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Abstract
Practically unlimited natural resources, such as solar energy and advanced seawater 
desalination, are potential solutions to sustainable resource consumption. However, 
accessing these natural resources depends on complex technologies that require fur-
ther research and development. This technological complexity introduces significant 
uncertainty in the actions required to transition societies to more sustainable levels 
of resource consumption. Such uncertainty has important implications in terms of 
risk. The short-term depletion of limited natural resources, such as fossil fuels and 
freshwater, can pay off if these sustainable technologies mature in the long term. 
However, this short-term, resource-depletion policy carries the risk that these sus-
tainable technologies will not materialize. In such a case, economic decline, popula-
tion decline, or both are possible undesirable outcomes. To address this challenge, a 
stochastic, bi-level optimization problem is developed for sustainability transitions 
in natural-resource contexts. This model is formulated as a mathematical program 
with equilibrium constraints and is solved as a mixed-integer, non-linear program. 
This model is applied to an illustrative water-resources problem with two lower-
level players where a policymaker manages freshwater in conjunction with a new 
water-treatment technology. Overall, this model demonstrates how policies for sus-
tainable resource management can be quantified in terms of risk aversion to adopt-
ing new technologies.

Keywords  Sustainability transitions · Mathematical programs with equilibrium 
constraints · Emerging technologies · Energy, natural resources, and the 
environment
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1  Introduction

Policymakers face a challenging dichotomy when establishing limits to the sus-
tainable consumption of energy and other natural resources: consumption is 
derived from both accessible, limited resources and less accessible, but nearly 
unlimited resources (e.g., renewable energy, desalinated seawater). Harnessing 
the full abundance of the less-accessible resources depends on complex, techno-
logical solutions with uncertain, future prospects. Policies that are too optimis-
tic regarding these technologies could result in resource over-extraction, while 
overly pessimistic policies could encourage resource hoarding.

Such technological trade-offs can be understood in terms of risk. The short-
term depletion of limited natural resources can pay off if technology emerges 
to harness alternative resources in the long term. However, this short-term, 
resource-depletion policy carries the risk that the technology will not materialize. 
In such a case, economic decline, population decline, or both are possible unde-
sirable outcomes.

Given this challenge, our work seeks to identify sustainable energy and natural 
resource policies that also account for technological transitions. We concentrate 
on water-resource systems specifically to serve as a counterpoint to the already 
extensive literature on energy transitions (Saraji and Streimikiene 2023). How-
ever, our water model is also mathematically general to promote multi-discipli-
nary engagement among experts in energy and other natural-resource systems.

Technology plays an important role in water-resource systems because human 
engineering alters a natural environment’s water quantity and quality. These 
technologies vary greatly in their complexity. A simple water-supply system for 
humans often features a shared well in a village. Simple technologies are typically 
used with freshwater sources such as streams, lakes, or groundwater. On the other 
hand, a complex water system often features reservoirs, water treatment facilities, 
and distribution networks of pipes and pumps. Even more complex technologies 
can also be used to treat seawater or wastewater.  

Regardless of complexity, water-resource systems involve more than just their 
technical features. Socio-economic institutions construct and maintain these tech-
nologies. They also vary widely in complexity. Simple water institutions often 
rely on cultural norms for hygiene and sharing of resources. Water utilities repre-
sent complex water institutions, which often have separate departments for plan-
ning, maintenance, construction, and finance. Other societal institutions, such as 
government and industry, are stakeholders who benefit from and influence the 
decisions of water institutions.

In most water-resource systems, societal norms and technologies have catered 
to the use of freshwater sources such as rivers, lakes, streams, and groundwa-
ter. Alternative water sources, such as seawater and wastewater, require a lot of 
energy and advanced technology to remove impurities and pathogens. These tech-
nologies are broadly viewed as either too expensive, risky, or unsanitary (Marlow 
et al 2015). For example, desalination satisfies only 1% of global water demand 
(Voutchkov 2016), and only 11 % of wastewater is reused (Jones et al 2021).
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Despite the dominance of freshwater sources, these alternative water sources 
play a central role in certain specialized contexts. Desalination has become com-
monplace in middle-eastern countries that have large oil reserves, few freshwater 
sources, and large coastal populations (Jones et al 2019). Additionally, recycling 
of wastewater into drinking water has become technically feasible and socially 
acceptable in certain places such as Windhoek, Namibia. This became desirable 
because the city is located far from the ocean and has very scarce freshwater 
resources (Lafforgue 2016).

