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Abstract

This study introduces a novel approach for optimizing residential energy systems by com-
bining linear policy graphs with stochastic dual dynamic programming (SDDP) algorithms.
Our method optimizes residential solar power generation and battery storage systems,
reducing costs through strategic charging and discharging patterns. Using stylized test
data, we evaluate battery storage optimization strategies by comparing various SDDP
model configurations against a linear programming (LP) benchmark model. The SDDP op-
timization framework demonstrates robust performance in battery operation management,
efficiently handling diverse pricing scenarios while maintaining computational efficiency.
Our analysis reveals that the SDDP model achieves positive financial returns with small-
scale battery installations, even in scenarios with limited photovoltaic generation capacity.
The results confirm both the economic viability and environmental benefits of residential
solar–battery systems through two key strategies: aligning battery charging with renew-
able energy availability and shifting energy consumption away from peak periods. The
SDDP framework proves effective in managing battery operations across dynamic pricing
scenarios, achieving performance comparable to LP methods while handling uncertainties
in PV generation, consumption, and pricing.

Keywords: power grid; stochastic dual dynamic programming; battery storage scheduling;
variable renewable energy

1. Introduction
Under the Energy Union framework, Finland has developed and implemented the

Finland NECP 2024 (Finland’s Integrated National Energy and Climate Plan), which out-
lines comprehensive energy and climate policies. This strategic initiative reflects Finland’s
dedication to decarbonization efforts, renewable energy expansion, and enhanced energy
efficiency measures. The plan specifically addresses the integration of solar power within
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the energy supply sector and establishes improved building regulations for residential and
service sectors [1].

Our research is conducted as part of the “EasyDR” initiative, which focuses on enabling
demand response (DR) through an open-source approach to optimize residential electricity
consumption at scale [2]. The project focuses on implementing variable power source
integration through cost-effective solutions, leveraging economical components and open-
source technologies.

The envisioned battery storage system optimizes residential energy management
through strategic energy storage and distribution. During periods of low demand, the
system efficiently captures excess energy, including available photovoltaic generation, for
subsequent deployment during peak usage periods. This systematic approach enhances
operational efficiency by minimizing energy waste, reducing reliance on fossil fuels during
peak demand, and maintaining optimal supply-demand equilibrium [3]. The implementa-
tion of localized energy distribution protocols reduces transmission losses while ensuring
consistent grid performance parameters [4]. Through the strategic alignment of energy
management protocols with solar generation patterns and the utilization of residential stor-
age capabilities, households achieve both economic efficiency and contribute to enhanced
grid resilience [5].

Our key innovation consists of the development of an advanced optimization model
specifically designed to optimize the scheduling of residential battery storage systems.
Building on the seminal research of [6], our work utilizes stochastic dual dynamic pro-
gramming (SDDP). This sophisticated methodology leverages piecewise linear functions to
approximate expected-cost-to-go functions in stochastic dynamic programming, effectively
addressing the computational challenges of state discretization. The approach generates
estimated functions by analyzing dual solutions of an optimization at each stage. Within
stochastic, multistage decomposition frameworks, these solutions can be interpreted as
Benders cuts.

The model in [6] presents a notable constraint in its underlying assumption of inde-
pendent random variables for uncertainty assessment. This framework proves inadequate
for electricity market analysis, where stochastic processes demonstrate statistical interde-
pendence. Consider how electricity prices and demand patterns display clear temporal
and spatial relationships, with demand peaks typically corresponding to price increases [7].
Given these market dynamics, a more sophisticated approach to uncertainty modeling be-
comes essential. In [8], an enhanced methodology was introduced for handling stagewise-
dependent stochastic processes through multistage, minimax stochastic programming
problems. Their approach enables random variables at each stage to correlate with those at
other stages, representing a significant advancement of the SDDP algorithm as originally
presented in [6]. The framework addresses discrete-time, convex, infinite-horizon, and mul-
tistage stochastic programming challenges with continuous state and control variables. By
representing SDDP problems through a policy graph structure, this methodology enhances
our capacity to address multiple interdependencies.

Research Objectives and Contribution

The current research expands upon existing methodologies and makes two signifi-
cant contributions. Firstly, we created an SDDP model to solve multistage optimization
problems by approximating the expected-cost-to-go functions of stochastic dynamic pro-
gramming with piecewise-linear functions [6] using a policy graph [8]. This model has been
successfully developed for residential community energy management, specifically opti-
mizing battery storage systems while accounting for various market variables, including
electricity pricing, photovoltaic (PV) generation, and consumption patterns. Secondly, our
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methodology employs advanced time-series forecasting techniques, including exponential
smoothing, local-level cycle, and seasonal ARIMA (auto-regressive integrated moving aver-
age) models, to generate predictions based on historical data [7,9–12]. By integrating these
predicted scenarios and their associated probabilities into our SDDP model, we enhance
the optimization of battery storage scheduling throughout the planning period.

To establish a performance benchmark, we evaluate our SDDP model against an LP
model with perfect foresight capabilities. This comparative analysis yields valuable eco-
nomic insights and practical recommendations for battery storage deployment, validated
through our empirical testing framework.

