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Abstract. This paper investigates multiperiod decisions undermultiple beliefs.We explore
the dynamic consistency of both complete and incomplete orderings. We focus on a
dominance concept that supports decision-making under multiple characterizations of
uncertainty by ruling out strategies that are dominated across a set of beliefs. We uncover a
distinction between two types of dynamic inconsistency, which we label fallacious and
fallible inconsistency. Fallacious inconsistency occurs when an a priori optimal strategy is
suboptimal in the second period, thus requiring the decision-maker to depart from the
original strategy. Fallible inconsistency occurs when an a priori suboptimal second-period
action ceases being suboptimal from the perspective of the second-period preferences. We
introduce corresponding definitions of dynamic consistency and show that the two types
of consistency are equivalent for complete orderings, but differ for incomplete orderings.
Subjective expected utility is dynamically consistent and non-expected-utility decision
rules, such as minmax, are not. We show that the dominance relation over beliefs falls
between these two: it is immune to the more severe fallacious inconsistency, but not to the
less problematic fallible inconsistency. We illustrate the method and concepts using a
numerical example addressing a focal, real-world problem of risk and ambiguity regarding
climate change.
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1. Introduction
One key difficulty in decision-making is choosing
between alternatives when their outcomes are un-
certain.1 If the outcomes’ probabilities can be esti-
mated reliably, the problem is a straightforward ex-
ample of decision-making under risk. Decision-makers
face a thornier problem if definite probabilities cannot be
assigned for important uncertainties.Wewill refer to this
as ambiguity. Such a situation arises, for example, if the
decision-maker cannot aggregate multiple sources of
information from multiple experts or statistical models
(Cox 2012, Marinacci 2015). One way to approach this
type of problem is to usemultiple priors to account for
the ambiguity (Gilboa and Schmeidler 1989). Each
prior represents a subjective belief in a Bayesian
sense, that is, a probability distribution.

A number of non-expected-utility decision rules
have been proposed to address decision situations
with ambiguity (Etner et al. 2012, Stoye 2012a, Gilboa
andMarinacci 2016). We explicitly discuss a subset of
these rules that are common in the literature. The
maxminexpectedutilitycriterion(Wald 1949, Gilboa and

Schmeidler 1989) chooses an alternative relative to the
least favorable distribution from a set of priors. Re-
lated is the α-maxmin expected utility (Ghirardato
et al. 2004), which balances maxmin and maxmax
rules. The minmax regret decision rule (Savage 1954)
appliesWald’smaxmin criterion to the possible regret
faced by the decision-maker (Bell 1982, Loomes and
Sugden 1982) and can be similarly extended for
multiple beliefs.2 Smooth ambiguity (Klibanoff et al.
2005) allows for the separation of preferences and
beliefs by employing an ambiguity-aversion function
in a parallel way as the risk-aversion function in
expected utility. There is also a large body of literature
on distributionally robust optimization applying so-
phisticated versions of these decision rules, primarily
maxmin (e.g., Ben-Tal et al. 2013, Wiesemann et al.
2014, Bertsimas et al. 2019).
Another approach is to apply dominance rules,

rather than decision rules. Dominance rules do not
provide a complete ordering of alternatives, but rather
rule out choices that are strictly worse than other
available alternatives. Dominance rules have been used
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in real decisions, particularly in the context of multiple
criteria (see examples in healthcare (Morton 2014), air
traffic control (Grushka-Cockayne et al. 2008) and
public housing (Johnson andHurter 2000)). A number
of authors have considered dominance relations over
multiple beliefs, occasionally under the term admis-
sibility: most prominently Bewley (2002), but also
Wald (1949), Aumann (1962), Gilboa et al. (2010),
Stoye (2012b), and Danan et al. (2016). Most of this
literature aims at axiomatizing these rules and estab-
lishing preference relations. We focus on the framework
introduced in Baker et al. (2020), who call the concept
belief dominance and show that the nondominated set
will include strategies resulting from subjective ex-
pected utility, maxmin expected utility, minmax re-
gret, and smooth ambiguity.

Risk and ambiguity are particularly significant for
decision problems dealing with long timeframes. In
many practical cases, a long-term strategy consists of
multiple consecutive decisions, rather than a one-shot
decision. New information is often acquired between
the decisions, enabling better-informed decisions in
latter periods. A strategy refers to a complete speci-
fication of future actions at all foreseeable contin-
gencies. We investigate such a multiperiod model, in
which information arrives between the periods.

This intertemporal setting poses one additional
challenge for decision-making: strategies can be dy-
namically inconsistent. Dynamic inconsistency oc-
curs when a decision-maker chooses a first-period
action with planned future actions following each
possible outcome; but when the outcome is actually
realized, they no longer want to follow the original
plan. The problem is, if they knew they would not
follow the plan in the future, they would have chosen
something different in the first period (Strotz 1955).
An inconsistent strategy lacks credibility, since if
looked at carefully, it is apparent from the beginning
that the planwill become suboptimal when re-evaluated
in later periods. As planned actions are responses to
foreseen observations, inconsistency is not due to either
myopia or to the arrival of unexpected information,
which can provide a rationale for changing plans. It is
generally accepted that, for a decision model to have
normative appeal, it needs to be dynamically consistent
(Machina 1989). We note, however, that Siniscalchi
(2009, 2011) has argued that dynamic consistency is
simply one appealing criterion that can be traded off
against other criteria such as ambiguity aversion.