These alternative water sources are likely to become more relevant in more 
water-resource contexts in the future. Climate change is expected to alter the 
distribution of precipitation such that mega-droughts are likely in many regions 
across the world (Cook et al 2022). In contrast, seawater is highly abundant and 
thus is not vulnerable to changes in precipitation. Similarly, wastewater recycling 
allows small quantities of water to be reused multiple times, which effectively 
increases the water supply.

Water-resource issues are related to broader issues of sustainability. Resource 
extraction and pollution are human activities that impact the earth’s natural sys-
tems including climate, ecology, freshwater, and nutrient cycles. These systems will 
likely destabilize unless resource extraction and pollution concentration limits are 
established at a global scale. These limits are collectively referred to as earth’s sys-
tem boundaries (ESBs). Research indicates that humanity has already crossed many 
of the ESBs including the ones for surface water and groundwater. Crossing these 
ESBs carries consequences such as ecosystem degradation and loss of human life, 
livelihoods, and access to basic needs (Rockström et al 2023).

ESBs are expected to place limits on economic growth because resource avail-
ability constrains industrial output. For instance, the index of industrial produc-
tion (IIP) quantifies the gross output of the resource extraction, manufacturing, and 
energy sectors. A theoretical model of global population, food, resources, and pol-
lution explores several scenarios for IIP change over time (Herrington 2021). This 
model, supported by empirical data, suggests that IIP will peak in the mid-twentieth 
century due in part to resource depletion and pollution accumulation.

Complex “green" technologies (e.g., desalination and renewable energy) may 
help overcome the limits that ESBs (e.g., water supply and carbon concentra-
tions) impose on industrial production. Put another way, industrial output can be 
decoupled from ESBs (Vadén et al 2020). Indeed, technology often becomes more 
complex over time to overcome previous performance limitations. An allegorical 
example is the complexity of the modern jet engine. It evolved from the incremen-
tal additions of subsystems over time to regulate temperature, airflow, and combus-
tion. These innovations accommodated progressively higher air pressures in airplane 
engines (Arthur 1993).

The allegorical jet engine example extends conceptually to environmental sys-
tems. Wastewater-treatment technologies were developed to lessen the impacts of 
urban growth on water pollution (Burian et al 2000). Controls in the power and auto-
motive sector reduced the emissions of non-methane, volatile organic compounds by 
half between 1990 and 2010 (Xing et al 2013). In both cases, environmental innova-
tions introduced complexity in the form of new subsystems to water and air ESBs, 



	 N. T. Boyd, S. A. Gabriel 6  Page 4 of 36

respectively. These innovations helped to overcome the waste assimilation limits 
associated with human activity while allowing economic growth to continue.

Despite these historical arguments, unproven and complex green technolo-
gies will likely pose challenges. There is concern whether green technologies can 
be developed quickly enough to mitigate the ESB impacts (Vadén et al 2020). For 
instance, existing desalination technologies bolster water supplies reducing stress on 
the surface and groundwater ESBs. However, truly green desalination technologies 
need innovative solutions to reduce the discharge of saline waste products to the 
environment and to transition to renewable energy resources (Gude 2016). Other-
wise, saline pollution and CO2 emissions will continue to undermine the ecological 
and climate ESBs, respectively.

Consequentially, the decoupling concept has come under scrutiny in recent years. 
Alternatively, recent thinking asserts that the growth mindset of economic institu-
tions is fundamentally incompatible with the ESB limits. In response, researchers 
have begun to envision how global society could thrive in the absence of economic 
growth. These alternative conceptions have been aptly called “degrowth" mindsets. 
Degrowth generally emphasizes social change over technological ones including 
improvements to socio-economic equity and demand reduction of natural resources 
(Kallis et al 2018; Kerschner et al 2018).