This paper is structured as follows: Section 2 introduces the methodological frame-
work, followed by the study data overview in Section 2.1. Section 2.2 addresses uncertainty
prediction, while Section 2.3 presents the Linear Policy Graph Model elements. Model
assumptions are detailed in Section 2.4. Section 2.5 examines the sub-problems, and
Section 2.6 describes the SDDP and LP algorithms. Our empirical findings—including the
evaluation of battery storage effectiveness and comparison of stochastic solutions between
SDDP and LP models—are presented in Section 3. Section 4 presents our key findings
and insights.

2. SDDP and LP Models
In our implementation, the SDDP model leverages piecewise-linear convex functions to

estimate expected-cost-to-go functions within the stochastic multistage dynamic programming
framework [6]. Piecewise-linear convex functions represent the optimal value functions
due to the linear programming formulation of our SDDP subproblem, which is discussed
in Section 2.5. Our implementation incorporates a policy graph framework for strategic
decision-making, following the methodology outlined by [8]. This approach has demonstrated
capability in managing complex uncertainties within multistage optimization [13,14].

2.1. Data

For our complete dataset, we combined German PV generation and demand data
obtained from the Collaborating Smart Solar-Powered Microgrids (CoSSMic) initiative [15],
along with Finnish day-ahead pricing data from the European Network of Transmission Sys-
tem Operators for Electricity (ENTSO-E) [16]. The CoSSMic dataset, gathered from 1 April
to 31 May 2016, encompasses hourly measurements from six households, with four featur-
ing PV generation capabilities. To establish a representative sample of a Finnish housing
association, we employed bootstrapping techniques to scale the dataset to 50 households
while maintaining the integrity of temporal patterns in both consumption and PV genera-
tion. It should be noted that Finnish housing associations function as business entities with
centralized management, where both operational costs and financial returns are distributed
proportionally among shareholders (i.e., house owners). The ENTSO-E price data covers
the period from 1 May 2023, to 1 August 2023. We aligned the 2016 residential energy data
with the corresponding 2023 spot market day-ahead pricing timeframe, matching months
and weekdays to ensure analytical consistency. Solar radiation patterns between Finland
and Germany demonstrate notable similarities, with recorded annual sunlight hours of
1679 in Helsinki compared to 1716 in Berlin during 2016 [17]. Our analysis indicates that
PV generation values in our dataset exceed standard residential ranges (7.5 kWh versus the
typical 0.25–0.40 kWh per household [18]). To address this variance, we implemented a
0.1 calibration coefficient to maintain consistency with industry standards while retaining
the integrity of temporal relationships.
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2.2. Uncertainty Prediction

Comprehensive model formulations for both the SDDP and LP approaches can be
found in Section 2, with a complete listing of terms and definitions available in the Nomen-
clature section.

Our forecasting approach integrates three key parameters into the analysis framework:

1. Day-ahead electricity spot market prices ω
spot
spr ∈ Ωspot

spr in EUR/kWh;
2. Residential electricity demand ωdem

spr ∈ Ωdem
spr in kWh; and

3. Residential PV generation ω
pv
spr ∈ Ωpv

spr in kWh.

For day-ahead spot market electricity price forecasting, we employ a 20-stage exponen-
tial moving average methodology with a smoothing parameter (i.e., a tuning parameter)
set to 2.0 to establish hourly price means (X̄) [9,19]. The simple sample standard deviation
is utilized to determine hourly price standard deviations (s). Subsequently, we generate
three distinct hourly price scenarios from the Gaussian distribution based on the calculated
hourly X̄ and s values, representing the three uncertainty scenarios of spot market price
uncertainties, ω

spot
spr . The second row of Figure 1 illustrates these three scenarios, denoted as

s1–s3 (columns 1–3), alongside corresponding historical price data (column 4). The figure
employs boxplot visualization to display hourly distribution ranges for data collected
between 1 May 2023 and 1 August 2023.

Figure 1. Input parameters of electricity consumption, electricity prices, and PV generation from 2 to
4 May 2023.

For PV generation and residential electricity consumption data, the analysis employs
a three-scenario approach for each parameter, generating distinct predictions to account
for varying conditions. Within each planning horizon r ∈ R, we utilize three prediction
methodologies: exponential smoothing [9–11], seasonal auto-regressive integrated mov-
ing average (SARIMA) [7,11,12], and local-level cycle (LLC) [11,12]. These models are
calibrated using historical data spanning 120 stages (i.e., hours) to forecast PV genera-
tion and electricity demand for the subsequent 12 stages (preliminary experiments have
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shown that a 12-h horizon provides an optimal balance between prediction and compu-
tational performance. A detailed discussion concerning these experiments can be found
in [20].) (p = {1, 2, . . . , 12}). The resulting forecasts generate three distinct scenarios,
s = {1, 2, 3}, for each uncertainty parameter (PV generation uncertainties, ω

pv
spr, and de-

mand uncertainties, ωdem
spr ), which subsequently serve as input parameters for the SDDP

model’s optimization process. The first and third rows in Figure 1 present a visualization
of three distinct scenarios, accompanied by historical data, pertaining to residential energy
demand and amount of PV. The time-series analysis and uncertainty predictions were
executed using the Julia package StateSpaceModels.jl [11].

