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 a b s t r a c t

Buildings account for 40% of global energy consumption. A considerable portion of building energy consumption 
stems from heating, ventilation, and air conditioning (HVAC), and thus implementing smart, energy-efficient 
HVAC systems has the potential to significantly impact the course of climate change. In recent years, model-
free reinforcement learning algorithms have been increasingly assessed for this purpose due to their ability to 
learn and adapt purely from experience. They have been shown to outperform classical controllers in terms of 
energy cost and consumption, as well as thermal comfort. However, their weakness lies in their relatively poor 
data efficiency, requiring long periods of training to reach acceptable policies, making them inapplicable to 
real-world controllers directly.
In this paper, we demonstrate that using federated learning to train the reinforcement learning controller of 
HVAC systems can improve the learning speed, as well as improve their ability to generalize, which in turn 
facilitates transfer learning to unseen building environments. In our setting, a global control policy is learned 
by aggregating local policies trained on multiple data centers located in different climate zones. The goal of 
the policy is to simultaneously minimize energy consumption and maximize thermal comfort. We perform a 
thorough set of experiments, evaluating three different optimizers for local policy training, as well as three 
different federated learning algorithms against two alternative baselines. We demonstrate through experimental 
evaluation that these effects lead to a faster learning speed, as well as greater generalization capabilities in the 
federated policy compared to any individually trained policy. Furthermore, the learning stability is significantly 
improved, with the learning process and performance of the federated policy being less sensitive to the choice 
of parameters and the inherent randomness of reinforcement learning.

1.  Introduction

One of the greater challenges of modern society is that of climate 
change. Efforts to mitigate climate change must focus not only on the 
supply side of energy, e.g., renewable and nuclear energy, but also on 
the demand side, considering factors such as energy consumption and 
efficiency [1]. Of the global energy consumption, buildings alone are 
responsible for roughly 40% of the total consumption [2]. Heating, ven-
tilation and air conditioning (HVAC) are major factors in building en-
ergy consumption [1], and hence, developing smart and energy-efficient 
HVAC control systems can play an important role in mitigating climate 
change.

Most of the current HVAC systems in residential buildings are man-
aged by classical algorithms, such as rule-based controllers and propor-
tional, integral and derivative controllers [2]. These controllers not only 
lack knowledge of the thermal dynamics of the building environment 
but are also unable to take weather predictions into account. Hence, 
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they are unable to react and adapt to changes in the environment, lead-
ing to sub-optimal energy performance [3]. To utilize predictive data 
and knowledge of the building environment for improved building con-
trol performance, one can rely on Model Predictive Control (MPC) tech-
niques [3]. MPC can anticipate when to, e.g., preheat a building based 
on weather and occupant forecasts, in order to improve energy effi-
ciency. MPC has been shown to be effective at reducing energy con-
sumption on both simulated and real building environments [3]. How-
ever, a serious drawback to MPC is that it requires accurate models of 
the environment in which the controller operates. On the other hand, 
every building is unique and, as such, developing a general MPC-based 
energy management system that can be deployed to various buildings 
is extremely difficult, and MPC is yet to be adopted by the building in-
dustry on a wider scale [3].

In recent years, through the emergence and rapid development 
of deep learning, it has become increasingly popular to apply ma-
chine learning techniques in multiple different research fields [4].
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Reinforcement learning, a sub-field of machine learning concerned with 
control problems, has also started to gain considerable interest in re-
search on energy system applications, including HVAC control systems. 
In particular, model-free reinforcement learning algorithms provide a 
promising direction for building control. As the name suggests, these 
algorithms do not require any model of the building environment or 
of its dynamics within. Instead, they learn purely from data collected 
while interacting with the environment. This eliminates the need for 
expert domain knowledge to develop models of the environment and 
allows the algorithms to be applied to any building in general, which 
are the main challenges of developing and deploying MPC-based con-
trollers. Reinforcement learning algorithms also have greater adaptabil-
ity to changes in the environment, as they can learn from the environ-
ment indefinitely, and as such, they can take into account long-term 
changes, such as changes in climate and occupant behaviour.

Reinforcement learning has been successfully applied for building-
related control tasks, though mostly in simulated environments [3]. A 
major hurdle for the deployment of reinforcement learning algorithms 
to real buildings is their poor data efficiency. They need to collect large 
amounts of experience data to learn decision policies that take reason-
able actions, and thus, it takes a long time to train them. For example, 
soft actor-critic, a state-of-the-art algorithm with best-performant data 
efficiency and learning speed requires more than a year of training to 
produce an acceptable policy in terms of thermal comfort [2]. Currently, 
this data inefficiency makes it infeasible to train reinforcement learning 
algorithms directly in physical building environments. A promising ap-
proach to overcome this data efficiency is to use transfer learning, i.e., 
to pre-train a controller on a simulated environment and then move it to 
a real environment for fine tuning [3]. Still, it is not known how to gen-
eralize a controller trained on a small set of buildings for use in another 
building not seen during training [3].

Our main contribution is to address this gap by investigating how 
federated learning can improve data efficiency and generalization in re-
inforcement learning-based HVAC control. To the best of our knowledge, 
this is the first study to systematically evaluate the impact of federated 
optimization on the learning dynamics and performance of reinforce-
ment learning agents in a distributed HVAC control setting.

Federated learning is a paradigm for decentralized distributed ma-
chine learning [5]. A shared global model is trained on data distributed 
locally over a network of participating nodes by sending copies of the 
global model to the nodes, training the copies on the local data, and 
sending the local updates back to a central server for model aggregation. 
The local data of each node is never explicitly shared with other nodes, 
nor with the central server. This reduces the communication costs asso-
ciated with transmitting data and eliminates the need for large storage 
capacity at the coordinating central server, while simultaneously ensur-
ing a higher degree of data privacy at the nodes. Federated learning also 
makes no assumptions about the distribution of the data, and thus it can 
be applied to systems with heterogeneous components. These features 
make federated learning an ideal distributed learning scheme for smart 
HVAC system controllers, since every building will have its own unique 
data distribution, and sensitive information, e.g., occupancy behaviour, 
will be kept private. By training a controller on multiple buildings si-
multaneously, we effectively collect the total experience data at a higher 
rate than any single building, which counteracts the low data efficiency 
of reinforcement learning algorithms. Also, since the data distribution 
is heterogeneous, the collected experience data varies from building to 
building, leading the total experience to be more diverse, thereby facil-
itating greater generalization capabilities in the shared controller.

In this paper, we demonstrate the effectiveness of federated learning 
for training reinforcement learning-based HVAC controllers. In a real-
world deployment, the proposed system would consist of a network of 
HVAC controllers operating across multiple buildings, each equipped 
with local reinforcement learning agents. These agents would collect 
sensor and forecasted data (e.g., temperature, air relative humidity, and 
energy consumption; for a complete list of those used in our experi-

ments, please see Table B.4) and update their control policies accord-
ingly. Instead of training in isolation, the agents would participate in a 
federated learning framework, where local updates are periodically ag-
gregated at a central server to refine a global control policy. This global 
policy is then redistributed to each building, aiming to improve learning 
efficiency and enable generalization across different environments.

We perform an experimental evaluation of a federated controller 
trained in multiple simulated data center environments using the Feder-
ated Averaging algorithm [5]. The objective of the controller is to mini-
mize energy consumption while maintaining thermal comfort, i.e., keep-
ing the temperature within a user-specified (deemed acceptable) range 
of values. We evaluate and compare the performance of three differ-
ent optimizers on the local nodes: stochastic gradient descent, stochastic 
gradient descent with momentum, and Adam [6]. The performance of the 
federated controller with the best local optimizer is then compared to 
that of individual controllers trained exclusively on each respective data 
center. Furthermore, we evaluate two additional federated learning al-
gorithms: Federated Averaging with server momentum [7] and FedAdam
[8]. We apply a gradient masking technique [9] to each federated al-
gorithm to improve learning stability. The reinforcement learning al-
gorithm used is the Soft Actor-Critic (SAC) algorithm [10–12], which 
has previously shown to outperform other alternatives in HVAC con-
trol tasks [2,13]. Our main findings from applying federated learning to 
train a reinforcement learning HVAC control agent are:

• Improved generalization: The federated control agent outperforms 
all individual agents when applied to an unseen environment.

• Increased learning speed: The federated control agent is able to con-
verge to the best policy at a faster rate than an individually trained 
agent.

• Improved learning stability: There is an inherent randomness to the 
training process of reinforcement learning agents. Federated learning 
reduces the variance across different training runs, leading to more 
consistent results.

• Benefits of adaptivity: The federated training process can bene-
fit from adaptivity on the local optimizers, as Adam outperforms 
stochastic gradient descent with and without momentum.

The rest of this paper consists of the following parts. Section 2 
presents an overview of the related literature. Section 3 discusses the 
methodology used in this paper by presenting the key technical aspects 
related to the SAC algorithm, as well as those related to federated learn-
ing. Section 4 describes the simulated environment and the setup of our 
experiments, as well as the results obtained. Finally, we draw conclu-
sions in Section 6.

2.  Related work

In this section, we provide a non-exhaustive survey of the litera-
ture on the employment of reinforcement learning for HVAC control. 
The purpose is to provide a general overview of different techniques 
available, whilst delineating our contribution to the literature. For 
more extensive surveys, we refer the reader to the works of Wang and 
Hong[3],Perera and Kamalaruban[4],Vázquez-Canteli and Nagy[14] 
and Weinberg et al. [15].

2.1.  Early approaches

Some of the first applications of reinforcement learning to the control 
of HVAC systems were made around the turn of the millennium. Ander-
son et al. [16] combined a proportional plus integral (PI) controller with 
a reinforcement learning component to control a heating coil. They eval-
uated it in a simulated environment, showing improved performance 
compared to the PI controller alone. Mozer[17] utilized reinforcement 
learning in the control of the HVAC, Domestic Hot Water (DHW) and 
lighting systems of a real house, with the objective of minimizing both 
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electricity cost and occupant discomfort. In [18], the authors investi-
gated a reinforcement learning solution for the operation of a simulated 
thermal storage system to reduce energy costs, showing favorable results 
when compared to conventional controllers. Liu and Henze[19] used Q-
learning to train both passive and active thermal storage controllers for 
reduced energy costs. They found the performance to be sensitive to the 
learning parameters and the sizes of the state and action spaces. The 
training time was also observed to be unacceptably long for real-world 
applications. They followed up their research with a hybrid learning ap-
proach in Liu and Henze[20,21], where the agent is first pre-trained in 
a simulation of the environment, after which it is applied to and further 
trained on the true environment, making it an early example of transfer 
learning. They found the approach to significantly reduce the training 
time needed in the true environment. However, this approach requires 
an accurate model of the environment for the simulation phase, there-
fore having the same drawback as MPC.

