
Machine Learning for Radio
Frequency Fingerprint Recognition

Katri Haapalinna

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 27.5.2024

Supervisor

Prof. Visa Koivunen

Advisor

TkT Maarit Melvasalo



Copyright © 2024 Katri Haapalinna



Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Katri Haapalinna
Title Machine Learning for Radio Frequency Fingerprint Recognition
Degree programme Master’s Programme in Mathematics and Operations Research
Major Systems and Operations Research Code of major SCI3055
Supervisor Prof. Visa Koivunen
Advisor TkT Maarit Melvasalo
Date 27.5.2024 Number of pages 65 Language English
Abstract
In radio frequency fingerprint recognition, devices transmitting radio signals are
identified based on their analogue imperfections. Although the identification has
traditionally been performed by constructing models and recognising features in
signals, the state of the art usually relies on machine learning. In data-driven
techniques, the machine learning model extracts features of the signals and classifies
them accordingly. Neural networks (NN) are a popular choice among machine
learning classifiers.

Radio-frequency signals are inherently complex-valued, and thus it is often appro-
priate to apply complex-valued operations to them. More precisely, proper methods
should be used for non-circular signals that have correlated real and imaginary parts.
In-phase quadrature (IQ) imbalance is a signal impairment that creates non-circularity
into a signal.

In this Master’s thesis, radio frequency fingerprint classification is studied with
the help of two different neural networks, that use real-valued or complex-valued
signal processing, respectively. Non-circular radio frequency fingerprint data using
IQ-imbalance is simulated for the classification. The differences of the performances
of the two neural networks are examined, as well as their robustness with regard to the
number of trainable parameters, i.e. the size of the NN, and the size of the training
data. Based on the results, complex-valued neural networks offer robustness when
classifying non-circular radio frequency fingerprint signals because they show less
variation in classification accuracy when the NN size is changing. On the other hand,
classification accuracy of real-valued neural networks is highly dependent on the NN
size. Thus, complex-valued neural networks are recommended for classification of
non-circular radio-frequency fingerprint data.
Keywords radio-frequency fingerprint, complex-valued neural network, machine

learning, deep learning, neural networks, specific emitter identification,
circularity
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Tiivistelmä
Radiosormenjälkitunnistuksessa radiosignaalia lähettävät laitteet tunnistetaan analo-
gisten epäideaalisuuksiensa perusteella. Vaikka tunnistus on perinteisesti perustunut
malleihin ja signaalista erotettavien piirteiden suunnitteluun, käyttävät nykymene-
telmät yleisesti koneoppimista. Datapohjaisissa menetelmissä koneoppimismalli sekä
tunnistaa itsenäisesti signaalien piirteitä että lajittelee ne eri luokkiin. Neuroverkot
(NN) ovat laajasti käytettyjä koneoppimispohjaisia luokittimia.

Radiosignaalit ovat luonnostaan kompleksiarvoisia, ja siksi on usein suositeltavaa
käsitellä niitä kompleksiarvoisin operaatioin. Sopivia menetelmiä kannattaa käyttää
erityisesti epäsirkulaarisille signaaleille, joiden reaali- ja imaginääriosat ovat korre-
loituneita. Samanvaiheis-kvadratuurin (IQ) imbalanssi on signaalihäiriö, joka lisää
signaaliin epäsirkulaarisuutta.

Tässä diplomityössä radiosormenjälkien luokittelua on tutkittu kahden, reaali- ja
kompleksiarvoista signaalinkäsittelyä hyödyntävän, neuroverkon avulla. Epäsirkulaa-
rista, IQ-imbalanssia sisältävää radiosormenjälkidataa on simuloitu luokittelua varten.
Eri neuroverkkojen suoriutumisten eroja sekä niiden robustisuutta opetettavien verk-
koparametrien lukumäärän eli neuroverkon koon sekä opetusdatan koon suhteen on
analysoitu. Tulosten perusteella kompleksiarvoiset neuroverkot ovat epäsirkulaarisia
radiosormenjälkisignaaleja luokitellessaan reaaliarvoisia robustimpia, sillä verkkopa-
rametrien lukumäärän muutos vaikuttaa niiden luokittelutarkkuuteen vain vähän.
Reaaliarvoisilla neuroverkoilla taas luokittelutarkkuudet riippuvat suuresti valitusta
neuroverkon koosta.
Avainsanat radiosormenjälki, kompleksiarvoinen neuroverkko, koneoppiminen,

syväoppiminen, neuroverkot, lähetinlaitteen tunnistus, sirkulaarisuus
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capital letter in bold Matrix
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j =
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L() Loss function
η Learning rate
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nmax Maximal number of epochs
λ Kernel length for one-dimensional convolution
ppad Padding for convolutional layers
s Stride for convolutional layers
β Batch size
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1 Introduction
In the digitalised world of today, there are more and more electronic devices con-
nected to different communications networks. What’s more, there is also an increasing
number of wireless networks, such as wireless fidelity (WiFi), 4G, and 5G, to which
radios connect. Since wireless communications take place over the electromagnetic
spectrum, they are subject to various nonidealities and propagation effects. Con-
sequently, they are not as controllable as with the wired case in which all signals
come from known ports. Thus, a concern arises as one may not be sure whether the
transmitting devices in a wireless network are those one is willing to accept. The
issue is a network access control (NAC) problem. Hence the emitters need to be
authenticated. Transmitters include e.g. mobile phones from different manufacturers,
access points, base-stations, tablets, vehicular radios, localisation systems, satellites,
software-defined radios (SDR), and unmanned aerial vehicles (UAV). [24]

Recently, Global Positioning System (GPS) jamming by Russia in Finland and
other European countries has been a timely problem, see e.g. [35]. To overcome
this issue in general, transmissions from deceptive jammers should first be detected.
Navigation receivers such as GPS should also be able to determine whether the
navigation signal is coming from one of the intended satellites or it is produced by
a disturbing jammer. Consequently, the signal emitted by the jammer should be
identified and distinguished from the satellite signal. This is another application for
transmitter identification. [7]

In order to identify and suppress adversarial transmitters that pose a threat for a
network, it is often required that the devices register via some access mechanism, for
example password or another secure key. For instance, the messages in the network
may be encrypted unless a user is an authorised one that possesses a key to decipher
them [70]. On the other hand, the network may require authentication by its users.
For this, passwords are commonly used. Besides, there exist identifiers, addresses,
or labels that are unique to a device such as Internet Protocol (IP) address, Media
Access Control (MAC) address, and International Mobile station Equipment Identity
(IMEI) number, and that can thus be used as means for authentication as well.
However, there are several issues concerning these methods. Encryption may end out
unpractical, laborious and expensive if a separate cryptographic module is needed
in a device [17]. Moreover, the devices may be unable to manage passwords due to
their inexpensive character and large number of operations, as is the case with some
Internet-of-things (IoT) equipment. In a large-scale IoT especially, where the number
of devices is large, password and key management would be a demanding problem.
Besides, there is a danger that publicly available IP or MAC addresses, or IMEI
numbers, will be copied and thereby faked by malicious network users that will thus
pretend to be someone else [8]. Hence, a more secure way to identify transmitting
devices is needed [90],[63],[8].

Another solution for the above described network access control problem is to
identify different transmitters without an active authentication with passwords, or
easily spoofed addresses. That is, the devices should be recognisable by the network
when they transmit, and the means of recognition should not rely on properties that
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can be easily faked. Hence, some factors within an emitter that are inherent, stable,
and unique to it should be employed. This is where radio-frequency (RF) fingerprints,
that can be seen as equivalents of biometric fingerprints that identify humans, can
be extracted, identified, and recognised for transmitting devices. Typically such
fingerprints are associated with a variety of nonidealities or imperfections present in
any implemented real-world radio frequency device.

RF fingerprints are applicable to a wide range of applications. They are used for
recognising radios in securing wireless networks and IoT, for wireless localisation, for
spectrum monitoring, for detecting malfunctioning devices, and for signal intelligence
in electronic warfare systems. Indeed, the first such methods were to recognise
radars in the time of the Vietnam War [8]. The fingerprints are difficult to imitate,
and the identification method based on them can thus detect malicious, unlicensed
network users. Tasks that may be performed with this means also include validation
of network actions via the connection between an event and the device behind it, and
tracking of the functioning of a transmitter when its normal operation is known [17].

Another highly important application for RF fingerprints is user localisation.
Alterations in propagation path of the signal can be utilised in order to determine the
location of the emitted signal [86], whereas location-invariant transmitter impairments
are employed in emitter identification. In this thesis, the interest lies on the latter.
Similarly, radar target recognition deals with its own fingerprints such as high
resolution range profiles consisting of target radar cross section and its scatterers as
well as micro-Doppler signatures [40].

Numerous techniques can be applied for RF fingerprinting. Fingerprints are
found from the received signal by retrieving a certain collection of properties from
it. The process of extracting the fingerprint can be performed either by designing
and combining features, or by employing data-driven methods. For fingerprint
classification, e.g. supervised machine learning using neural networks or more
classical statistical classification methods can be used to find out the origin of the
signal.

1.1 Scope of the thesis
This thesis studies the RF fingerprint classification task using neural networks
(NN). Two different NN classifiers, one using real-valued and the other employing
complex-valued calculus, are trained with simulated RF fingerprint data, and their
classification results are compared. The fingerprints are assumed to originate from
the transmitter hardware, including radio frequency front-ends and circuitry, power
amplifiers, and transceiver structure. The performances of the NN classifiers with
regard to varying network or training data size are examined. The problem of data
acquisition, creation of features, as well as radio-channel-based fingerprints utilised
in wireless localisation, are out of scope of the thesis.
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1.2 Contributions of the thesis
For this thesis, RF fingerprint data that uses IQ (in-phase quadrature) imbalance
as an impairment, as presented in [82], was simulated. A real-valued convolutional
neural network (RVNN) was implemented using Pytorch modules and trained with the
simulated data. A complex-valued convolutional neural network (CVNN) presented in
[42] was trained with the same data. Experiments were run to study the performances
of the NNs using the simulated test data. Finally, the obtained results were examined
and analysed.

The thesis offers novelty in terms of conducting RF fingerprint classification
using the complex-valued neural network that involves complex-valued differentiation
using Wirtinger calculus. As a result, it can be stated that the complex-valued NN
is more robust than the real-valued NN in classifying non-circular RF fingerprint
signal samples. The complex-valued NN provides stable performance with regard
to changing NN size, whereas the RVNN is highly dependent on the right choice
in NN size. Consequently, CVNN has better classification accuracy than RVNN at
high signal-to-noise ratio (SNR) regime when averaged over NN sizes. As expected,
both NNs show improvement when the amount of training data is increased, but in
practical scenarios, the data is often limited.

1.3 Structure of the thesis
This Master’s thesis is organised as follows. Some background concerning radio-
frequency fingerprints, methods for finding them, and classification of them, along
with a short survey about publicly available fingerprint data, are covered in Section
2. An important and widely used technique within the subject, machine learning,
is presented in Section 3 in a neural-network-oriented manner. A separate section,
Section 4, is dedicated to an introduction to complex-valued neural networks and
their underlying calculus principles. The methods and data employed in this thesis
are presented in Section 5, and the simulations conducted with their results in Section
6. Finally, a conclusion is drawn in Section 7.
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2 Overview of RF fingerprinting

2.1 Radio-frequency fingerprints
Radio-frequency fingerprints, or radiometric signatures, employed in radio-frequency
fingerprinting (RFF), are properties that allow identification of transmitting wireless
devices based on the differences in their structure and implementation of specific
features [19], [8]. The process of recognising transmitters may also be called e.g.
emitter identification, as in [24], specific emitter identification (SEI) as in [12], or
physical-layer device identification, as has been done in [10]. Surveys covering the
field of RF fingerprint studies include [72] and [24].

Radio-frequency fingerprinting is also used in wireless localisation where the
location, rather than identity, of the emitter is to be found. In such applications the
fingerprint refers to the channel impulse response or received signal strength from a
particular location to a base station or access point, for example in a WiFi or 4G or 5G
cellular communication system. This approach is best suitable in indoor localisation
where it is simpler to produce representative training data for supervised learning
from different parts of a building. Such training data would contain location-RF-
fingerprint pairings for a large number of locations in the operational environment. In
outdoor scenarios, localisation would require collecting and labeling massive amounts
of training data. This may be done by wireless operators that are able to acquire such
data over long periods of time. Another application that follows similar principles is
radar target recognition. In this case, the corresponding channel of the radar target
serves as a fingerprint. The use of RF fingerprints in localisation, nor in radar target
recognition, is not further addressed in this thesis. See [86] and [40], respectively, for
more detailed information and additional references.