Although uncertainty forecasting constitutes a significant component of our method-
ology, it serves primarily as an input generation mechanism for our SDDP model. The core
objective of our research lies in the development and implementation of SDDP algorithms
for battery operation optimization.

2.3. Linear Policy Graph Model Elements

We implement a multi-stage SDDP framework utilizing a linear policy graph ap-
proach. Figure 2 presents the architectural framework of our SDDP model. The following
section outlines the essential terminology of our SDDP implementation [8,13]. This study
incorporates four sets: stages (p, q ∈ P), planning horizons (r ∈ R), scenarios (s ∈ S), and
uncertainties (u ∈ U).

Figure 2. Linear policy graph in an SDDP model for each planning horizon r ∈ R.

Stage As shown in Figure 2, the linear policy graph comprises a structured set of nodes
(depicted as rectangles) representing stages p ∈ P (each one-hour long) and planning
horizons r ∈ R (arranged in rows). At each node, which marks a specific point in
time, an agent (i.e., an SDDP model optimizer) selects an action based on the revealed
uncertainty parameters (ωspr ∈ Ωspr).

Noise The model incorporates stochastic elements, represented as ωspr ∈ Ωspr, which main-
tain independence across sequential decision stages. These elements are characterized
through a set of scenarios s ∈ S, each representing distinct probabilistic outcomes.
The framework encompasses three primary categories of uncertainty parameters:
ω

spot
spr ∈ Ωspot

spr , ωdem
spr ∈ Ωdem

spr , and ω
pv
spr ∈ Ωpv

spr.

State We represent the battery storage balance in kWh using the state variable xpr. The
decision-making sequence begins at the root node R (denoted by a circle) in Figure 2,
where the initial battery storage balance xp1r1 is established for the first stage (repre-
sented by the first square node in row one). The system then proceeds to determine
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an outgoing state xp2r1 . The study’s primary objective is to enhance battery storage
efficiency through hourly operational optimization, taking into consideration three
key variables: day-ahead spot market prices (ωspot

spr ), electricity demand (ωdem
spr ), and

photovoltaic generation (ωpv
spr). Within the hourly optimization framework, initial

stage predictions (p = 1 ∈ P) demonstrate the highest accuracy in terms of uncer-
tainty prediction compared to subsequent stages (p = {2, 3, . . . , 12} ∈ P) across each
planning horizon (r = {1, 2, . . . , 72} ∈ R). As a result, decisions from the first stage of
each planning horizon (xp=2,r) systematically transition to the subsequent horizon’s
first stage (xp=1,r+1), establishing a continuous connection between planning periods
in a rolling-horizon manner, as depicted in Figure 2.

upr(·) The control variable (upr|upr ∈ Upr(xpr, ωspr)) represents a decision made by an
agent during a stage. We assume all control variables upr are discrete and feasible
for an agent to implement. Our model incorporates four primary control variables:
battery energy injection (binj

pr ) and extraction (bxtr
pr ), alongside grid electricity purchase

(epur
pr ) and sales (esale

pr ), measured in kWh.

Tpr(·) The transition function can take various forms [8], with each state transition resulting
in an associated cost (Cpr(·)), as shown in Figure 2.

Cpr(·) The stage cost function (Cpr(xpr, upr, ωspr)) represents the optimization objective
that requires minimization at each stage pr. This cost function evaluates the financial
impact of implementing control decisions upr on the state variable xpr, taking into
account the realization of uncertainty parameters ωspr. In this study, the stage cost
specifically refers to the household electricity bill.

πpr(·) The decision rule, represented as πpr, determines control variable upr through
evaluation of the current state variable xpr and observed uncertainties ωspr. A set
of these decision rules constitutes a policy (πpr ∀ p ∈ P, r ∈ R), where individual
components align with specific stages p and planning horizons r.

Node Referring to Figure 2, our multistage SDDP framework is structured around inter-
connected nodes. Each node incorporates key operational elements: state variables
xpr, noise ωspr, control variables upr, transition function Tpr, stage objective Cpr,
and decision rules πpr. To demonstrate the policy graph structure, we implement a
hazard-decision node framework, wherein operational decisions upr are executed at
each stage following the realization of noise ωspr ∈ Ωspr.

2.4. Model Assumptions

The model incorporates the following key operational parameters and assumptions:

1. The battery storage system operates with an hourly energy injection and extraction
rate (Crate) of 25% capacity, based on specifications of a Lithium-ion battery (LFP)
rated at 2 kW for 4 h. The maximum charging (binj

pr ) and discharging (bxtr
pr ) limits are set

by Crate times maximum capacity (Bbal). The system maintains injection and extraction
efficiencies (Einj and Extr) of (

√
83)%, yielding an 83% round-trip efficiency [21].

2. Battery self-discharge effects were deemed negligible over the 72 h modeling period,
allowing for the simplification of Ebal to remain at a constant value of 1.

3. To ensure operational reliability, a minimum battery storage level (Bbal) of 20% capac-
ity is maintained as a strategic power reserve.