It has been well established that non-expected-
utility decision rules exhibit dynamic inconsistency,
unless specific assumptions or formulations of the
decision problem are made. Machina (1989) argues
that dynamic inconsistency does not occur if the
decision-maker acknowledges foregone opportuni-
ties in subsequent decisions. This solution, however,

is problematic for prescriptive decision support, as it
opens the possibility of accounting for sunk costs. A
number of authors (Epstein and Schneider 2003, Wang
2003, Hayashi 2005, Maccheroni et al. 2006, Klibanoff
et al. 2009) have established multiperiod ambiguity-
averse preferences through a recursive formulation of
utility. This forces the strategies to be dynamically
consistent, but requires nontrivial assumptions to do
so. For example, Epstein and Schneider (2003) and
Hill (2020) restrict the permissible sets of beliefs. Al-
Najjar andWeinstein (2009) argue that these recursive
formulations assume away problems with dynamic
consistency by ruling out partial resolution of am-
biguity. Wang (2003) also notes that a nonrecursive
formulation can be more convenient for some ap-
plications, with a lower computational burden, and
that these two formulations yield the same result only
under specific conditions.
While there exists abundant research on the dy-

namic consistency of the non-expected-utility rules
discussed above, according to our knowledge only
Ghirardato et al. (2008) have touched upon the dy-
namic consistency of dominance relations over be-
liefs. In this paper,we extend the staticmultiple-belief
framework of Baker et al. (2020) to a multiperiod
setting and explore the dynamic consistency of domi-
nance rules in a two-period setting.
We point out here that there are two types of dy-

namic inconsistency, which we name fallacious and
fallible. Fallacious inconsistency occurs when an a
priori optimal strategy is suboptimal in the second
period, thus requiring the decision-maker to depart
from the original strategy. Fallible inconsistency oc-
curs when an a priori suboptimal second-period ac-
tion ceases being suboptimal from the perspective of
the second-period preferences. In such case, the decision-
maker can carry out the original strategy, but may also
switch to a strategy that was originally suboptimal. A
decision-maker would regret ex post committing to
a fallacious strategy, but commitment removes the
problem with a fallible strategy.
In the next section, we present a simple example

illustrating some features of belief dominance and the
two types of dynamic inconsistency in a two-period
decision problem with multiple beliefs. Section 3
provides the formal definition of multiperiod belief
dominance and defines two types of dynamic con-
sistency. We show that the two types of consistency
are equivalent for decision rules, which reflect com-
plete orderings, but not for incomplete orderings,
such as dominance rules. Last, we prove that belief
dominance, for any set of priors and without a re-
cursive formulation, avoids the more severe falla-
cious inconsistency, while nevertheless being sub-
ject to the less problematic fallible inconsistency. In
Section 4, we apply the theory to a prime example of
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a real-world, long-term problem with ambiguity: cost-
benefit analysis regarding climate change.We illustrate
how belief dominance can narrow down to acceptable
strategies under conflicting beliefs and the emergence
of fallible dynamic inconsistency in this setting. In the
last section, we conclude with a discussion of the
merits and pitfalls of different approaches to dynamic
decision-making under multiple beliefs.

2. An Illustrative Example
A virus outbreak has turned into a severe epidemic.3

There are two strains of the virus, labeled A and B,
that might have caused the epidemic. It will take one
month to identify the strain. Health authorities have
requested that several laboratories develop potential
vaccines in two months, after which they will select
one effective vaccine for a vaccination program.

A laboratory has three vaccines in development
that could be effective against these two strains.
Vaccine α is expected to be effective against the A
strain, vaccine β against the B strain, and vaccine γ
possibly effective against both strains. The laboratory
can do research on only one vaccine at a time, but can
change the focus of research after one month.

The laboratory’s two leading virologists have es-
timated the probabilities of the strain being A or B
and, for each vaccine, the probabilities that it is ef-
fective against each strain, conditional on the time put
into its research.4

The virologists have differing beliefs on the like-
lihood of the strain and the effectiveness of the vac-
cines, shown by the virologists’ expressed probabil-
ities presented in Table 1. We assume that a vaccine is
either effective or ineffective. The effectiveness of
each different vaccine is assumed to be stochastically
independent and not mutually exclusive.

Based on this information, the laboratory’s man-
ager is contemplating a research strategy for the next
two months. The manager wishes to maximize the
expected number of effective vaccines at the end of
this period, taking into account the ambiguity expressed
in the two virologists’ beliefs.
A strategy is a triplet x � (x1, x2,A, x2,B), with each

element xi∈{1,(2,A),(2,B)} ∈ {α, β,γ} reflecting a decision to
research a given vaccine for one month. The triplet’s
elements correspond to the first-period research focus
(x1) and the second-period focus, dependent onwhether
strain A or B is observed (x2,A and x2,B). For example,
strategy (β,α, β) starts with research on vaccine β, and
proceeds with research on vaccine α if the strain turns
out to be A, or on vaccine β if the strain turns out to
be B. There are 33 = 27 different strategies in total.
The expected values for the number of effective

vaccines are presented in Figure 1 for all strategies
and both beliefs. See Appendix A for a formalization
and details regarding the calculations. We discuss the
optimal strategies under multiple-decision rules, in-
cluding subjective expected utility (SEU), smooth
ambiguity, maxmin, and minmax regret over the
two beliefs.
Seven strategies, marked with yellow in Figure 1,

are nondominated across the two beliefs in the first
period: there is no strategy that has a higher expected
number of vaccines under both beliefs. The set of
nondominated solutions includes the maxmin, min-
max regret, SEU, and smooth ambiguity solutions
(Baker et al. 2020). The optima for the maxmin and
minmax regret, (γ,α,γ) and (γ,α, β), respectively, are
highlighted in Figure 1. The SEU and smooth ambi-
guity optima depend on the weighting or subjec-
tive probability over the two virologists and can be
any of the nondominated strategies except (γ,α, β).

Table 1. The Probabilities Expressed by Each Virologist of Whether the Strain is A and of the Vaccines’ Effectiveness Against
Each Strain, Conditional on the Research Effort Put Toward that Vaccine

Research effort Virologist 1 Virologist 2

Probability of strain being A? 90% 10%

Probability of vaccine being effective against strain A α 60% 40%
with one month of research? β 20% 10%

γ 10% 20%
(α,α) 85% 80%

with two months of research? (β, β) 40% 55%
(γ,γ) 30% 80%

Probability of vaccine being effective against strain B α 10% 0%
with one month of research? β 30% 50%

γ 40% 20%
(α,α) 40% 10%

with two months of research? (β, β) 80% 65%
(γ,γ) 65% 80%

Note. One letter stands for one month of research on the stated vaccine, and two letters stand for two months.
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The nondominated set, as a whole, goes beyond any
of the individual solutions, providing a comprehensive
perspective on the trade-offs the manager might make
between the two beliefs.

