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Abstract—The operating landscape for electricity producers
has changed profoundly as new reserve markets have emerged
and intraday trading volumes have increased substantially. Thus,
the day-ahead market is no longer the sole focus of generation
companies. As multi-market participation becomes widespread
and discussions around market design intensify, it is pertinent
to understand optimal strategies in this environment, especially
how they contrast with traditional day-ahead market-focused
strategies. Therefore, we analyse multi-market and day-ahead-
focused offer strategies of a hybrid producer. Specifically, offers
are optimised for the day-ahead market, the up-regulating
frequency containment for the disturbances market, and intraday
trading using stochastic programming. We find that up-regulating
reserve-market participation reduces day-ahead market par-
ticipation as expected. However, as this effect only manifests
at higher bid prices, this behaviour could be misconstrued
as market manipulation. Furthermore, we observe undesirable
effects resulting from the model structure that lead to strategies
optimising price arbitrage and generating intentional imbalances.

Index Terms—Coordinated Multi-Market Offering, Energy
Economics, Hybrid Producers, Nordic Electricity Markets,
Stochastic Optimisation

I. INTRODUCTION

The expansion of variable renewable energy (VRE) genera-
tion has amplified the need for and the importance of ancillary
services [1]. This has fostered the emergence of new reserve
markets from where transmission system operators (TSOs)
procure resources to maintain grid stability. Additionally, the
significant capacity of intermittent generators in the grid has
increased the need for post-day-ahead market adjustments, due
to which traded volumes in intraday markets have grown [2].
With the opportunities presented by these new reserve markets
and more liquidity in intraday markets, the operating field of
electricity producers has changed profoundly.

Producers have thus become increasingly interested in
participating in multiple markets as opposed to seeing the
day-ahead market as the sole short-term revenue stream.
However, forming offers for multiple sequentially cleared
markets is challenging as the decision-making process involves
many uncertainty factors and constraints [3]. Assuming the
viewpoint of a price-taker generation company (GenCo), the
uncertainties are related to market prices, market liquidity,
and VRE generation, and the constraints are associated with
the technical operation of generators, market design, and
possibly regulation. Moreover, evaluating opportunity costs
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between temporally separated markets under uncertainty is not
straightforward. These challenges motivate the use of offer-
strategy optimisation models.

In the literature, numerous models for optimising multi-
market offer strategies have been proposed for different con-
texts and under various assumptions, and many have leveraged
a multi-stage stochastic programming framework. Typically,
these models are used to evaluate the profitability of par-
ticipating in certain markets, and a recent direction has also
been to evaluate the benefits of coordinating offer strategies
across multiple markets as opposed to the traditional practice
of optimising offers sequentially. For example, the authors
in [4] evaluated the coordination benefits of trading in day-
ahead and intraday markets for a Norwegian hydropower plant
and concluded the benefits to be negligible at the time. In
more recent studies, [5] and [6] also modelled the bidding of
Norwegian hydropower producers, focusing however on the
day-ahead and balancing markets. Both studies found benefits
in participating in the balancing markets with a coordinated
approach, even though [6] concluded that using a coordinated
strategy is not worthwhile in the current market situation. In
addition to the day-ahead and balancing markets, authors in
[7] included the frequency containment reserve for normal
operation (FCR-N) market in their model and studied whether
the coordination benefits were dependent on the portfolio size.

The aforementioned studies are all limited to hydropower,
which implies that the generators do not face production uncer-
tainty in the short term. Thus, they do not face a natural risk of
imbalances. In contrast, the authors in [8] modelled the optimal
self-scheduling of a wind-power producer with inherent uncer-
tainty in production. The context was the Spanish forward,
day-ahead, and ancillary markets, and they concluded that
participating in multiple markets increases expected profits.
In addition to VRE technologies, [9] modelled dispatchable
technologies of producers with hybrid portfolios in the Iberian
day-ahead, intraday, and balancing markets. They found that
considering the intraday markets yielded a significant increase
in profits when compared to only participating in the day-
ahead and balancing markets. The authors of [10] and [11]
also studied coordination benefits, evaluating the value of co-
ordinated offers of a hybrid portfolio as opposed to offering the
resources separately. They found that a coordinated offering
of a hybrid portfolio is more profitable. Recently, the authors
in [12] optimised bids for a hybrid portfolio with VRE and

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on August 21,2025 at 13:29:49 UTC from IEEE Xplore. Restrictions apply.



dispatchable generators in the day-ahead, intraday and reserve
markets in Germany with a focus on the effect of risk-aversion
on the optimal trading strategy.