4. The system is initialized with a battery charge level (Binit) of 20% capacity.
5. The model incorporates a design to address end-of-horizon effects through the im-

plementation of SDDP and LP models. Within the rolling-horizon framework, each
horizon spans 12 stages. The battery balance bbal

pr , functioning as a state variable, is
strategically transferred from the second stage of the current horizon to serve as an
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initial input for the first stage of the subsequent horizon. This ensures operational
continuity by transferring the battery storage balance between consecutive planning
horizons (r + 1|r = {1, . . . , R− 1}), as detailed in Section 2.5 and Figure 2.

6. While extreme market conditions like price volatility and power outages are acknowl-
edged, they fall outside the scope of this analysis to maintain methodological focus.

7. The optimization scope is specifically limited to battery charging and discharging
strategies, excluding considerations of PV system optimization through solar tracking
mechanisms or panel orientation adjustments.

The successful implementation of stochastic dual dynamic programming relies on
adherence to fundamental assumptions, as outlined in [8,14,20]. To implement and solve
Equation (1), we employ SDDP.jl, a Julia package developed in [14].

2.5. Sub-Problems of the SDDP Model

min S = ∑
r∈R

∑
p∈P

[(
(1 + V) ∑

s∈S
Psprω

spot
spr + Cpur

)
epur

pr + Cbatt(binj
pr + bxtr

pr ) (1a)

+Cpv ∑
s∈S

(Psprω
pv
spr)−

(
∑
s∈S

Psprω
spot
spr − Csale

)
esale

pr

]
s.t. esale

pr + binj
pr + ∑

s∈S
(Psprωdem

spr ) = epur
pr + bxtr

pr + ∑
s∈S

(Psprω
pv
spr) ∀ p ∈ P, r ∈ R (1b)

Ebalbbal
pr + Einjbinj

pr − Extrbxtr
pr = Ebalbbal

(p+1)r ∀ p = 1, ..., P− 1, r ∈ R (1c)

Bbal ≥ bbal
pr ∀ p ∈ P, r ∈ R (1d)

bbal
pr ≥ Bbal ∀ p ∈ P, r ∈ R (1e)

bbal
(p=1)(r=1) = Binit, p = 1|p ∈ P, r = 1|r ∈ R (1f)

bbal
p=1,r+1 = bbal

p=2,r, p = {1, 2}|p ∈ P, r = {1, ..., R− 1} ∈ R (1g)

CrateBbal ≥ binj
pr ∀ p ∈ P, r ∈ R (1h)

CrateBbal ≥ bxtr
pr ∀ p ∈ P, r ∈ R (1i)

bbal
pr , binj

pr , bxtr
pr , epur

pr , esale
pr ≥ 0 (1j)

Our mathematical formulation leverages and extends established methodologies from
prior research [20,22–24], integrating energy conservation principles for battery storage
systems with real-world physical and economic limitations.

The SDDP framework incorporates sub-problems formulated as multi-stage linear
programming models, as detailed in Equation (1). The objective function in Equation (1a)
aims to optimize financial performance by minimizing total expected costs while accounting
for revenue across all planning horizons r ∈ R, stages p ∈ P, and scenarios s ∈ S. The
SDDP approach has Pspr = 1/3 with the constraint that scenario probabilities sum to
unity (∑S

s Pspr = 1.0 ∀ p ∈ P, r ∈ R). The equal probability of 1/3 is assigned to each
prediction as the three forecasting models demonstrate comparable levels of accuracy in
their predictive capabilities (model performance comparisons from the previous work [20]
revealed no significant differences in MAE, MSE, and RMSE metrics among these three
models when compared to historical data. The prediction results (which become scenarios
1–3) are shown in Figure 1.). Equation (1a) encompasses three cost components and one
revenue stream. The first cost component calculates the total expense of grid-purchased
electricity. This is determined by multiplying the purchased electricity volume (epur

pr ) by

the projected spot-market rate (ωspot
spr ) for each scenario s ∈ S, weighted by their respective

probabilities Pspr. This is then adjusted with purchasing taxes V in EUR/kWh. Finally,
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the expected taxed spot-market cost is added to the network’s marginal purchasing fees
Cpur in EUR/kWh. Note that taxation is applicable exclusively to electricity purchases [25].
Battery-related operational costs are incurred on the energy flows into and out of the storage
system (binj

pr and bxtr
pr ), with each flow being assessed at the standard battery utilization cost

of Cbatt in EUR/kWh. The third cost component reflects the anticipated photovoltaic (PV)
generation, calculated by aggregating the expected generation (ωpv

spr) across all scenarios,
weighted by their respective probability factors (Pspr), and multiplied by the associated unit
cost (Cpv) expressed in EUR/kWh. Sale revenue is derived from selling surplus energy back
to the grid. The compensation rate is determined by multiplying the sold energy volume
(esale

pr ) in kWh by the unit price in EUR per kWh. This unit price incorporates the weighted

average spot-market rate (ωspot
spr ) across scenarios s ∈ S based on their probabilities Pspr,

adjusted for network sale fees (Csale) in EUR/kWh.
Equation (1b) establishes energy balance requirements across all stages (p ∈ P) and

planning horizons (r ∈ R). On the demand side, this encompasses energy sold esale
pr , energy

injected binj
pr , and probability-weighted demand ωdem

spr representing average households’
demand. The supply components comprise purchased energy epur

pr , extracted energy bxtr
pr ,

and probability-weighted PV generation ω
pv
spr. Equation (1c) calculates the battery’s energy

storage level for the next stage bbal
(p+1)r by considering three key elements: the present stored

energy bbal
pr , energy injection binj

pr , and energy extraction bxtr
pr . The corresponding efficiency

coefficients Ebal , Einj, and Extr are incorporated as specified in Section 2.4. Equation (1d,e)
establish the operational limits for battery capacity. Specifically, Equation (1e) maintains
a minimum charge level to prevent complete battery depletion during optimization. The
initial balance of the battery storage for the first stage and the first planning horizon
(bbal