2.2.  Value-based approaches

The last decade has seen an increase in research on reinforcement 
learning in the energy domain, Perera and Kamalaruban[4],Vázquez-
Canteli and Nagy[14]. Sun et al. [22] minimized the day-ahead energy 
costs using an event-based approach, where the reinforcement learning 
agent takes actions only “as needed”, instead of in regular time intervals. 
This reduces computational requirements while maintaining similar per-
formance in cost savings and human comfort compared to time-based 
approaches. Barrett and Linder[23] reduced the cost of energy while 
meeting the temperature set-point specified by the user during periods 
of occupancy. They employ a Bayesian learning approach to predict oc-
cupancy and a Q-learning agent to control the thermostat unit. Li and 
Xia[24] trained a Q-learning agent to simultaneously minimize energy 
consumption and maximize thermal comfort. They improve upon the 
learning speed of standard Q-learning by utilizing a multi-grid approach, 
where the discretization of the state and action spaces are highly coarse 
at the beginning for early convergence, after which both spaces are it-
eratively refined during training for more fine control of the HVAC sys-
tem. Ruelens et al. [25] minimized the energy costs of thermostatically 
controlled loads in both a dynamic pricing and day-ahead scheduling 
scenario using a Fitted Q-iteration controller equipped with a backup 
controller to ensure comfort. The controller converges much faster than 
standard Q-learning, and yields significant cost savings compared to the 
default controller, though increasing the energy consumption. A similar 
approach was taken by Costanzo et al. [26]. Wei et al. [27] minimized 
the energy costs and thermal comfort violations of a multi-zone build-
ing using a Deep Q-network (DQN), which achieves comparable levels 
of comfort violations while yielding greater cost savings than standard 
Q-learning.

The papers reviewed thus far focus on value-based reinforcement 
learning, in most cases Q-learning. Their limitations lie in that they must 
discretize the state and actions spaces, and scale poorly in terms of com-
putation and memory to both the increase in dimension of the space and 
the granularity of the features [28,29]. Hence, in practice, the discretiza-
tion is often coarse. HVAC control tasks are often naturally formulated 
as continuous control problems. Modeling the control task with value-
based methods can therefore lead to oversimplification, since the rough 
discretization of state and action spaces sacrifices finer control. In con-
trast, policy gradient and actor-critic algorithms learn continuous policy 
functions and, as such, can provide more suitable alternatives.

2.3.  Policy-based approaches

Policy gradient and actor-critic algorithms, while applicable to con-
tinuous control, have not seen nearly as much interest as value-based 
methods in the HVAC control literature, as well as building control in 
general [3,14]. This is likely due to earlier algorithms being either diffi-
cult to train due to high hyperparameter sensitivity or having poor data 

efficiency, making them unfeasible for any potential real-world applica-
tion [2].

Still, policy-based and actor-critic methods have been the algorithm 
of choice in some applications. Gao et al. [30] combined a deep neural 
network for thermal comfort prediction with Deep Deterministic Policy 
Gradient (DDPG) to control an HVAC system. DDPG is shown to outper-
form the value-based Q-learning, SARSA and DQN algorithms in terms 
of energy consumption and thermal comfort. A similar comparison and 
conclusion was made between DDPG and DQN in Du et al. [31]. Bie-
mann et al. [2] evaluated and compared the performance of four actor-
critic algorithms; Trust Region Policy Optimisation (TRPO), Proximal 
Policy Optimisation (PPO), Twin Delayed DDPG (TD3) and SAC, which 
have received little attention in the energy domain, despite their suc-
cess in other domains [4]. Biemann et al. [2] concluded that while all 
four algorithms reduce energy consumption compared to their model-
based baseline controller, SAC provides the best trade-off between en-
ergy savings and thermal comfort, while simultaneously displaying sig-
nificantly greater learning speed and stability. In [32], PPO was used 
to reduce energy consumption while maintaining thermal comfort. The 
control policy was pre-trained on historical data of the existing con-
troller using imitation learning. Thus, the policy learns to emulate the 
existing controller, performing reasonably well already at deployment, 
and quickly improving through fine-tuning with the PPO algorithm. The 
performance was evaluated in both simulated environments and a real 
conference room. The pre-trained PPO controller managed to reduce 
the cooling demand in the real environment, making the approach rea-
sonable for real-world deployment, assuming the existence of historical 
controller data.

2.4.  Model-based approaches

Model-based reinforcement learning approaches have also been ex-
plored, albeit the role the model plays varies. For example, in Gao 
and Wang[33], a model of the environment was learned through func-
tion approximation. The learned model is used to generate additional 
simulated experience in conjunction with the real experience, leading 
to faster convergence of the reinforcement learning algorithm. Nagy 
et al. [34] also learned a model of the environment, but instead used 
the model to plan the actions multiple steps ahead. While model-based 
approaches demonstrate greater sample efficiency than model-free algo-
rithms, leading them to learn significantly faster, their success depends 
on how accurate the model is. In [34], their model-based algorithm con-
verges in only about 20 days, while simultaneously outperforming the 
model-free approach in terms of both consumption and comfort. How-
ever, they showed that if the learned model is incorrect or if the dy-
namics of the environment change, the algorithm fails to adapt and is 
in turn outperformed by the model-free algorithm. As with MPC-based 
approaches, the main drawback of model-based approaches is that they 
require accurate models to achieve successful performance. As the dy-
namics of different buildings vary greatly and are difficult to model, 
developing model-based control systems that can be deployed generally 
is a challenging task.

2.5.  Federated learning in the building domain

Federated learning has seen some application in the building energy 
domain. Khalil et al. [35] used Federated Averaging to train a thermal 
comfort predictive model, which is used as input for a rule-based tem-
perature set-point controller. They follow up in Khalil et al. [36] with 
a modified implementation of Federated Averaging for reduced over-
head in communication. Guo et al. [37] used federated learning to train 
machine learning models to predict the coefficient of performance of 
a chiller. Gao et al. [38] trained a federated model for forecasting the 
energy demand of buildings. Lu et al. [39] also take a federated ap-
proach to residential energy consumption forecasting, incorporating a 
reinforcement learning agent to assign weights to each local model when 
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performing model aggregation. In [40], federated learning was used to 
train a model for regulation capacity evaluation of an HVAC system. Lee 
et al. [41] used a federated reinforcement learning model to schedule the 
energy consumption of the HVAC systems of three buildings with solar 
photovoltaic systems and a shared controllable energy storage system. 
In [42], a similar approach to ours was taken, training a SAC agent for 
HVAC control using Federated Averaging, though in a notably differ-
ent setting. They evaluate two different scenarios. In their power-saving 
scenario, the temperature setting of the AC is fixed, and the task of the 
agent is to turn the AC on when people are present in a room and off 
when the room is empty. In the second, normal operation scenario, the 
agent also aims to control the charging and discharging of a storage bat-
tery, with the goal of maintaining the temperature below a threshold. 
The agent is able to perform in the power-saving scenario, and Fujita 
et al. [42] observe an increase in the rate of convergence when using 
federated learning, but the agent is unable to achieve ideal control in 
the normal operation scenario.

Our survey suggests that, while there has been effort dedicated to 
the employment of reinforcement learning for controlling HVAC sys-
tems with a degree of success, there is a lack of focus on investigating 
whether federated learning can be used to address some of the chal-
lenges faced by these studies, such as data efficiency and generaliza-
tion. This is precisely where our contribution lies. To the best of our 
knowledge, our work is the first to thoroughly evaluate the effects feder-
ated optimization has on the learning and performance of reinforcement 
learning agents for direct control of HVAC systems.

3.  Methodology

3.1.  Reinforcement learning

Reinforcement learning is, in its essence, a computational paradigm 
where how to optimize a decision-making problem is “learned by doing” 
[43]. The two main components of reinforcement learning are the agent 
and the environment. The agent aims to learn how to optimally inter-
act with the environment in which it exists through trial and error. The 
agent-environment interaction follows a Markov Decision Process (MDP), 
which is a stochastic control process that evolves in a sequence of dis-
crete time steps 𝑡 ∈ ℕ. An MDP can be formally represented as a tuple 
( ,, 𝑅, 𝑃 ), where

•  is the state space, i.e., the set of possible states 𝑠,
•  is the action space, i.e., the set of possible actions 𝑎,
• 𝑅 ∶  × → ℝ is the reward function 𝑅(𝑠𝑡, 𝑎𝑡),
• 𝑃 ∶  ×  × → [0, 1] is the transition probability function 𝑃 (𝑠′|𝑠, 𝑎).

At time step 𝑡, the agent chooses and performs an action 𝑎𝑡 based on the 
current state 𝑠𝑡. The environment then transitions to state 𝑠𝑡+1 following 
the dynamics of the environment described by the transition probability 
function 𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡). As a consequence of its actions, the agent receives 
a reward 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡), which measures the quality of the chosen action. 
This process continues in the same way, resulting in a sequence of states 
and actions:
(𝑠0, 𝑎0, 𝑠1, 𝑎1, 𝑠2, 𝑎2,…).

This sequence is known as a trajectory. In the literature, it is also com-
monly referred to as an episode or a rollout.

To decide what action to take in state 𝑠𝑡, the agent follows a so-
called policy 𝜋. The policy can be either deterministic or stochastic. A 
deterministic policy is defined as a mapping 𝜋 ∶  → , such that 𝑎𝑡 =
𝜋(𝑠𝑡). A stochastic policy is a probabilistic function 𝜋 ∶  ×  → [0, 1], 
where 𝑎𝑡 ∼ 𝜋(⋅|𝑠𝑡) and 

∑

𝑎𝑡∈ 𝜋(𝑎𝑡|𝑠𝑡) = 1.

3.1.1.  Soft actor-critic
Soft Actor-Critic (SAC) [10–12] is a state-of-the-art deep reinforce-

ment learning algorithm that learns a continuous stochastic policy. It 
is model-free, meaning that the policy is learned without knowledge of 

the transition dynamics 𝑃 . It is also off-policy, meaning that it can learn 
from experience samples generated by any arbitrary policy, making it 
more sample-efficient than on-policy algorithms, which can only utilize 
samples collected from the current policy. These factors make SAC a 
suitable option for HVAC control, where environment dynamics are dif-
ficult to model, collecting experience is time expensive, and continuous 
actions allow for finer control.