Consider that the manager uses either maxmin or
minmax regret as the decision rule. Both suggest
researching vaccine γ during the first month. If the
strain turns out to be B, then according to the maxmin
strategy (γ,α,γ), further research should be done on γ.
However, if the manager recalculates the maxmin
strategy after learning the strain is B, the optimal
action is to research vaccine β. Research on γwould be
suboptimal, although this was suggested as optimal
after observing the strain being B by the original
strategy. Similar inconsistency takes place with the
minimax regret decision rule, which prescribes strategy
(γ,α, β) in the first period. After finding out that the
strain is B, the recalculated minimax regret action is
to research vaccine γ. It would now be suboptimal to
research vaccine β, which was implied by the original
minimax regret strategy.

If the manager follows the same decision rule in
both periods, the second-period optimum would con-
tradict the optimality of the first-period strategy. The
decision rule reverses preferences between the alterna-
tiveswhen evaluated in different periods and is therefore
inconsistent over time.

Belief dominance does not provide a decision rule,
but can be used to narrow down to a set of acceptable,
nondominated alternatives. This selection behaves
in a more consistent—though not perfectly consistent—
manner than the two decision rules portrayed above.

For every nondominated strategy, the associated
second-period actions continue to be nondominated if
recalculated in the second period. The manager can

thus continue to follow the original strategy. How-
ever, in some cases the manager might find that a
second-period action thatwas initially dominated has
become nondominated. For example, if following the
nondominated strategy (β, α, β) and finding out that
the strain is A, the second-period action of β becomes
nondominated, although all strategies of the form
(β, β, x2,B)were dominated in the first period. We will
show in the following section that these are inherent
features of non-belief-dominated strategies.
In some cases, applying belief dominance may

reveal a good solution without forcing stakeholders
to agree on beliefs. While this is not the case in this
example, it does lead to considerable narrowingdownof
alternatives: from 27 to 7. It also provides a method for
visualizing the tradeoffs. For example,Figure 1 reveals a
small loss under Belief 1 when moving from (α, α,γ)
to (β, α,γ), but under Belief 2 the associated im-
provement is very large. Even a decision-maker with
high confidence in Virologist 1 may be willing to
compromise. Further, the approach can illustratewhy
disagreeing experts suggest conflicting strategies and
help build acceptance for a middle-ground solution.

3. Definitions and Properties
Decisions are made in two periods: 1 and 2. The
decision-maker considers possible outcomes that result
from these decisions and a random variable Z with
possible realizations z∈ z. Between the periods, the
decision-maker observes a signal Y, a random vari-
able that is related toZwith possible realizations y∈ y.
The random variables are defined on a probability
space (Ω,A, f ), where Ω � y× z is the sample space, A
is the σ-algebra of events, and f is the probability
measure. An outcome is a realization of both random
variables (y, z) ∈Ω.
To present the decision problem in extensive form,

strategy x � (x1, x2 (Y)) ∈X comprises first-period ac-
tion x1 ∈X1 and second-period actions x2 (y)∈X2,x1,y
following each possible realization Y � y, with y∈ y. It
is assumed that the second-period decision space
X2,x1,y can depend on the first-period action x1 and the
observation of Y. The random variables are assumed
to be exogenous, that is, independent of the chosen
strategy x.
The decision-maker wishes to maximize expected

utility, but is faced with conflicting subjective beliefs
on the probabilities of Y and Z that she deems
plausible. The set of beliefs the decision-maker con-
siders is denoted with Φ. The conditional probabili-
ties of Z after Y � y has been observed, fZ(z|y), can be
determined through Bayesian updating through the
marginal distributions for the realizations y and z:
f (z, y) � fZ(z|y)fY (y). In the case where fY (y) � 0 for
some particular y ∈ y, we define f (z, y) � 0 and say that

Figure 1. (Color online) The Expected Number of Effective
Vaccines Against the Unknown Virus Strain Under the Two
Virologists’ Beliefs

Notes. The labels show the values of the triplet (x1, x2,A, x2,B) for
nondominated points.
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fZ(z|y) is undefined. Define the set Φy as the subset of
prior beliefs f in Φ for which fZ(z|y) are well defined.

The decision-maker’s preferences are represented
with a utility function U(x1, x2, z). In this case, U is
a general objective function that can include risk
preferences, calculations tying alternatives to out-
comes, and aggregation of multiple criteria into a
univariatemeasure of utility. Given a belief f , thefirst-
period expected utility for strategy x is represented
by V:

V(x, f ) �
∫

y∈y

∫

z∈z
U(x1, x2 (y), z) f (z, y) dzdy. (1)

In the second period, following the first-period de-
cision x1 and observation of y∈ y, the expected utility
for a belief f ∈Φy is

V2(x1, x2, y, f ) �
∫

z∈z
U(x1, x2, z) fZ(z|y)dz . (2)

3.1. Definition of Belief Dominance
In the first period, strategy x* � (x*1, x*2 (Y)) belief-
dominates strategy x � (x1, x2 (Y)) if

V(x*, f ) ≥V(x, f ) ∀f ∈Φ, (3)

with the inequality being strict for some f ∈Φ. This
represents the preference x*_x. The decision-maker is
indifferent between two strategies, written x* ~ x, if
their expected utilities are equal ∀f ∈Φ. The relation
≽ implies that either of these holds, and this relation
is reflexive and transitive—hence a preorder. Belief
dominance, however, is not a complete order, as some
strategies are not comparable.5 We write x*Ix to
denote that x* is not strictly dominated by x.