Regardless of one’s opinion of degrowth or decoupling, transitions to technology, 
social norms, or both are required to re-stabilize the ESBs. Research into this imper-
ative has become known as the field of sustainability transitions (ST) and has an 
impressive body of literature (Markard et al 2012). In ST, technology (e.g., desalina-
tion) and societal values (e.g., water-demand reduction) can change simultaneously. 
This simultaneous consideration provides a multi-faceted approach for addressing 
sustainability challenges.

For this reason, the ST field provides the conceptual basis for our model in this 
paper. In Sect. 2, we present a literature review of the ST field and then explain in 
Sect.  3 how we incorporate ST into our novel modeling approach. In Sect.  4, the 
mathematical formulation is developed. In Sect. 5, this formulation is applied to a 
stylized sustainable water-resource transition with two lower-level players and an 
upper-level policymaker. This water-resources example serves as a counterpoint to 
the already extensive literature on energy transitions (Saraji and Streimikiene 2023). 
It also builds on recent operations research (OR) work in water systems where multi-
ple decision-makers are explicitly modeled (Boyd et al 2023; Britz et al 2013; Kuhn 
et al 2016). Lastly, Sect. 6 presents our final conclusions to the paper.

2 � Literature review

The ST field has many qualitative concepts that need more mathematical rigor 
(Safarzyńska et  al 2012). Economists and complexity theorists have contributed 
some important mathematical details to ST related to innovation, economic growth, 
and the scale of cities (Arthur 1994; Bettencourt et al 2007). The field of OR has 
contributed mathematical models to inform decisions regarding sustainable technol-
ogy investment, infrastructure provision, and technology diffusion (Brozynski and 
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Leibowicz 2020, 2022). As will be substantiated, our work is unique in that it inte-
grates many of these modeling features together to support ST decisions related to 
energy and natural resource management.

Economic theory plays an important role in ST because it addresses issues of 
economic growth, technology, and the price stability of scarce resources. Classical 
economic theory explains price stability while subsequent economic theories link 
economic growth to technological innovation. Innovators of new technologies (e.g., 
personal computers) often disrupt the economic status quo and can capitalize on this 
disruption to gain an advantage over competitors (Arthur 1994). Economic growth 
is possible in such a dynamic setting because market incentives favor technologies 
that progressively extract more value from commodities (Romer 1990).

Classical economics often assumes diminishing returns such that the marginal 
value of a resource diminishes with increasing utilization (i.e., negative feedback). 
This leads to the conditions for an economic equilibrium (Arthur 1990). Equilibrium 
programming and game theory have been very successful in explaining how mar-
kets allocate scarce resources in sectors relevant to sustainability transitions such as 
energy (Gabriel et al 2012; Zhuang and Gabriel 2008; Hobbs 1999) and water (Boyd 
et al 2023; Britz et al 2013; Safari et al 2023). These equilibrium models have been 
subsumed into mathematical programs with equilibrium constraints (MPECs) for 
infrastructure investment (U-tapao et al 2016) and market regulation (Allen 2022).

In contrast, technology can become more valuable the more it is utilized. This 
phenomenon is known as increasing returns to scale (Arthur 1994). Firms that inno-
vate early in a niche are more likely to increase the number of adopters of their 
technology relative to their competitors. The presence of adopters is likely to further 
adoption in a positive feedback loop (Arthur 1990). For example, early electric vehi-
cle (EV) manufacturers are more likely to have charging infrastructure and thus are 
more likely to continue increasing the number of consumers.

Consequentially, an objectively inferior technology can become “locked in" 
because of early adoption (Arthur et al 1987). This effect is called path dependence 
and is often associated with the difficulty of sustainability transitions with techno-
logical components (e.g., renewable energy). For instance, non-renewable energy 
is likely to persist over renewable energy in places where fossil fuels are widely 
adopted for use in the power grid.

Population modeling plays an important role in ST because it can be used to 
examine the relationship between innovation, per-capita wealth, and city size. In 
Bettencourt et al (2007), the authors proposed the following power law model:

where y represents a metric for wealth (e.g., GDP) or innovation (e.g., number of 
patents), N is population size, and a and b are the model’s parameters. If b > 1 , then 
the metric exhibits super-linear scaling with city population size. Similarly, if b < 1 , 
then the scaling is sub-linear. These scaling possibilities reveal the costs and benefits 
of cities with progressively larger populations.