The RF fingerprints that are of interest in this thesis are based on the fact that
transmitters have distinct features and unique non-idealities, often called impairments.
Even though the differences are more significant between manufacturers and their
transceiver implementations, devices that have same supplier and model variate
as well. In practice the physical components and the systems they form are never
absolutely identical. Due to the manufacturing process of the various analogue
parts of the hardware, there always occurs differences between components that are
supposed to be alike. However, tolerances set for this variation are strict, and the
fluctuation ranges for component properties are therefore small, if not tiny. The
less expensive a piece of hardware is, the more there are impairments and variation
in the device. Thus, there always exists more or less variation among in principle
similar devices as well. Besides, the functionalities of the components alter differently
when the components age, which increases the differences between devices even
more. Temperature, and in battery-operated devices, the charge level of the batteries,
impact behaviour of the components and hence may further increase the differences.
Also if a high transmit power is used, the differences may become more significant,
especially those based on the amplifiers.[81]

It may be challenging to find out the root cause of impairments accurately.
Components, the imperfections of which have been thought to form fingerprints
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include frequency synthesizer or local oscillator (LO), antennas, charge pumps,
oscillators, mixers, power amplifiers (PA), digital-to-analog converters (DAC), and
various filters [10],[82],[90]. The receiver’s analogue front-end structure, involving
direct-conversion architecture, low-Intermediate Frequency (IF) architecture, or
superheterodyne principle, impacts the nonidealities and various imbalances as well
[82]. The way the components are connected may also play a role. An example of
component configuration is presented in Figure 2.1. When the devices and their
circuits are complicated enough, the impairments cannot be tracked with same
precision. Thus component groups, e.g. modulator or analogue subcircuitries, are
known to contain relevant imperfections for RFF without specifying the individual
component. [10] The trend has been to integrate all the needed circuits to the same
chip, and hence it may be even more difficult to point out the specific circuit causing
the impairment.

The actual impairments that have previously been exploited with RFF in the
literature include e.g. local oscillator imperfections such as carrier frequency offset
(CFO), or mixer-related in-phase (I) and quadrature (Q) imbalance, or even power
amplifier nonlinearity. Impairments occur for instance when components overflow, or
batteries cause delays. For instance, I and Q signals may leak to one another if the
wires are too close to each other. Carrier frequency offsets depend on the oscillator
clock imprecisions that are usually fixed by synchronisations, but they may also be
caused by relative radial mobility leading to Doppler shift. Figure 2.1 illustrates
common signal impairments such as quadrature errors, self-interference of signals,
and amplitude clipping or saturation of signals. However, the actual form of the
impairments and their effect vary based on the transmitter structure. It may not
be necessary, though, to thoroughly comprehend the root cause of functioning of
impairments. This is because the fingerprint comprises a combination of several
imperfections, and it may also be used as such. There is such a large number of
sources of impairment that rigorous modelling of them with mathematical equations
may be tedious. Hence, there is a modelling deficit and learning directly from data
becomes an attractive option. [90]

Figure 2.1: Transmitter blockchain and common impairments. DAC: Digital-to-
Analog Converter, IF: Intermediate Frequency. Source of the figure: [8]

The fingerprints should be such that it would be possible to extract them from
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every device, and they should be unique, invariant with respect to time and envi-
ronment, and measurable [72]. For instance, location-dependent properties such as
radio channels do not make appropriate fingerprints when the goal is to identify
transmitters as they vary with respect to environment. Besides, not even all hardware
impairments are suitable for utilising in RF fingerprints. As LO imperfections lack
stability and predictability in time and temperature changes, they provide no useful
properties for the RFF and should be compensated before the fingerprint extraction.
Instead, phase and gain imbalances and PA nonlinearities are recommended for
employing in identification. The different hardware impairments utilised in RF
fingerprints are compared in more details in [90].

An RF fingerprint of a device is found when analysing the signals emitted by
it. Signals are, for example, the waveforms used in radars or information bearing
communication signals transmitted over the electromagnetic spectrum in radio
frequencies. The fingerprint can be seen as an alteration in the ideal signal when it is
transmitted through emitter hardware. As this change is inherent to a transmitting
device, it allows for perceiving the differences between signals from different emitters
and thus for extracting the fingerprints. Finally, fingerprints enable identification of
the device that transmitted it.

When examining over-the-air signals, they must be both transmitted and received.
This poses a challenge for RF fingerprint identification since receivers have their own
impairments that affect the signal as well, even though only transmitters and their
imperfections are of interest in this case. However, there is no exhaustive research
about the effect of receivers on the RFF [90].

The procedure of RF fingerprinting can be subdivided into smaller tasks:

• Data collection

• Labelling of the data

• Processing into fingerprints

• Classifier training

• Classification of signals

First, data is collected by receiving transmissions from the emitter of interest.
Labels are attached to the data such that the emitter of each signal is known. The
received data is then processed to reveal the distinct features needed for identification
or processed so that it can be fed to a classifier such as a neural network or feature-
based classifiers. The classifier is trained using supervised learning principles and
labelled training data to identify transmitters. Thereafter, newly received signals may
be processed, and when used as input to the classifier the unknown transmitter may
be recognised. The upcoming subsections 2.2 and 2.3 will contain more details on the
subject. The basics of supervised machine learning (ML) often used in classification
are covered in Section 3.
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2.2 Finding RF fingerprints
There are two different types of fingerprints. The form of the fingerprint is either a
selection of characteristics calculated from the received signal, called features, or a
sequence of raw observed data. There are several means to perform the extraction
of RF fingerprints. The simplified hierarchy of different techniques is illustrated in
Figure 2.2.

Feature-based methods require domain knowledge in engineering the features.
This way, classification can be done based on methods typically used in classical
pattern recognition. Furthermore, the features are divided into two separate groups
based on the part of the signal they are calculated from, that is, transient or steady-
state, as shown in Figure 2.2. There are also various kinds of features, e.g. transforms
into frequency domain, filter outputs, parametric models, basis function expansions,
statistical descriptors, and errors with reference to an ideal signal. The feature-based
methods are more thoroughly discussed in the following subsection.

The raw-signal-based methods are nowadays a more common approach in RFF
due to the progress in deep learning using neural networks, which in turn has been
enabled by the increase of computational power in the recent years. The term "raw
signal" refers here to time-domain complex-valued IQ samples. They may have been
preprocessed such as normalised or whitened. Moreover, noise attenuation or outlier
rejection may also have been performed to the samples that are called "raw" in this
thesis.

Figure 2.2: A simplified presentation of different kinds of RF fingerprinting techniques.

2.2.1 Feature-based methods

Originally, a radio-frequency fingerprint usually involved features extracted from the
signal. A feature-based RF fingerprint is comprised of one, or usually more, features.
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If multiple features have been extracted, they are stacked to form a feature vector. A
feature vector is computed from received data and classified using machine learning,
such as pattern recognition methods or neural networks. Features are commonly
designed by engineers with deep understanding of transceiver structures, and their
implementations, RF circuits, and nonidealities. In these feature-employing RFF
procedures, transmitters are identified based on their corresponding values of their
features, and either neural network output or closest distance to different transmitter
classes in the feature space.

Traditionally, either transient or steady-state part of the signal may be used to
find a feature. It is possible to compute features from intermediate frequency (IF) of
the signals when the signal is moved from carrier frequency to baseband frequency
via IF. IF nonidealities are nevertheless not that well visible at longer distances since
they tend to have weak power. Still, they are a very rich source of features since IF
implementation varies a lot among device types.

A transient signal is observed during the activation of the transmitting device.
It is found in a short time interval usually in the order of µs or ms. It is a typical
time interval in which the transmission power increases until it attains the actual
transmission level. Simultaneously, the frequency synthesizer of the transmitter
finds the right frequency for transmission. [27],[76],[79] An example of a transient is
illustrated in Figure 2.3. The transient in the picture is also called turn-on transient in
order to distinguish it from the end transient related to the turn-off of the transmitter
[27]. The amplitude may change abruptly or gradually, which affects the form of
the transient signal and also has an effect on the appropriate methods for transient
extraction [19]. Before the extraction, the beginning of the transmission needs to be
detected so that the collection of data and computation of features may be performed.
That is, there is a hypothesis testing task where a decision is made about whether
there is signal present or noise only.

The features are then computed from the transients. It has been practical to
study transients, since they occur every time for every transmitter as it is turned
on, and are thus independent of the actual signal that is being transmitted. RF
fingerprinting studies that utilise transients are for instance [81], [19], [21], [9], [20],
and [76].

When calculating features from a transient and forming the fingerprints, the
major challenge is to correctly locate the transient signal on temporal domain. That
is, the presence of signal is first detected and the beginning of the leading edge of it is
identified next. It must be known at which time point the transient starts, in order to
ensure that one really is calculating features from the transient, and not from channel
noise or steady-state signal only. Otherwise there is a risk of accidentally developing
the fingerprint of either noise or signal, which would eventually lead to incorrect
classification of the transmitters. Even though noise as completely random data
sequence would be very far from any transmitter class centre in the feature space,
the classifier would still associate it to the closest one in the feature space unless
there is a separate class for noise samples. When the starting point of a transient has
been found, the searching for the end point is substantially a more straightforward
task. The end point has been found experimentally in [19]. Nevertheless, in order
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Figure 2.3: Part of interception in I-branch of a receiver when transmission of a
8-phase-shift keying (8PSK) signal starts, illustrating channel noise, transient, and
steady-state signal.

to accurately find the transient, high sampling rates are required for the receiver,
especially as the length of the transient may only be microseconds [27].

There are multiple methods to find the point where the transient starts. The
change between the originally received channel noise and the transient signal can
be either gradual or abrupt, and this affects the appropriate method for extracting
the location of the transient from the obtained samples. If the transition between
noise and signal is abrupt, for example Variance Fractal Dimension Trajectory [67]
or Bayesian Change Point [79] detectors, or in general sequential detectors, including
sequential probability ratio test (SPRT), change-point detection, and cumulative sum
(CUSUM) test, may be applied. The former models the signal as a sequence of local
variance dimensions, that is, fractality, of windows taken of the signals, and finds
the start of the transient by a change in the sequence. When it comes to the latter,
the method relies on the assumption that the distributions of noise and transient
samples be different, and employs Bayes’ formula to analyse them. On the other
hand, if the signal starts gradually and the increase in amplitude is smooth, the
former might not find the transient accurately enough. In this case, for example
Bayesian ramp change detector, as in [80], or detection via phase characteristics, as
in [19], could be used along with the Bayesian Change Point detector.

Feature-based RF fingerprints may also be calculated from the steady-state signal
instead of the transient. The steady-state signal, i.e. the actual transmitted signal
that starts immediately after the turn-on transient, and analogously ends before
the turn-off transient, carries the useful information, for example payload data in
wireless communications or radar pulse waveform in radar. Steady-state signals are
utilised in RFF in e.g. [17] and [27]. When using this approach, there is in fact no
need to separate the actual steady-state signal and transients as the algorithms are
not dependent on finding a specific time interval, even though the features may be
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different in the transient phase. However, this approach requires that a specified signal
be transmitted from all the devices in order to ensure that the differences observed
do not originate from different transmissions. For this purpose, for example Universal
Mobile Telecommunications System (UMTS) Random Access Channel (RACH) and
Ethernet frame preambles can be utilised [27],[17]. Also known pilot signals, used by
most communications systems for channel estimation and synchronisation purposes,
could be used this way.

The nonidealities used for RFF are present regardless of the transmitted data,
even though they might be difficult to observe. The useful payload signals may either
be random, such as communications data, or deterministic, e.g. a radar waveform
from a certain code family or a known pilot signal. Thus, there are no restrictions
concerning the data itself, as long as the signals are similar to each other. If different
signals were fed to the same RF fingerprint classifier, they would have different
statistical and structural properties which would lead to classification of signals based
on their modulation instead of emitter. Furthermore, modulation type might impact
the use of transmit power if the amplitude is modulated along with phase, such
as in orthogonal frequency division multiplexing (OFDM), and amplifier-related
nonidealities might be better revealed [56],[3]. It is typically advisable to select the
modulation type such that the frequency, amplitude, or phase of the signals changes
rapidly, as this often improves the visibility of the fingerprints.

After the desired signal portion, that is, either transient or steady state, has
been obtained, suitable features are extracted from it. Based on expert knowledge
about transmitter structure, RF circuitry, antenna systems, and their nonidealities,
the features are designed so that they vary along those nonidealities. There are
several methods to compute features, and also different types of features. Many
features can be obtained from the signal spectrum. For instance, the signal may be
transferred to frequency domain via Fast Fourier Transform (FFT) or Discrete Wavelet
Transform (DWT) as in [27], or [9] and [6], respectively. Even bispectrum, that is,
third-order spectrum of the signal [46], can be estimated as in [12]. Possible power-
spectrum-related time-frequency transforms that do not apply phase information
include spectrogram and Choi-Williams distribution. Besides spectra, also amplitude
characteristics, such as instantaneous amplitude, may be calculated, see [81]. Both
DWT and amplitude characteristics may be employed in addition to phase information
as well, as in [20]. Also various kinds of error metrics, i.e. differences between the
received, impaired signal and an ideal signal, can be calculated and considered as
features, see [8] and Table 2.1. The features may even consist of matched filter
outputs as in [17]. As nonidealities often appear as nonlinearities, and e.g. FFT is a
linear operation, one may need to include some features and their computational
methods that are sensitive to nonlinearities in the feature selection. Different features
are collected in Table 2.1.