(p=1)(r=1)) is determined by Equation (1f). The model optimizes hourly schedules across
multiple planning horizons (r ∈ R), with each horizon comprising multiple stages (p ∈ P).
The battery storage balance (bbal

pr ) serves as the only state variable, facilitating continuity be-
tween planning horizons through a rolling-horizon approach. As specified in Equation (1g),
the battery storage level transitions from the second stage of the current planning horizon
(bbal

(p=2)r) to the first stage of the subsequent horizon (bbal
(p=1)(r+1)). Equation (1h,i) establish

operational constraints for the battery storage system by defining maximum thresholds
for energy injection (binj

pr ) and extraction (binj
pr ) amounts. All variables are non-negative, as

outlined in Equation (1j).

2.6. Algorithms

It is important to state the inherent differences between linear programming (LP)
and stochastic dual dynamic programming (SDDP) models. The LP model operates with
complete future information (i.e., perfect foresight), whereas the SDDP model manages
real-world uncertainties in electricity prices, demand, and PV generation through proba-
bilistic scenarios. As such, we utilize the LP model as a theoretical upper bound for system
performance, while the SDDP model provides practical, implementable solutions under
uncertainty. The relative performance of these approaches varies based on the accuracy of
forecasted parameters and the magnitude of uncertainties in the system. The detailed imple-
mentation procedures for SDDP and LP approaches are presented in Algorithms 1 and 2,
respectively.

2.6.1. The SDDP Model

During Step 2, the model utilizes historical data (120 prior hours) for each period
p, r to forecast three uncertainty parameters (ωspot

spr , ωdem
spr , and ω

pv
spr), generating Ωpredict

spr ,
as described in Section 2.2. The trained SDDP model, MSDDP, is implemented in Step 3,
utilizing the predicted uncertainty set, Ωpredict

spr , established in the preceding step. In Step 4,
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the model incorporates historical uncertainty values (120 prior hours), designated as Ωreal
spr .

Ωreal
spr represents the empirical dataset comprising residential demand patterns, electricity

pricing data, and PV generation measurements in kWh for the period spanning 1 May
2023 through 1 August 2023, as illustrated in the fourth column of Figure 1. Ωpredict

spr

in Step 2 serves as the training dataset for the SDDP model (MSDDP), whereas Ωreal
spr in

Step 4 is utilized to evaluate associated costs in Equation (1a) using the trained SDDP
model. Subsequently, these values (Ωreal

spr ) are used in the computation of stage-specific
objectives in Step 5, specifically determining the associated costs for each period and
planning horizon (p ∈ P, r ∈ R). The variable C(p=1)r denotes the first-stage cost, while

Ccost−to−go
(p=2,...,12)r encompasses the cost-to-go from the second to the twelfth period for each

planning horizon r ∈ R. The aggregate costs from stage p to p + 11 comprise the stage
objective at the current stage, determined by the implemented control u and policy π,
combined with the cost-to-go function spanning stages p + 1 through p + 11 [8]. The
aggregation of costs across all periods (combining C(p=1)r with Ccost−to−go

(p=2,...,12)r) is performed
and aggregated across planning horizons r ∈ R in Step 6, yielding the final SDDP solution,
SSDDP, in the final step.

Algorithm 1 SDDP

1: SDDP(case)
2: Ωpredict

spr ← Predict uncertainties

3: MSDDP ← Solve Equation (1) using Ωpredict
spr

4: Ωreal
spr ← Assign uncertainties with historical values

5: C(p=1)r,Ccost−to−go
(p=2,...,12)r ← Evaluate MSDDP with Ωreal

spr

6: SSDDP ← ∑r∈R(C(p=1)r +Ccost−to−go
(p=2,...,12)r)

7: return SSDDP

2.6.2. The LP Model

In contrast to the SDDP approach, the LP model incorporates historical data (Ωreal
spr ) at

Step 2 and operates with a single scenario (s = {1}|s ∈ S) in Equation (1), whereas SDDP
utilizes three scenarios (s = {1, 2, 3}|s ∈ S). This applies to ωdem

spr , ω
pv
spr, and ω

spot
spr , which

implies that the LP model has access to perfect information. The model then proceeds to
compute SLP (i.e., the solution of the LP model) across all periods p ∈ P and planning
horizons r ∈ R in Step 3, with the final value being output in the concluding step.