The results from this power law model indicate that metrics for wealth and 
innovation exhibit super-linear scaling. Specifically, metrics for infrastructure 

y = aNb
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(e.g., miles of utility lines, number of EV charging stations) exhibit sub-linear 
scaling. Many metrics for social and environmental problems (e.g., inequality, 
pollution) also exhibit super-linear scaling. Theoretical interpretations of these 
power law models (Bettencourt 2013) suggest that the social, environmental, and 
resource costs of city scaling will outpace wealth and innovation in the long run.

Two qualitative but important ST concepts have been synthesized from histori-
cal case studies (Geels 2005; Markard et  al 2012). First, a regime is defined as 
the dominant technologies, standards, and institutional structures for a particular 
society (e.g., freshwater supply). To give another example, non-renewable power 
generation is a regime that is preserved by physical infrastructure, profit motive, 
and political incentives alike. Second, a niche is defined as a unique context 
where novel approaches can be developed independent of the dominant regime 
(e.g., Windhoek, Namibia for wastewater reuse).

Another qualitative idea in ST explains how regimes, like freshwater treat-
ment and delivery systems, can persist even when they become ineffective. For 
instance, over-extraction of freshwater may continue even in extreme droughts. 
One approach to remedying such a situation is known as strategic niche manage-
ment (Kemp et al 1998). It seeks to transfer knowledge from a given niche and 
scale it up to redefine the capabilities of the regime. For instance, a desalination 
niche near the ocean could be scaled up to diversify freshwater supply regimes 
further inland.

The ST literature also calls for the use of several mathematical modeling 
frameworks to make these qualitative concepts more quantitative (Safarzyńska 
et al 2012). These frameworks include the following: 

1.	 Mathematical models could clarify how sustainable technologies emerge and 
mature over time. For example, the US Military uses the technology readiness 
level (TRL) metric to track how a technology progresses from concept, to pro-
totype, to final implementation (Eckhause et al 2009, 2012). Modeling these 
temporal aspects is called the multi-phase framework.

2.	 Mathematical models could clarify how infrastructure and new technologies 
evolve alongside one another (e.g., EVs and charging infrastructure). This mod-
eling framework is called co-evolution.

3.	 Social learning could be modeled to characterize how agents learn from one 
another. For instance, how might a utility manager in a desalination niche transfer 
their knowledge to a utility manager in a freshwater supply regime who wants to 
augment this supply?

4.	 Lastly, mathematical models could clarify how niches fit within regimes, and 
how regimes fit into the surrounding landscape. For example, wastewater reuse 
innovations in Windhoek will not necessarily become commonplace elsewhere 
(e.g., surface water treatment regimes) unless the broader innovation landscape 
changes. Increased water scarcity due to climate change could be a potential 
driver for such changes. Modeling this nested structure is called the multi-level 
framework.
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Recent work in OR model these ST frameworks to some degree. Brozynski and Lei-
bowicz (2020) model the multi-phase dynamics of electric vehicle maturity (e.g., 
cost, vehicle range) using a Markov Decision Process (MDP). Boyd and Dumm 
(2019) modeled the co-evolution of sewer design and wastewater disposal practices. 
Lastly, Brozynski and Leibowicz (2022) create a hierarchy of policymakers, compa-
nies (e.g., EV developers), and consumers using a multi-level model. However, no 
OR work models either social learning or impacts to ESBs, such as the impact of 
withdrawals from surface water.

3 � Contributions of this paper

Our paper uses these frameworks as inspiration for an OR model to answer the fol-
lowing research question: How does the uncertainty that is inherent to complex green 
technologies influence a policymaker’s resource-management decisions? Organized 
by framework, we enumerate exactly how our work addresses this question: 

1.	 The multi-phase framework is modeled using a two-stage, stochastic recourse 
problem (Birge and Louveaux 2011). In the first stage, research and development 
(R&D) is invested into a technology that offers the potential to unlock abundant 
resources (e.g., renewable energy, green desalination). However, the outcome 
of this R&D is uncertain. In the second stage, this uncertainty is revealed: the 
associated technology either matures or stagnates (i.e., in terms of cost).