When the features have been extracted, the feature vector, that is, the RF
fingerprint, is ready for classification. Naturally, the ability to classify it requires
that the classifier is already trained, i.e. it has been presented fingerprints similarly
built along with the correct labels. The training phase is essential since the classifier
should generalise well and not overlearn the training set. After the training, decision
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Table 2.1: Different features for feature-based RF fingerprinting. I(t) and Q(t) are
I and Q branches of the signal, respectively. Other features include basis function
expansion, short-time Fourier transform (STFT), variational mode decomposition,
and fitting polynomial to power level. The references column shows applications of
the features in RFF.
Feature Computing Method References
Spectral Components FFT [27]
Wavelet Coefficients DWT [9], [6], [20]
Amplitude Profile Hilbert Transform [81]
Instantaneous Amplitude

√︂
(I(t))2 + (Q(t))2 [20]

Instantaneous Phase tan−1(Q(t)
I(t) ) [20]

Phase Error Difference wrt ideal angle [8]
Magnitude Error Difference wrt magnitude [8]
Error Vector Magnitude Difference wrt ideal vector [8]
I/Q Origin Offset Difference wrt ideal I/Q Origin [8]
Frequency Error Difference wrt ideal carrier frequency [8]
SYNC Correlation Correlation wrt ideal synchronisation signal [8]
Closeness Matched Filter [17]
Bispectrum Bispectrum (3rd-order spectrum) [46] [12]

boundaries for each class are found such that along the boundary of classes a and b,
the probability of a sample to belong to a is equal to its probability of belonging to b.
Later, the decision boundary may be utilised to determine the amount of sufficient
features discussed below, and to also find these features. [36]

Traditionally, when designing feature-based fingerprints for different transmitters,
it has been advisable to select an appropriate number of features. At least if limitations
in memory or computing capacity available raise an issue, it is beneficial to reduce
the dimensionality of the feature vector, that is, the number of different features in
a fingerprint. In order to eliminate highly correlated features, one could apply e.g.
principal component analysis (PCA). However, it is crucial not to perform too sparse
a selection, as the features essential for distinguishing the different transmitters should
naturally remain in the vector. [81] On the other hand, features that vary a lot within
the same emitter complicate the classification and should be removed [20]. Methods
for the selection process of features utilised in radio-frequency fingerprint identification
(RFFI) include PCA [81], Euclidean distance and unsupervised learning such as
k-nearest neighbour (k-NN) clustering [20], and genetic algorithms [76]. Alternatively,
feature selection may be performed with the help of probabilistic neural networks
(PNN), even though they may not have been utilised in it in the context of RF
fingerprints [23]. Algorithms for feature selection have also been collected in Table
2.2.
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Table 2.2: Different feature selection algorithms.
Feature selection method Reference
Principal component analysis (PCA) [81]
Euclidean distance and clustering [20]
Genetic algorithms [76]
Probabilistic neural network (PNN) [23]

2.2.2 Data-driven methods using raw signals

The recent research no more relies on feature-based identification, that is, methods
that require tedious engineering of suitable features prior classification. Instead,
observed signal sequences are fed to a classifier as they are, or right after ad-hoc
preprocessing operations such as normalisation operations and outlier rejection. Thus,
the RF fingerprint equals a piece of raw signal instead of a list of features extracted
from it. This is feasible since the modern classifiers based on deep neural networks
allow vaster amounts of input data, as well as more parameters when compared to
former years due to the recent growth of computational power. In the classification,
different ML techniques can be exploited. A survey including discussion about
deep-learning-based RF fingerprinting is found in [24].

As the raw-signal-based methods use as the fingerprint the piece of raw signal
itself, only the classification step is needed and thus the methods are more thoroughly
described in Section 2.3. The features are extracted by the machine learning model
without engineering expertise about the underlying dependencies.

Of the various machine learning techniques utilised in RF fingerprinting, neural
networks (NN) are by far the most popular. Studies about convolutional neural
networks (CNN) in RFFI include [90], [63], [62], and [71]. Recurrent neural networks
(RNN) with long short-term memory (LSTM) approach are applied in [68] and [84].
However, there exist methods that utilise other NN frameworks as well. Namely,
generative adversarial networks (GAN), that are each built upon two neural networks,
the generator and the discriminator, have been employed in verification of transmitter
identity in [60]. Typical techniques are listed in Table 2.3.

Deep learning (DL), which involves deep neural networks, has proven great success
in the recent past. For instance, it has been successfully utilised in computer vision,
such as image classification, object detection, and natural language processing (NLP).
DL has many properties that are suitable for RFFI as well. In deep learning, there
are several hierarchical layers in a neural network, hence they are called deep neural
networks. These layers can automatically extract those features that the traditional
methods calculated from the data. The deeper the layers are in the NN, the more
evolved features they can observe. There are numerous different architectures, or
structures, for deep neural networks. [37]

When compared to feature-based RFF methods, the data-driven raw signal
based methods are more straightforward to use, which often makes them a more
tempting alternative. That is because they do not involve tedious derivation and
selection of the features, nor the process for finding them, by the user via separate
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calculations. Thus, also less domain-specific engineering expertise is needed, as long
as there is access to labelled training data, which will be later further discussed. The
machine learning model classifies the signals based on the features that it finds, and
the process within is not visible outside. Naturally, this seemingly easy procedure
leads to black-box programming, and a risk arises that the ML model eventually
makes wrong classifications, if the model or input data is somehow corrupt. For
instance, in [90], the different hardware impairments enabling RF fingerprinting
are studied. It is stated that carrier frequency offset (CFO) and IQ imbalances in
receivers should be calibrated before the identification process so that neither the
temporal and unpredictable variation of CFO nor IQ imbalances of the receiver side
will degrade the fingerprinting process. Thus, although no knowledge about features
and impairments is needed for performing raw-signal-based RFFI, it is still required
for obtaining appropriate results.

2.2.3 Challenges in RF fingerprinting

It is not always straightforward to find and extract RF fingerprints. Challenges for
RF fingerprinting concern e.g. signal quality, utilised receiver, or collected data. The
signal quality is affected by its environment. The environment includes the state
of the electromagnetic spectrum, other users of the shared spectrum, propagation
environment, mobility, and temperature. These determine the channel and noise
level discussed below. Environmental factors may render the received signal difficult
to observe or significantly different.

One well-known challenge in RFF is the effect of the unknown radio channel
on the signal quality. A radio channel is combined of media and path that a
signal propagates over when travelling from a transmitter to a receiver. [70] The
channel influences the signal that finally attains the receiver: the different media
may attenuate it and it may travel through multiple paths leading to interference
among different delayed versions of it, and consequently fading. The radio channel
can be employed e.g. in indoor localisation of a device, as the channel alters with
respect to the location and the upcoming signal paths. However, the variation due
to the channel poses a problem for RF fingerprint identification, since the extracted
fingerprints may be more affected by the channel than the analogue impairments,
and thus the RFF method may end up recognising channels instead of emitters.
Nevertheless, in case of a line-of-sight (LOS) setup where the signal can proceed
straightforwardly from the transmitter to the receiver, the influence of the channel
will decrease. Different methods have been developed to tackle the effect of the
channel as well. For instance, the received IQ data is equalised before classification
in [2] and [63]. Artificial channel-invariant impairments, that are added to the signal
at the transmitter, are introduced in [62].

Noise level also greatly affects the signal quality in RF fingerprinting. Noise is a
random and unobservable disturbance present in any physical measurement. It is
commonly modelled using probability distributions such as Gaussian distribution. In
practice, noise contains thermal noise formed in the electrical circuits and components
in the devices, ambient noise from the atmosphere or space, and transmissions from
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irrelevant transmitters or electrical systems [31]. Since noise makes the signal more
vague, sometimes it may be challenging to even detect the signal, let alone the
fingerprint. The longer is the distance from the emitting device, the weaker the
perceived signal will be. The noise also prevents the signal from arriving as fully
deterministic to the receiver but presents some randomness to it. Since noise weakens
the signal quality, it also makes the fingerprints more uncertain by adding the variance
of the observations and consequently the variance of features or raw signal. The
relation between signal and noise levels is called signal-to-noise ratio (SNR) and it
illustrates the visibility of the signal in the presence of noise. It is typically defined
in a logarithmic scale and described quantitatively using decibel units [31]:

SNR[dB] = 10 · log10
σ2

signal

σ2
noise

, (2.1)

where σ2
signal and σ2

noise are the variances of signal and noise, respectively. All in all,
one may not be able to extract a fingerprint from a device if it is far away from the
receiver or if there is otherwise much noise present in the signal.

An especially challenging task is to obtain fingerprints from emitters that do
not wish to be found. There exist low probability of detection (LPD) and low
probability of intercept (LPI) signals that intentionally have very low power spread
over a broad bandwidth, hence making the detection and subsequent fingerprinting
difficult. Typical examples of these signals are broadband pulse-compression radar
code signals in radars and spread spectrum signals in wireless communications and
satellite navigation systems.

Receiver imperfections pose another challenge to RF fingerprinting. Ideally, an
extracted RF fingerprint is a property that is able to connect a signal to exactly
one transmitter by being a sufficiently distinct or dichotomising representation of
the analogue impairments in that transmitter. Nonetheless, the impairments in
components of receivers show in fingerprints as well, even if transmitters’ variations
are the ones of interest. Hence, an RF fingerprint is not only unique to a transmitter,
but also to the receiver that recorded it. There are a few cases where the receiver-
dependency of a fingerprint can be ignored. Since impairments are more common in
low-end than high-end equipment, it is possible to perform RFF identification by first
extracting the fingerprints by a high-end receiver and then later distributing them
to various, more low-end receivers. Another option is to use many different low-end
receivers and hope that the receiver differences average out while the transmitter
differences remain.

A crucial challenge in RFF is to have proper training data. That is, sufficiently
large amount of representative data should be obtained for successful training, since
RF fingerprinting is based on supervised learning and labelled training data. The
fingerprint identification algorithms will have poor performance if they have been
given too small a number of training data from any class, since the fingerprints
are hard to be found and learned if there is not enough data. What’s more, the
amount of available data alone is not enough as training data should exhibit all the
variation that is expected from the actual data for the classification. That is, the
data needs to be representative and cover different transmitters, signal quality values
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such as SNR, and environmental conditions, to name a few. Naturally, the sufficient
variety of data is determined based on the application. Especially, training data
from every transmitter type in question must be available, and thus it is not possible
to identify a device type that has not been presented in the training data. On the
other hand, recording, managing, and storing a vast amount of data is both time-
and resource-consuming, to say nothing of its processing and classification in RFFI.
There is no culture of sharing RFF training data, which underlines the challenge of
forming a large and representative training data set for method development and
comparison. For actual model training, data must always be collected from the
specific emitters that should be identified. Hence, a balance must be found such that
the RF fingerprints are created from a large enough amount of, and diverse enough,
signal samples, while keeping the size of the data set in practical limits.

2.3 Classification of RF fingerprints

Table 2.3: Different classification methods for RFFI.
Classification method References References

(feature-based) (data-driven)
Support vector machine (SVM) [6],[8]
T 2 statistics [21]
K-nearest neighbour (k-NN) [27],[8]
Artificial neural network (ANN) [9]
Probabilistic neural network (PNN) [81]
Multilayer perceptron (MLP) [57]
Convolutional neural network (CNN) [90],[62],[63],[71]
Recurrent neural network (RNN) [68],[84]

Classification is a procedure where one or more instances are to be categorised
into proper classes. It is commonly assumed that there are a finite number of classes.
For example, when classifying handwritten number characters, there are 10 classes for
the digits of 0 to 9. Often the classification algorithm performs supervised learning
in which the correct class for each training data instance, as well as the number of
possible classes, is known. However, some methods utilise unsupervised learning and
hence may start without knowing how many classes there are. In that case, classes
are formed by clustering similar instances into groups. It is also possible to attach
the uncertainty associated with the classification result into it, making the process
more robust. In the context of this thesis, there is always at most one correct class
for each instance.

There are two distinct classification tasks in RF fingerprinting. The one aims
to find out whether a device is the one it claims to be, in which case a fingerprint
of a transmitter is only compared to the identifier of the known, certified device
the former claims to be. This method is called (identity) verification. On the other
hand, when one wants to find out which of the several known transmitter types is
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transmitting, one needs to perform identification. [10],[6] In the following, the focus
lies on the identification task, but similar principles apply for verification as well.

Classification is a vital phase in RF fingerprinting. Whether the obtained finger-
print is a feature vector or raw signal, it must be classified in order to identify the
transmitter, i.e. the origin of the received signal. This may mean identification of a
particular type of transmitter or even recognising an individual radio transmitter.
Some previous knowledge, that is, annotated training data, from every possible
transmitting device type is required to train the classifier. Such training data has
to be labelled or annotated so that the correct class is known for each sample in
the training data. First fingerprints must be collected of those transmitters that
will be considered as potential classes in the actual identification phase. Next the
classifier needs to be trained with those fingerprints. Later the fingerprints that
come from an unknown emitter will be compared to the existing ones. The success
of identification requires that the unknown emitter be one of the transmitter classes
that were included in the training phase.