The objective in classical reinforcement learning is to find the policy 
𝜋 that maximizes the expected return, i.e., the expected sum of rewards 
∑

𝑡 𝔼(𝑠𝑡 ,𝑎𝑡)∼𝑝𝜋

[

𝑅(𝑠𝑡, 𝑎𝑡)
]

, where 𝑝𝜋 refers to the state-action marginal of 
the trajectory distribution induced by 𝜋. The SAC algorithm considers 
instead an alternative maximum-entropy objective by adding an entropy 
term to the expectation as follows

𝐽 (𝜋) = max
𝜋

∑

𝑡
𝔼(𝑠𝑡 ,𝑎𝑡)∼𝑝𝜋

[

(

𝑅(𝑠𝑡, 𝑎𝑡) − 𝛼 log𝜋(⋅|𝑠𝑡)
)

]

, (1)

where 𝛼 ∈ [0,∞) is the temperature variable that controls the trade-off 
between exploration (entropy) and exploitation (reward maximization).

Haarnoja et al. [10,11,12] derived the SAC algorithm from an algo-
rithm called Soft Policy Iteration (SPI). SPI learns a policy by repeat-
ing two main steps: policy evaluation and policy improvement. The policy 
evaluation step evaluates the soft action-value function 𝑄 ∶  × → ℝ of 
the current policy 𝜋, i.e., the expected return of starting in state 𝑠, tak-
ing action 𝑎, and adhering to the policy thereafter. The soft Q-value is 
evaluated by iteratively updating the soft Q-function until convergence 
according to the soft Bellman equation
𝑄𝑘+1(𝑠𝑡, 𝑎𝑡) = 𝑅(𝑠𝑡, 𝑎𝑡) + 𝛾𝔼𝑠𝑡+1∼𝑝𝑠

[

𝑉𝑘(𝑠𝑡+1)
]

, (2)

where 𝛾 ∈ [0, 1] is the discounting factor, 𝑝𝑠 is the state marginal of the tra-
jectory distribution induced by 𝜋, and 𝑉 ∶  → ℝ is the soft state-value 
function, i.e., the expected return starting from state 𝑠 and following 
policy 𝜋 thereafter. The state-value function 𝑉  is given by
𝑉𝑘(𝑠𝑡) = 𝔼𝑎𝑡∼𝜋

[

𝑄𝑘(𝑠𝑡, 𝑎𝑡) − 𝛼 log𝜋(𝑎𝑡|𝑠𝑡)
]

. (3)

In the policy improvement step, the policy is updated towards the ex-
ponential of the soft Q-function. In practice, it is preferable to have 
tractable policies, so the policy is restricted to a set of policies Π, which 
can be, e.g., a family of parameterized distributions. In the update, 
the new policy must therefore be projected onto the set Π. Haarnoja 
et al. [11] use information projection, and so the new policy is com-
puted, for all states 𝑠 ∈ , according to

𝜋𝑛𝑒𝑤 = argmin
𝜋∈Π

𝐷𝐾𝐿

(

𝜋(⋅|𝑠𝑡)
|

|

|

|

|

|

|

|

|

|

exp
( 1
𝛼𝑄

𝜋𝑜𝑙𝑑 (𝑠𝑡, ⋅)
)

𝑍𝜋𝑜𝑙𝑑 (𝑠𝑡)

)

, (4)

where 𝑍𝜋𝑜𝑙𝑑 (𝑠) is a partition function that normalizes the distribution 
and 𝐷𝐾𝐿 is the Kullback-Leibler divergence.

SPI is only applicable to discrete state and action spaces. To extend 
SPI to continuous spaces, Haarnoja et al. [11] introduce function approx-
imators for the soft Q-function 𝑄𝜃 and policy 𝜋𝜙, and alternate between 
optimizing their parameterization via gradient descent (instead of per-
forming their evaluations) and policy improvement steps, yielding the 
SAC algorithm. The SAC algorithm models the soft Q-function using a 
neural network. The policy 𝜋𝜙 is typically modeled as a Gaussian distri-
bution, where the mean 𝜇𝜙 and standard deviation 𝜎𝜙 vectors are given 
by a neural network. The Q-function is updated via gradient descent, by 
minimizing a loss function based on the Bellman equations:

(𝜃) = 1
||

∑

(𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑠𝑡+1)∈

1
2
(

𝑄𝜃(𝑠𝑡, 𝑎𝑡) − 𝑦
)2, (5)

where  is a mini-batch of experience examples (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1), and 𝑦 is 
the target of the Q-network, derived from combining Eqs. (2) and (3):

𝑦 = 𝑟𝑡 + 𝛾
(

𝑄𝜃̄(𝑠𝑡+1, 𝑎̃𝑡+1) − 𝛼 log𝜋(𝑎̃𝑡+1|𝑠𝑡+1)
)

. (6)

Here, the next action 𝑎̃𝑡+1 is sampled from the current policy 𝑎̃′ ∼
𝜋𝜙(⋅|𝑠𝑡+1). The update utilizes a target Q-network parameterized by 𝜃̄
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to stabilise training. The target Q-network is obtained by Polyak aver-
aging the Q-network weights with smoothing constant 𝜌 over the course 
of training as
𝜃̄ ← 𝜌𝜃 + (1 − 𝜌)𝜃̄. (7)

The policy update can be computed by minimizing the expected KL-
divergence in Eq. (4) via gradient descent

𝐽 (𝜙) = 𝔼𝑠𝑡∼

[

𝔼𝑎𝑡∼𝜋𝜙(⋅|𝑠𝑡)
[

𝛼 log𝜋(𝑎𝑡|𝑠𝑡) −𝑄𝜃(𝑠𝑡, 𝑎𝑡)
]

]

. (8)

Notice that the expression has been multiplied by 𝛼 and the constant 
partition function 𝑍 is ignored since it does not affect the gradient. The 
performance 𝐽 (𝜙) is an expectation over actions, which are dependent 
on the policy parameters 𝜙, and so it is not possible to get an estimate of 
the gradient based on Eq. (8) directly. To get an expression for the gra-
dient of the performance that can be estimated with samples, Haarnoja 
et al. [11] use the reparameterization trick. The policy is reparameterized 
by the transformation
𝑎̂ = 𝑓𝜙(𝜖𝑡, 𝑠𝑡) (9)

where 𝜖 is some noise sampled from a fixed distribution. The transfor-
mation depends on the policy distribution used. For example, Haarnoja 
et al. [11] use a squashed Gaussian in practice to ensure that the action 
values are bounded, in which case the appropriate transformation is
𝑓𝜙(𝜖𝑡, 𝑠𝑡) = tanh

(

𝜇𝜙(𝑠𝑡) + 𝜎𝜙(𝑠𝑡)⊙ 𝜖𝑡
)

, 𝜖𝑡 ∼  (0, 1). (10)

With the transformation, the performance is then rewritten as

𝐽 (𝜙) = 𝔼𝑠𝑡∼,𝜖𝑡∼

[

𝛼 log𝜋(𝑓𝜙(𝜖𝑡, 𝑠𝑡)|𝑠𝑡) −𝑄𝜃(𝑠𝑡, 𝑓𝜙(𝜖𝑡, 𝑠𝑡))
]

. (11)

One can notice that the expectation is no longer dependent on the policy 
parameters and so the gradient can be moved into the expectation and 
approximated. The full SAC algorithm is presented in Algorithm 2 in 
Appendix A.

3.2.  Federated learning

Federated learning is a framework for learning a shared global model 
on decentralized data across multiple nodes, without the nodes sharing 
their private data. Unlike typical distributed learning, federated learn-
ing makes no assumptions about the data distribution across nodes being 
independent and identically distributed (IID), and so it can be applied to 
non-IID settings as well. Furthermore, federated learning can also han-
dle unbalanced data, i.e., some nodes having significantly larger local 
data sets than others. These characteristics allow federated learning to 
take advantage of massive amounts of data spread out over a large, het-
erogeneous network, e.g., pictures taken and stored on mobile phones, 
to learn a global model that generalizes well, while never communicat-
ing the local data itself. This maintains a higher degree of privacy across 
nodes while simultaneously eliminating the need for a central data cen-
ter capable of storing the entire global data set.

Federated learning is well-suited for smart HVAC system controllers 
due to its ability to accommodate the unique data distribution of each 
building and maintain the privacy of potentially sensitive information 
such as occupancy behavior. By training a controller across multiple 
buildings at once, we indirectly gather experience data more efficiently 
compared to training on a single building, which helps overcome the 
data efficiency limitations of reinforcement learning algorithms. Addi-
tionally, the heterogeneous data distribution results in more diverse ex-
perience data from different buildings, enhancing the generalization ca-
pabilities of the controller agent.

3.2.1.  Federated averaging
The federated learning setting consists of two main components. 

Firstly, we have a set of 𝐾 nodes, referred to as clients, which com-
pute updates to a shared global model independently of each other by 
training on their local data. Secondly, we have a central server, which 

coordinates the clients and updates the global model. One round of com-
munication between the server and clients consists of the server sending 
the current global model parameters to a fraction 𝐶 ∈ (0, 1] of clients, 
chosen at random, the chosen clients computing their local updates, and 
finally sending their respective locally updated parameters to the server 
for model aggregation.