As illustrated above, the offer-strategy optimisation litera-
ture mainly focuses on the profitability of different strategies
in multi-market settings. However, as the adoption of these
multi-market offer strategies for complex hybrid portfolios
increases and the discussion around market design intensifies,
it is pertinent to understand optimal strategies within this
environment, especially how they contrast with traditional
day-ahead market-focused ones. In fact, this discussion has
been explored by the authors in [6] and [12]. Specifically, the
authors in [6] inspected the shifts in day-ahead offer curves
when coordinating offers for the day-ahead and balancing
markets, contrasting to considering the day-ahead market only.
The authors in [12] analysed the optimal positions of a GenCo
in a day-ahead, intraday, and reserve market setting, evaluating
how the profit distributions across different markets change
when different risk preferences are considered.

Our work contributes to the discussion on the effects of
multi-market participation on the day-ahead offer strategies of
a GenCo owning a hybrid portfolio comprising dispatchable
and VRE generators. Methodologically, we devise a stochastic
programming model to analyse the effects of multi-market
participation by assessing optimal day-ahead offer curves
of the hybrid producer in the day-ahead, intraday, and up-
regulating frequency containment reserve for disturbances
(FCR-D) markets. We assume that the participant does not act
in balancing markets but incurs imbalance settlement costs
if their generation deviates from market commitments. Our
analysis and discussion provide insights into how the inherent
decision of withholding capacity from the day-ahead market
in favour of participating in the reserve market could be
misinterpreted as market manipulation, as well as the impact
of the challenges in modelling the imbalance stage may
inadvertently lead to illegal trading behaviour.

II. OFFER-STRATEGY OPTIMISATION MODEL

This section presents an offer-strategy optimisation model
for a price-taker GenCo with a hybrid power production port-
folio comprising wind turbines, hydropower, and combined
cycle gas turbine (CCGT) generators.

A. Market Structure

The GenCo considered in this work participates in the day-
ahead, intraday, and the Finnish up-regulating FCR-D markets.
The day-ahead market is organised daily for the 24 hours of
the following day and cleared at noon with a uniform market-
clearing price. Producers submit pairwise-linked price-quantity
offers, and the linear interpolation of these price steps forms
an offer curve. Intraday trading occurs after the day-ahead
market is cleared on markets with continuous matching and
three intraday auctions. The Finnish TSO organises a market
for up-regulating FCR-D for all delivery hours of the following
day. This market closes at 17:30 CET [13]. The offers to the
market consist of capacity-price pairs. A producer may submit

multiple offers, which are processed separately and, hence,
effectively form an increasing step curve. Although the Nordic
TSOs currently use a one-price imbalance settlement system,
in this work, we model the two-price imbalance settlement
system that was in place until November 2021. The two-price
imbalance settlement system is outlined in [14].

B. Scenario Structure

The model incorporates two decision stages. In the first
stage, the day-before-delivery decisions are optimised. These
include optimising offers for the day-ahead and up-regulating
FCR-D markets. The second stage comprises the day-of-
delivery decisions. These include the possibility of the GenCo
submitting one buy or sell order per delivery hour to the intra-
day markets. In reality, GenCos are able to make several orders
in intraday markets, but this restriction was made to contain
the complexity of the model. In addition to intraday trades,
the production planning of the GenCo’s units is modelled in
the second stage. Uncertainty is modelled using a scenario
tree, where each node in the tree comprises values for all 24
delivery hours. After the first-stage decisions, the day-ahead
and up-regulating FCR-D market prices are observed, and
commitments to both markets are determined for each price
scenario s € S. Each scenario s € S corresponds to a set
of intraday market price scenarios, £. Second-stage decisions
are modelled for each scenario e € £. The leaf nodes of
the scenario tree correspond to the real-time realisations of
wind availability and balancing prices, w € 2. Due to the
observation of wind availability, this is also the stage where
the imbalances of the GenCo are determined. An illustration
of the scenario tree is provided in the Appendix.