In the training phase of a classifier, the data is divided to training, validation,
and test data sets. First, the training data is employed to create a model that
contains dependencies and hierarchy of the training data. Next, the validation
and test sets are used to ensure that no overfitting takes place and that thus the
classification generalises well, not only to familiar training data but to unseen data
as well. Cross-validation, where combinations of results from different validation sets
are used for validating the accuracy of the model, is one example of such approach
[78]. The model accuracy can be measured based on classification accuracy or loss
function value.

There are various different classifiers. Traditional feature-based RFF techniques
use statistical or machine-learning methods, whereas modern data-driven raw-signal-
based methods solely rely on neural networks. Statistical methods such as support
vector machine (SVM) or T 2 statistics have been employed in [6] and [21], or [21],
respectively. Also M-ary hypothesis testing or logistic regression may be used. Even
k-NN algorithm, which is a classical clustering algorithm based on unsupervised
learning, has been utilised as in [27] and [8]. Machine learning in RFF with neural
networks, also called artificial neural networks (ANN) as in [9], include probabilistic
neural network (PNN) [81], multilayer perceptron (MLP) [57], convolutional neural
network (CNN) [90], [62], and recurrent neural network (RNN) including long short-
term memory networks (LSTM) [68], [84]. More precisely, often the applied neural
networks are deep neural networks (DNN), meaning that they have more than one
layer of artificial neurons [52]. In this thesis, the focus lies on NNs, see Section 3.
Different classification methods are presented in Table 2.3.

Although neural networks are popular in state-of-the-art RF fingerprinting, they
have their limitations. Most recent RFF research has tackled problems that occur
when using CNNs in radio-frequency fingerprint identification. Namely, convolutional
neural networks only accept signal inputs of constant length. Besides, the identifica-
tion may not perform well at low signal-to-noise ratios (SNR), as occurs in many
signal processing applications. Consequently, new machine-learning approaches have
been presented, such as Flatten-Free CNN, variants of recurrent neural networks
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Table 2.4: RF fingerprinting datasets available online. All the presented datasets use
SigMF as data format.
RX TX Number of emitters Size Reference
USRP B210 USRP X310 16 >320e6 samples [62]
USRP B210 Lopy, Fipy, LoRa 25 1.2TB (16300 files) [15]
USRP N210 USRP N210/X310 20 not mentioned [2]
USRP X310 DJI M100 UAV 7 >13e3 samples [71]
USRP B210 USRP X310 4 120e6 samples [58]

(RNN), and transformers, that work for variable-sized inputs. [68]
The phase information plays an important role in RFF, which the classification

system should take into account. Namely, the raw IQ data contains both I and Q
branches which makes it a complex-valued observation that can be further processed
e.g. with machine learning techniques. The I branch is represented by the real, and Q
branch by the imaginary part of a sample vector. When dealing with complex-valued
data, both amplitude and phase information are contained in it. It is common to
present complex-valued data as bivariate real-valued vectors. However, complex-
valued representation is very compact, captures the behaviour of phase information
more explicitly and facilitates convenient processing both in time and frequency
domains. This is where complex-valued signal processing comes at hand.

2.4 Publicly available RFF data sets
One major challenge in developing algorithms for RF fingerprint identification is the
need for vast enough, and representative enough, collections of labelled signal data.
It is time-consuming and necessitates equipment to construct such a comprehensive
selection of measured real-world signals. Hence, it turns out practical for many to
utilise data sets created and shared by other researchers. RF fingerprinting datasets
that are publicly available online include those employed in [62], [15], [2], [71], and
[58]. Characteristics of these datasets are to be found in Table 2.4.

Using of existing data sets enables fair comparison of different methods. However,
it must be noted that the ready-made data sets are only helpful in a method’s
development phase. When in action, RFF identifiers will need data from the specific
emitters or emitter types that need to be identified in a particular application or
scenario. Another option for development of methods is to produce simulated RF
data, but this does not suit practical applications. Besides, simulated data is often
limited in the sense that it does not exhibit all the variation that the real-world data
does.

It is noteworthy that plenty of RF fingerprinting data exists, however, it is often
not publicly available. Such data that cannot be accessed include those produced by
wireless operators, safety and security organisations, or the military. Unfortunately,
there is no culture of sharing this kind of data because of business and security
reasons.
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3 Machine learning
Machine learning (ML) is a computational framework which allows solving problems
that would be too complicated to construct using rigorous mathematical models or
impossible to model beforehand, using the concept of learning and thus development
by the algorithms. Machine learning is an attractive solution when there is modelling
or algorithmic deficit in solving the problem but plenty of data available. It belongs
to the wider concept of artificial intelligence (AI), or more precisely to narrow AI. It
starts by having training data of which some pattern or rules should be extracted. For
instance, the aim can be to predict or classify future, yet unknown data samples, but
there are other tasks as well. The data is learned by iteratively training parameters
for the model that is to be found. [89],[25]

There are various tasks for which machine learning can be applied, including
classification, and regression, also known as prediction. In classification, labels
or classes are assigned to input samples. In training, the system tries to classify
known data, obtaining feedback about the success of the classification and learning
dependencies between instances and their classes. When training is completed,
unknown samples can be input to the classifier for determining classes for them. The
learning performance depends heavily on the quality and size of the training data,
although e.g. how representative the data is, the size of the model, and the number
of its parameters that have to be trained affect as well. [43]

The three well-known different approaches of machine learning are supervised,
unsupervised, and reinforcement learning. In the most common approach, supervised
learning, the model learns patterns of the data based on previously seen examples
with a correct class label, whereas unsupervised learning requires the model to find
patterns of the data or clusters on its own. Another option is reinforcement learning
where an agent learns by trial and error and performs sequential decision making by
observing the state of its environment and choosing appropriate actions to maximise
its rewards over time. However, other approaches have been defined as well. When
ML algorithms imitate biological evolution of species, they are related to evolutionary
learning [41]. In some listings, also semi-supervised learning, that is, approach that
takes after both supervised and unsupervised learning, is mentioned [64]. In the
following, the focus lies on the supervised learning and classification task, since this
is the relevant one in RF fingerprint identification. [25], [41], [64]

Supervised learning is the base for many ML algorithms. In it, the task is to
approximate an unknown function that leads from inputs to outputs. Supervised
learning mainly consists of two types of models, namely classifiers and regression
models [45]. Classifiers can be further divided into e.g. probabilistic, linear, and other
types of classifiers [64]. Following this classification, probabilistic classifiers include
Naïve Bayes, Bayesian Network, and Maximum Entropy Classifiers. Examples of
linear classifier methods are Support Vector Machine (SVM), Logistic Regression
(LR), Decision Trees (DT), and Neural Networks (NN). Nevertheless, NNs can be
employed in regression tasks as well [73]. The other types of classifiers include for
instance quadratic classifiers and boosting. Boosting is a procedure where results
of any classifier are improved by making the learning focus on more challenging
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instances [66]. However, besides ML algorithms, other classification and pattern
recognition methods exist as well that are purely statistical. Examples, that all
represent unsupervised learning, include k-nearest neighbour (k-NN) algorithm [32],
clustering [85], principal component analysis (PCA) [13], and self-organising map
(SOM) [29]. In this thesis, the interest lies on neural networks.

Neural networks (NN) are artificial counterparts of the animal brain. They consist
of neurons, or nodes, and connections among them. The connections are described
by weights, also known as network parameters, and updating these weights leads to
actual learning of the NN. Nodes form layers such that nodes are interconnected
to the nodes of previous and successive layers. The dimensions of a NN are defined
by its numbers of nodes and layers. If there are multiple layers, then the NNs are
typically called deep neural networks. [51]

Perceptron, the first, and also the most simple, neural network, dates back to
1958 [41]. It contains one layer of neurons, each of which having one set of weights
wi that are applied to an input x, after which a nonlinear activation function h is
employed in order to attain the output y:

yi = h(
∑︂

j

wijxj), i ∈ 1, ..., N, j ∈ 1, ..., M, (3.1)

where N is the number of neurons, and thus the length of the output, and M is the
length of the input. [41]

Since the perceptron, neural networks have immensely evolved. By increasing
the number of successive layers, where the input of a layer is the output of its
predecessor, a multilayer perceptron (MLP), which is similar to a multi-layer feed-
forward (MLF) neural network, is obtained. MLPs, also known as feed-forward neural
networks, are such that all nodes in adjacent layers are connected to each other
[4],[59]. Nowadays, a wide variety of different neural networks exist, such as artificial
(ANN), probabilistic (PNN), convolutional (CNN), and recurrent (RNN), including
long short-term memory (LSTM) [22], recursive, or unsupervised pretrained neural
networks. [41], [51], [74], [88]

Deep learning (DL) is encountered when NNs with multiple layers are utilised.
When neural networks have a lot of parameters and multiple layers, they may be
called deep neural networks. In recent years, the growth in computing power, access
to reasonably affordable hardware such as graphics processing units (GPU), and
amount of available data has allowed the use of deep NNs, making DL approaches
more and more popular. Well known DL architectures that both involve CNNs
include GoogLeNet [75] and AlexNet [34]. These two architectures are mainly used
to classify image data, and convolutional networks in general are often used for this
purpose as well. [5]

A simplified example of a feedforward deep neural network is presented in Figure
3.1.

3.1 Training phase in supervised learning
In all supervised learning, the model is trained by feeding it with known, labelled
data. This is called a training set. When there is much training data, the training
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Figure 3.1: Example of a simple feedforward deep neural network. The input x is
either a data or feature vector, and the output vector p provides probabilities of x
belonging to different classes, of which a suitable class label is deduced. Neurons in
the NN are presented with green circles, where z is the output of the hidden layer
involving both linear and nonlinear parts. The weights to be adjusted are presented
with light orange circles, and consist of matrices W and V, as well as vectors b and
c. Function h is a nonlinear activation function.

set is often batched so that not all of the data is utilised simultaneously on every
training round. The observed data may be pre-processed, such as normalised, before
the training. In the actual training, the input samples are fed to a machine learning
model which applies functions to them.

The model assigns different weights that represent importance to different parts of
the input. In the beginning, the weights are typically randomly initialised. The goal
of the training process is to find weights that make the model illustrate the data of the
problem. In other words, the model should learn the dependencies between the data
and their corresponding labels. To illustrate this task, a simple curve-fitting problem
is next presented. The example is relatively distant from modern ML problems, but
the idea can be further extended.

A simple example of this kind of a task is to find coefficients to a function that
should fit into a set of points. Illustration is provided in Figure 3.2, where orange
points represent the training data. A function should be found that passes every point
as close as possible. Figure 3.2 a) presents a poor result where a most simple function,
a straight line, may fit relatively well to some points but contains no information
about the points far below it. On the other hand, Figure 3.2 b) shows a perfect fit
to the same points. However, it can be seen that the blue function curve has now
a remarkably more complicated form and fluctuates more than the line in the left
picture. That is, it needs many parameters in order to be defined.

Alike the example above, a training process of a supervised learning problem can
be seen as fitting a multidimensional curve to a set of data points in multidimensional
space. The task presented thus works as a simplification of various of such problems.
However, adding more parameters till the model fits flawlessly to the data is rarely
optimal. That is, the final aim is not to represent the training data as a beautiful
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Figure 3.2: Example of curve fitting into a set of points.

curve but to create a model into which new unseen samples can be input, and
which still fits nicely enough. The situation where the model fits perfectly to its
training data but is of no use when considering new samples is called overfitting,
or sometimes overlearning. Such model may not generalise well to new data in the
actual classification phase. To summarise, the aim is to train the model so that it
generalises well to unseen data.

The training itself is conducted by applying the model using first initial network
weights and then after each iteration adjusting the weights a little. This adjustment
is based on minimising the loss, that is, the error between the model and the training
data. There are different methods for computing the loss, but e.g. in the curve
fitting example above, a loss criterion could be the least square error between the
data points and the blue curve. In each iteration in the training process, the weights
are updated so that the loss decreases. In a favourable scenario, this finally leads to
convergence between the data and the model. On the other hand, in some methods,
a sufficiently optimal solution is already found after the first iteration and weight
adjustment.

In neural networks in general, training process is performed in sequential epochs,
though some methods only use one epoch. In multi-epoch NNs, the model tries to
get better by adjusting its parameters, and in the end of each epoch, it is facing a
choice: either to quit or continue the training. The criterion for quitting is normally
some of the following:

• The maximum number of epochs, nmax, has been attained.

• The model has achieved the targeted performance level.

• The model is not learning anymore.

An epoch is a part in the training during which the whole training set is fed
to the NN. Usually, the training data is handled in smaller batches so that the
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learning speeds up, and an epoch consists of training with all the batches. Without
batching, the whole training set would be fed to the NN simultaneously, which would
require huge amounts of time and memory. However, also exceedingly small batches
decelerate the learning as the amount of batches grows large.