Algorithm 2 LP

1: LP(case)
2: Ωreal

spr ← Assign uncertainties with historical values
3: SLP ← Solve Equation (1) using Ωreal

spr

4: return SLP

3. Case Study
This study examines battery storage optimization approaches through a compre-

hensive analysis of three SDDP model variants, utilizing an LP model as an idealized
benchmark. To assess storage capacity effects, we analyze various battery configurations
from 0 to 2000 kWh in 500 kWh intervals. Section 2 provides an in-depth comparison of
these methodological frameworks. The investigation was conducted from 2 to 5 May 2023,
as shown in Figure 3 (The model labels in Figures 3–5 use a consistent naming convention:
case number, case designation, model methodology, and battery capacity. For instance,
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“C1_BASE_SDDP_0” indicates Case 1 (baseline scenario) using the SDDP model with 0 kWh
battery storage capacity.).

Figure 3. Battery storage balance in kWh.

The cost parameters implemented in Equation (1) are derived from established in-
dustry sources [25,26], ensuring the model reflects current market conditions. The elec-
tricity purchase and sale marginal costs (Cpur, Csale) are set at 0.0421 EUR/kWh and
0.00211 EUR/kWh respectively [25]. The operational costs include 0.006 EUR/kWh for PV
generation (CPV) [27,28] and 0.002 EUR/kWh for battery storage utilization (Cbatt) [4,21].
A value-added tax (VAT) rate (V) of 20% is applied to these values.

The analysis encompasses four distinct case studies, each featuring specific configu-
rations of electricity pricing and photovoltaic (PV) generation parameters. The following
cases have been established for evaluation:

1. C1_BASE_SDDP: The baseline scenario serves as our control case, incorporating
baseline operational parameters for demand, PV generation, and spot market pricing
as illustrated in Figure 1 [25,26].

2. C2_HEP_SDDP: The high electricity pricing (HEP) scenario examines system per-
formance by implementing a twofold increase in electricity costs compared to the
baseline parameters.

3. C3_HPV_SDDP: The high PV generation (HPV) scenario assesses system operation un-
der conditions where photovoltaic output is doubled relative to baseline measurements.

4. C4_BASE_LP: A comparative analysis utilizing linear programming methodology
while maintaining baseline parameters.

3.1. Comparing Performance Metrics Between SDDP and LP Models

Our analysis examines the performance metrics between two models: the SDDP model
(C1_BASE_SDDP) and the LP model (C4_BASE_LP). This analysis evaluates the financial
implications for residents through examination of objective function values as defined in
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Equation (1a), which quantifies energy costs. The LP model calculates objective function
values by aggregating financial savings across 12-hourly stages within each planning
horizon. The SDDP model, on the other hand, evaluates financial savings by integrating the
initial stage objective function value with expected cost-to-go function values throughout
the final stage, as detailed in Section 2.

Table 1 presents a quantitative assessment of performance metrics that contrasts
SDDP and LP models at varying battery storage capacities. The analysis incorporates
statistical measures of objective function values for both modeling approaches, supported
by statistical hypothesis testing to evaluate the equivalence of means between SDDP
and LP implementations at corresponding battery storage capacities. In our statistical
analysis, we designate the SDDP model and LP model as X and Y, respectively. The
sample means of the objective function values are denoted as X for SDDP and Y for
LP, with n representing the sample size. The population means are represented by µX

for SDDP and µY for LP, while the standard deviations are denoted as sX and sY for
their respective models. Given that both X and Y consist of large independent samples,
they are approximately normally distributed [20]. The null distribution of X - Y can
be stated as X - Y ∼ N(µx − µy, σ2

X
+ σ2

Y
) = N(µx − µy, σ2

X/nX + σ2
Y/nY) [29]. We used

sample variances s2
X and s2

Y to estimate the unknown population variances σ2
X and σ2

Y. The
null and alternate hypotheses are H0 : µX − µY = 0 versus H1 : µX − µY ̸= 0. The statistical
significance of the differences between models is evaluated using p-values shown in Table 1.
These values are derived from a two-tailed test calculation where p(x ≤ −|z| or x ≥ |z|),
with the z-score determined using the formula z = ((X − Y)− ∆0)/(

√
s2

X/nX + s2
Y/nY)

and ∆0 set to 0.

Table 1. Comparison of objective function values between SDDP (X) and LP (Y) models.

0 kWh 500 kWh 1000 kWh 1500 kWh 2000 kWh
X Y X Y X Y X Y X Y

n 72 72 72 72 72 72 72 72 72 72
min −101.158 −7.884 −106.021 −71.612 −112.144 −134.89 −118.267 −198.168 −119.642 −263.263
average −10.119 5.377 −38.064 −32.436 −63.577 −69.610 −64.058 −106.783 −64.247 −143.956
max 15.955 15.220 1.846 6.749 −10.156 4.341 −5.058 1.933 −5.963 −0.474
s 37.645 5.599 29.936 17.844 28.558 33.229 28.988 48.868 29.298 64.576
∆ = (Y− X) · 100/X −153.14% −14.79% 9.49% 66.70% 124.07%
p-value 0.0006 0.1706 0.2427 0.0000 0.0000