In the second period, after x1 has been carried out
and y observed, action x*2 belief-dominates action x2 if

V2(x1, x*2, y, f ) ≥V2(x1, x2, y, f )∀f ∈Φy, (4)

with the inequality being strict for some f ∈Φy. We
write this as x*2_x1,y x2.

The purpose of belief dominance in decision sup-
port is to narrow down the choices to strategies that
are nondominated: strategy x* is nondominated if there
does not exist a strategy x∈X that dominates x*. A
dominated strategy is not a good choice, because
another strategy exists that is at least as good under all
considered beliefs and strictly better under at least
one belief. Comparisons among nondominated strate-
gies, on the other hand, involve trade-offs between ex-
pected outcomes predicted by different beliefs.

All nondominated strategies for a given problem
and set of beliefs Φ form the nondominated set. The set
of nondominated strategies contains the optimal

solution to any convex combination of the beliefs,
but may contain other strategies as well (Baker
et al. 2020).

3.2. Two Types of Dynamic Inconsistency
Let us now formally define the two types of incon-
sistency that were encountered in the example above.
Let 7 be a preference relation between possible
strategies. Throughout this section, we assume that7
is a preorder (not necessarily complete). Let X* rep-
resent the set of a priori “optimal” strategies, defining
“optimal” to mean that a strategy is not strictly
preferred by any other available strategy in the first
period: x* ∈X* ⇔ x*Ix, ∀x∈X. Thus, with a complete
ordering, x* would be optimal in themore usual sense;
with an incomplete ordering, x* would be nondominated.
Assume that a first-period action x1 from a strategy

x � (x1, x2 (Y)) is carried out and a signal y is observed.
Let x2 (Y≠ y) denote the strategy’s set of second-
period actions that would follow other possible sig-
nals Y≠ y. We then write strategy x in the form
(x1, x2 (y), x2 (Y≠ y)). Let 7x1,y be the second-period
preference ordering, following a first-period ac-
tion x1 and observed signal y. Let X*

2,x1,y be the cor-
responding set of optimal second-period actions:
x*2 ∈ X*

2,x1,y ⇔ x*2Ix1,y x2, ∀x2 ∈X2,x1,y.
In this setting,we define two types of inconsistency:
1. Fallacious inconsistency: A decision problem

exhibits fallacious inconsistency if a second-period
action that is a part of a strategy in the first-period
optimal set is not in the second-period optimal set.
Formally, ∃x* ∈X* with x*2 (y) ∉X*

2,x*1,y
for some y∈ y.

2. Fallible inconsistency: A decision problem ex-
hibits fallible inconsistency if a second-period opti-
mal set contains an action that was not in any strategy
of the first-period optimal set, despite the first-period
action being optimal. Formally, ∃x2 ∈X*

2,x*1,y
for some

y∈ y such that ∀x̂2 (Y≠ y) ∈∏ ŷ≠yX2,x*1,ŷ
∃x ∈X so that

x_(x*1, x2, x̂2 (Y≠ y)).
That is, with fallacious inconsistency a decision-

maker is required to depart from her original strategy,
because carrying out that strategy is suboptimal in the
second period. This is the problem most often illus-
trated with decision rules exhibiting dynamic in-
consistency. For example, Machina (1989) presents
dynamic inconsistency as fallacious inconsistency,
while Epstein and Schneider (2003) provide an axi-
omatization of this type of consistency for complete
preference orderings.
By contrast, we are not aware of literature that has

expressly discussed fallible inconsistency.Adecision-
maker can carry out the strategy devised in the first
period with fallible inconsistency, as the strategy
remains in the optimal set in the second period. But
she can also find second-period actions that seem
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optimal at that point, although they were not optimal
in the first period. A preference ordering that can exhibit
fallible inconsistency does not force the decision-maker
off-course, but can be seen as problematic if the decision-
maker willingly departs from her original strategy.

Fallible inconsistency occurs onlywhen (1) a strategy x
is dominated solely by strategies x̂ that have a dif-
fering first-period action x̂1 ≠ x1, (2) there are non-
dominated strategies that contain the first-period
action x1, and (3) there exists a branch Y � y where
the second-period action x2 (y) is not dominated by
the available actions x̃2 ∈X2,x1,y. If action x1 is taken
in the first period, then the strategy x̂ is no longer
available in the second period, and therefore, strategy
x ceases to be dominated in the Y � y branch.

The difference between fallacious and fallible in-
consistency can be framed through commitment.6 A
decision-maker who acknowledges fallacious inconsis-
tencywould always bewilling to pay, in the first period,
some small amount for commitment (see, e.g., Strotz
1955, Thaler and Shefrin 1981, Gul and Pesendorfer
2001, Battigalli et al. 2019). Under fallible inconsis-
tency, in contrast, no incentive is needed to follow the
original strategy, and the decision-maker would thus
not be willing to pay for commitment.

3.3. Dynamic Consistency of Preference Orderings
Dynamic inconsistency is a phenomenon that can, but
is not bound to, happen with certain preference or-
derings in specific decision-making settings. To charac-
terize preference orderings generally, we introduce as-
sociated definitions of consistency:

1. Weak consistency: If x, x̃∈X, x1 � x̃1, and x2 (Y≠
y) � x̃2 (Y≠ y) for some y∈ y, then

i. x2 (y)3x1,y x̃2 (y) implies x3x̃, and
ii. x2 (y)7x1,y x̃2 (y) implies x7x̃.

2. Strong consistency: Given x, x̃∈X, y∈ y, and
x̂2 ∈Xx̃1,y

,

a. if x̃Ix and x̂2Ix̃1,y
x̃2 (y), then

(x̃1, x̂2, x̃2 (Y≠ y))Ix;
b. if x̃≽ x and x̂2_x̃1,y

x̃2 (y), then
(x̃1, x̂2, x̃2 (Y≠ y))_x; and

c. if x̃~ x and x̂2~x̃1,y
x̃2 (y), then

(x̃1, x̂2, x̃2 (Y≠ y))~ x.
The definition for dynamic consistency often found

in literature (e.g., Epstein and Schneider 2003) cor-
responds to our definition ofweak consistency. As the
names suggest, strong consistency implies that weak
consistency also holds. The weak and strong con-
sistency, respectively, rule out fallacious and fallible
inconsistency. We prove below that belief dominance
conforms to weak consistency and thus can only
exhibit fallible inconsistency.