C. Profit-Maximising Objective Function

The objective function maximises the expected profit from
the strategy over all delivery hours t € T for a single day.
More specifically, it is defined as
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In the objective function (1), 7, 7¥ and 7 denote probabil-
ities defined over the scenario sets S,& and €2, respectively.
Terms (la) capture revenue from day-ahead market commit-
ments y;s sold at prices pys, revenue from capacity fees ;s
received for reserved capacity 7,5 and revenue or costs from
trades 2z in the intraday markets at prices @ys.. Terms (1b)
and (1c) capture the production costs incurred from the start-up
of the hydropower generator and costs from running, starting
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up and shutting down the CCGT. The superscripts of the cost
parameters differentiate the specific costs. Letters H and C'
denote the hydropower and CCGT generators, respectively.
Binary variables g, uf'®" and u'°? represent the on-off
state, start-up, and shutdown of units. Terms (1d) denote
the opportunity cost associated with hydropower generation,
modelled using a future water value function (shown in the
Appendix), analogous to [15]. The value of water level [ in
the reservoir is given by the water value function V' (1), with
lp denoting initial water levels and Ir .. standing for final
water levels in scenario (s,e) € (S,€). Finally, terms (le)
capture the revenue from the imbalance settlement. In a two-
price imbalance settlement system, the GenCo receives the
down-regulation price )\fsew for excess energy and is charged
the up-regulation price A, for deficits. Depending on the
system state, one of these prices is always equal to the day-
ahead price, and the inequality A, < pis < Ar..,, holds for
all hours ¢ € 7 and scenarios s € S. The positive and negative
imbalances of the GenCo for each hour ¢t € T are denoted by

nonnegative variables A and Aj,__, respectively.

D. Offering and Imbalance Constraints

The day-ahead offer curve is formulated according to [15]
with [ price steps. To avoid a non-linear formulation, the prices
p; for each offer 7 € 7 are fixed. These prices are ordered
such that p; < p;41 for all ¢ € Z \ I. The offer quantities
are denoted by nonnegative continuous variables x;; for all
i € I,t € T, that capture the total quantity offered at prices
up to p;. Since the market regulations require that the offer
curve must be increasing, the following constraint is imposed
on these variables:

VieI\{I},teT. )

The day-ahead market commitment for each hour ¢ € 7 and
scenario s € § is derived using the market-clearing price pys.
The commitment is determined by the intersection of the offer
curve and the market price, given as
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The GenCo submits J up-regulating capacity offers to the

reserve market. The offer quantities are denoted by v;; for all

j € J,t €T and the corresponding prices are ordered such

that p; < p;+1 for all j € J \ J. The committed reserve

capacity 75 is the sum of all cleared offers for hour ¢ in
scenario s, i.e.,
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Furthermore, the GenCo cannot bid more than its generation
capacity, which is given as the sum of its CCGT, hydro and
wind capacities: C¢,CH and C". This is imposed as

zre+ Y vpdt < (CO+CTHCMydt VT, (5)
JjeJ
where the one-hour time interval, dt, is used for the power-
energy conversion. Moreover, the GenCo cannot generate and
reserve more than its capacity. Therefore,

Yps + risdt < (CC+CH +CWdt VteT,seS,ecé.

(6)
Reserve commitments must be fulfilled by the hydropower and
CCGT generators. Thus,

rie =1l 4l VteT,s€S,ecé, (7

where variables /7 and S, denote reserve capacity provided
by the hydropower and CCGT generators, respectively.

Intraday trades are denoted by real-valued variables z;5.. A
positive value of z;,. represents selling energy and a negative
value represents buying energy. Similarly as was done in [4]
and [12], a limit on intraday trading is imposed. The limit is
specified as a percentage, «, of the total installed capacity of
the GenCo as in (8).

| ztse | < a(CO+CH +C™)dt VteT,se€S,ec&. (8)

Along with day-ahead and reserve commitments, intraday
trading cannot exceed the maximum generation capacity in
any scenario. Therefore,

Yestrisditzise < (CCH+CH+CW)dt VieT,seS,ecé.

€))
The generation company’s imbalance is defined as
Az.rsew - At;ew = gg’e + gge + gg/}:ew - (yts + Ztse) (10)

VieT,seS,ec & ,weEq,

where g<_, gfl. and g}V, denote the real-time generation of
the CCGT, hydropower and wind-powered generators, respec-
tively. The restriction of only one of the imbalance variables
being non-zero at a time is handled in a post-optimisation
procedure, described in the Appendix. The procedure finds
the optimal solution with the least imbalances out of possible
degenerate solutions. Furthermore, valid inequalities (shown in
the Appendix) are introduced to bound imbalances according
to [16].

