 𝐶 ′

𝑒
∩𝐶 ′

𝑔
∈ 𝐶 ′

𝑐
,∀𝐶 ′

𝑐
∈ 𝑃 (𝐶𝑒,𝐶𝑛)

9: Set (𝐶 ′
𝑒
,𝐶 ′

𝑔
) ∉𝒜, (𝐶 ′

𝑛
,𝐶 ′

𝑔
) ∈𝒜

10: Set 𝑛 ∈ 𝐶 ′
𝑎
,∀𝐶 ′

𝑎
∈ 𝑃 (𝐶 ′

𝑛
,𝐶 ′

𝑚
)

11: Return 𝒢

Proposition 3.3. Assume that an RJT 𝒢 = (𝒱,𝒜) satisfies Definition 2.1. 
The RJT 𝒢 = (𝒱̄,𝒜) generated from 𝒢 using Algorithm 2 satisfies Defini

tion 2.1.

Proof. See Appendix A. □

As an example, we can apply Algorithm 2 to the RJT in Fig. 2, which 
is created by a function given in [20], to include a cluster that contains 
nodes 𝐻1, ...,𝐻4. The output of Algorithm 2 is the diagram presented in 
Fig. 5. The cluster that exposes the desired joint probability distribution 
for nodes 𝐻1, ...,𝐻4 is the root cluster of 𝐻4. A more detailed example 
of applying Algorithm 2 can be found in Appendix A.

3.3. Imposing chance, logical, and budget constraints

Our proposed developments allow one to expose the joint probabil

ity distribution of any combination of nodes in the ID, which in turn, 
enables the formulation of a broad range of risk-aversion-related con

straints.

Chance constraints for the joint probability of nodes 𝑀 ⊆𝑁 can be 
imposed on the marginal probability distribution of a cluster 𝐶𝑛 such 
that 𝑀 ⊆ 𝐶𝑛. If no such cluster exists in the generated RJT, a suitable 
cluster can be created with Algorithm 2, or regenerating the RJT based 
on an ID created with Algorithm 1 if 𝑀 only contains value nodes and 
their parents. Then, chance constraints can be imposed as follows:

∑
𝑠𝐶𝑛

∈𝑆𝐶𝑛 ∣𝑠𝑛∈𝑆
𝑜
𝑛

𝜇(𝑠𝐶𝑛 ) ≤ 𝑝, (9)

where 𝑆𝑜
𝑛

is the set of outcomes that the decision maker wishes to con

strain and 𝑝 ∈ [0,1] represents a threshold. For instance, assume that a 
decision-maker wishes to enforce that the probability of the payout of 
the process being less than some fixed limit 𝑏 is at most 𝑝. Then, a suit

able RJT can be generated based on an ID created with Algorithm 1. 
Constraints can then be enforced for the root cluster of the single value 
node 𝐶𝑣̄ and 𝑆𝑜

𝑣̄
would contain all states 𝑠𝑣̄ such that 𝑢(𝑠𝑣̄) < 𝑏. Note that 

this formulation can be enforced for any cluster 𝐶𝑘 such that 𝑀 ⊆𝐶𝑘.

Logical constraints can be seen as a special case of chance con

straints. For example, in the pig farm problem (in Section 2), the farmer 
may wish to attain an optimal decision strategy while ensuring that the 
number of injections is at most two per pig due to, e.g., potential side 
effects. Then, 𝑆𝑜

𝑣̄
would contain all realizations of the nodes in 𝐶𝑣̄ that 

would lead to a violation of the constraint, i.e., the state combinations in 
which three injections would be given to a pig. In that case, constraint 
(10) that makes these scenarios infeasible could be imposed.

∑
𝑠𝐶𝑣̄

∈𝑆𝐶𝑣̄ ∣𝑠𝑣̄∈𝑆
𝑜
𝑣̄

𝜇(𝑠𝐶𝑣 ) ≤ 0. (10)

Budget constraints are analogous to logical constraints, as the farmer 
could instead have an injection budget, say 200 DKK per pig. Then, 
𝑆𝑜
𝑣̄

should contain all states 𝑠𝑣̄, where more than 200 DKK is used for 
treating a pig, with the constraint enforced similarly as in (10).

3.4. Conditional value-at-risk (CVaR)

In addition to a number of risk constraints, the proposed reformula

tions also enable the consideration of alternative risk measures. Next, we 
focus our presentation on how to maximize CVaR, given its widespread 
adoption in the context of decision making under uncertainty. How

ever, we highlight that other risk metrics, such as absolute or lower 
semi-absolute deviation [22], or the entropic risk measure [7] can, in 
principle, be used.