The distinction between these two has not been
pointed out previously, we think, because they are

equivalent in the case of decision rules with complete
preference orderings, as we show below. Strong con-
sistency additionally covers relations between incom-
parable alternatives, which is relevant for dominance
rules with incomplete preference ordering, and pro-
vides implications for relations between strategies hav-
ing differing first-period actions, which is necessary to
rule out fallible inconsistency.

Theorem 1. Strong consistency implies weak consistency.

Proof. Assume that strong consistency holds but weak
consistency does not. Consider that the weak consis-
tency assumptions x1 � x̃1 and x2 (Y≠ y) � x̃2 (Y≠ y)
hold. Let us analyze separately the two implications of
weak consistency following the action x1 and obser-
vation y. Consider first a violation of (i) and then, as a
remaining case, a violation of (ii) if the second-period
actions are equally preferable, as strict preference was
considered already under (i).
Case (i): x̃2 (y)3x̃1,y

x2(y).
Assume that weak consistency is violated: although
x̃2 (y)3x̃1,y

x2 (y), it holds that x̃Ix � (x̃1, x2(y), x̃2(Y≠
y)). But strong consistency condition (b) says that if
x̃~ x̃ and x2 (y)_x̃1,y

x̃2 (y), then (x̃1,x2(y), x̃2(Y≠ y)) �
x_x̃. This contradicts the violation of weak consis-
tency with x̃Ix.
Case (ii): x̃2 (y)~x̃1,y

x2 (y).
The proof is similar and can be found in the Appendix.
Therefore, strong consistency implies weak consistency. ∎
For a complete preordering, weak also implies strong.

Theorem2. For complete preorders ≽ the two definitions of
dynamic consistency are equivalent.

Proof. We show here that weak consistency implies
strong consistency for complete orderings, for which
x̃Ix⇔ x̃≽ x.

Assume that implication (a) of strong consistency
does not hold. Then the following will be true:

a. x̃≽ x,
b. x̂2≽x̃1,y

x̃2 (y),
c. x̂ � (x̃1, x̂2, x̃2 (Y≠ y))3x.

If weak consistency holds, (b) above implies x̂≽ x̃.
Combining this with (c) gives x̃7x̂3x, which is a
contradiction with (a). Similar reasoning holds for the
two latter implications of strong consistency, and
therefore, weak consistency implies strong consis-
tency for complete and transitive orderings. Com-
bining this with Theorem 1 completes the proof. ∎

Here we state two theorems showing the rela-
tionships between the two definitions of consistency
and the two definitions of inconsistency. The proofs
are provided in the appendix.
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Theorem 3. A preference ordering 7 that has the property
of weak consistency cannot exhibit fallacious inconsistency.

Proof. See the appendix.

Theorem 4. A preference ordering 7 that has the property
of strong consistency cannot exhibit fallible inconsistency.

Proof. See the appendix.

3.4. Belief Dominance Is Weakly Consistent
Belief dominance has the property of weak consis-
tency, thus avoiding fallacious inconsistency. The
proof for this is provided for discrete random vari-
ables, so that each possible signal y∈ y has a positive
probability mass.7 We note that even expected utility
can exhibit fallacious inconsistency for realized sig-
nals ŷ that have zero subjective probability.

Theorem 5. Belief dominance is weakly consistent.

Proof. Consider x � (x1, x2 (Y)) and x̃ � (x1, x̃2 (y), x2
(Y≠ y)). Assume that x1 is carried out, that a signal y is
observed after period one, and that the second-period
decision x̃2 (y) belief-dominates x2 (y). This means that∑
z∈z

U(x1,x2 (y),z)fZ(z|y)≤
∑
z∈z

U(x1, x̃2 (y),z)fZ(z|y)∀f ∈Φy,

with the inequality being strict for at least one f ∈Φy.
Since fY (y)≠ 0∀f ∈Φy, we canmultiply both sides by

fY (y), which gives
∑
z∈z

U(x1,x2 (y), z)f (z,y)≤
∑
z∈z

U(x1, x̃2 (y), z)f (z,y) ∀f ∈Φy.

Since f (z, y) � 0 for any f ∈Φ that has fY (y) � 0, the
above implies
∑
z
U(x1,x2 (y),z)f (z,y)+

∑
(z,ŷ≠y)∈Ω

U(x1, x̃2 ( ŷ),z)f (z, ŷ)
≤∑

z
U(x1, x̃2 (y),z)f (z,y)

+ ∑
(z,ŷ≠y)∈Ω

U(x1, x̃2 ( ŷ),z)f (z, ŷ)∀f ∈Φ,

with the inequality being strict for at least one f ∈Φ.
This is equal to the definition of x̃ belief-dominating x,
indicating that the implication (i) of weak consis-
tency holds. A similar argument applies for case
x̃2 (y)~ x1, y x2 (y), and when combined, these cover the
implication (ii) of weak consistency. Belief dominance
is therefore weakly consistent. ∎

Thus, belief dominance is not fully dynamically
consistent, but it does avoid the most egregious in-
consistency. As the solutions to many non-expected-
utility decision rules are contained in the nondominated
set (Baker et al. 2020), it may seem surprising that
these rules are subject to fallacious inconsistency

when belief dominance is not. What this means is
that a second-period action of a non-expected-utility
maximization might be suboptimal in terms of that
specific decision rule, but the action is still non-
dominated in the second period.