E. Operational constraints

The constraints characterising the operation of the hy-
dropower, CCGT, and wind units are included in the Appendix.
The hydropower, CCGT generator, and wind power constraints
are adapted from [15], [17] and [18], and [16], respectively.
The hydropower and CCGT generators are dispatchable units,
but the wind power output is uncertain. The wind unit has a
maximum generation level modelled using a capacity factor
over the installed capacity. The capacity factor encodes the
exogenous uncertainty related to wind availability, and thus,
multiple scenarios are considered for this parameter.
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III. NUMERICAL ANALYSIS

In our numerical analysis, the model is optimised using a
scenario tree comprising 180 scenarios. Ten day-ahead and re-
serve prices were chosen from historical data from years 2022
and 2023 based on covariate information, such as temporal
and market-setting information so that they are representative
of winter-season weekdays. Six intraday prices were sampled
from these chosen days, and distributions with three values for
wind and balancing price realisations were generated around
their true values. The historical data was retrieved from the
ENTSO-E Transparency Platform [19], Fingrid’s open data
sets [20]-[22], and intraday trading data was received from
Nord Pool.

Production parameters were chosen such that the GenCo’s
portfolio comprises a 170 MW CCGT unit, a 100.8 MW
hydropower unit, and 40 MW of wind power. The startup and
shutdown costs of the generators are assumed to be negligible,
and the water value function is modelled as a single linear
function. We consider 34 price steps for the day-ahead offer
curve and 17 price steps for the reserve offer curve, chosen
such that they cover a plausible price range.

The model was implemented using JuMP [23] in Julia and
solved using Gurobi 11.0.2. The experiments were run on a
MacBook Air with an Apple M3 chip and 16 GB of memory.

A. Effects of Reserve Market Participation

To evaluate the effects of a multi-market strategy on day-
ahead offers, we analysed three experimental set-ups:

(1) Day-ahead market only: Optimising the model with
only the day-ahead market.

(2) Day-ahead and reserve markets coordinated: Opti-
mising day-ahead and up-regulating FCR-D offers.

(3) All markets coordinated: Optimising decision-making
in all three markets in a coordinated manner.

Fig. 1 displays the day-ahead offer curves of strategies (1),
(2) and (3) for a representative hour and exposes interesting
effects of coordinated offers for multiple markets. The day-
ahead offer curve from strategy (1) functions as the base
case, representing traditional day-ahead focused bidding. We
notice that strategies (2) and (3) withhold capacity compared to
strategy (1) as expected since part of the capacity is allocated
to the reserve market. However, perhaps unintuitively, the
capacity is only withheld in scarcity situations, reflected by
high prices. This behaviour may be misconstrued as price
manipulation. However, in this case, it is explained by the
GenCo’s co-optimisation of the day-ahead and reserve market
offers. Pricing according to opportunity costs in sequentially
cleared markets is acceptable in the REMIT regulation [24].
Therefore, despite the resemblance to market manipulation,
scrutiny from a regulatory authority would be unwarranted in
this case. The authors in [6] observed a similar effect when
coordinating offers for the day-ahead and balancing markets.
They also observed the reverse effect when considering a
down-regulating reserve market: the optimal strategy was to
oversupply at low prices.
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Fig. 2. Day-ahead offer curves with strategies (2) and (3).

B. Effects of Intraday Trading and Imbalance Settlement

Fig. 2 shows optimal offer curves from strategies (2) and
(3) for a selected representative hour. We observe that, in
strategy (3), the offer curve is shifted to the right compared
to strategy (2), indicating that a larger capacity is offered at
lower prices. The shift is due to expectations regarding price
premiums between the day-ahead and intraday market: in this
particular hour, the expected intraday prices are lower than the
expected day-ahead price. Thus, strategy (3) oversells in the
day-ahead market and plans to buy part of their commitments
in the intraday market, in effect doing price arbitrage. Price
arbitrage is not illegal unless the extent of it is such that it
has an effect on market prices. This observation illustrates the
significance of constraint (8) in the model because it limits
the capacity that can be used for price arbitrage. However, we
recognise that a GenCo’s risk preferences may naturally steer
them away from betting on intraday markets, as shown in [12].