2.	 Resources, especially water, are frequently shared among multiple players. Dif-
ferent players also have different R&D costs, but the investment of one player can 
lower the cost for others. For example, a desalination design for one region could 
be adapted for another at lower cost. This adaptive process is social learning and 
is modeled as a Generalized Nash Equilibrium Program (Harker 1991).

3.	 The multi-level framework is modeled using a bi-level optimization problem. This 
problem provides the main structure for resource management: Specifically, a 
policymaker oversees the management of an ESB, (e.g., climate, surface water, or 
ground water) and charges lower-level consumers for their resource consumption

4 � Mathematical formulation

As shown in Fig. 1, we build on several sub-models to arrive at our final mathemati-
cal model. Subsection 4.1 introduces the first sub-model, which introduces multiple 
phases for which population and economic growth change over time. Subsection 4.2 
introduces social learning to model how multiple decision-makers learn from each 
other’s technology investment decisions. Lastly, Subsection  4.3 introduces the bi-
level optimization problem to consider natural-resource management policies.

Different types of decision makers (i.e., players) are introduced in each sub-
model. Each player is denoted as p ∈ P , which represent land developers. These 
players could develop either urban or rural land and could be either municipal or 
private organizations. Sub-model 1 considers a single decision maker to start, thus 
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|P| = 1 . Sub-model 2 considers multiple players, thus |P| > 1 . The Final Model 
refers to these multiple players collectively as lower-level players. The upper-level 
player is a policymaker (e.g., regional government), but is an implicit, un-indexed 
player.

The final, bi-level optimization model, which is a type of mixed-integer non-lin-
ear program (i.e., MPEC), is of the following general form:

 s.t.

where x represents resource-management decisions (e.g., taxes) and y represents 
how consumers decide to consume resources. The objective function f is a social 
welfare metric, such as the consumer surplus of water or energy. The first two sub-
models can be understood as developing Z and S(x), which models how consumers 
arrive at their decisions (e.g., water or energy usage). This nested structure makes 
the bi-level optimization problem difficult to solve (Jeroslow 1985; Hansen et  al 
1992).

The terms defined in this section, which include sets, variables, and parameters, 
are summarized in Appendix 7.1, 7.2 and 7.3, respectively. The formatting conven-
tions applied to these terms distinguish their type. Upper-case Roman letters repre-
sent model variables, while lower-case Roman letters indicate model parameters and 
endogenous cost functions. Probability parameters are one exception to this lower-
case convention; they are identified using the “ ℙ " symbol. Lower-case � and � Greek 
letters represent Lagrange multipliers to their associated constraints. Superscripts 
distinguish similar terms (e.g., unit costs) from one another, while subscripts repre-
sent the indices of variables and parameters.

max
x

f (x, y)

(x, y) ∈ Z

y ∈ S(x)

Fig. 1   Organization of the mathematical formulation by ST modeling features
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Further, variables that represent flow rates (e.g., fresh or desalinated water per 
unit time) take on representative average values within each planning period. This is 
done to make the model easier to interpret, without loss of generality. For instance, 
the amount of water that flows into a region over a five-year planning period would 
be large. Instead, monthly averages are assumed because this is a representative 
timescale for resource consumption (e.g., utility billing of energy or water).

4.1 � Multi‑phase model features

As mentioned in Sect.  3, each phase characterizes the research and develop-
ment (R&D) status of a sustainability-related technology (e.g., desalination, clean 
energy). For instance, these phases could represent the prototype phase, the early 
adoption phase, the technological maturity phase, or the stagnation phase. Phase 
transitions are modeled with respect to discrete time periods t and t + 1 within a 
finite set T  . Each possible transition is assumed to be a discrete, uncertain scenario 
s ∈ S to model the inherent complexities in the R&D process.

Technology-related risks are modeled using return on R&D investment (ROI). 
The R&D investor (i.e., Player p) is assumed to suffer a financial loss if the technol-
ogy enters an undesirable phase (e.g., stagnation). These losses are assumed possi-
ble because R&D costs, cRD

p
 , are incurred here and now (i.e., t), while the uncertain, 

ROI scenario s is resolved later in t + 1 with probability ℙ(s) . This limited time hori-
zon is used because decision-makers in complex, engineering contexts often make 
preliminary decisions and refine them over time as new information becomes avail-
able (Devine et al 2016).