For our statistical analysis, we employ a significance level of α = 0.05 as our threshold
for hypothesis testing. When p-value falls below α, we reject H0, showing substantial
evidence against the statistical equivalence between SDDP and LP model means at the
95% confidence level. This occurred at battery storage capacities of 0, 1500, and 2000 kWh.
Conversely, for storage capacities of 500 and 1000 kWh, analysis revealed p-values above
the α threshold. These results suggest insufficient statistical evidence to establish significant
performance variations between the models at the 95% confidence level. Although the
LP model’s perfect foresight suggests it should produce optimal solutions (means in
Table 1) compared to the SDDP model, the observed performance variance stems from
their differentiated data-processing methodologies. The LP model processes historical
hourly data, whereas the SDDP model employs equal probability distributions across
three scenarios per hour (detailed in Section 2). Given that predictions can encompass a
broader range of values compared to historical data, this methodological difference results
in LP potentially yielding worse average objective function values than SDDP (where
lower values indicate better performance). This discrepancy is evident in the average
objective function values when comparing SDDP and LP implementations with 0 kWh
and 500 kWh battery storage capacities, as demonstrated in Table 1. Despite the SDDP
model’s initial advantage due to its broader input data range, the LP model demonstrates
superior performance with battery capacities ranging from 1000 kWh to 2000 kWh. This



Energies 2025, 18, 3560 12 of 17

indicates that battery storage systems effectively function as a temporal shifting mechanism,
enabling residents to optimize their financial savings.

3.2. Evaluating Market Dynamics: Electricity Price Volatility and Photovoltaic
Generation Variability

Our analysis evaluates the performance differences between scenarios with high
electricity prices (C2_HEP_SDDP) and high PV generation (C3_HPV_SDDP), comparing
these against baseline configurations (C1_BASE_SDDP and C4_BASE_LP). Each scenario
incorporates distinct battery storage capacities, as outlined in Section 3.

The analysis reveals notable diurnal patterns in battery utilization in kWh, character-
ized by enhanced charging activities during daylight hours (i.e., 05:00 to 21:00) in correlation
with PV generation, followed by increased discharge operations during peak demand pe-
riods in Figure 3. Furthermore, the data indicates more measured fluctuations in battery
usage within SDDP models when compared to the LP methodology. The C2_HEP_SDDP
model exhibits conservative battery utilization patterns, which can be attributed to elevated
electricity prices, with battery capacity showing limited influence on battery utilization.
The analysis of C3_HPV_SDDP reveals unvarying operational patterns, indicating efficient
utilization of photovoltaic generation resources. In contrast, C4_BASE_LP demonstrates
more intensive charging and discharging behavior, particularly evident in scenarios with
increased battery capacity. The comparison between C1_BASE_SDDP and C4_BASE_LP
reveals distinct operational strategies in their battery utilization and capacity manage-
ment protocols. While C4_BASE_LP exhibits a direct relationship between battery size
and utilization, C1_BASE_SDDP demonstrates a more sophisticated approach. This dis-
tinction arises from SDDP’s implementation of 12 h forecasting across three scenarios to
optimize battery storage allocation. By incorporating variables such as PV generation
uncertainty, energy consumption patterns, and electricity price fluctuations, the SDDP
framework adopts a more measured approach to battery utilization compared to LP’s
deterministic methodology.

Figure 4 presents our analysis of two fundamental metrics: energy purchases, dis-
played in the upper portion of each bar graph in blue, and energy sales, shown in the lower
portion in yellow. Both metrics are measured in kilowatt-hours (kWh). This visualization
compares energy trading patterns across different model configurations on the x-axis, fo-
cusing on the total volume of energy exchanges in kWh. Generally, peak trading activities
are observed in model C4_BASE_LP that exhibit significantly higher trading volumes due
to taking advantage of its perfect information about uncertainties. By comparison, the
three SDDP model variants (C1_BASE_SDDP, C2_HEP_SDDP, C3_HPV_SDDP) demon-
strate more conservative and strategic trading patterns. The C2_HEP_SDDP configuration
demonstrates reduced trading volumes compared to C1_BASE_SDDP, primarily due to
elevated electricity prices, which leads to decreased purchasing activity to mitigate price
volatility and manage battery storage charging. The C3_HPV_SDDP configuration exhibits
the most modest trading volumes across all four categories, attributed to its substantial
photovoltaic generation capacity, which diminishes the requirement for external electricity
purchases. The comparative analysis indicates that C4_BASE_LP model iterations demon-
strate notably increased trading volumes in comparison to the three SDDP model variants,
which highlights potential opportunities for enhancing SDDP’s optimization capabilities
and trading strategy implementation.



Energies 2025, 18, 3560 13 of 17

Figure 4. Analysis of grid energy exchange: evaluating electricity purchase and sale patterns across
case studies and battery storage capacities.