Note that, for this numerical analysis, intraday trades were
capped at 15 MW per hour by setting a = 0.05 in (8).
However, from Fig. 2, we notice a larger (higher than 15
MW) shift in the lower section of the offer curve. This
shift is partially explained by the fact that, in this particular
hour, the expected balancing prices reflected a down-regulation
period. Thus, the optimal (anticipated) strategy in this hour
is to oversell in the day-ahead market and make a profit
from a generation deficit. We observe this behaviour in all
strategies; however, the expected imbalances of the GenCo

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on August 21,2025 at 13:29:49 UTC from IEEE Xplore. Restrictions apply.



were largest using strategy (3). This is because in strategy (3),
intraday trading is used to increase price arbitrage with respect
to balancing prices. This occurs because, in a multi-stage
stochastic program, second-stage decisions (including intraday
trades) are made with more information on the balancing
prices, which are revealed in the leaf nodes of the scenario tree.
The opposite effects were found in hours where the expected
balancing prices reflected an up-regulation period.

Submitting an offer curve to the day-ahead market with
the intent of generating an imbalance violates Nordic balance
agreements. This could also be seen to give a misleading signal
of available supply, which is illegal under REMIT. Moreover,
this price arbitrage strategy leaves the GenCo exposed to
greater price risks in the imbalance-settlement stage. Note
that the modelled GenCo does not participate in the balancing
markets. Thus, since the offer strategies purposefully over- and
under-bid in an effort to perform price arbitrage, these optimal
offers are unsuitable for real-world implementation.

We must highlight that some studies attempt to mitigate
this behaviour by introducing constraints and penalties for
imbalances. Studies such as [4] and [6] model dispatchable
generators and constrain expected imbalances to be zero with
a constraint of the form

Z (A;;ew -

sE€ES,ecE,weN

An.,)=0 VteT. (1)

Note that this constraint may be unsuitable for portfolios with
VRE generators due to inherent uncertainty in output.

Another approach, taken in [12], where a hybrid portfolio
of dispatchable and VRE generators is modelled, replaces the
imbalance settlement terms in the objective and penalises all
imbalances with a penalty:

2.

teT ,s€S,ecE,we

+ A},

tsew)'

A(A;

penalty = Peew (12)

Fig. 3 illustrates day-ahead offer curves of strategy (2),
strategy (3), two novel versions of strategy (3): one with
constraint (11) and one where all imbalances are penalised
according to (12) for an expected up-regulation hour. For
expository purposes, the penalty price A was set to be higher
than all day-ahead price values in the scenario set. The offer
curves in Fig. 3 demonstrate that the way imbalances are
modelled significantly affects the optimal strategies, and that
introducing constraint (11) or penalties according to (12) both
steer the model not to under-bid in an expected up-regulation
hour. The model with the penalty offers the most capacity
at mid-range prices in this case. Out of these models, the
expected imbalances are the smallest with constraint (11) as
it sets them to zero. However, the total expected excess and
deficit generation Y s e meq TsTeTuw(Dfe, + Af,,) for
hours ¢ € T are the smallest, in fact near zero, when all
imbalances are penalised. Notably, in the other models, the
total expected deviations are approximately 100 times larger.
Thus, the strategy where all imbalances are penalised would
be the most straightforward to justify in light of regulations.
Furthermore, the small expected imbalances leave the GenCo
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Fig. 3. Offer curves for the day-ahead market with strategies (2) and
(3) with multiple approaches to imbalances.

significantly less exposed to risks associated with balancing
price fluctuations.

IV. CONCLUSION

Our work analyses the use of a stochastic programming
model for optimising a multi-market offer strategy for day-
ahead, intraday, and up-regulating FCR-D trading in the Eu-
ropean, specifically Finnish, context. Our contribution is that
we assess how coordinating offers in a multi-market setting
affects day-ahead trading and how these optimal strategies
align with regulations. The effects were analysed by inspecting
day-ahead offer curves. It was found that participating in
an up-regulating reserve market resulted in withheld capacity
from the day-ahead market at high prices, which resembles
behaviour attempting to manipulate the market.

Furthermore, we observed that this model structure finds
strategies that optimise price arbitrage, even planning inten-
tional generation imbalances to leverage imbalance settlement
prices. Deliberately planning generation imbalances violates
market agreements. Moreover, while price arbitrage is not
illegal, these strategies expose the producer to greater price
risk in the post-day-ahead markets. We note that similar effects
are likely to be observed if a one-price imbalance settlement
system is modelled instead.