The federated optimization algorithm presented by McMahan 
et al. [5] can be applied to any problem with a finite-sum objective of 
the form

min
𝑤∈ℝ𝑑

𝑓 (𝑤) where 𝑓 (𝑤) ≡ 1
𝑁

𝑁
∑

𝑖=1
𝑓𝑖(𝑤). (12)

When applying federated optimization to, e.g., an actor-critic algorithm, 
we are optimizing two different objectives, where 𝑓 (𝑤) corresponds to 
both (𝜃) and 𝐽 (𝜙). Assuming the global data set is partitioned over 𝐾
clients, where 𝑘 denotes the set of indexes of data points at client 𝑘, 
with 𝑛𝑘 = |𝑘|, the objective can be rewritten as

𝑓 (𝑤) ≡
𝑁
∑

𝑖=1

𝑛𝑘
𝑁

𝐹𝑘(𝑤) where 𝐹𝑘(𝑤) = 1
𝑛𝑘

∑

𝑖∈𝑘

𝑓𝑖(𝑤). (13)

McMahan et al. [5] focus on the application of federated optimiza-
tion to deep learning models, which are typically trained using some 
variant of stochastic gradient descent (SGD) to optimize their objective, 
the loss function. Hence, they use a federated version of SGD, called 
FedSGD, as a starting point for their developed federated optimization 
algorithm. For one round of FedSGD, with fixed learning rate 𝜂 and frac-
tion 𝐶 = 1, each client 𝑘 computes the average gradient on their local 
data 𝑔𝑘 = ∇𝐹𝑘(𝑤𝑡), where 𝑤𝑡 is the current global model. The local gra-
dients are then aggregated at the central server and used to update the 
model according to

𝑤𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑓 (𝑤𝑡) where ∇𝑓 (𝑤𝑡) =
𝐾
∑

𝑘=1

𝑛𝑘
𝑁

𝑔𝑘. (14)

An equivalent update to (14) can be performed by taking one step of 
gradient descent on each local model 𝑤𝑘

𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑔𝑘,∀𝑘, and then 
aggregating the local model parameters via the following weighted av-
erage

𝑤𝑡+1 ←
𝐾
∑

𝑘=1

𝑛𝑘
𝑁

𝑤𝑘
𝑡+1. (15)

Since the update (15) is just an average over the parameters of each 
local model, it is possible to perform multiple local steps of gradient 
descent 𝑤𝑘 ← 𝑤𝑘 − 𝜂∇𝐹𝑘(𝑤𝑘) before averaging in order to increase the 
amount of computation per communication round. This is the core of 
the Federated Averaging (FedAvg) algorithm.

3.2.2.  FedOpt
In FedAvg, the updated global model parameters 𝑤𝑡+1 are computed 

by averaging the updated local parameters 𝑤𝑘
𝑡+1 according to Eq. (15). 

Alternatively, this update can be performed by computing the “pseudo-
gradient” Δ𝑡+1, which is the average of differences between the local 
parameters and the current global model, Δ𝑘

𝑡+1 = 𝑤𝑘
𝑡+1 −𝑤𝑡, and adding 

it to the current parameters according to

𝑤𝑡+1 ← 𝑤𝑡 + Δ𝑡+1 where Δ𝑡+1 =
𝐾
∑

𝑘=1

𝑛𝑘
𝑁

Δ𝑘
𝑡+1. (16)

Through this formulation, the server update in FedAvg can be viewed as 
taking one gradient ascent step using the pseudo-gradient and a global 
learning rate 𝜂𝑔 = 1. Reddi et al. [8] recognize the possibility of choosing 
other values of 𝜂𝑔 . They also suggest the possible use of alternative server 
update rules based on the pseudo-gradient, as well as utilizing other 
optimizers than SGD on the client side. Combining these ideas, Reddi 
et al. [8] generalize FedAvg into a framework called FedOpt, presented 
in Algorithm 1.
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Algorithm 1 FedOpt.
1: Initialise global model 𝑤0
2: for each communication round 𝑡 = 0, 1,… , 𝑇  do
3: 𝑚 ← max{𝐶 ⋅𝐾, 1}
4: 𝑆𝑡 ← random set of 𝑚 clients 
5: 𝑤𝑡

𝑘,0 = 𝑤𝑡,∀𝑘 ∈ 𝑆𝑡
6: for each client 𝑘 ∈ 𝑆𝑡 in parallel do
7: for 𝑢 = 0, 1,… , 𝑈 − 1 do
8: Compute estimate 𝑔𝑡𝑘,𝑢 of ∇𝐹𝑘(𝑤𝑡

𝑘,𝑢)
9: 𝑤𝑡

𝑘,𝑢+1 = ClientOpt(𝑤𝑡
𝑘,𝑢, 𝑔

𝑡
𝑘,𝑢, 𝜂𝑙 , 𝑡)

10: end for
11: Δ𝑘

𝑡 = 𝑤𝑡
𝑘,𝑈 −𝑤𝑡

12: end for
13: 𝑛𝑡𝑜𝑡 =

∑

𝑘∈𝑆𝑡
𝑛𝑘

14: Δ𝑡 =
∑

𝑘∈𝑆𝑘

𝑛𝑘
𝑛𝑡𝑜𝑡

Δ𝑘
𝑡

15: 𝑤𝑡+1 = ServerOpt (𝑤𝑡,Δ𝑡, 𝜂𝑔 , 𝑡)
16: end for

ClientOpt and ServerOpt in Algorithm 1 refer to the optimizers used 
at the clients and server, respectively. Any gradient-based optimizer 
can be applied. The hyperparameter 𝜂𝑙 sets the local learning rate at the 
clients. The hyperparameter 𝑈 determines how many local updates to 
perform in each communication round. Reddi et al. [8] also allow the 
optimizers to depend on the communication round 𝑡 to facilitate the 
potential use of learning rate schedulers.

FedAvgM, which stands for Federated Averaging with Server Momen-
tum [7], slightly modifies the FedAvg algorithm by adding a momentum 
term 𝑣. During a server update (line 15 in Algorithm 1), the momentum 
is updated according to
𝑣𝑡 ← 𝜇𝑣𝑡−1 + 𝜂𝑔Δ𝑡, (17)

where 𝜇 ∈ [0, 1) determines the level of momentum. The global weight 
parameters are then updated using the momentum as
𝑤𝑡+1 ← 𝑤𝑡 + 𝑣𝑡. (18)

FedAdam is an adaptation of the Adam optimizer [6] to ServerOpt, 
presented by Reddi et al. [8]. FedAdam uses two momentum terms 𝑚
and 𝑣 in the server update. The first momentum 𝑚 is computed as the 
exponential moving average
𝑚𝑡 ← 𝛽1𝑚𝑡−1 + (1 − 𝛽1)Δ𝑡 (19)

and the second momentum as the squared exponential moving average
𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1 − 𝛽2)Δ2

𝑡 , (20)

where 𝛽1, 𝛽2 ∈ [0, 1) are hyperparameters. The global model update is 
then computed according to

𝑤𝑡+1 ← 𝑤𝑡 + 𝜂𝑔
𝑚𝑡

√

𝑣𝑡 + 𝜖
. (21)

Here, 𝜖 > 0 controls the degree of adaptivity.

3.2.3.  Gradient masking
Gradient masking [9] can improve the performance of FL algorithms 

in heterogeneous settings. The idea of gradient masking is to apply a 
soft mask to the server update, which assigns higher importance to 
the components of the pseudo-gradients which are in agreement with 
the dominant direction, thereby better capturing the invariances across 
clients. In [13] gradient masking was found to improve the stability of 
the learning process by reducing the randomness across different seeds. 
The importance is determined by the sign agreement across parameters 
over the client updates Δ𝑘

𝑡 . Tenison et al. [9] define the agreement score 
𝐴 ∈ [0, 1], which is given by

𝐴 ≡ |

|

|

1
𝐾

𝐾
∑

𝑘=1
sign(Δ𝑘)||

|

. (22)

The agreement score is then used compute the mask 𝑚̃𝜏 element-wise 
according to
[𝑚̃𝜏 ]𝑗 = 1 if 𝐴𝑗 ≥ 𝜏 else 𝐴𝑗 , (23)

where 𝜏 ∈ (0, 1] is a hyperparameter determining the desired level of 
agreement. The mask 𝑚̃𝜏 is then applied to the final computed update 
in ServerOpt before addition to the current model parameters via the 
element-wise product. The updates of FedAvg (16), FedAvgM (18) and 
FedAdam (21) with gradient masking are thus
FedAvg: 𝑤𝑡+1 ← 𝑤𝑡 + 𝑚̃𝜏 ⊙ Δ𝑡+1 (24)

FedAvgM: 𝑤𝑡+1 ← 𝑤𝑡 + 𝑚̃𝜏 ⊙ 𝑣𝑡 (25)

FedAdam: 𝑤𝑡+1 ← 𝑤𝑡 + 𝜂𝑔𝑚̃𝜏 ⊙
𝑚𝑡

√

𝑣𝑡 + 𝜖
. (26)

4.  Experiments

4.1.  Simulation environment

In our experiments, we use the open-source building simulation and 
control framework Sinergym (v.2.0.0) [44]. Sinergym provides an inter-
face for interacting with the building energy model simulation tool En-
ergyPlus via the OpenAI Gym API [45], a popular API for implementing 
and evaluating reinforcement learning algorithms. Sinergym provides a 
handful of different building environments as well as several weather 
profiles. We conduct our experiments on the available data center envi-
ronment.1 The data center has a total area of 491.3m2. It is split into two 
asymmetrical zones; the west and east zone, equipped with their own 
respective HVAC systems. The HVAC systems are composed of air econ-
omizers, evaporative coolers, a direct expansion cooling coil, a chilled 
water coil and a variable air volume fan. The heating and cooling set-
points of each zone are controllable, and one episode of simulation runs 
for one year.

4.1.1.  Markov decision process formulation
To apply reinforcement learning algorithms to the control of the 

HVAC systems, we must provide an MDP formulation of the building 
environment. We define a state space , an action space  and a re-
ward function 𝑅. One environment step, or control action, is taken ev-
ery 15min within the simulation, leading to a total number of 35 040 
steps for one simulation episode.

The agent observes a state vector 𝑠 ∈  ⊂ ℝ18 of 18 features. The 
complete list of features is presented in Table B.4 in Appendix B. The 
features consist of the factors that we aim to control, namely the tem-
perature of the zones and indirectly the energy consumption of the IT 
equipment and HVAC system, as well as other factors that relate to the 
temperature in the zones, e.g., outside air temperature. We also include 
“forecasted” outside temperature and air relative humidity values. This 
allows the agent to anticipate large changes in temperature and poten-
tially counteract them by pre-heating or pre-cooling the zones. How the 
forecasted values are observed is described further in Appendix C.

The control variables of the data center model are the heating and 
cooling setpoint temperatures of each zone, and so the action 𝑎 ∈  ⊂
ℝ4 taken by the agent is a vector of 4 features, which determines these 
setpoint temperatures. The action space is described in Table 1. The 
actions are bounded by a range of possible values, which also include 
“bad” values that can lead the temperature in the zones to lie outside the 
comfortable range of values. The notion of good values should instead be 
encoded into the reward function and learned by the agent, irrespective 
of the possible range of values of the HVAC equipment available, as 
argued by Biemann et al. [2].