4. A Numerical Example: Cost-Benefit
Analysis on Climate Change

Climate change is a large-scale problem requiring
long-term strategies and involving ambiguity. Indi-
viduals and entities with conflicting beliefs have long
argued over how much should be done to mitigate
climate change. The combination of ambiguity and
long-term dynamics make this problem particularly
difficult and controversial.
We focus here on climate change mitigation: the

reduction of greenhouse gasses compared with a
business-as-usual situation. Reducing emissions in-
curs costs, but also lessens the impacts that a changing
climate has on society and ecosystems. Ideally, mit-
igation strategies would minimize the sum of miti-
gation costs and climate damages. Pioneering analyses
in this cost-benefit setting were done by Nordhaus
(1992, 2017) with his DICE model.
However, two critical challenges for crafting an

optimal mitigation strategy are the ambiguity around
how much the climate will warm under various
mitigation strategies (Millner et al. 2013) and the
severity of damages from a given level of warming
(Diaz and Moore 2017). A number of papers have
considered these uncertainties in a probabilistic manner
(seeLemoine and Rudik (2017) for a review).We build
on a sensitivity analysis on the combination of these
two sources of ambiguity by Ekholm (2018), using a
simplified version of his dynamic cost-benefit model.
Yet, we go beyond the sensitivity analysis of probabili-
ties, identify dynamic strategies that are nondominated
under diverse beliefs, and illustrate the fallible incon-
sistency that arises with the nondominated strategies.

4.1. Model Description
A strategy here is the combination of a near-term
emissions target and a long-term emissions target
conditioned on information received after the near-term
action. Specifically, the near-term action x1 represents a
global emission target for year 2030, such as those
considered currently under the United Nations’ Paris
Agreement. The long-term action x2 corresponds to
an emission target for 2070, representing mitigation
actions during the latter half of the century. We as-
sume climate damages are realized around 2100. A
more detailed description of the model is provided in
the supplementary material.
In the absence of any action, a baseline level of

emissions would take place, and reducing emissions

Ekholm and Baker: Multiple Beliefs, Dominance and Dynamic Consistency
Management Science, Articles in Advance, pp. 1–12, © 2021 INFORMS 7



from this level incurs costs. We represent the cost of
reducing emissions below this baseline level as a
convex function of the emission reduction level. We
adopt the specific cost function from Ekholm (2018).
The costs in 2070 reflect future technological devel-
opment; thus, they are lower than the costs in 2030.
The economic value of climate damages is modelled
as a power function of temperature change, as in the
widely used DICEmodel (Nordhaus, 1992, 2017). The
objective is tominimize the expected, discounted sum
of mitigation costs and climate damages.

We consider ambiguity in two dimensions: climate
sensitivity and damages. Climate sensitivity (Cs) is a
measure of how much the temperature will increase
due to a doubling of atmospheric CO2 concentration.
There is significant disagreement about the proba-
bility distribution over this value. We define two
beliefs that correspond to discretized versions of the
symmetric and lognormal distributions presented by
Knutti and Hegerl (2008).

For climate damages, we incorporate ambiguity in
the damage function’s exponent, themotivation being
that the quadratic representation in DICE was deemed
highly uncertain early on (Nordhaus 1992) and has
received notable criticism (e.g., Pindyck 2013). We
adopt two extreme beliefs around the exponent, and
note that they are speculative and used for illustrative
purposes. We label the two beliefs as “unconcerned”
and “alarmist,”with the former believing the highest
damages are unlikely, while the latter has a converse
view. The probabilities for climate sensitivity and
damages are assumed to be independent. The com-
bination of two beliefs for both parameters leads to
four beliefs in total.

The two-dimensional random variable Z comprises
the values of climate sensitivity and the damage ex-
ponent. Each dimension of the random variable has
three possible values, leading to nine possible outcomes.
A signalY is received between decisions x1 in 2030 and
x2 in 2070. This signal reflects information from new
measurements, modelling, and impact analyses and
narrows down the possible values of Z by ruling out
either the highest or the lowest value for each of the
two dimensions independently, with equal proba-
bility, regardless of the underlying distribution for Z.
If the highest parameter value is excluded, we denote
this as “low-to-medium,” andwe denote it “medium-
to-high” if the lowest parameter value is excluded.
Four different signals are therefore possible. This
structure is illustrated in Figure 2. The numerical
values for these branching probabilities are presented
in Table 2.

Given a particular belief, the resulting optimization
problem is convex, with both a convex decision space
and a convex and continuous objective function un-
der all of the considered parameters. Consequently,

all nondominated strategies are solutions to an op-
timization problem that employs some convex com-
bination of the four beliefs (Geoffrion 1968). The non-
belief-dominated set can thus be approximated by
using a grid of weightings wi on the four-dimensional
simplex over the four beliefs {(w1,w2,w3,w4)∈[0,1]4|w1+
w2+w3+w4�1}. The grid’s intervals were set at 5%,
leading to 1,771 different weightings between
the beliefs.

4.2. Nondominated Mitigation Strategies and
Dynamic Consistency

Figure 3 presents the nondominated set as the cor-
respondence between 2030 and 2070 emission levels,
separately for each second-period branch (see Figure S2
in the supplementary material for a visualization of
the strategies over time). The optimal strategies for
each of the four “pure” beliefs are denoted with
markers. In 2030, the belief with a symmetric distri-
bution for climate sensitivity and unconcerned view
ondamages leads to thehighestoptimal emissions,while
the skewed distribution for climate sensitivity combined
with the alarmist stance on damages leads to the lowest.
The beliefs on damages have far greater impact on the
optimum than beliefs on climate sensitivity.
The dark blue area illustrates the set of strategies

that are nondominated from the perspective of the
first period. The light blue area represents the range of
second-period actions that are nondominated in the
second period, but not in the first. The first-period non-
dominated set is a subset of the second-period
nondominated set, showing that fallacious inconsis-
tency is avoided, consistent with Theorem 5. That is,
any nondominated strategy chosen in the first period
is still nondominated in the second period. However,
for each first-period action there are second-period
actions that are nondominated in the second period,