The proposed formulation for CVaR maximization is analogous to the 
method developed for decision programming in [22]. It assumes that the 
joint probability distribution of utility values is available, and hence, an 
RJT generated based on the single-value-node representation of the ID 
is sufficient for generating a suitable cluster. Let us assume that the deci

sion problem has a single value node 𝑣̄with possible utility values 𝑢 ∈𝑈 . 
Let 𝑝(𝑢) be the probability of attaining utility value 𝑢. In the presence 
of a single value node, we would define 𝑝(𝑢) =

∑
𝑠𝐶𝑣̄

∈𝑆𝐶𝑣̄ |𝑈 (𝑠𝐶𝑣̄ )=𝑢
𝜇(𝑠𝐶𝑣̄ )

and pose the constraints

𝜂 − 𝑢 ≤𝑀𝜆(𝑢), ∀𝑢 ∈𝑈 (11)

𝜂 − 𝑢 ≥ (𝑀 + 𝜖)𝜆(𝑢) −𝑀, ∀𝑢 ∈𝑈 (12)

𝜂 − 𝑢 ≤ (𝑀 + 𝜖)𝜆(𝑢) − 𝜖, ∀𝑢 ∈𝑈 (13)

𝜂 − 𝑢 ≥𝑀(𝜆(𝑢) − 1), ∀𝑢 ∈𝑈 (14)

𝜌(𝑢) ≤ 𝜆(𝑢), ∀𝑢 ∈𝑈 (15)

𝑝(𝑢) − (1 − 𝜆(𝑢)) ≤ 𝜌(𝑢) ≤ 𝜆(𝑢), ∀𝑢 ∈𝑈 (16)

𝜌(𝑢) ≤ 𝜌(𝑢) ≤ 𝑝(𝑢), ∀𝑢 ∈𝑈 (17)∑
𝑢∈𝑈

𝜌(𝑢) = 𝛼 (18)

𝜆(𝑢), 𝜆(𝑢) ∈ {0,1}, ∀𝑢 ∈𝑈 (19)

𝜌(𝑢), 𝜌(𝑢) ∈ [0,1], ∀𝑢 ∈𝑈 (20)

𝜂 ∈ℝ, (21)

where 𝛼 is the probability threshold in VaR𝛼 . Table 1 describes which 
values the decision variables take due to the constraints (11)-(21). 
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Table 1
Variables and the corresponding values that 
satisfy (11)-(20).

Variable Value 
𝜂 VaR𝛼

𝜆(𝑢) 1 if 𝑢 < 𝜂

𝜆(𝑢) 0 if 𝑢 > 𝜂

𝜌(𝑢) 0 if 𝜆(𝑢) = 0, 𝑝(𝑢) otherwise 

𝜌(𝑢)
⎧⎪⎨⎪⎩

𝑝(𝑢) if 𝑢 < 𝜂,

𝛼 −
∑

𝑢∈𝑈 𝑝(𝑢) if 𝑢 = 𝜂,

0 if 𝑢 > 𝜂 (𝜆̄(𝑢) = 0)

In constraints (11)-(20), 𝑀 is a large positive number and 𝜖 is a small 
positive number. The parameter 𝜖 is used to model strict inequalities, 
which cannot be directly used in mathematical optimization solvers. 
For example, 𝑥 ≥ 𝜖 is assumed to be equivalent to 𝑥 > 0. In practice, it 
is enough to set 𝜖 strictly smaller than the minimum difference of dis

tinct utility values. In [22], the authors use 𝜖 = 1
2 min{|𝑈 (𝑠𝑣) −𝑈 (𝑠′

𝑣
)| ∶

|𝑈 (𝑠𝑣) − 𝑈 (𝑠′
𝑣
)| > 0, 𝑠𝑣, 𝑠′𝑣 ∈ 𝑆𝑣}. When 𝜆(𝑢) = 0, constraints (11) and 

(12) become −𝑀 ≤ 𝜂 − 𝑢 ≤ 0, or 𝜂 ≤ 𝑢. When 𝜆(𝑢) = 1, they instead be

come 𝜖 ≤ 𝜂−𝑢 ≤𝑀 , or 𝜂 > 𝑢. Constraints (13) and (14) can be examined 
similarly to obtain the results in Table 1.

The correct behaviour of variables 𝜌(𝑢) is enforced by (16) and (17). 
If 𝜆(𝑢) = 0, constraint (16) forces 𝜌(𝑢) to zero. If 𝜆(𝑢) = 1, then 𝜌(𝑢) =
𝑝(𝑢). Finally, assuming 𝜂 is equal to VaR𝛼 and 𝜌(𝑢) equal to 𝑝(𝑢) for all 
𝑢 < 𝜂, the value of 𝜌(𝑢) must be 𝛼 −

∑
𝑢∈𝑈 𝜌(𝑢) for 𝑢 = 𝜂. It is easy to see 

that 𝜂 must be equal to VaR𝛼 for there to be a feasible solution for the 
other variables. For an equivalence proof, see Salo et al. [22, Appendix 
A].

By introducing constraints (11)-(20), the CVaR for a probability 
threshold 𝛼 (𝐶𝑉 𝑎𝑅𝛼) can then be obtained as

𝐶𝑉 𝑎𝑅𝛼 =
1 
𝛼

∑
𝑢∈𝑈

𝜌(𝑢)𝑢.

This can be either used as in the objective function or as a part of the 
constraints of the problem. We also note that the described approach is 
very versatile in that 𝑢 can be selected to be, e.g., a stage-specific utility 
function, thus allowing us to limit risk in specific stages of a multi-stage 
problem. Krokhmal et al. [15] discusses the implications of stage-wise 
CVaR constraints in detail.