The goal is to train an agent that minimizes the total energy con-
sumption of the data center. At the same time, the temperature inside 

1 The name of the environment file is 2ZoneDataCenterHVAC_wEconomizer.idf.
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Table 1 
Description of the action space.
 Feature  Range  Unit
 West zone cooling setpoint  [15.0, 22.5] ◦C
 West zone heating setpoint  [22.5, 30.0] ◦C
 East zone cooling setpoint  [15.0, 22.5] ◦C
 East zone heating setpoint  [22.5, 30.0] ◦C

the building must remain within the target range. Hence, we need to 
encode information about the energy consumption and the thermal com-
fort into the reward signal. The reward function defined by Biemann 
et al. [2] does precisely this, and so, we use it in our MDP formulation. 
They define the following reward function
𝑅(𝑠) = 𝑟𝑤𝑒𝑠𝑡 + 𝑟𝑒𝑎𝑠𝑡 − 𝜆𝑝(𝑃𝑖𝑡 + 𝑃ℎ𝑣𝑎𝑐), (27)

where 𝑟𝑖 is computed based on the thermal comfort in zone 𝑖, and 𝑃𝑖𝑡
and 𝑃ℎ𝑣𝑎𝑐 are the power demands of the IT and HVAC equipment, re-
spectively. The term 𝜆𝑝 ≥ 0 is a scaling factor for the energy component 
of the reward. Given the observed temperature 𝑇𝑖 in zone 𝑖, the thermal 
comfort component is computed as
𝑟𝑖 = exp

(

− 𝜆𝑔(𝑇𝑖 − 𝑇𝑡𝑔𝑡)2
)

− 𝜆𝑡
(

max(𝑇𝑚𝑖𝑛 − 𝑇𝑖, 0) + max(𝑇𝑖 − 𝑇𝑚𝑎𝑥, 0)
)

, (28)

where 𝑇𝑡𝑔𝑡 is the desired target temperature, and 𝑇min and 𝑇max are the 
lower and upper bounds of the comfortable temperature range. Scalars 
𝜆𝑔 , 𝜆𝑡 ≥ 0 are hyperparameters that determine the shape of the reward 
function. The first term in Eq. (28) gives the function a Gaussian shape, 
with the purpose of motivating the agent to stay close to the target tem-
perature, providing a more robust reward than a simple trapezoidal re-
ward function. The second term, the trapezoid penalty, is added to ex-
tend the function to yield negative rewards far away from the center, 
helping the agent to better distinguish moderately bad actions from very 
bad ones than it would with the zero rewards of a simple Gaussian.

The thermal comfort reward 𝑟𝑖 is close to 1 when the temperature of 
zone 𝑖 is close to the target, and small or negative when close to or out-
side the comfort bounds. The total power demand 𝑃𝑡𝑜𝑡 = 𝑃𝑖𝑡 + 𝑃ℎ𝑣𝑎𝑐 of the 
data center is in the order of 100 kW, and so to bring the energy penalty 
component in the reward function (27) to the same scale as the comfort 
component, we use the scaling factor 𝜆𝑝 = 10−5 in our experiments. We 
set the comfort range bounds to 𝑇min = 18 ◦C and 𝑇max = 27 ◦C according 
to the recommended temperature range by the ASHRAE guidelines for 
data center power equipment [46]. The target temperature is set to the 
midpoint of the comfort range 𝑇𝑡𝑔𝑡 = (𝑇min + 𝑇max)∕2, so as to motivate 
the agent to stay as far away from the edges of comfort as possible. Fi-
nally, we set the hyperparameters 𝜆𝑔 = 0.2 and 𝜆𝑡 = 0.1 as in [2]. Fig. 1 
displays the shape of the thermal comfort reward 𝑟𝑖 with the chosen 
parameters.

Sinergym provides 12 different weather profiles from significantly 
different climates. Each profile is fixed and provides hourly weather 
observations over a one-year period. The training of our agents spans 
multiple years, and so we do not wish to use the same weather profile for 
every year of training since we cannot know if the agent learns a useful 
policy for variable weather or if it simply overfits the weather profile. 
Thankfully, Sinergym allows us to add stochasticity to the weather from 
year to year. In Appendix C we provide further details and the full list 
of the weather profiles considered in Table C.5.

4.2.  Experiment configurations

We perform two main sets of experiments. In the first set, we train a 
federated HVAC control agent using FedAvg as the server optimizer. We 
evaluate the performance of three different client optimizers: SGD, SGD 
with momentum (SGDM), and Adam. We have 12 available weather 
profiles, and so we train on 11 client data centers, each with its own 
unique weather conditions. The Helsinki weather profile is reserved for 

Fig. 1. Graph of the zone thermal comfort reward 𝑟𝑖. The hyperparameters are 
set to 𝜆𝑔 = 0.2 and 𝜆𝑡 = 0.1, and the comfort range is bounded to 𝑇min = 18 ◦C
and 𝑇max = 27 ◦C. The target temperature is set to the midpoint of the comfort 
range, 𝑇𝑡𝑔𝑡 = 22.5 ◦C.

evaluating the performance of the global agent in unseen environments. 
We consider two performance comparison baselines. The first is the em-
ployment of a proportional-integral-derivative (PID) controller, using 
temperature as its process variable and defining its error according to 
the setpoints described in Fig. 1 and with hyperparameters set as de-
scribed by [2]. This choice is justified by its widespread use in HVAC 
control applications. We also train individual agents for each client and 
include their performance as a baseline.

Lastly, in the second set of experiments, we evaluate two alter-
native federated algorithms, FedAvgM and FedAdam, using the best-
performing client-side configuration from the first set.

Since our set of training clients is relatively small, we choose to in-
clude all clients in every global communication round, i.e., we set the 
fraction 𝐶 = 1 for all our experiments. We also set the masking threshold 
to 𝜏 = 0.4 in all experiments since it was found to generally perform well 
in Tenison et al. [9] and [13]. We evaluate FedAvg, and so the global 
learning rate is set to 𝜂𝑔 = 1. For the client optimizers, we only vary the 
learning rate, and use the default values for other hyperparameters. See 
Table D.7 in Appendix D for the complete list of client optimizer hyper-
parameters. For the first set of experiments, we have two controllable 
hyperparameters, the client learning rate 𝜂𝑙 and the total of local up-
dates per round 𝑈 . For each client optimizer, we perform a search over 
the following grid of values
𝜂𝑙 ∈ {0.0003, 0.001, 0.01, 0.1}

𝑈 ∈ {4, 12, 24}.

For FedAvgM, the controllable hyperparameters are the global learn-
ing rate 𝜂𝑔 , the number of local updates per round 𝑈 , and the server 
momentum 𝛽. We perform a search over the following grid of values
𝜂𝑔 ∈ {0.001, 0.01, 0.1, 1.0}

𝑈 ∈ {4, 12, 24}

𝛽 ∈ {0.8, 0.9, 0.99}.

For FedAdam we set the degree of adaptivity to 𝜖 = 10−3, as [8] find 
it to perform well across multiple different tasks. The controllable hy-
perparameters then are the global learning rate 𝜂𝑔 , the number of local 
updates per round 𝑈 , and the moment parameters 𝛽1 and 𝛽2. We perform 
a search over the following grid of values
𝜂𝑔 ∈ {0.001, 0.01, 0.1, 1.0}

𝑈 ∈ {4, 12, 24}
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Table 2 
Performance of the federated agent for different client optimizers on 
the evaluation environment (Helsinki) after 15 episodes of training. We 
choose the configuration that yields the highest return for reporting 
the performance of the federated agent, which are 𝜂𝑙 = 0.001, 𝑈 = 24 for 
Adam, 𝜂𝑙 = 0.1, 𝑈 = 24 for SGD, and 𝜂𝑙 = 0.1, 𝑈 = 12 for SGDM. The re-
ported values are the means over three episodes of evaluation. 𝐸𝑡𝑜𝑡 is the 
cumulative power consumption of the data center over one year, and Viol. 
is the comfort violation rate.

𝐸𝑡𝑜𝑡 (GWh)  Viol. (%)
 Adam  0.9189  0.0016
 SGDM  0.9220  0.0092
 SGD  0.9266  0.0438
 PID-Baseline  0.9311  0.0

𝛽1 ∈ {0.8, 0.9, 0.99}

𝛽2 ∈ {0.9, 0.99, 0.999}.

In all experiments, each configuration is repeated 3 times with differ-
ent random seeds to evaluate the robustness of each configuration. The 
training runs over a period of 15 years. The simulator takes a step in 
the environment, i.e., sends observations to the agent and executes the 
actions chosen by the agent, every 15min, and so a full training run 
consists of a total of 525,600 environment interactions. For further im-
plementation details, see Appendix D. The source code is available at: 
https://github.com/hagstromf/FedHVAC.

4.3.  Results

In evaluating the performance of the models, we focus on the energy 
consumption and thermal comfort of the data center. The total energy 
consumption 𝐸𝑡𝑜𝑡 is the cumulative total power consumption 𝑃𝑡𝑜𝑡 over 
a year. The thermal comfort of the data center is evaluated in terms 
of thermal comfort violations. A thermal comfort violation takes place 
when the temperature in either or both zones of the building is outside 
the specified comfort range. The comfort violations are reported as the 
percentage of comfort-violating environment steps over a year.

4.3.1.  Evaluation results
First, we consider the performance of FedAvg using different client 

optimizers. At the end of training, each model is run for three episodes 
on the Helsinki evaluation environment. The results are presented in 
Table 2, where the performance values are the means over the three 
evaluation episodes over all three random seed iterations. We report 
the values of the configuration that yielded the highest mean return. 
Further discussion on the performance of different hyperparameter con-
figurations is provided in Appendix E.