A limitation of our study is that we did not assess what
the actual imbalances would be if the explored strategies
were implemented, as a multi-stage model does not determine
optimal decisions for second-stage decisions. Additionally, the
profitability levels of the strategies were not assessed. These
are questions left for further research. Furthermore, follow-on
research might evaluate the system-wide implications as multi-
market strategies become more prevalent among participants,
in contrast to day-ahead market-focused strategies.
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APPENDIX
A. Scenario Tree

Fig. 4 shows an illustrative scenario tree. The illustrated
scenario tree comprises two values for day-ahead and up-
regulating FCR-D prices, denoted by s € S. Followed by
two intraday prices per first-stage price realisation, denoted
by e € &, and three values for wind and balancing price
realisations per second-stage price realisation, denoted by
w € ). Therefore, the illustrated scenario tree comprises 12
scenarios.

In the numerical experiment, we considered ten values for
day-ahead and up-regulating FCR-D prices, then six intraday
prices for each of these scenarios, and finally, three values
for wind and balancing price realisations per price scenario.
Therefore, the scenario tree that we modelled comprised 10 x
6 x 3 = 180 scenarios in total.

Day before

Before operation After operation

1st decision stage Observe 2nd decision stage Observe

Decide offer day-ahead and Observe intraday wind realisation,
curves for day- — reserve market — prices, make — balancing prices,
ahead and FCR-D prices and intraday trades, and and determine
(up) markets commitments. plan production. imbalances

Fig. 4. Illustration of scenario tree.

B. Water Value Function

The water value function is used to calculate the value of
the water stored in the reservoir. It is approximated by a piece-
wise linear function, defined as

V(lx) = min {B}l; + By}, (13)
keK

where BY and B are coefficients of the linear functions k € K

that constitute the concave piecewise linear function, and [,

represents the water level in the reservoir at time ¢.

C. Post-Optimisation Procedure

The model may yield many optimal, degenerated solutions.
The degeneracy arises due to modelling the two-price im-
balance settlement system, where at least one of the up- or
down-regulation prices, A~ or AT, is equal to the day-ahead
market price. Thus, in some scenarios, the model may be
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indifferent between allocating energy to the day-ahead market
or generating an imbalance, if it receives the day-ahead price
for the imbalance. In these cases, the optimal solution may
have non-zero excess and deficit generation in a delivery hour,
such that both AT A~ > 0. For these degenerate solutions
there always exists an alternative optimal solution where the
difference between At and A~ is the same but only one of
the imbalances is non-zero. In the alternative optimal solution,
the quantity of energy that is reduced from both imbalances to
make one of them zero is allocated to the day-ahead market.
To deal with degeneracy and to ensure that only one of the
imbalances (AT or A7) can be positive at a time, we utilise
a post-optimisation procedure that finds the optimal solution
with the least imbalances.

In the post-optimisation procedure, once the optimisation
model is solved and the objective value is found, a con-
straint enforcing that the objective function is equal to this
objective value is added to the model. The objective is
seen in Equation (la)—(le), and we denote it in this section
with H(y7 Tz, uH,stoLrt7 uC’ uC,start7 uC‘,stop7 17 A+7 A_) To
prevent any unwanted numerical issues, this requirement can
be alternatively represented as

H(y, Tz, uH,start, uC7 uC‘,sta'r‘t7 uC,sto;z)7 l, A+, A_) > (14)
objective value — €,

where € is a small positive value. After this constraint is added,
the objective is changed so that imbalances are minimised.
Thus, the formulation of the optimisation problem is

min. 3> > D

Jr J—
(Atsew + Atsew)
teT s€S e€€ we

st (2)=(10), (14), (15)-(38).

This optimisation finds the optimal offer strategy that attains
the highest expected profit with minimal imbalances. This is
because constraint (14) ensures that the maximum expected
profit level found by the first optimisation model is not
compromised.