Figure 2. (Color online) Decision Tree for the Climatic
Cost-Benefit Problem

Notes. Decisions in 2030 are made before learning. Between 2030 and
2070 one out of four possible signals is received, indicating which
values of Cs and damage exponent are eliminated. The shapes in 2070
denote the information states and correspond to those used later in
Figure 3. The final outcomes of climate damages are realized in 2100,
with three possible values for Cs and the damage exponent.
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Table 2. Beliefs Used in the Climatic Cost-Benefit Analysis

Symmetric Skewed

P(YCS = low-to-medium Cs) 50% 50%
P(YCS = medium-to-high Cs) 50% 50%
P(ZCS = 1.5°C | YCS = low-to-medium Cs) 21% 47%
P(ZCS = 3°C | YCS = low-to-medium Cs) 79% 53%
P(ZCS = 3°C | YCS = medium-to-high Cs) 77% 63%
P(ZCS = 6°C | YCS = medium-to-high Cs) 23% 37%

Unconcerned Alarmist
P(YD = low-to-medium damages) 80% 20%
P(YD = medium-to-high damages) 20% 80%
P(ZD = 1 | YD = low-to-medium damages) 80% 20%
P(ZD = 2 | YD = low-to-medium damages) 20% 80%
P(ZD = 2 | YD = medium-to-high damages) 80% 20%
P(ZD = 4 | YD = medium-to-high damages) 20% 80%

Notes. With the notation from Section 2, YCS and YD denote the signals on climate sensitivity and
damages, and ZCS and ZD denote the random variables of the parameter values. The values shown are
the probabilities of YCS, YD, ZCS, and ZD associated with each belief.

Figure 3. (Color online) Nondominated Emissions Levels in the First Period (x-Axis) and in the Second Period (y-Axis) in
Different Signals Regarding Climate Sensitivity (Columns) and Damages (Rows)

L

Notes. The dark area represents strategies in the first-period nondominated set (NDS). The light area represents for each first-period action the
second-period actions that are nondominated in the second period.
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but were dominated in the first period, implying that
fallible inconsistency is present.

As an example, consider a case where the first-
period decision x1 is to limit emissions to 32 Gt.
The nondominated strategies that contain this first-
period action have second-period emissions ranging
from roughly 9 Gt to 11 Gt if the signal Y indicates
medium-to-high damages and low-to-medium Cs (the
lower left-hand chart in Figure 3). However, once in
that branch in the second period, emissions as high as
15 Gt are now nondominated. This is despite that,
from the first-period perspective, all combinations of
32 Gt in the first period and 15 Gt in that particular
second-period branch were strictly dominated, spe-
cifically, by strategies that have first-period emissions
higher than 32 Gt and second-period emissions lower
than 15 Gt in that branch. But since such dominating
strategies are no longer available due to the chosen
first-period action of 32 Gt, the second-period non-
dominated set has expanded. Similarly, the second-
period nondominated set reaches down to 8 Gt, be-
cause by choosing 32 Gt in the first period, we have
forgone dominating strategies that involve lower
first-period emissions than the chosen 32 Gt.

More generally, fallible inconsistency introduces
nondominated second-period actions that work against
the chosen first-period action. First-period actions in the
low-end of the nondominated set, for example, are more
representative of the “alarmist” belief. The fallible
inconsistency in this case introduces higher emissions
to the second-period nondominated set, more rep-
resentative of the “unconcerned” case. The opposite
holds for strategies with high first-period emissions.

Note that we do not employ Bayesian updating
between the beliefs, as dominance is evaluated against
the whole set of beliefs in both periods. Fallible incon-
sistency does not arise due to a lack of updating, but due
to the unavailability of some foregone strategies as a
result of the chosen first-period action.

5. Conclusions and Discussion
Our contribution has been on two fronts: practical
and theoretical. First, we have expanded the belief
dominance concept to multiperiod problems and il-
lustrated its use. Second, on a more theoretical and
conceptual level, we have uncovered a distinction
between two types of dynamic inconsistency. We
provide definitions for two types of consistency and show
how they apply to complete and incomplete orderings.

Prior definitions of dynamic inconsistency tend to
focus on one aspect: that a first-period optimal strategy
can become nonoptimal in the second period. For
complete preference orderings, this is equivalent to the
converse: a first-period nonoptimal strategy becoming
optimal in the second period. However, these two

types of dynamic inconsistency are not equivalent for
incomplete orders, such as dominance relations. We
have explicitly defined these concepts, labelling them,
respectively, fallacious and fallible inconsistency, and
tied these to thedefinitionsofweakandstrongconsistency.
When considering the merits of different decision

rules, we argue that decision-makers face a trade-off
between flexibility and full dynamic consistency.
Subjective expected utility is dynamically consistent,
but reduces decision-makers’ flexibility by narrowing
in on a particular solution that hides the disagreement
between beliefs. This can be problematic in situations
involving multiple stakeholders, for example. Non-
expected-utility decision rules are similarly inflexible
and require specific recursive formulations to avoid
fallacious inconsistency. Belief dominance is more
consistent than nonrecursive non-expected-utility rules,
avoiding fallacious inconsistency, but less consistent
than expected utility, as it is subject to fallible inconsis-
tency. However, by providing a range of defensible
solutions, it leaves stakeholders the flexibility to nego-
tiate and incorporate nonquantitative aspects into the
decision-making process. It also can reduce the need to
explicitly choose a particular weighting by providing a
characterization of which weightings over beliefs lead
to a given nondominated strategy, as we showed in the
climate example.
To summarize, if significant disagreement exists

over beliefs and the concern over fallible inconsis-
tency is minor, then belief dominance provides a
mechanism that eliminates bad alternatives while
providing flexibility and preventing egregious errors
of dynamic consistency. In some cases, it allows the
best course of action to be identified without forcing
stakeholders to agree on beliefs. On the other hand, if
disagreement between beliefs is less important or if
fallible inconsistency provides a great threat, then
SEU should perhaps be used. The second case might
arise if there are considerable commitment issues, for
example, if one decision-maker is in charge of near-term
decisions, while another will take over in the future.
One approach to narrowing down alternatives would