From Table 2, we notice that FedAvg with Adam outperforms SGD 
and SGDM in terms of both energy consumption and comfort violations 
when deployed on an unseen environment, indicating the best generali-
sation capabilities of the three. In Fig. 2, we show the progression of the 
energy consumption and comfort violation of the FedAvg agents on the 
evaluation environment for all client optimizers. The agents are evalu-
ated for three episodes at the end of each episode of training. We plot 
the mean values over the three episodes over all random seeds with their 
bootstrapped 95% confidence intervals. Based on the progression plots, 
we notice that FedAvg with Adam does not only offer improved gener-
alisation compared to the others. It also displays faster learning speeds, 
with the energy consumption converging after about five episodes and 
the comfort violations converging after just three episodes, while SGD 
converges in roughly eight episodes, and SGDM has not converged yet 
at the end of training. FedAvg with Adam has better learning stability as 
well. The tighter confidence intervals regarding both energy consump-
tion and comfort violation indicate that the learning is more robust to 
randomness in the model initialization and training process, and thus 

Fig. 2. Progression of the energy consumption and comfort violation on the 
Helsinki evaluation environment of the FedAvg agent with different client opti-
mizers.

its performance is more reliable. Lastly, it can be noticed that all feder-
ated learning agents overperform the PID controller in terms of average 
power consumption. No comfort violation is observed for the PID con-
troller.

Next, we analyze how the evaluation performance of a federated 
agent compares to agents trained independently on the clients. We fo-
cus on the best performing federated agent, i.e., with Adam as the client 
optimizer and 𝜂𝑙 = 0.001, 𝑈 = 24, and compare it to the best perform-
ing individual agents, with Adam and 𝜂𝑙 = 0.01. The progression of en-
ergy consumption and comfort violations of the federated and indepen-
dent agents in the evaluation environment are presented in Fig. 3. From 
Fig. 3a, we see that the federated agent outperforms every independent 
agent in terms of energy consumption, converging to a lower value, and 
at a faster rate. We also notice a high variance in the energy consump-
tion, both across different clients as well as across different runs for 
each client, with a significant outlier in the agent trained in the Antana-
narivo environment. Remarkably, the variance for the federated agent is
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Fig. 3. Progression of the energy consumption and comfort violation on the 
Helsinki evaluation environment of FedAvg and independent agents with Adam 
as client optimizer. In the comfort violation plot 3b we omit the outlier Antana-
narivo for the sake of legibility.

significantly lower. Similar observations are made regarding the com-
fort violation in Fig. 3b, though we note that the independent agents 
tend to outperform the federated agent in the first episode.

These observations support our conclusion that using federated opti-
mization to train an HVAC control agent can significantly improve gen-
eralization, with a better performance in an unseen environment than 
any independently trained agent. Federated training can also improve 
the learning speed, generally converging faster, as well as learning sta-
bility, displaying a significant reduction in the variance in performance 
over different random seeds. In any real-world application, this con-
sistency is a highly desirable trait, since we are not able to train the 
agent multiple times and therefore need a model that can reliably learn 
a good policy despite the inherent randomness of the real environment 
and training.

4.3.2.  Training results
We have seen that applying federated optimization can improve the 

performance of a reinforcement learning HVAC control agent in an un-

Fig. 4. Progression of the energy consumption and comfort violation of FedAvg 
and independent agents on training environments Tokyo, AZ, CO and NY.

seen environment. Thankfully, this does not come at the expense of 
poorer performance in the training environments. In Fig. 4, we present 
the evolution of energy consumption and comfort violation of the fed-
erated agent and independent agents in the training environments. We 
only plot a subset of the environments for the sake of legibility. The be-
haviour of the omitted environments is consistent with the ones shown 
and analysed in this section. For additional figures of the remaining en-
vironments, please refer to Appendix F.

The energy consumption in Fig. 4a displays similar improvements 
from using FedAvg in the evaluation environment. FedAvg generally 
converges faster and manages to reach a lower level of energy consump-
tion. We also see improved learning stability, with slightly less variance 
across training runs. These improvements are even more pronounced 
when analysing the progression of comfort violation in Fig. 4b. While 
the federated agent converges to near-zero comfort violations after two 
or three episodes, the independent agents never achieve near-zero vio-
lations. They also exhibit significantly more variance across both agents 
and different training runs. This shows that the model does not only 
benefit from the improved generalization, learning speed and learning 
stability of federated learning when applied to an unseen environment 
but also during training itself.
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Fig. 5. Progression of the energy consumption and comfort violation of FedAvg 
and independent agents on training environments Tokyo, AZ, CO and NY.

While the federated agent outperforms the independent agents in the 
long run, we notice that the independent agents tend to perform better 
during the first episode, both in terms of energy consumption and com-
fort violation. This, however, seems to be an effect of the larger client 
learning rate 𝜂𝑙 used for the independent agents. All federated agents 
perform better than the PID controller regarding energy consumption 
throughout the episodes.

In Fig. 5 we present the weekly comfort violations of the federated 
agent on the training environments over the first year of training for 
client learning rates 𝜂𝑙 = 0.001 and 𝜂𝑙 = 0.01. In this setting, the federated 
agent requires less than a full year of training to reach near-zero com-
fort violation. Depending on the environment, the agent with the lower 
client learning rate 𝜂𝑙 = 0.001 requires between around 8000 to 17,000 
steps to reach near-zero violations, corresponding to roughly 12 to 25 
weeks. Some of the environments experience a small increase towards 
the end of the year. However, if we increase the client learning rate 
to 𝜂𝑙 = 0.01, we can achieve near-zero comfort violation significantly 
faster, in just three weeks, though there is an increase in violations for 
the second half of the year. While increasing the client learning rate can 

Table 3 
Performance of the federated agent for different server optimizers on the 
evaluation environment (Helsinki) after 15 episodes of training. We choose 
the configuration that yields the highest return for reporting the perfor-
mance of the federated agent, which are 𝜂𝑔 = 0.1, 𝑈 = 24, 𝜇 = 0.9 for Fe-
dAvgM, and 𝜂𝑔 = 0.001, 𝑈 = 24, 𝛽1 = 0.8, 𝛽2 = 0.9 for FedAdam. The re-
ported values are the means over three episodes of evaluation. 𝐸𝑡𝑜𝑡 is the 
cumulative power consumption of the data center over one year, and Viol. 
is the comfort violation rate.

𝐸𝑡𝑜𝑡 (GWh)  Viol. (%)
 FedAvg 𝟎.𝟗𝟏𝟖𝟗 𝟎.𝟎𝟎𝟏𝟔
 FedAvgM  0.9192  0.0035
 FedAdam  0.9203  0.0092

lead to significantly faster comfort violation reduction, it comes at the 
cost of significantly worse performance in the long run (see Fig. E.10 
in Appendix E.1). On the other hand, while training with a lower client 
learning rate leads to great performance, the violations during the first 
few months are inadmissible, and so this federated agent would not be 
suitable for a real-world setting.

4.3.3.  Server optimizers
Besides FedAvg, we also evaluate two alternative server optimizers: 

FedAvgM and FedAdam. Both use Adam as the client optimizer, with 
𝜂𝑙 = 0.001. The evaluation performances of the best-performing configu-
rations of each optimizer at the end of training are presented in Table 3. 
The progression plots of the energy consumption and comfort violations 
on the evaluation environment are presented in Fig. 6. From Table 3, 
we see that, although all perform similarly, FedAvg slightly outperforms 
the others in terms of both energy consumption and comfort violation. 
Looking at Fig. 6a and b, the most striking difference is the early per-
formance of the optimizers. FedAvg has significantly worse comfort vi-
olations than FedAvgM and FedAdam in the first episode, but performs 
better in the second. The opposite is true for the energy consumption. 
We also notice that FedAvg has tighter confidence intervals, and so of-
fers better learning stability than FedAvgM and FedAdam.

5.  Discussion

Through our experiments, we have identified three key improve-
ments from applying federated optimization to training reinforcement 
learning HVAC controllers. Firstly, by learning from experience col-
lected from multiple heterogeneous environments, the agent gains ac-
cess, albeit indirectly, to a larger amount of training data, which gen-
erally encompasses more variability than that available to any indepen-
dent agent. In other words, there is an increase in exploration, which 
leads to a more informed global agent that can generalize better to differ-
ent environments. Secondly, the amount of total experience increases at 
a faster rate, which leads to an increase in learning speed. Finally, when 
aggregating over the local agents, the dominant direction in the pseudo-
gradient will have the most impact on the global update. This seems 
to have a regularizing effect, making it more difficult for the agent to 
branch off into sub-optimal regions of the policy space, increasing the 
learning stability.

Our experiments show that the choice of client optimizer can have 
a significant impact on performance. The federated model can benefit 
from adaptivity on the local optimizer, as we found Adam to perform 
considerably better than both SGD and SGDM in terms of generalization, 
learning speed and learning stability. Meanwhile, the choice of server 
optimizer seems less critical.

Regarding the server optimizer, both FedAvgM and FedAdam display 
comparable performance to FedAvg, although FedAvg slightly outper-
forms them. Moreover, FedAvg also has the advantage of having fewer 
hyperparameters to be tuned. As shown in Appendix E.2, these algo-
rithms can be considerably sensitive to the choice of said hyperparam-
eters. In a real-world scenario, we cannot evaluate multiple different 
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Fig. 6. Progression of the energy consumption and comfort violation on the 
Helsinki evaluation environment of FedAvg, FedAvgM and FedAdam.

hyperparameters and, as such, it is desirable to use an algorithm with 
as few adjustable parameters as possible, with minimal sensitivity to 
said hyperparameters. Considering that FedAvg has fewer adjustable 
components, combined with the observation that neither FedAvgM nor 
FedAdam seems to offer any significant improvement in terms of either 
generalization, learning speed or learning stability, we believe that Fe-
dAvg provides a more defendable choice for future efforts related to 
deployment in real-world settings.

A few limitations of our experiments are worth highlighting. The 
training of the federated agent was revealed to be considerably sensi-
tive to the clients’ learning rate. With lower learning rates, federated 
optimization offers stable and fast learning, but it is not suitable as-is 
for a real-world building environment due to the high degree of com-
fort violations at the beginning of training. By increasing the learning 
rate, it is possible to significantly reduce the comfort violations early on, 
but this comes at a trade-off for significantly worse final performance. 
Second, although significant progress can be achieved by using feder-
ated learning in this particular context, challenges remain in bridging 
the gap between simulation and real-world deployment, which can be 
noted from the time taken, between 3 and 24 weeks depending on the 

hyperparameter configuration, for the HVAC control agent to reach sat-
isfactory energy consumption and comfort violation performance.

From a practical perspective in the context of HVAC control, feder-
ated learning offers significant benefits, being this a setting in which 
the underlying tasks across different buildings are largely similar yet 
subject to local variations. By allowing individual controllers to learn 
from their own operational data while sharing only aggregated model 
updates, the federated approach leverages commonalities across similar 
systems while preserving the confidentiality of sensitive information, 
such as occupancy patterns.