4. Computational experiments

To assess the computational performance of the model (2)-(8), we 
use the pig farm problem described earlier. We compare two different 
versions of the pig farm problem: one with the RJT formulation and the 
other with the decision programming formulation from [10]. An addi

tional computational example and an analysis of the resulting model 
sizes from each formulation can be found in Appendix A. All problems 
were solved using a single thread on an Intel E5-2680 CPU at 2.5 GHz 
and 16 GB of RAM, provided by the Aalto University School of Sci

ence ``Science-IT'' project. The models were implemented using Julia 
v1.10.3 [1] and JuMP v1.23.0 [5] and solved with the Gurobi solver 
v11.0.2 [9]. The code and data used in this section are available at 
www.github.com/gamma-opt/risk-averse-RJT.

4.1. Risk-averse pig farm problem

A risk-averse version of the pig farm problem, which maximizes 
CVaR for an 85%-confidence level (i.e., 𝛼 = 0.15 as we wish to maxi

mize CVaR) is solved for different numbers of breeding periods. We use 
the RJT based on the single-value-node ID from Fig. 4 to create the op

timization model and add the constraints described in Section 3.4 to 
represent CVaR. The solution times using our RJT-based formulation 
are compared to the solution times derived using the decision program

ming formulation from [10]. For practical reasons, we solve the same 

Fig. 6. Mean solution times and standard deviations (bars) for 50 random in

stances in the risk-averse pig farm problem with 2-5 breeding periods on a 
logarithmic scale.

single-value-node version of the pig farm problem to compare the solu

tions. In practice, decision programming can maximize CVaR in IDs with 
any number of value nodes. However, decision programming creates the 
exact same MILP model regardless of the number of value nodes.

The solution times of 50 randomly generated instances of the risk

averse pig farm problem with different sizes are presented in Fig. 6. The 
RJT-based formulation consistently offers better computational perfor

mance than decision programming for the pig farm problem. In larger 
pig farm instances, the RJT-based formulation is three orders of mag

nitude faster than the decision programming formulation. However, 
the RJT-based formulation still grows exponentially with respect to the 
number of breeding periods, which could result in computational chal

lenges for larger instances. Still, this exponential growth of the RJT 
model can be seen as a worst-case scenario, while many problems, 
including the original pig farm problem (Fig. 1), exhibit treewidth in

dependence of the number of stages. In contrast, for decision program

ming, as discussed in [10], the number of constraints is exponential in 
the number of nodes.

4.2. Chance-constrained pig farm problem

In addition, we analyze the computational performance of our for

mulations on a chance-constrained version of the pig farm problem with 
different numbers of breeding periods. We use the RJT in Fig. 5 and 
assign chance constraints to the root cluster of 𝐻4 enforcing that the 
probability of a pig being ill at any time during the breeding period 
must be less than 40%. Chance constraints are enforced as described in 
Section 3.3. In Fig. 7, we compare the results by solving the same prob

lem with decision programming [10].

The optimization model created based on RJT solves the chance

constrained problem faster than the corresponding decision program

ming model. In accordance with the results of the risk-averse pig farm 
problem, RJT is an order of magnitude faster than the corresponding 
decision programming model.

5. Conclusions

In this paper, we have described a MIP reformulation of decision 
problems presented as IDs, originally proposed in [20]. Our main con

tribution is to extend the modelling framework proposed by Parmentier 
et al. [20] to embed it with more general modelling capabilities. We il
lustrate how chance constraints and CVaR can be incorporated into the 
formulation. We demonstrate how suitable RJTs can be generated, ei

ther by modifying the underlying ID (Algorithm 1) or directly modifying 
the RJT (Algorithm 2).

https://github.com/gamma-opt/risk-averse-RJT
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Fig. 7. Mean solution times and standard deviations (bars) for 50 random in

stances in the chance-constrained pig farm problem with 2-5 breeding periods 
on a logarithmic scale.

We show that the model in [20] can be extended beyond expected 
utility maximization problems to incorporate most of the constraints 
and objective functions present in decision programming, the alternative 
MILP reformulation based on LIMIDs described by Salo et al. [22] and 
Hankimaa et al. [10]. The advantage of using the models described in 
this paper is that, in terms of model size, decision programming models 
grow exponentially with respect to the number of nodes, whereas the 
RJT model grows exponentially with respect to treewidth, which is only 
indirectly influenced by the number of nodes.

We also present computational results comparing the computational 
performance of decision programming and our extension of the RJT 
model when applied to risk-averse and chance-constrained variants of 
the pig farm problem. The computational results indicate that risk

averse decision strategies for IDs can be solved considerably faster by 
using the RJT formulation.

Although this paper furthers the state-of-the-art for MIPs solving risk

averse IDs, typically the resulting MIP is a large-scale model, which in 
turn limits the size of the problems that can be solved. Hence, future 
research should concentrate on improving the computational tractabil

ity of the MIP model by developing specialized decomposition methods 
and more efficient formulations.
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