The results show financial savings measured in euros (€) for each contiguous 12 h
period (i.e., a planning horizon) during 2–5 May 2023, as depicted in Figure 5. The box plot
analysis reveals distinct financial saving distributions across the case studies. Negative
values in the box-plots indicate revenue from selling electricity back to the grid. This
occurs when photovoltaic generation exceeds residential consumption, mainly during
daytime hours when residents are at work. The data demonstrates notable variance in
outcomes, with C4_BASE_LP exhibiting particularly pronounced variability. There are
statistical outliers at both extremes of the distribution, as seen in the dots. Examination
of median trends reveals a systematic improvement in savings efficiency (with lower
values indicating better performance) as battery capacity increases across case studies.
The sensitivity analysis demonstrates that the relationship between battery capacity and
financial performance is not strictly linear. In scenarios C1_Base_SDDP and C2_HEP_SDDP,
we observe that battery capacities beyond 1000 kW and 500 kW respectively yield minimal
additional revenue benefits, as evidenced by the statistical insignificance in median values
beyond these thresholds. This limitation is primarily attributed to constraints in available
PV generation capacity. In contrast, scenario C3_HPV_SDDP shows linear performance
improvements with increased battery capacity due to abundant PV generation. This
scenario achieves better savings through higher PV generation, while using minimal
battery storage and grid trading (see Figures 3 and 4). The C4_BASE_LP configuration
exhibits enhanced operational efficiency through its perfect foresight, facilitating enabling
battery storage management relative to alternative scenarios. These results establish an
idealized benchmark for evaluating system optimization capabilities.
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Figure 5. Financial savings analysis (EUR) across case study scenarios, where positive values indicate
costs and negative values represent revenues from selling electricity back to the grid.

4. Conclusions
This research presents a methodology for optimizing residential battery storage

through strategic energy management. Our approach combines a linear policy graph [8]
with the stochastic dual dynamic programming (SDDP) algorithm [6] to create robust
energy management solutions for communities using battery storage systems. Through
strategic optimization of battery charging and discharging cycles, we achieve substantial
cost reductions. The SDDP optimization framework effectively manages battery operations
across variable pricing scenarios while maintaining computational efficiency. To evaluate
our approach, we incorporate linear programming (LP) methodology as an idealized bench-
mark. Our analysis shows that the SDDP model achieves comparable performance metrics
to its LP counterpart. The results demonstrate both the economic feasibility for residential
communities and the environmental benefits of integrated PV and battery storage systems,
particularly in reducing energy bills. Our assessment validates the energy management
capabilities of SDDP models. While the LP implementation shows direct proportionality
between battery capacity and optimization potential, SDDP scenarios reveal more nuanced
relationships due to operating under uncertainty—incorporating variations in generation,
demand, and pricing parameters.

Our analysis demonstrates that the model delivers substantial environmental ad-
vantages through its advanced energy management capabilities. The system achieves
environmental benefits through two key mechanisms: optimal energy storage scheduling
aligned with renewable energy availability, and strategic load-shifting during periods of
high energy demand. Although environmental impact was not our primary research focus,
the integration of PV generation with battery storage systems has yielded measurable
reductions in emissions and reliance on conventional fossil-fuel-based power generation
methods [20,24].
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The model has been developed and preliminarily validated through simulations for
battery storage system implementation. Full-scale physical testing remains beyond our
current scope but is recommended for future research to validate real-world applications.
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Abbreviations
The following abbreviations are used in this manuscript:

ARIMA auto-regressive integrated moving average
LP linear programming
SDDP stochastic dual dynamic programming
VRE variable renewable energy

Nomenclature

The general terminology for stochastic dual dynamic programming (SDDP) is outlined below.
Multistage refers to a series of decisions made by an agent (such as an optimizer) over time to achieve
optimal results. Stochastic pertains to scenarios where decisions need to be made under uncertainty,
unfolding sequentially over multiple stages. A node serves as a decision point for an agent, featuring
two primary types of variables in the research: state variables and control variables. State variables
monitor system attributes over time, whereas control variables represent actions by the agent within
a node that influence state variables.

Indices, Sets, Symbols

p, q ∈ P Index and set of node or predicted stages
r ∈ R Index and set of planning horizon
s ∈ S Index and set of scenarios
u ∈ U Index and set of types of uncertainties, u = {price, demand, PV}

Parameters

Bbal Minimum capacity of a battery storage (kW) ∀ p ∈ P, r ∈ R
Binit Initial balance of the battery storage (kWh)

Bbal Maximum capacity of a battery storage (kW) ∀ p ∈ P, r ∈ R
Cbatt Battery storage utilization cost (EUR/kWh)
CPV PV generation cost (EUR/kWh)
Cpur Marginal cost for residents to purchase electricity in stage p ∈ P (EUR/kWh)
Crate A battery’s charge and discharge rates (%)
Csale Marginal cost for residents to sell electricity in stage p ∈ P (EUR/kWh)
Ebal Availability factor of hourly battery storage holding efficiency (%)
Einj Availability factor of battery storage injection efficiency (%)
Extr Availability factor of battery storage extraction efficiency (%)
Pspr Probability of occurrence for each stage p ∈ P and scenario s ∈ S (%),
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given ∑s Psp = 1, ∀ p ∈ P
ωspr An observed values of uncertainties
V Taxes to be added for purchasing electricity from the spot market (%)

Variables
bbal

pr An amount of battery balance, a state variable, at the end of stage p ∈ P
for planning horizon r ∈ R (kWh)

binj
pr An amount of battery injection, a control variable, at the start of stage p ∈ P

for planning horizon r ∈ R (kWh)
bxtr

pr An amount of battery extraction, a control variable, at the start of stage p ∈ P
for planning horizon r ∈ R (kWh)

epur
pr Amount of purchased electricity, a control variable, ∀ p ∈ P, r ∈ R (kWh)

esale
pr Amount of electricity sold, a control variable, ∀ p ∈ P, r ∈ R (kWh)
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