In our experiments, the primary focus was on energy consump-
tion and comfort violations. However, practical real-world deployments 
would need to additionally account for communication or computa-
tional overhead. Nonetheless, the federated learning framework inher-
ently reduces communication requirements by transmitting only aggre-
gated model updates instead of raw data, while distributing the com-
putational load across local nodes. This design suggests that, in a real-
world HVAC system, the overhead from model aggregation is likely to be 
modest compared to the substantial benefits in terms of generalization, 
learning speed, and associated data privacy benefits.

6.  Conclusion

In this paper, we have experimentally evaluated the effects of train-
ing reinforcement learning HVAC control agents via federated optimiza-
tion. We have trained Soft Actor-Critic (SAC) agents using Federated Av-
eraging (FedAvg) with gradient masking, evaluating and comparing the 
performance of three different client optimizers: stochastic gradient de-
scent (SGD), stochastic gradient descent with momentum (SGDM), and 
Adam. We have also compared the performance of federated agents to 
that of individual agents, trained on each respective client environment 
used in the federated learning scenario, both in terms of their perfor-
mance in an unseen test environment and their performance in the train-
ing environments themselves. Furthermore, two alternative server op-
timizers, Federated Averaging with server momentum (FedAvgM) and 
FedAdam were compared to the FedAvg algorithm.

Our results have demonstrated that federated learning can improve 
generalization and the learning speed and stability of reinforcement 
learning-based HVAC controllers, which are critical bottlenecks for their 
adoption in real-world settings. However, there are still important chal-
lenges that must be addressed in that direction, mainly related to the 
time required for the learning-based controllers to learn policies that 
perform satisfactorily.

Moreover, while our numerical experiments demonstrate clear ben-
efits in terms of learning speed, generalization, and stability when em-
ploying federated optimization for reinforcement learning-based HVAC 
control, we acknowledge that these outcomes constitute only a first, al-
beit critical, step towards their wider deployment. As such, real-world 
pilot deployments remain essential to conclusively verify practical ben-
efits and applicability in realistic building settings and thus warrant fur-
ther research efforts.

Future research could be dedicated to bridging trade-offs between 
learning rates and comfort violation at the early stages of training 
through, e.g., the use of learning rate schedules, starting with a high 
learning rate and gradually decreasing it as training progresses. The 
great generalization of the federated agent provides another promising 
direction for future research. Practical implementations could benefit 
from integrating additional techniques in a hybrid manner, such as rule-
based controllers (including the PID tested as baseline) or model-based 
approaches (if feasible) for improving early sample efficiency. Another 
promising direction is to focus on transfer learning from simulated to 
real environments, where a pre-trained agent is deployed and tuned 
on real buildings. Alternatively, the federated agent could also be pre-
trained on historical data.

Finally, our choice of federated learning is driven by its prag-
matic benefits—improving generalization, learning speed, and stability 
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through the aggregation of local updates while preserving data privacy. 
In contrast, meta-reinforcement learning (meta-RL), though promising 
for showing rapid adaptation between unseen tasks, still faces practical 
challenges, such as the need for meticulously curated task distributions 
and increased computational complexity. Nonetheless, as it develops 
further, meta-RL represents an interesting avenue for future research 
on autonomous HVAC control.
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Appendix A.  Soft actor-critic (SAC) pseudo-code

The final practical SAC algorithm used in our experiments includes 
a few additional features when compared to the algorithm presented 
in Section 3.1.1. The final algorithm learns two concurrent soft Q-
functions, parameterized by 𝜃𝑖, 𝑖 ∈ {1, 2}, which are trained indepen-
dently to minimize (𝜃𝑖) in Eq. (5). They both have their respective 
target networks 𝜃̄𝑖, 𝑖 ∈ {1, 2}. The Eq. (6) for the target 𝑦 is modified to 
utilize the minimum of the two Q-functions

𝑦 = 𝑟 + 𝛾
(

min
𝑖=1,2

𝑄𝜃̄𝑖 (𝑠
′, 𝑎̃′) − 𝛼 log𝜋(𝑎̃′|𝑠′)

)

, 𝑎̃′ ∼ 𝜋𝜙(⋅|𝑠′) (A.1)

and similarly for the performance 𝐽 (𝜙) in Eq. (11)

𝐽 (𝜙) = 𝔼𝑠∼,𝜖∼

[

𝛼 log𝜋(𝑓𝜙(𝜖, 𝑠)|𝑠) − min
𝑖=1,2

𝑄𝜃𝑖 (𝑠, 𝑓𝜙(𝜖, 𝑠))
]

. (A.2)

This double Q-learning trick is used to mitigate positive bias in the policy 
improvement step, which can degrade performance [11].

The SAC algorithm is particularly sensitive to the temperature 𝛼, 
which has to be fine-tuned to the task at hand in order to achieve ap-
propriate performance. Haarnoja et al. [11] develop a method for auto-
matically adjusting its value during training to stabilise learning across 
different tasks. The temperature is updated at each gradient step by min-
imizing the following objective

𝐽 (𝛼) = 𝔼𝑠∼,𝑎∼𝜋𝜙

[

− 𝛼 log𝜋𝜙(𝑎|𝑠) − 𝛼̃
]

, (A.3)

where ̃ is the minimum desired entropy. Haarnoja et al. [12] find that 
the algorithm is quite robust with respect to the minimum entropy, and 
generally setting it to −1 times the action dimension yields good results.

Algorithm 2 SAC.
1: Initialize:
Critic networks 𝑄𝜃1 , 𝑄𝜃2  and actor network 𝜋𝜙′  with random param-
eters 𝜃1, 𝜃2, 𝜙.
Target networks 𝜃′1 ← 𝜃1, 𝜃′2 ← 𝜃2.
Replay buffer .

2: for each iteration do
3: for each environment step do
4: Sample action 𝑎𝑡 ∼ 𝜋𝜙(⋅|𝑠𝑡) and observe reward 𝑟𝑡 and next 

state 𝑠𝑡+1. 
5: Store transition tuple (𝑠, 𝑎, 𝑟, 𝑠′) in replay buffer .
6: end for
7: for each gradient step do
8: Sample mini-batch  from replay buffer . 
9: Compute targets 𝑦 for all (𝑠, 𝑎, 𝑟, 𝑠′) ∈ , Eq. (A.1)
10:
11: Update critics: 𝜃𝑖 ← 𝜃𝑖 − 𝜆𝑄∇𝜃𝑖(𝜃𝑖), Eq. (5). 
12: Update actor: 𝜙 ← 𝜙 − 𝜆𝜋∇𝜙𝐽 (𝜙), Eq. (A.2). 
13: Update temperature: 𝛼 ← 𝛼 − 𝜆𝛼∇𝛼𝐽 (𝛼), Eq. (A.3). 
14:
15: Update target networks: 𝜃̄𝑖 ← 𝜌𝜃𝑖 + (1 − 𝜌)𝜃̄𝑖
16: end for
17: end for

Table B.4 
Description of the state space.
 Feature  Unit
 Site Outdoor air drybulb temperature ◦C
 Site Outdoor Air Relative Humidity  %
 Site Wind Speed  m/s
 Site Wind Direction  degree
 Site Diffuse Solar Radiation Rate per Area  W/m2

 Site Direct Solar Radiation Rate per Area  W/m2

 Zone Air Temperature(West Zone) ◦C
 Zone Air Relative Humidity(West Zone)  %
 Zone Air Temperature(East Zone) ◦C
 Zone Air Relative Humidity(East Zone)  %
 Facility Total HVAC Electricity Demand Rate  W
 Facility Total Building Electricity Demand Rate  W
 Forecasted Outdoor Air Drybulb Temp (+1h) ◦C
 Forecasted Outdoor Air Relative Humidity (+1h)  %
 Forecasted Outdoor Air Drybulb Temp (+3h) ◦C
 Forecasted Outdoor Air Relative Humidity (+3h)  %
 Forecasted Outdoor Air Drybulb Temp (+6h) ◦C
 Forecasted Outdoor Air Relative Humidity (+6h)  %

Appendix B.  State space

Table B.4 shows the complete list of observed state features in the 
data center environment.

Appendix C.  Weather profiles

To add stochasticity to the weather from year to year, Sinergym mod-
ifies the base weather profiles via the Ornstein-Uhlenbeck process at the 
beginning of each year. The Ornstein-Uhlenbeck process 𝑋𝑡 is defined 
by the stochastic differential equation
𝑑𝑋𝑡 = 𝜏(𝜇 −𝑋𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡, (C.1)

where 𝑊𝑡 is Brownian motion with unit variance, and 𝜏, 𝜎 ≥ 0 and 𝜇 are 
parameters affecting the evolution of the process. In our experiments, 
we set 𝜏 = 0.001, 𝜎 = 2.0 and 𝜇 = 0.

As mentioned in Section 4.1.1, we include “forecasted” outside tem-
perature and relative humidity in our observations. These forecasted 
values are retrieved from the base weather profile. Since the weather 
over each year is stochastically modified from the base weather profile, 
the base weather profile provides us with values that are close to the 
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Table C.5 
The base weather files available in Sinergym. M.T is the mean 
temperature and M.H is the mean relative humidity of the file.
 Location  M.T (◦C)  M.H (%)
 Sydney, Australia  17.9  68.83
 Bogota, Colombia  13.2  80.3
 Granada, Spain  14.84  59.83
 Helsinki, Finland  5.1  79.25
 Tokyo, Japan  8.9  78.6
 Antananarivo, Madagascar  18.35  75.91
 Arizona, USA  21.7  34.9
 Colorado, USA  9.95  55.25
 Illinois, USA  9.92  70.3
 New York, USA  12.6  68.5
 Pennsylvania, USA  10.5  66.41
 Washington, USA  9.3  81.1

“true” observed values, much like a typical weather forecast. Hence the 
base profile gives us a good proxy for a real weather forecast.

Appendix D.  Implementation details

We use the implementation of the SAC algorithm provided by the 
Stable Baselines3 framework [47], which offers reliable implementa-
tions of reinforcement learning algorithms in PyTorch [48]. The Q-value 
functions and policy are approximated using simple feed-forward neural 
networks with an input layer, two hidden layers, and an output layer. As 
argued by Biemann et al. [2], in a real-world application, tuning all the 
hyperparameters of the algorithms becomes infeasible, hence the algo-
rithms should perform well out-of-the-box. We therefore use the default 
hyperparameters of the Stable Baselines3 implementation. An excep-
tion is the rate at which the policy and Q-networks are updated. We set 
the training frequency to once every hour, i.e., after every 4 environ-
ment steps. At every update, the model takes a number of gradient steps 
equal to the number of environment steps taken between updates. See 
Table D.6 for a list of the exact hyperparameter values used for SAC.