3.2 Operation of feedforward neural networks
Feedforward neural networks involve operations in two directions. First, the NN is fed
with an input, and the functions of the layers of the NN are applied to it successively.
This is called the forward path. The direct path from input to output distinguishes
feedforward NNs from recurrent NNs (RNN) that loop the data during the forward
path [11]. After the output has been obtained, the neurons are backpropagated and
the network parameters updated. Thus, the backpropagation path is followed.

3.2.1 Forward path

Feedforward neural networks are models that for instance classify samples. The
samples are fed to the first layer, and as the name suggests, the operation flows
forward in the NN.

The NN dimensions, and thereby also the number of weights, are affected by
several decisions made by the designer of the network. The number of layers, as well
as the numbers of neurons in hidden layers, are freely chosen by the designer, though
increase in them naturally leads to more resource-consuming learning. The numbers
of neurons in input and output layers, however, are determined by the size of the
input data and the number of possible classes, respectively.

The neural networks like the one in Figure 3.1 only have fully connected (FC)
layers, which means that every neuron is affected by all the neurons of the preceding
layer. However, this approach leads to an extensive amount of trainable parameters
within few layers, and thus resources are vastly consumed. A more parameter-efficient
alternative is to form new neurons of a small collection of the neurons of the preceding
layer only. The corresponding weights are called a kernel, and the operation of linear
transformation between the kernel and the selected neurons is a convolution. Hence,
layers that apply convolutions are called convolutional layers, and NNs that include
those are convolutional neural networks (CNNs).

Architecture of a CNN layer differs from that of a fully-connected layer. In Figure
3.1, changing the first fully connected layer to a convolutional layer would replace
the matrix W by a smaller matrix, that is, the kernel. CNNs are often used in image
processing where the kernels are two-dimensional. However, in RF fingerprinting,
one-dimensional kernels are typically suitable. A one-dimensional kernel of length λ
is convoluted with x such that it is matrix multiplicated with the first λ elements of
the input. The input can be either x, or if the padding parameter ppad is more than 0,
x with ppad zeros padded before and after the original vector for the one-dimensional
case. Next, the kernel proceeds by s elements where s is a stride hyperparameter,
and multiplies the next λ elements of the input by the kernel. Each of these products
is the value of a neuron in the following layer. The size of the following layer is
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thus determined by the size of its precedent layer, as well as kernel size, stride and
padding hyperparameters. [89]

Besides linear layers, neural networks also include nonlinear activation functions
that are applied to the outputs of the linear transformations. In fact, the activation
functions form an essential part of a neural network. Popular activation functions
include rectified linear unit (ReLU), sigmoid function, and hyperbolic tangent (tanh)
which are shown below and in Figure 3.3 as fReLU , fsigmoid and ftanh, respectively:
[89]

fReLU(x) = max(0, x) =
{︄

x if x ≥ 0
0 if x < 0

}︄
(3.2)

fsigmoid(x) = 1
1 + e−x

(3.3)

ftanh(x) = 1 − e−2x

1 + e−2x
(3.4)

Figure 3.3: Three commonly used activation functions.

Activation functions are essential for the learning process of a feedforward neural
network since with linear layers only, the whole NN could be simplified to one linear
transformation. Especially, ReLU has been found to improve the neural network
training [1].

In classification task, the NN should output probabilities of the sample belonging
to each of the possible classes. Therefore, softmax function is applied as the last
activation function in order to transform network outputs into values in the range of
[0, 1]. The softmax function is defined as follows: [89]

{fsoftmax(o)}i = eoi∑︁
j eoj

, (3.5)

where i is the index of the output neuron in question and o is the output vector. The
probabilities offer a measure of how certain the model is about its outcome. However,
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in classification, a class should be addressed to each of the samples and thus the
class corresponding to the highest probability is chosen, leading to a discrete-valued
output.

3.2.2 Backpropagation

Backpropagation is an approach for updating parameters where the layers in a
feedforward NN are gone through in a backward direction. In backpropagation, error
of the NN classification result is given as a function of the network weights, which
allows for optimising the weights such that the error is minimised. A visualisation of
backpropagation process is shown in Figure 3.4.

Figure 3.4: Illustration of backpropagation in a feedforward neural network.

The error of the NN classification is measured using a loss function. There are
various different loss functions, however, most NNs use cross entropy loss that is
also called log loss. Cross entropy loss is conventionally utilised with application
of softmax function [42]. Another examples of loss functions, though at least in
classification only marginally used, include mean absolute error using L1 norm,
mean squared error using squared L2 norm, expectation, regularised expectation,
Chebyshev, hinge, squared hinge, cubed hinge, squared log, and Tanimoto losses,
and Cauchy-Schwarz divergence. [26] Also when using cross entropy loss, multiple
variations exist that employ e.g. label smoothing, dropout, logit penalty and logit
normalisation, to name a few [30].

The backpropagation step involves differentiating the loss of the NN output
with regard to network parameters, that is, weights. Thereby, the weights can be
optimised and new parameter values obtained. The backpropagation procedure is
more precisely described in the example in Subsection 3.2.5.

3.2.3 Validation

After the model parameters have been updated, it is useful to check whether the new
model is able to classify samples, or whether it is any better than the previous one.
The model should not overlearn the training set but instead generalise well for new
test data. This step is called the validation phase.

Typically, a validation set is formed from data that is not in the training set.
This approach is called train-and-test, and it is recommended when the amount of
data available is considered sufficient [78]. Another option is to use the same data
for both training and validation, and hence obtain larger, though overlapping, data
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sets, but this demands computational resources. A commonly used such method is
cross-validation in which the data is split into training and validation sets multiple
times, and the mean of the classification errors is used as the validation error. It is
important that the training and validation sets, if they are small, are different every
time in order to prevent overfitting as the model should not overlearn the training
set. Furthermore, instead of cross-validation, e.g. resubstitution or bootstrapping
can be employed in order to virtually expand the number of samples available [78].

When the validation set is formed, its data is propagated into the network and
loss or accuracy is calculated to measure the learning performance of the model. Loss
is obtained as in the training phase, and can thus be for instance mean absolute
error (MAE) or root mean squared error (MSE) [78]. The validation accuracy of the
model is defined as the proportion of validation samples that are classified correctly
by the model and is also known as percent good (PG) classification [78].

After the validation, the training has proceeded one epoch, and the ending
criterion is checked. If the criterion is met, the NN is considered trained. On the
other hand, if the ending criterion is not fulfilled, another epoch is needed and the
training continues. A block diagram of one epoch, that is, training and validation, is
presented in Figure 3.5. [78]

3.2.4 Testing

When the training has finally been completed, the model may be tested with previously
unused data in order to find out how well its predictions fit the data. This yet unseen
data is called a test set. Nevertheless, there seems to exist some confusion between the
terms validation and testing and they are sometimes used interchangeably. Strictly
speaking, the test data should be such that it is only fed to the model after all
parameters are fixed, and not before. [89]

For classification task, the NN performance is usually measured by PG classifica-
tion of the test set. The result is also known as NN accuracy:

acc = test set samples classified correctly
test set samples (3.6)

Neural networks can achieve good results with regard to accuracy of classification,
however, it is also essential to know how reliable they are. Some kind of probability
estimate of the confidence of the results should be available to explain the classification
outcome and its trustworthiness. High network accuracy, i.e. test set accuracy, does
not guarantee, or even necessarily correlate with the results being certain. Hence,
the networks should often be better calibrated, and confidence intervals used instead
of mere probabilities or binary variables as outputs. An example of a calibration
method is temperature scaling where the NN outputs have an added amount of
entropy without decrease in overall accuracy [18]. Alternative methods include the
use a conformal loss function [14], or soft quantiles [50].
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Figure 3.5: Phases of an epoch illustrated. The blue and grey arrows represent
training, where batches of the training set are input to a deep neural network (DNN).
With the help of the outputting results and the known correct classification, the
loss is calculated, and the backpropagation is performed through the DNN, yielding
adjusted network parameters via optimisation. Next, another batch of training
data is input to the NN with these adjusted parameters, and the procedure is
repeated successively. Finally, after going through all the batches, NN with optimised
parameters is obtained, and it is tested by putting samples of validation data into it.
The orange arrows represent the validation phase. Here, the validation approach is
train-and-test and the validation metric is validation accuracy. The ending criterion
determines whether the training is finished or the whole procedure is repeated.

3.2.5 Example of an epoch

In this section, the training procedure in an epoch is presented with the simple neural
network in Figure 3.1 as an example. When considering deeper neural networks,
the processus for one layer, consisting of both linear and nonlinear parts, should be
repeated until the end of the network is reached.

Training data is first subdivided into batches, each containing β input vectors,
where β is a hyperparameter for batch size. The input samples are then fed into
a neural network where there are one or several layers. In Figure 3.1, the original
input of length N is represented by vector x = (x1, x2, ..., xN). Output of the linear
part of the first layer is obtained by multiplying x by a weight matrix W and adding
bias b: y = Wx + b, thus making a linear transformation of the input.

In the beginning of the training process, the weights are random. That is, the
coefficients wij ∈ W and constants bi ∈ b of the functions are initially drawn from
some distribution. In the preceding, i ∈ {1, 2, 3, ...M}, j ∈ {1, 2, 3, ..., N}, and M
is the number of neurons in the first hidden layer. The weights are often called
parameters, and their values are repeatedly updated during training. Referring to
Figure 3.1, next a nonlinear activation function h is applied to the vector y. In
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Figure 3.1, the output of the activation function, to be marked with h(y), is the
vector z: z = h(y).

Next, the second layer is considered. In case of classification the number of
neurons in the last layer, that is, the dimension of a, is the number of output classes
K. This requires that a properly sized weight matrix, denoted here by V, be applied
to z. Here this linear transformation is performed via matrix V, that has the size of
its first dimension equal to K, such that a = Vz + c.

As an activation function, softmax function is applied to the vector a, yielding
probabilities of the original input belonging to each of the considered classes. The
probabilities form a vector p, where pi∀i ∈ {1, 2, ..., K} is the probability that
x ∈ i. Next, the outputs p are compared to the known correct vector, d, where
di = 1 if i = j and di = 0 if i ≠ j and the jth class is the correct one. Loss L is
computed using a loss function l: L = l(p, d). The loss is an auxiliary variable that
is needed in the training.

Here, cross entropy loss is employed. It is defined as follows: [42]

L(p, d) = −
∑︂

i

di log pi, (3.7)

where di and pi are the ith elements of d and p, respectively.
After the calculation of the loss, the parameters W, V and b, c can be adjusted

so that the model works better. Backpropagation and parameter update are used
for this. First, the derivatives of the loss function are calculated with regard to the
parameters of the last layer, since the goal is to find directions where the loss would
decrease by adjusting the weights in the direction of negative gradient. Thereby, the
gradient ∇L = ( ∂L

∂vij
∀i, j) with regard to the network parameters is to be obtained.

Thus, L is written as a function of vij so that the differentiation can be performed,
where vij is the element of V in ith row and jth column. Hence, the route from the
end of the NN to the last linear layer must be calculated backwards step by step, thus,
it is to be backpropagated. [61] Towards this goal the chain rule of differentiation is
utilised. First, the partial derivative of the loss with regard to the last layer output
is calculated: i.e. ∂L

∂p . This result is then used when chain rule is employed and the
partial derivative of the loss with respect to the output of the previous layer,

∂L(p(au))
∂au

=
∑︂

i

∂L

∂pi

∂pi

∂au

, (3.8)

where u, i ∈ {1, 2, ..., K}, K is the length of a and p from Figure 3.1, and p(·) is
the last layer of the NN that is dependent on its previous layer given as parameter,
is calculated. The chain-rule mechanism can be further applied till the desired
derivative, that is, ∂L

∂vij
, is obtained. An illustration of how backpropagation proceeds

is provided in Figure 3.4.
Once the gradient ∇L = ( ∂L

∂vij
∀i, j) is calculated, the procedure continues by

updating the layer parameters with some optimisation algorithm. One alternative
for this is Stochastic Gradient Descent (SGD), which takes one step to the direction
of negative gradient. The size of the optimisation step is defined by the learning rate
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η. Using SGD as the optimisation algorithm, the new parameter values are given as
follows:

v∗
ij = vij − η∇L(vij), (3.9)

where vij is the old parameter value, η is the learning rate, and ∇L(vij) is the gradient
of L with regard to the old value of vij. Sometimes the learning rate is decayed
between epochs in order to achieve the minimum faster in the beginning and more
precisely in later epochs. If this is the case, the learning rate is now multiplied with
the decay parameter γ to obtain the new learning rate for the next epoch:

η1 = γη0, (3.10)

where η1 is the new, and η0 the original learning rate. [61], [89], [44]
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4 Complex-valued neural networks