D. Valid Inequalities for Imbalances

Valid inequalities are formulated to form upper bounds on
the positive and negative deviations to get a tighter formu-
lation, thereby improving computational performance. These
constraints are adapted from [16]. The upper bounds are stated
as

Al < (CC+Cydt+ gV VteT,se€S,ec& weq,
(15)
Apop, < (CC+CH +CMYdtVt € T,s € S,e € E,w € Q.
(16)

E. Short-Term Hydropower Production

The hydropower generator model is adapted from [15] and
is defined as follows:

Uthe = Ut se + Ut —ulSP Ve T,s€8S,ec € (17)
Uphe > uptt™ Ve T,s€S,ecé& (18)
ufhe <1—ul'? VteT,s€S,ecé (19
ué{ = Uﬁit (20)
e =nfisedt VEeT,se€S,e€& 21
frse + il /m <ull F™® VteT,seS,ecé (22)
b F™" < froe VEET,s€S,e€& (23)
L™ <lyse < L™ NMteT,s€S,ecé (24)
lo=L"" (25)

ltse = lt—l,se - ftse - tsspei” + Ftindt vVt € T, ENS S, eef. (26)

Constraints (17)—(19) capture whether the hydropower gener-
ator is turned on or off and restrict it to be either on or off at
each time ¢ € T in each scenario (s,e) € (S, ). Constraint
(20) sets the generator’s initial state to UZ., € {0,1}.
Discharging water generates energy, which is modelled in (21).
Coefficient 7 captures the relationship between the rate of
discharge, f;s., and power, and accounts for the efficiency of
the generator. Constraints (22) and (23) define bounds for the
rate of discharge, f;se. The minimum and maximum discharge
capacities are denoted by F™"™ and F™%. Note that the
reserved capacity is assumed not to be activated. Thus, the
reserve provided by hydropower, 7, is only accounted for
in the upper bound for the rate of discharge. Constraint (24)
defines the limits for the water level in the reservoir, l;4.. The
storage level has lower and upper bounds L™" and L™,
respectively. Constraint (25) sets the reservoir’s initial storage
level to L™, The inter-temporal effect of discharging water
on the storage level is defined by constraint (26). The change
in water level is the result of discharging water f;., spill from
the reservoir fifei " and inflow F{", which is an exogenous
parameter.

F. CCGT Generation

The CCGT generator constraints are adapted from [17] and
[18]. The operation of the CCGT is modelled as follows:

ul, = utc_l’se + utc;’est”t - utc;,:top VieT,se€S,ec& (27)
upe >ulstet e TseS,ecé (28)
ugegl—ug’;w” Vte T,s€S,ecé& (29)
u§ = Ugnit (30)

Ve Tt <t <min{t+US,,T},s€S,ec& 31
(1= w2 ) > ugse

Vi€ T,t <t <min{t+US;,T},s€S,e€& (32)
oS, 1rCdt <ul,C%dt  VieT,scS,ec& (33)
ul, COGM At < g, VteT,se€S,ecé (34)
Ghoe = Gio1,0e > —ACYdt — w5 P (G — A)Cdt

VteT,s€S,ecé& (35)
Gtee — 9t-1.0e < ACTdt + ufl S (G™ — A)Cdt
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VieT,seS,ecf. (36)

Constraints (27)—(29) capture the state change when the
CCGT is turned on or off and restrict it to be either on or off
at each time ¢ € 7 in each scenario (s,e) € (S, &). Constraint
(30) sets the initial status of the generator to US,;, € {0,1}.
Constraints (31) and (32) ensure that the CCGT generator’s
operating schedule abides by its minimum up and down times
which are US, and U, OC} ¢ time periods, respectively; 7" denotes
the number of time steps. Constraint (33) enforces that the
CCGT generation and reserve commitments cannot exceed its
installed capacity. Constraint (34) ensures that if the generator
is on, it does not run below its stable load. The minimum
stable load is stated as a fraction of installed capacity, such
that G™™ € [0, 1]. Note that the reserve commitment is not
accounted for in this constraint due to the assumption that
the reserve will not be activated. Constraints (35) and (36)
capture the CCGT’s ramping limits. Ramping the generator is
limited by a factor A € [0,1] that represents the fraction of
the capacity that can be modulated within one hour. Constraint
(37) enforces the initial level of generation, Gt of the
CCGT.

G. Wind Power Production Modelling

Wind generation is modelled according to [16]. In the
model, wind generation is defined as:

Gl S Wise CVdt Ve T,s€S,ec & we, (38)

where the wind factors Wi, € [0, 1] capture the exogenous
uncertainty related to wind availability.
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