In deep reinforcement learning and when training neural networks 
in general, it is often useful to ensure that all the features of the input 
vectors are on the same scale. This prevents very large features from 
dominating the calculated gradient, as well as maintains a more consis-
tent range of values for the gradient, which often leads to more stable 
and faster learning. Hence we normalize the observations. The reward 
also affects the scale of the gradient, and as such, normalizing the re-
wards can also have a stabilizing effect. We therefore normalize the re-
wards as well. We use the VecNormalize wrapper in Stable Baselines3 
with default values to normalize using a moving average.

SAC learns a stochastic policy. However, Haarnoja et al. [11] find 
that making the final policy deterministic often results in better perfor-
mance than choosing actions stochastically, and so we set the SAC policy 
to be deterministic as well during evaluation. This is done by choosing 
the mean 𝜇𝜙(𝑠) of the policy distribution as the action.

Table D.6 
SAC hyperparameters.
 Critic networks 24 → 256 → 256 → 1
 Actor networks 24 → 256 → 256 → (2 × 4)
 Activation function  ReLU
 Discount factor 𝛾  0.99
 Batch size  256
 Polyak averaging 𝜌  0.005
 Buffer size 106

 Temperature 𝛼  auto
 Target entropy  auto
 Train frequency  4
 Gradient steps −1 (match train frequency)
 Learning starts  100
 Exploration (action) noise 𝜉  None

Table D.7 
Hyperparameters of the client optimizers. These are held constant 
throughout all experiments.

𝛽1 𝛽2 𝜖 𝜆 𝜇 𝜏

 Adam  0.9  0.999 10−8  0 − −
 SGD − − −  0  0  0
 SGDM − − −  0  0.9  0

For the client optimizers, we only vary the learning rate, and use 
the default values for other hyperparameters. The default values are 
presented in Table D.7. For SGDM we set the momentum 𝜇 = 0.9.

Appendix E.  Sensitivity analysis

In this section, we perform a sensitivity analysis of the hyperparame-
ters of both sets of experiments. We present the analysis of the client op-
timizers in Section E.1, and analyse the server optimizers in Section E.2.

E.1.  Client optimizers

In our experiments comparing different client optimizers, we had 
two tunable hyperparameters: the local updates per round 𝑈 and client 
learning rate 𝜂𝑙. First, we look at how the choice of 𝑈 affects the per-
formance of the federated agent. We present the progression of energy 
consumption and comfort violation on the evaluation environment for 
different values of 𝑈 in Figs. E.7, E.8 and E.9, for Adam, SGD and SGDM, 
respectively. The performance for different values of 𝑈 tends to be quite 
comparable, for every tested client optimizer. We do not observe any 
one value of 𝑈 that consistently outperforms the others, though 𝑈 = 4
tends to fall short of the others in terms of energy consumption. We no-
tice that 𝑈 = 4 also has slightly worse stability than other values of 𝑈 , 
both with respect to energy consumption and comfort violation. This is 
in line with the previous experiments reported in Hagström[13], where 
also a centralized agent trained on data pooled from all environments 
(i.e., having 𝑈 = 1) was shown to underperform against the federated 
agents.

Considering these results, conclude that the federated agent is robust 
to the choice of 𝑈 . It is, however, advisable to use larger values, not only 
because of the worse stability when performing global aggregation after 
every local update but also because larger values of 𝑈 mean fewer com-
munication rounds, reducing the communication costs of the federated 
algorithm.

Next, we focus on the client learning rate 𝜂𝑙. We present the progres-
sion of energy consumption and comfort violation on the evaluation 
environment for different values of 𝜂𝑙 in Figs. E.10, E.11 and E.12, for 
Adam, SGD and SGDM, respectively. The performance of the federated 
agent is sensitive to the client learning rate. In Fig. E.10, we see that 
higher learning rates can significantly increase the energy consumption 
of the agent. It can also lead to complete failure in learning a comfort-
able policy, with 𝜂𝑙 = 0.1 having 100% comfort violation. The inverse 
relationship is true for SGD and SGDM, as can be seen in Figs. E.11 and 
E.12. They tend to achieve lower energy consumption with higher 𝜂𝑙 and 
the choice of 𝜂𝑙 seems to have less of an impact on the comfort violation.

In Section 4.3.1, we concluded Adam to be the best choice of client 
optimizer. Based on the observed sensitivity to the client learning rate, 
it is advisable to use values of 𝜂𝑙 ≤ 0.001 for safe performance.

E.2.  Server optimizers

We first consider the sensitivity of the FedAvgM algorithm to its hy-
perparameters. In Fig. E.13, we present the progression of energy con-
sumption and comfort violation in the evaluation environment for differ-
ent values of the global learning rate 𝜂𝑔 . We notice a trend of improved 
performance for larger values of 𝜂𝑔 , both in terms of energy consumption 
and comfort violation. The global learning rate also affects the learning 
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Fig. E.7. Comparing the performance of FedAvg with Adam as client optimizer on the evaluation environment for different local updates per round 𝑈 . We fix 
𝜂𝑙 = 0.001.

Fig. E.8. Comparing the performance of FedAvg with SGD as client optimizer on the evaluation environment for different local updates per round 𝑈 . We fix 𝜂𝑙 = 0.1.

Fig. E.9. Comparing the performance of FedAvg with SGDM as client optimizer on the evaluation environment for different local updates per round 𝑈 . We fix 
𝜂𝑙 = 0.1.
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Fig. E.10. Comparing the performance of FedAvg with Adam as client optimizer on the evaluation environment for different client learning rates 𝜂𝑙. We fix 𝑈 = 24.

Fig. E.11. Comparing the performance of FedAvg with SGD as client optimizer on the evaluation environment for different client learning rates 𝜂𝑙. We fix 𝑈 = 24.

Fig. E.12. Comparing the performance of FedAvg with SGDM as client optimizer on the evaluation environment for different client learning rates 𝜂𝑙. We fix 𝑈 = 12.
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Fig. E.13. Comparing the performance of FedAvgM on the evaluation environment for different global learning rates 𝜂𝑔 . We fix 𝑈 = 24 and 𝛽 = 0.9.

Fig. E.14. Comparing the performance of FedAvgM on the evaluation environment for different local updates per round 𝑈 . We fix 𝜂𝑔 = 0.1 and 𝛽 = 0.9.

Fig. E.15. Comparing the performance of FedAvgM on the evaluation environment for different momentums 𝛽. We fix 𝜂𝑔 = 0.1 and 𝑈 = 24.
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Fig. E.16. Comparing the performance of FedAdam on the evaluation environment for different global learning rates 𝜂𝑔 . We fix 𝑈 = 24, 𝛽1 = 0.8 and 𝛽2 = 0.9.

Fig. E.17. Comparing the performance of FedAdam on the evaluation environment for different local updates per round 𝑈 . We fix 𝜂𝑔 = 0.001, 𝛽1 = 0.8 and 𝛽2 = 0.9.

Fig. E.18. Comparing the performance of FedAdam on the evaluation environment for different 𝛽1. We fix 𝜂𝑔 = 0.001, 𝑈 = 24 and 𝛽2 = 0.9.
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Fig. E.19. Comparing the performance of FedAdam on the evaluation environment for different 𝛽2. We fix 𝜂𝑔 = 0.001, 𝑈 = 24 and 𝛽1 = 0.8.

speed and, to some extent, the learning stability. While increasing the 
learning rate tends to improve the learning speed and, thus, the perfor-
mance of FedAvgM, one cannot use arbitrarily large values. We observed 
in our experiments that setting 𝜂𝑔 = 1.0 tends to lead to exploding gra-
dients, thus leading to an unusable policy. The FedAvgM algorithm is 
sensitive to the choice of global learning rate, and it needs to be cho-
sen carefully for optimal performance. From Fig. E.14, we see that Fe-
dAvgM is less sensitive to the choice of 𝑈 . FedAvgM displays similar 
performance, learning speed and learning stability for different values 
of 𝑈 , though larger values perform slightly better in terms of energy 
consumption.

FedAvgM introduces the server momentum parameter 𝜇. The pro-
gression of energy consumption and comfort violation for different val-
ues of 𝜇 are presented in Fig. E.15. The choice of 𝜇 has a considerable ef-
fect on the learning of the model. Too large a value leads to a significant 
increase in both energy consumption and comfort violation. The learn-
ing never converges, and the learning stability is significantly worsened, 
showing that the FedAvgM is also sensitive to the choice of momentum.

Similarly to FedAvgM, FedAdam is sensitive to the choice of global 
learning rate 𝜂𝑔 , as can be seen in Fig. E.16. FedAdam, however, per-
forms better with smaller learning rates. Larger learning rates lead to 

a significant reduction in performance and learning stability, both in 
terms of energy consumption and comfort violation. Too large a global 
learning rate can also lead to failure to learn, as we observed that setting 
𝜂𝑔 = 1.0 to result in exploding gradients during training.

In Fig. E.17, we present the learning curves for different values of 
𝑈 . As with both FedAvg and FedAvgM, the performance, learning speed 
and stability are comparable for all tested values of 𝑈 , and larger values 
display slightly improved energy consumption.

FedAdam has two adjustable moment parameters 𝛽1 and 𝛽2. 
FedAdam seems to be more sensitive to the choice of 𝛽1 than the choice 
of 𝛽2. In Fig. E.18, we see that too large a value of 𝛽1 leads to a signif-
icant degradation in performance and learning stability. 𝛽2 seems sig-
nificantly more robust, with all tested values having comparable perfor-
mance, learning speed and stability in terms of both energy consumption 
and comfort violation, as can be seen in Fig. E.19.

Appendix F.  Additional plots

In Figs. F.20 and F.21 we show the training energy consumption and 
comfort violation curves for the environments omitted in Section 4.3.2.

Fig. F.20. Progression of the energy consumption and comfort violation of FedAvg and independent agents on training environments Granada, Antananarivo and 
PA.
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Fig. F.21. Progression of the energy consumption and comfort violation of FedAvg and independent agents on training environments Sydney, Bogota, WA and IL.
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