4.1 Why to consider complex-valued signals?
Many signals observed by sensors are complex-valued, which supports the idea of
performing complex-valued computations for them. Another, yet common alternative
is to convert the complex-valued signals into bi-variate real-valued signals in order to
apply real-valued calculations that are often more straightforward. However, some
crucial information about the signals may be missed. Use cases where complex-
valued signals are to be encountered include radar, sensor array processing, time
series analysis when dealing with frequency domain processing, Fourier analysis,
spectra, and medical imaging, such as magnetic resonance imaging. Additionally,
in some cases, for instance in statistical shape analysis, it might actually be more
straightforward to handle the signal data as complex-valued even though it doesn’t
first appear in this form. [47]

4.2 Circularity
Circularity is an essential measure when studying complex-valued signals. A complex
random variable z = x + yj, where j =

√
−1, is said to be circular if it is distributed

identically with ejθz ∀θ ∈ R. The circular distributions include for example complex
elliptically symmetric (CES) distributions. If z is circular, the real part x and the
imaginary part y are statistically uncorrelated. If a complex random variable is
not circular, it is called non-circular. When z is multivariate, it is marked with
z = x + yj and its circularity can be defined via its second-order moments, and
hence they imply second-order circularity. These moments are covariance matrix
E[zzH ] that is defined by [47]

E[zzH ] = E[xxT ] + E[yyT ] + j(E[yxT ] − E[xyT ]) (4.1)

and pseudo-covariance matrix, sometimes called complementary covariance matrix,
E[zzT ] that is in turn defined by [47]

E[zzT ] = E[xxT ] − E[yyT ] + j(E[yxT ] + E[xyT ]). (4.2)

The random variable z is said to be second-order circular, or equivalently, proper, if
its pseudo-covariance matrix E[zzT ] = 0. Using the definitions of the second-order
moments above, it can be seen that the pseudo-covariance matrix is zero if and
only if both its real and imaginary parts are zero. The real part being zero leads
to E[xxT ] = E[yyT ], and when the imaginary part equals zero, E[yxT ] = −E[xyT ]).
Additionally, there exist multiple nonequivalent definitions of circularity, such as
marginal, weak, strong, total, and moment circularities. [53] Examples of circular
waveforms include quadrature amplitude modulation (QAM) along with 16QAM and
64QAM, and quadrature phase shift keying (QPSK) along with 8PSK and 16PSK,
signals. On the other hand, inherently non-circular waveforms include amplitude
modulation (AM), binary phase shift keying (BPSK), and offset quadrature phase
shift keying (OQPSK). [47], [49], [53], [83]
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It is essential to know whether a complex random variable, or a signal, is circular
or not, since the methods for optimal detection and estimation of complex-valued
signals vary based on that [55]. Actually, methods for non-circular signals work
for circular ones as well, but employing them without need consumes computing
resources excessively. For instance, commonly used covariance matrix E[zzH ], the
definition of which was covered in Equation (4.1), does not contain information
about the relationship of real and imaginary parts of a complex signal, and is thus
not sufficient for non-circular signals [54]. Besides normal covariance matrix E[zzH ],
pseudo-covariance matrix E[zzT ], defined in Equation (4.2), should thus be used.

The circularity of the signal can be quantised by a circularity quotient that can
be defined by several different ways. In [47], the circularity matrix ϱ for a random
vector z is defined for instance in the following manner:

ϱ(z) = (E[zzH ])−1E[zzT ]. (4.3)

After obtaining the circularity matrix, the circularity quotients are given as square
roots of eigenvalues of the matrix ϱϱ̄, where ϱ̄ indicates complex conjugate of ϱ. [47]

A special case for the circularity quotient is the one-dimensional circularity
quotient ϱ, which is defined as follows[47]:

ϱ = τ

σ2 , (4.4)

where τ is pseudovariance
τ(z) = E[(z − E[z])2], (4.5)

and σ2 is the conventional variance.
It is also possible to examine whether a signal is circular or not via generalised

likelihood ratio test (GLRT), which is derived in [48]. Nonetheless, this kind of
implementation of GLRT contains normality assumption which makes it slightly
unpractical in real life. Therefore, an adjusted version of the test is presented in [47]
and [16]. Sometimes, it is also essential to know, if the signal is non-circular, the
degree of non-circularity, and in this problem correlation coefficients are used for
properness and mth-order circularity quotients for the actual circularity. [16]

For a second-order circular, or proper, signal, as stated above, the pseudo-
covariance matrix E[zzT ], or in one-dimensional case, the pseudovariance τ , equal to
zero. From the forms of the circularity quotient formulas, in Equations (4.3) and (4.4),
respectively, it can be seen that the condition for second-order circularity implies
that the circularity quotient must be zero. It has been common to casually assume
circularity also for those cases that may not be it, without justification or proof.
This is because derivations of algorithms for circular signals are more straightforward
than those for non-circular signals. Nevertheless, a more secure way is to always
utilise pseudo-covariance matrices or pseudovariances, since data processing methods
for non-circular signals apply for circular signals as well. [47], [16]

A signal, even though it would contain a circular waveform, will often in practice
be rendered non-circular when it is being transmitted and passing through the
analogue parts of the signal processing. This is due to the impairments in the
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analogue circuitry of a device, such as a radio transmitter. For example, the real
and imaginary parts may become correlated or coupled via some nonlinear function.
This is yet another reason to employ methods for non-circular signals.

4.3 Complex-valued calculus
When processing complex-valued data, it is common to consider complex-valued
numbers as real-valued vectors and then apply functions and tools developed for real-
valued data. However, this approach is not always correct, especially when performing
differentiation, gradient-based optimisation or statistical inference. For example, in
order to employ complex C derivatives, a function should be C-differentiable, that is,
complex analytic, or holomorphic.

A complex function f(z) = u(x, y) + jv(x, y), where z is a complex random
variable z = x + jy, x, y ∈ R, is holomorphic if and only if

∃ continuous f ′(z), (4.6)

which is equivalent with the effectiveness of the Cauchy-Riemann conditions

∂u

∂x
= ∂v

∂y
and ∂v

∂x
= −∂u

∂y
(4.7)

and the condition that f(z) has a convergent power series and all of its derivatives
exist [33]. There are many common functions that do not satisfy these conditions,
e.g., none of the real-valued non-constant functions is holomorphic. Thus, special
differentiation rules must be obeyed in that case. [33]

Among the R differentiable functions that have R derivative, the holomorphic
ones are a special case. As is stated in the so-called Wirtinger calculus, also known
as CR-calculus, given that a function is holomorphic and thus its C derivative exists,
its R and C derivatives must equal each other. [33], [42] A R-differentiable function
has two partial derivatives, namely R-derivative and conjugate R-derivative, which
are obtained by taking complex C-derivatives with respect to the complex number z
or its complex conjugate z̄, respectively. Thus, a holomorphic function, for which
R-derivative = C-derivative, must have its conjugate R-derivative equal to 0. [33]

With holomorphic functions, it works well to utilise the complex-valued samples
as a vector of two real numbers, z = (x, y)T , z ∈ C, x, y ∈ R, and correct results are
obtained. A function f(z), let it be complex- or real-valued, may be presented as
f(z) = f(z, z̄) where z̄ is the complex conjugate of z. The R-derivative of f is thus
defined as derivative of f with regard to z, that is, [33]

∂f(z, z̄)
∂z

= 1
2(∂f

∂x
− j

∂f

∂y
). (4.8)

Correspondingly, the conjugate R-derivative of f is defined as derivative of f with
regard to z̄, that is, [33]

∂f(z, z̄)
∂z̄

= 1
2(∂f

∂x
+ j

∂f

∂y
). (4.9)
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When differentiating a function, derivatives are calculated by the R and conjugate R
derivatives. When doing so, the results are correct no matter whether the function is
holomorphic or not.

Wirtinger calculus also states that the chain rule used for differentiation of
composite functions differs from that used in real-valued calculus. Namely, the
derivatives are calculated as follows for function f(g(z, z̄)) [33],[42]:

∂f(g)
∂z

= ∂f

∂g

∂g

∂z
+ ∂f

∂ḡ

∂ḡ

∂z
(4.10)

∂f(g)
∂z̄

= ∂f

∂g

∂g

∂z̄
+ ∂f

∂ḡ

∂ḡ

∂z̄
(4.11)

4.4 Comparing complex- and real-valued neural networks
Complex-valued neural networks (CVNN) are a special type of neural networks where
the input data, neurons and weights are complex-valued and the backpropagation is
gradient-based using rigorous complex differentiation based on Wirtinger calculus.
[42] This allows preservation of important phase information, for example in IQ
data acquired from radio frequencies or data observed in medical imaging devices.
When dealing with non-circular signals, it is essential to be sensitive to the phase
information and all the distortions on both the phase and amplitude simultaneously,
and thus it is preferable to utilise CVNNs instead of real-valued NNs. In fact, some
studies about CVNNs already exist, however, they do not usually follow the complex
differentiation rules by Wirtinger calculus, see e.g. [77].

In this thesis, a complex-valued neural network presented in [42] is studied.
Thus, the CVNN differs from real-valued neural network (RVNN) in several aspects,
however, they possess many similarities in structure as well. In CVNN, the neurons
and parameters are complex-valued with the exception of last output layers that are
real-valued. Besides, the input data fed to the network is complex-valued. Complex-
valued differentiation and Wirtinger calculus are applied in backpropagation of the
network, and thus it is assumed that the functions in the layers, that is, both linear
transformations and the nonlinear activation functions, need to be R-differentiable.
Thus, the derivatives are calculated according to equations (4.8) and (4.9), and the
chain rule is applied according to equations (4.10) and (4.11). [42]

Like the fully connected neurons in RVNNs, presented in Equation (3.1) and
Figure 3.1, the fully connected neurons in CVNNs can be presented as follows:

yl
i = h(

∑︂
j

wl
ijy

l−1
j + bl

i), i ∈ 1, ..., N l, j ∈ 1, ..., N l−1, (4.12)

where superscripts are used to indicate the layer index, yl = (yl
1, yl

2, ..., yl
N l) ∈ CN l

is the output of the lth layer consisting of linear part with coefficients wl
ij ∈ C and

bias bl
i ∈ C, as well as of nonlinear part with activation function h(z) ∈ C. Besides,

N l is the number of neurons in layer l.
The complex linear transformations are holomorphic and in that sense straightfor-

ward. On the other hand, nonlinear activation functions may not be holomorphic and
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thus their calculations are more complicated. There are different types of complex
activation functions, however, they are all R-differentiable. Some of them are purely
complex-valued, whereas others are e.g. split-real-and-imaginary functions, which
means that the function handles real and imaginary parts separately. For instance,
the complex ReLU function (CReLU) is formed for a complex variable z in the
following manner and is a split-real-and-imaginary activation function [42]:

CReLU(z) = max(real(z), 0) + j ∗ max(imag(z), 0) (4.13)

When it comes to the NN output and classifiers, softmax function like in RVNNs
can be applied. However, softmax requires real input, which means that the complex
output of the last layer must be converted into real domain. A function must thus
be put between the last complex-valued layer and the softmax function. In [42],
absolute value abs(·) is used for this purpose. This function also works as the last
nonlinear activation function of the neural network. [42]

In the backpropagation and parameter updating phase of CVNNs, proper dif-
ferentiation rules must be obeyed. Thus, as the very last layers of the NN are
real-valued, real-valued differentiation suffices there. However, as the complex-valued
layers require complex-valued differentiation and corresponding chain rules based
on Wirtinger calculus, it is a more straightforward choice to treat all the layers as
complex-valued. [42]
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5 Developed RF Fingerprinting Methods
The aim of this thesis is to find out whether it is beneficial in an RF fingerprint
classification task to utilise complex-valued neural networks over real-valued ones.
The hypothesis suggests that the complex-valued NN have an edge over real-valued
neural networks at least with non-circular signals due to the fact that they utilise
phase information. Many of the nonidealities present in radio transmitters turn the
ideal circular signals into non-circular ones. The complex-valued neural network
employed is more thoroughly described in [42], and thus it is based on the rigorous
complex-valued differentiation known as Wirtinger calculus.

Neural networks have a vast number of different architectures, and several param-
eters affect their operation. Furthermore, parameter initialisation, forming of training
set, and data batching bring additional factors that may influence the outcome. Thus,
it is a real challenge to take into account all the essential variables in order to ensure
that the different developed NN structures are compared in a fair manner. Further-
more, it is challenging to test all the relevant conformations and hyperparameter
combinations when looking for the best possible neural network. Hyperparameters
are such NN parameters that their values are chosen before the training and kept
constant during learning. The problems of selecting suitable hyperparameter values
are addressed e.g. in [87].

5.1 Employed Neural Network Structures
The neural networks used in this thesis are convolutional neural networks. More
precisely, they contain both convolutional and fully connected layers. The activation
function applied in both NNs is rectified linear unit (ReLU). However, whereas the
RVNN employs the traditional form given in equation (3.2), the CVNN has to use
the complex ReLU from equation (4.13).