be to apply a bottom-up exploratory approach, such as
robust decision making (RDM; Rosenhead et al. 1972,
Lempert and Collins 2007), decision scaling (Brown
et al. 2012), or info gap (Ben-Haim 2004). These
methods typically analyze a small set of predefined
alternatives for robustness, then iterate toderive possible
new alternatives. Many-objective robust decision mak-
ing (MORDM) (Kasprzyk et al. 2013, Quinn et al. 2017)
is somewhat parallel to our approach, but focuses on
multiobjective problems and uses Pareto satisficing to
derive a set of alternatives to analyze by RDM.
The dynamic setting, with new information gained

between decisions, gives rise to possible updating
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of beliefs. Our formulation allows experts’ individual
beliefs to be subject to Bayesian updating between
the periods.However,wedonotapplyBayesianupdating
to the set of beliefs, since dominance does not use
weighting or second-order probabilities over beliefs.
In addition, it is worth noting that the beliefs con-
sidered in real-world decision-making settings can
also be biased and time-inconsistent (Brunnermeier
et al. 2017). Obvious extensions to our model include
adding more periods and allowing the probabilities
to depend on the earlier actions.

Appendix A: Formalization of the Problem
from Section 2

Let Y be a random variable representing the virus strain,
withY∈ {A,B}. The probabilities forY � A stated by the two
virologists are presented in the top row of Table 1. Let
Z∈ {0,1}12 be a 12-dimensional binary random variable
indicating whether a specific vaccine is effective against
strain A or strain B, accounting for whether one or two
months of research have been put into the research of
that vaccine. The probabilities for Z are presented in the
bottom 12 rows of Table 1. Label the elements of Z as ZY,x,
corresponding to research effort x being effective against
strain Y.

Denote the number of effective vaccines, given strategy x,
strain Y, and outcome ZwithN(x,Y,Z). Note thatNmay be
zero, one, or even two if research efforts in two different
vaccines are both successful against the strain Y. The ex-
pected value of N(x,Y,Z) is given by

EY,Z[N(x,Y,Z)] � Pr(Y � A)EZ[N(x,Y,Z)|Y
� A] + Pr(Y � B)EZ[N(x,Y,Z)|Y � B],

where E[ · ] stands for expectation. Further, EZ[N(x,Y,Z)|
Y � y] equals Pr(Zy,(x1,x2,y) � 1|Y � y) if x1 � x2,y and Pr(Zy,x1 �
1|Y � y) + Pr(Zy,x2,y � 1|Y � y) if x1 ≠ x2,y, with the probabil-
ities as given in Table 1. For example, the expected value of
strategy (β,α, β) under belief 1 is 90% (60% + 20%) + 10% ·

80% = 0.8.

Appendix B: Proofs from Section 3

Proof for Theorem 1. Case (ii): x̃2 (y)~x̃1,y
x2 (y). Assume

that weak consistency is violated: although x̃2 (y)~x̃1,y
x2 (y), it

holds that x̃§x. By strong consistency condition (c), since x̃~ x̃
and x2 (y)~x̃1,y

x̃2 (y), we have that (x̃1, x2 (y), x̃2(−y)) � x~ x̃.
This contradicts the violation of weak consistency with x̃§x.

Proof for Theorem 3. Assume that preference ordering 7
has the property of weak consistency, but fallacious in-
consistency is observed. This means that ∃x* ∈X* with x*2(y) ∉X*

2,x*1,y
* .

This implies that there is a strategy x̂ � (x*1, x̂2, x*2(−y))with
x̂2_x*1,y

x*2 (y). Weak consistency implies that x̂_x, but this
contradicts the initial setting x* ∈X*, as this means that x*Ix̂.
Therefore, fallacious inconsistency cannot take place with
weakly consistent preferences. ∎

Proof for Theorem 4. Assume that preference ordering 7
has the property of strong consistency, but fallible incon-
sistency is observed. This means that

a. there is a solution x*Ix∀x ∈X,
b. ∃x̂2 ∈X2,x*1,y

so that x̂2Ix*1 ,y
x̌2, ∀x̌2 ∈X2,x*1 ,y

,

c. ∃x̃ ∈X so that x̃_x̂ � (x*1, x̂2, x*2(−y)).
Specifically, (b) above implies x̂2Ix*1,y

x*2 (y). If strong con-
sistency holds, then (b) and (a) together imply x̂ �
(x*1, x̂2, x*2(−y))Ix, ∀x∈X. This contradicts (c) above. There-
fore, fallible inconsistency cannot occur with a preference or-
dering having strong consistency. ∎

Endnotes
1Wenote that the terms uncertainty and risk carry differentmeanings
in various academic communities. Knight (1921) differentiated risk to
be measurable and uncertainty unmeasurable. The latter is some-
times called Knightian uncertainty or ambiguity, while Lempert
et al. (2003) categorize this as one class of “deep uncertainty.” In
some communities—in risk analysis, for example—risk is defined as a
possibility of loss, while uncertainty can be quantified through
probabilities (Kaplan and Garrick 1981). In this paper, we use un-
certainty as a general term for the lack of certainty, risk for uncer-
tainty described by probabilities, and ambiguity for unknown
probabilities, similar to, for example, Bertsimas et al. (2019).
2Although minmax regret violates the independence of irrelevant
alternatives (see, e.g., Stoye 2012a), a basic axiom of rational choice, it
is widely used in the literature (e.g., Caldentey et al. 2017, van der Pol
et al. 2017, Xidonas et al. 2017).
3This illustrative example was conceived in early 2018, that is, it
predates the COVID-19 pandemic.
4We assume here for simplicity that carrying out research for the first
month will not yield better estimates for the probabilities, which the
manager could then use to inform the second-period decision.
5That is, in the terms of order theory, the relation ≽ is not a total
preorder.
6Wewish to thank an anonymous referee for making this observation.
7The reader can refer to, for example, Høyland andWallace (2001)
for a method for discretizing continuous probabilities for sce-
nario trees.
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