The neural networks were implemented and run using Python programming
and computing resources within the Aalto University School of Science “Science-
IT” project. The real-valued neural network was built using Pytorch modules in
Python, whereas the complex-valued neural network was the one presented in [42]
and programmed from scratch using Python. The structures of the NNs are presented
in Figure 5.1.

Both NNs consist of two convolutional and two fully connected layers. The sizes
of the convolution kernels are 1 x 7 for the first and 1 x 5 for the second one. No
padding of zeros is applied, which means that the samples become shorter due to
the convolutions. Stride, denoted by s as in Section 3, of one is used and thus the
convolution kernel moves one by one through the sample. The initial weights of the
convolution kernels and the fully connected layers, as well as the initial bias terms,
are drawn from distributions. CVNN is initialised with a scaled normal distribution
and RVNN using a uniform distribution. The samples fed to the NNs have been
normalised in the preprocessing phase and thus no batch normalisation is applied.

The neural networks can have one or more channels, which form another dimension
to the weight matrices or kernels. The channels are also occasionally called filters.
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Figure 5.1: Structures of the neural networks run in this thesis.

In order to examine how the number of trainable parameters of an NN affects the
performance, the number of filters is chosen as a varying parameter. Therefore, the
filter sizes are in the following also called net sizes. Furthermore, in order to study
the performance of CVNNs and RVNNs in a fair manner, the number of trainable
parameters should be as equal as possible. Hence, the number of filters for CVNN is
set as half of the value of RVNN for the second convolutional layer. The employed
filter sizes are presented in Table 5.1.

Table 5.1: Values for filter sizes, also called net sizes, used in this thesis. The first
filter size corresponds the number of output channels for the first convolutional layer,
the second is the number of output channels for the second convolutional layer, and
the last is the number of output channels for the first fully connected layer.

Size index Number of filters for CVNN Number of filters for RVNN
1 8, 4, 8 8, 8, 8
2 16, 8, 16 16, 16, 16
3 32, 16, 32 32, 32, 32
4 64, 32, 64 64, 64, 64

During training, the network parameters are optimised using Adam optimiser
[28] for RVNN and complex Adam [65] for CVNN. The learning rate is determined
as 0.01 in the first epoch, so according to the symbols in Equation (3.10), η0 = 0.01.
After that, the learning rate will decay with factor γ = 0.95 every epoch, allowing



46

Table 5.2: Values for hyperparameters in neural networks used in this thesis.
Hyperparameter Symbol Value
Learning rate, initial η0 0.01
Learning rate, decay coefficient per epoch γ 0.95
Patience for validation pval 10
Maximal number of epochs nmax 200
Padding for convolutional layers ppad 0
Stride for convolutional layers s 1
Kernel size for convolutional layer 1 1 x λ1 1 x 7
Kernel size for convolutional layer 2 1 x λ2 1 x 5
Batch size β 1024

the optimum to be reached more precisely.
In the NNs, the learning process is monitored by calculating validation accuracy

at the end of each epoch. Early stopping criterion is utilised, which makes the
training stop if the selected criterion, here thus validation accuracy, has not improved
in a period determined by patience parameter pval, measured in epochs. For the
NNs described here, pval = 10. On the other hand, the maximal number of epochs
nmax = 200, which means that in case the early stopping criterion has not finished
the training in that number of epochs, the stopping takes place then.

The neural network architectures are formed by a vast collection of hyperparam-
eters. Thus, it is challenging to choose a network configuration, since optimising
the network performance subject to one hyperparameter may decrease the perfor-
mance with regard to another hyperparameter. There are typically so many different
hyperparameter combinations that all of them cannot be tested, nor can all the
dependencies between hyperparameters be modelled. Thus, fully understanding the
effect of every hyperparameter on the learning performance is often not feasible. For
the sake of reproducibility, values of hyperparameters used here are presented in
Table 5.2.

5.2 Data utilised
An essential part of training a neural network is the data fed to the model. In
this thesis, RF fingerprint data was simulated using Matlab. QPSK-modulated
communications signal with random payload was generated and then filtered with
raised cosine filter using samples-per-symbol ratio of 8 and rolloff factor of 0.22. To
simulate RF fingerprints, impairments inherent to simulated hardware were added
to these signals. Plain IQ-imbalance was considered as an impairment because of its
simplicity and inherent non-circularity, and it was added according to [82]:
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y = K1x + K2x̄ (5.1)

K1 = 1 + ge−jϕ

2 (5.2)

K2 = 1 − gejϕ

2 , (5.3)

where x is the unimpaired signal, y is the impaired signal, g is a coefficient determining
amplitude imbalance, ϕ is a coefficient determining phase imbalance, and x̄ is the
complex conjugate of x.

When generating the data, 5 different IQ imbalances were chosen, corresponding
to 5 simulated emitters. The values for the coefficients g and ϕ presented in Equations
(5.1) - (5.3) were set for values given in Table 5.3. The aim was to create signals
with different levels of noncircularity associated with different emitter fingerprints
even though pure QPSK is a circular waveform. The circularity of the signals can
be modelled by using the circularity coefficients defined in [47], page 46, for the
generated data. The circularity coefficients of the simulated signals are presented in
Table 5.3, and values close to zero indicate circularity, whereas circularity coefficients
near to one imply high noncircularity. Some of the employed amplitude and phase
imbalance coefficients are unusually large for a practical system but they are used to
study the sensitivity of CVNNs and RVNNs to noncircularity,

Table 5.3: IQ imbalance coefficients for the 5 simulated emitters, as well as the
resulting circularity coefficients for the generated data with SNR = 15 dB. Circu-
larity coefficients near 0 indicate circularity, whereas values close to 1 indicate high
noncircularity.

Emitter index 0 1 2 3 4
ϕ (degrees) 2 4 10 22 45
g 1.6 0.8 2.0 0.5 0.3
Circularity coefficient 0.45 0.24 0.63 0.67 0.92

The data length for each sample was chosen as 128. After the IQ imbalance,
additive white Gaussian noise (AWGN) was added to the signals. The power of noise
was determined such that signals of signal-to-noise ratios (SNR, see Equation (2.1))
of -5, 0, 5, 10, and 15 dB were obtained. The samples were normalised such that the
maximal amplitude of each sample was 1.

The data was formed as inherently complex-valued. However, when fed to the
real-valued NN, the real and imaginary parts of the signals were stacked so that a
matrix of size 128 x 2 was utilised. On the other hand, the complex-valued neural
network naturally allowed complex-valued input and thus complex vectors of size
128 x 1 were fed to it.

The signal samples were split into 3 groups: training, validation, and test sets.
In order to study the effect of the amount of training data available, different data
sizes were used. The sizes of respective datasets are listed in Table 5.4. Samples
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Table 5.4: The data set sizes utilised in this thesis. The sizes are in signal samples
of length 128. The given amounts were taken from each class and each SNR.

Size index Training data Validation data Test data
1 400 100 500
2 800 200 1000
3 4000 1000 5000

with different SNR values were mixed such that the NNs would be trained with all of
them. Naturally, the NNs were also trained with all of the classes, that is, samples
from different simulated emitters.
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6 Simulation Results
In this chapter, results comparing complex-valued (CVNN) and real-valued (RVNN)
neural networks are presented. The classification performance of the NNs was
quantised using mean accuracy. That is, for each run, the PG classification [78]
was calculated according to Equation (3.6). The Monte Carlo method [69] was
applied such that every hyperparameter combination was run 60 times with different
random seeds, and averages of accuracies of these runs were used for results. Also
misclassifications were examined.

In the simulations, the simulated RF fingerprint data described in section 5.2
was classified using one complex-valued (CVNN) and one real-valued neural network
(RVNN) architecture. The NN structures are described in section 5.1. Both the
CVNN and RVNN were run using different net sizes as listed in Table 5.1, as well as
feeding them with different amounts of training data, listed in Table 5.4.

The effect of SNR on the classification was examined as well. The SNR values (see
Equation (2.1)) of -5 dB, 0 dB, 5 dB, 10 dB, and 15 dB were taken into consideration.
The NNs were trained with batches of signals of different SNR values mixed, but the
final results were derived separately for each SNR.

In RF fingerprinting applications, the amount of data is critical since it tends to
be sparsely available and hard to acquire, and there is no culture of sharing such data
among the users or practitioners. Hence, it is often not possible to increase sample
sizes in training even though that would improve the classification performance.
Instead, the amount of NN parameters can be made larger as long as appropriate
computational resources are available. Thus, the amount of training data is often
not as large as it should be, and the network size needs to be adjusted to obtain as
good results as possible.

6.1 Assumptions
In the simulations, many simplifying assumptions were made. In a real-world scenario,
these assumptions would often not hold.

It was assumed in the simulations that the unknown emitter is always one of
the known 5 transmitters used in the training data. Naturally, in practical use,
also signals transmitted by emitter types that are not in the training set could be
observed. One could consider additional classes for emitters that do not belong to
the training set as well as to the noise-only data. Data from unknown emitter types
could be analysed and then added to the training set if a label can be attached to
it. On the other hand, this poses challenges in training as it would be very hard to
collect a comprehensive set of unexpected and unknown signals.

Additionally, it was assumed that the signal is received line-of-sight (LOS), and
that no multipath due to reflections occurs. In an open space without objects between
the transmitter and the receiver, and with directed and potentially well elevated
antennas, this could be a fairly reasonable assumption, but it hardly applies to all
circumstances such as urban environments with streets and higher buildings.

Another assumption made was that the impairments in the signal are wholly
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represented by IQ imbalance. In reality, various analogue components cause im-
perfections to the signal, for example power amplifier nonlinearities and antenna
couplings, and it is a challenging task to model all these factors mathematically. This
is also a reason why machine learning models seem so appealing in RFF, since they
involve no engineering expertise about all the dependencies between the components
in the circuits and the signal, but learn them from the observed data. By simulating
data, it was possible to simplify the model thus that the structure of fingerprints was
known. This helped understanding the model at the cost of decreasing connections
to the real world.

Besides, it was assumed that the noise attached to the signal was purely white
Gaussian noise. This is a widely used assumption, however, in vicinity of other trans-
mitters and their interfering emissions, for instance, it might not hold. Especially in
dense spectrum use scenarios and demanding propagation environments, interference
may be a dominating factor. The RF signal to be classified should be separated from
the interference before the classification task.

Furthermore, the communications data utilised was simulated, and its payload
was random as it did not need to convey a message. Payload data is typically source
coded and all redundancies are removed, hence it has white-noise-like properties. On
the other hand, error correcting coding may introduce additional redundancies in
the data. The impact of payload data and channel coding were not considered in the
simulations.

6.2 Classification Results
First the impact of the training set size was studied with three different sizes listed
in Table 5.4, while averaging the results over different net sizes. After that, the
classification accuracies of CVNN and RVNN were compared with different training
set sizes, still averaging over net sizes. The misclassifications were considered with
one of the training set size - net size combinations. Finally, the effect of the net size,
and thus also that of the number of parameters, was examined with the six sizes in
Table 5.1. All the results have been averaged over 60 random seeds, regardless of
whether other averaging has been performed as well.

6.2.1 Effect of training set size

The effect of training data size is presented in Figure 6.1. In the figure, classification
accuracies have been averaged over all used net sizes in Table 5.1. It can be seen that,
as expected, the increase in the amount of training data leads to better classification
accuracy. The increase is slightly more significant for CVNN. However, the RVNN
accuracy levels remain well below 0.9 even at high SNR regime. CVNNs have accuracy
levels above 0.9 at SNR regime from 5 dB upwards for the largest training data
set, at SNR regime from 10 dB upwards for the second largest training set, and at
SNR = 15 dB for the smallest training data set as well. Hence, best performance is
achieved with CVNNs and a large training data set of signals at high SNR regime.

The average accuracies of the neural networks for the smallest utilised training
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Figure 6.1: Mean classification accuracy performance of CVNN and RVNN for
different training set sizes averaged over 6 net sizes, as a function of SNR of signals
in the testing set.

set size are presented in Figure 6.2. It can be seen that the CVNN offers better
results than RVNN at the higher SNR regime, whereas the order is reversed for low
SNRs. However, the performances of the NNs show to be quite similar.

Figure 6.2: Mean classification accuracy performance of CVNN and RVNN when
training set size 1 in Table 5.4 is used, and the performance is averaged with regard
to 6 net sizes, as a function of SNR of signals in the testing set.

Figure 6.3 presents the performance of the networks for the largest studied training
set size, which is ten times the value for training set size 1 in Table 5.4. It can be
seen that the CVNN performs better than RVNN in all SNR levels. However, this
scenario demands access to a vast collection of training data, which might make it a
challenging one. The difficulty of collecting large amounts of labelled training data
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was addressed earlier in Section 2.4.

Figure 6.3: Mean classification accuracy performance of CVNN and RVNN when
training set size 3 in Table 5.4 is used, and the performance is averaged with regard
to 6 net sizes, as a function of SNR of signals in the testing set.

From Figures 6.2 and 6.3, it can be seen that the CVNN works best with regard
to RVNN when there is much training data. The larger is the amount of training
data, the more competitive option the use of CVNN is instead of RVNN. CVNN is
also more favourable at high than low SNRs.

6.2.2 Misclassifications

The classification with net size 4 in Table 5.1 and training data size 1 in Table
5.4 is presented by a confusion matrix in Figure 6.4. In a confusion matrix, each
cell contains the number of samples from the class indicated by the row, that were
classified to the class indicated by the column. Therefore, a perfect classification
would lead to a diagonal matrix where non-zero values were only found from the
diagonal. Here, the classifications from 60 runs were summed, and the cell values
were normalised such that the sum of each row is 1. From Figure 6.4, it can be seen
that in this case the percentages on the CVNN matrix diagonal are larger than on
the RVNN diagonal. Thus, CVNN has performed more correct classifications. The
mean accuracies for this hyperparameter combination are for CVNN and RVNN 0.95
and 0.83, respectively. From the figure, misclassifications are seen. Both CVNN and
RVNN have classified around 10% of class 0 samples to class 2, and approximately
10% vice versa. Additionally, RVNN has classified several samples incorrectly to
classes 2 and 3. Classes 0 and 2, according to Table 5.3, both have g values (amplitude
imbalances) greater than 1, whereas all the other classes have g values below 1. Thus,
the amplitude might dominate the classification and thus the CVNN confuses classes
0 and 2. RVNN, on the other hand, should be less applicable to classify non-circular
data, and might therefore make many incorrect classifications.
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Figure 6.4: Confusion matrices describing classification by RVNN and CVNN. The
training set size 1 in Table 5.4 and net size 4 in Table 5.1 are used, and the testing
set signals have had SNR of 15 dB. Empty cells indicate that their value is 0.

6.2.3 Effect of net size

The number of parameters of a neural network largely affects its ability to adjust
itself to the training data. Figure 6.5 shows the RVNN and CVNN performances for
different net sizes. In the figure, training set size 3 in Table 5.4 is used, but similar
trends are observed with other training set sizes as well. It can be seen that the
performance of the RVNN is highly dependent on the net size, the smallest ones
surprisingly yielding best results. On the other hand, CVNN is more robust when
the net size is varied. As can be seen from Figure 6.5, at very low SNR levels where
noise dominates the data, the performance of the best RVNN net size is better than
CVNN with any of the net sizes. This may be due to the fact that noise is complex
circular whereas the signal of interest is noncircular in this case. However, for higher
SNRs, the best CVNNs outperform the RVNN. When the number of parameters, i.e.
net size, is increased, the CVNN performance improves until it decreases a little at
largest net sizes. Still, CVNN has accuracy above 0.9 for all network sizes at SNR
regime above 5 dB. RVNN, on the other hand, gets accuracy above 0.9 only for the
3 smallest network sizes.

From Figure 6.5 it can be seen as well that for the two smallest net sizes, the
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Figure 6.5: Mean classification accuracy performance of CVNN and RVNN when
training set size 3 in Table 5.4 is used for different net sizes, as a function of SNR of
signals in the testing set. For RVNN, the curve corresponding the net size 2 in Table
5.1 is not visible as it is located under the curve for net size 3.

RVNN performs better than CVNN, although the difference is small for net size 2 in
Table 5.1. This result is quite opposite to the hypothesis which suggests that the
CVNN performs better than RVNN with a small number of parameters. According
to the simulations of this thesis, the performance of CVNN only surpasses that of
RVNN with the corresponding net size when the network sizes are large enough. This
is at least partly due to the fact that for large network sizes, the learning process
of RVNNs becomes unreliable. Many runs end up in a situation where the RVNN
classifies all the samples to the same class. However, the only predicted class is
not constant but varies between runs. The runs that collapse in that manner lower
the average used in results. The same applies to all training data sets tested. On
the other hand, the performance of CVNNs is more robust to randomness. As the
variability of CVNN performance is much less than that of RVNN, the CVNN user
can expect good and predictable performance regardless of the net size.

6.3 Discussion
There are multiple factors that had impact to the simulation results. As neural
networks are complicated models with a huge number of design choices and hyperpa-
rameters, the listing of factors discussed in the following is by no means comprehensive.
However, they try to represent some of the most contributing ones.

The learning performance in all machine learning algorithms is greatly affected
by the data fed to the model. The classification accuracy depends on whether there
are distinguishable features in the data, and whether or not the training and test
sets resemble each other. In this thesis, the training, validation and test sets were all
sampled randomly from the same simulated data, which means that the training and
test sets were quite similar. On the other hand, it may not be realistic to assume
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that the signals fed to the NN in actual RF fingerprinting have been collected in
an identical setup than the training data. There were also significant differences
between the IQ imbalance values of some of the simulated emitters, which made the
classification task easier. Moreover, the training data used here contained uniformly
different SNR values, and the most noisy samples probably confused the NNs as any
impairments were difficult to extract from them. However, this approach was chosen
since in practical situations, the SNR of the unknown signal is not known beforehand
to the receiver, but is defined by e.g. transmitting power, propagating channel, and
interfering signals.

The amount of the data is of crucial importance as well. The degree of homogeneity
among the samples of the same class and the degree of heterogeneity among different
classes determine which training data size is sufficient for the NN to be able to
classify them. For classes that are easy to be distinguished, small amount of training
data should suffice. In this thesis, different training data sizes listed in Table 5.4
were examined, and it was shown in Section 6.2.1 that the classification accuracy
improved by increasing the amount of training data. This is an intuitive result, as
large amount of training data helps the model to both learn the data and prevent
overfitting.

Neural networks can take various forms depending on the character and ordering
of their layers. In this thesis, the NN architectures follow in general the one presented
for simulations in [42]. Namely, both CVNN and RVNN consist of two convolutional
layers, followed by two fully connected layers and softmax classifier. The used kernel
sizes presented in Table 5.2 have been previously used in [63]. By adding or removing
layers, the depth of the NNs and thus their ability to extract features would change.
There exist also methods that help to prevent overfitting, such as max-pool layers or
dropout, where the amount of information gathered by the NN is reduced, and that
were not used in this thesis. However, their influence would probably be relatively
small, as overlearning of the training set was not observed here.

The effect of number of trainable network parameters was examined in this study
by running NNs with different filter sizes listed in Table 5.1. The number of trainable
parameters is directly proportional to filter and kernel sizes, as well as the amount of
layers. Based on the results presented in Section 6.2.3, the size of the neural network
affects the results more for RVNNs than for CVNNs. For large RVNNs, a significant
amount of runs ends up learning nothing, regardless of the training data set size
used, and thus the average accuracies used in results are poor. Furthermore, this
study only examined cases where the filter sizes were equal for every RVNN layer
as well as first and third filter size for CVNN, and where the middlemost filter size
in CVNN was half of that. By changing the proportions of filter sizes in different
layers, the layers could be weighted in an alternative manner.

At the parameter update, an optimisation method must be used. In the field of
optimisation, there is a numerous amount of different methods. Common alternatives
include stochastic gradient descent (SGD) and Adam [28], the latter of which is used
in this thesis for RVNN. Adam is used as well in e.g. [63]. The complex-valued
variant of Adam [65] is utilised for the CVNN. As Adam is a stochastic optimisation
algorithm, its performance is affected by random seeds of the software. However,



56

stochastic optimisation methods require usually less computations than deterministic
ones. Adam is considered robust, but is also known to converge poorly with gradients
of large variance. This might lead to the cases where the RVNN does not learn
anything with large net sizes, observed in Section 6.2.3, since large filter sizes lead to
very small initial parameter values, and computations with tiny numbers may be
erroneous. [89]

The parameter initialisation determines from which distribution the initial values
of the network parameters, that is, weight matrices of convolution kernels and fully
connected layers, along with their bias terms, are drawn. In this thesis, RVNN was
initialised with the default uniform distribution used by Pytorch [38], and CVNN used
scaled normal initialisation further described in [42]. When different initialisation
distributions were tested for this thesis, the two chosen led to the best classification
accuracies for respective NNs.

The neural network architectures involve a huge number of hyperparameters that
influence the learning process. Hyperparameter design has been studied in e.g. [87].
For instance, different batch sizes affect how much data the model sees simultaneously.
However, when tested for this study, the performance was not largely affected by the
batch size. The used batch size in Table 5.2 is also used in [63]. Beside batch size, the
sample length affects the visibility of the data to the model. Here, sequence length
of 128 as in [63] was used. Learning rate is another important hyperparameter that
plays a crucial role in convergence of the optimisation algorithm. The initial learning
rate, as well as its decay rate, that are both listed in Table 5.2, were chosen so that
the optimisation algorithm first proceeds fast near the local optimum and then, due
to the decay, approaches the optimum more precisely at every epoch. The initial
learning rate is also the default for Pytorch [39]. The convergence is also affected
by validation patience, since it determines whether or not the training will proceed.
The used patience value in Table 5.2 is utilised also in [63]. The maximal number of
epochs in Table 5.2 was chosen such that it would be large enough to allow stopping
based on patience in most cases. Training should stop on maximal number of epochs
only if the convergence takes unreasonably long.

It is not feasible to examine all the possible hyperparameter combinations in
order to find one providing the best performance. On the other hand, since the main
task here was to compare the performance of CVNN to that of RVNN, it suffices to
ensure that the corresponding hyperparameter values are comparable, even though
they might not be the ones that lead to best possible performance. However, such
hyperparameter combinations have been sought that provide useful classification
accuracies.

Neural networks are heuristic methods, and randomness is widely present. The
random seeds affect e.g. the initial values of the network parameters sampled from
distributions, the splitting of the data to training, validation, and test sets, and
forming of batches in training. Besides, when run on separate computers, the results
may vary a little. To minimise the effect of randomness, the simulations in this thesis
have been run on 60 random seeds, and averages on these runs have been employed
when plotting the actual results.

There are multiple differences between the CVNN and the RVNN although the
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aim was to construct them such that they would be as comparable as possible. Due
to the different dimensions of the input data, as well as the differences between
complex- and real-valued calculus, the NN architectures could not be exactly identical.
Additionally, the programming software for building the NNs were different, as the
CVNN functions had been built from scratch whereas RVNNs are available in most
NN software packages, and thereby the internal implementations of various functions
and methods most probably differ from each other.

Based on the results of this thesis, CVNNs are a more reliable and less variable RF
fingerprinting technique than RVNNs. Based on Figures 6.2-6.3 with results averaged
over net sizes, the mean classification accuracy of CVNN surpasses that of RVNN at
SNR regime above 5 dB, and it is often above 0.9 whereas RVNN accuracies remain
below 0.9. However, RVNNs obtain good results with accuracy above 0.9 at SNR
regime from 5 dB upwards, but only with small network sizes, as shown in Figure
6.5. It is difficult to know in advance the optimal network size, and therefore it is
recommended to use CVNN as it has shown its robustness with regard to different
network sizes. RVNN is more sensitive to parameter initialisation determined by
random seeds and there is thus much variation it its classification accuracies for
larger network sizes. As there exist numerous other NN architectures than the ones
used, there are many uncertainties concerning the hyperparameter choices. Thus,
the robustness of CVNN towards these design choices makes it a practicable method
for RF fingerprint classification.
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7 Conclusion
In this Master’s thesis, neural networks were applied for classification of simulated RF
fingerprint data. A conventional, real-valued neural network (RVNN) was compared to
a complex-valued neural network (CVNN) that utilises complex-valued differentiation
according to Wirtinger calculus. It was shown that the complex-valued neural network
classified the data in average better than the real-valued one, especially in high SNR
region. However, it was also discovered that the different hyperparameters have a
great influence on the classification accuracy, and therefore there is much variation in
NN performances as well. Nonetheless, the results show that change in the number
of NN parameters affects the CVNN less than RVNN. On the other hand, increasing
the training data size improves the CVNN more than it does RVNN. When averaging
the accuracies over different network sizes, CVNNs overall showed better performance
than RVNNs with accuracy levels above 0.9 at high SNR regime.

As the practical RF fingerprinting scenarios often have a limited amount of
training data, it is more essential to be able to choose an appropriate network size
than a data size. Since the CVNN is more robust with regard to the NN size, it
offers a more reliable option for RF fingerprint classification.

It remains for future work to examine how different kinds of fingerprints, rather
than the ones with IQ imbalance as the impairment employed here, get classified.
Non-simulated signals from publicly available RF fingerprinting datasets could thus be
used with the developed methods. Many impairments, such as amplifier nonidealities
or turn-on transients, work usually better in creating differences between emitters
than IQ imbalance. Different neural network architectures, such as recurrent neural
networks (RNN) and in particular long short-term memory (LSTM) suitable for
time-series data, remain to be explored. There are also multiple hyperparameters,
the effect of which on the results should be further studied. Additionally, there exist
methods that combine results from different neural networks and thus the great
variability and poor predictability of classification accuracies of RVNN could possibly
be compensated, but this demands further studies as well. A neural network could
even be trained to compensate nonidealities present in signals by learning the inverse
function of the impairments.
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