The R&D investment, cRD
p

 , is assumed to be a fixed cost that is either forgone 
or paid according to the binary decision XRD

p
∈ {0, 1} , respectively. For instance, 

this fixed cost could represent the cost to install a pilot wastewater reuse plant or 
a renewable-energy-powered desalination facility. Future research could make this 
R&D cost continuous where larger investments translate into a higher success prob-
ability ℙ(s) . Such decision-dependent probabilities are an example of endogenous 
uncertainty (Noyan et al 2022), which is a computationally challenging, emerging 
area of research.

The underlying probabilities ℙ(s) of the scenarios are Bayesian in the sense that 
they are based on beliefs towards the technology. Subject matter experts are typi-
cally used to estimate the probability of a technology being successful. However, 
these probability estimates are still useful because they help decision-makers to 
hedge their technology investment decisions. Intuitively, we assume that these prob-
abilities are related to the complexity of the technology.

With these model elements in mind, Sub-model 1 is formulated as a two-stage, 
stochastic optimization problem (Birge and Louveaux 2011) with a rolling hori-
zon. The first and second stages represent t and t + 1 , respectively. Information from 
investments in previous time periods become data for the current time period. The 
starting time period is called the “roll" and the collection of all |T − 1| rolls is the 
rolling horizon. Notationally, assume that the current roll r occurs at Time Period t 
where r is a shorthand for t = r.
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Expression (1a) represents the objective function to be maximized in this two-
stage optimization problem: 

where f FS and f SS represent generic first and second-stage payoff functions, respec-
tively, and f rsk

p
 is a risk measure across all s. The parameter �p ∈ [0, 1] is a weight-

ing term between payoff and risk. Additionally, the parameter dp,r+1 is the discount 
rate between t = r and t = r + 1 , The specific forms of f FS and f SS will be chosen to 
quantify the green technology’s ROI across different s (i.e., phases). Similarly, the 
specific form of f rsk will quantify the risk of technology stagnation across s.

The function f FS
p

 includes the R&D investment cost cRD
p
XRD
p

 as well as several 
new terms:

In the first stage (i.e. t = r ), Player p’s region has a population NFS
p,r

 . Assume that 
each player derives a benefit bp (e.g., tax revenues) for each member of the popula-
tion. This population requires a flow of finite resource (e.g., surface, ground water 
ESBs), FFS

p,r
 , which carries a cost cfp per unit (e.g., storage and pumping costs). Lastly, 

emigration from the region, EFS
p,t

 , is possible, which carries a cost per capita of ce
p
.

This emigration cost represents the lost economies of scale from maintaining 
infrastructure such as roads and utilities that were designed for a larger population. 
For example, Detroit, Michigan, USA lost 25% of its population between 2000 and 
2010 resulting in declining city services, higher infrastructure costs, and greater 
social inequality (Doucet and Smit 2016).

The second stage also has terms that have the same interpretation as the first stage 
as well as a new cost term:

where cu
p,s
(Up,s) represents the cost to provide a given flow of a practically unlimited 

resource, Up,s , in scenario s. For example, Up,s could represent the flow rate of desali-
nated water while cu

p,s
(Up,s) is the corresponding cost. This cost is integral to the ROI 

for the green technology, which results from the first-stage R&D investment.
The cost cu

p,s
 is assumed to be concave and increasing for all s. This reflects an 

intuitive assumption of endogenous technological learning: the marginal cost of new 
technologies often becomes cheaper with increasing utilization. Thus, the slope of 
the total cost decreases as Up,s increases. As will be shown, this technology’s cost 
is modeled as a piece-wise linear function. Alternative conceptions of technologi-
cal learning (Nemet 2006) are left for future research. We assume that U is imple-
mented in t = r + 1 . For notational simplicity, the time index is dropped such that 
Up,s,r+1 ≡ Up,s.

The realized R&D scenario carries risk if cu
p,s

 is too high to be economically via-
ble. The decision-maker could overestimate resource availability and lack enough to 

(1a)max

(
1 − �p

)(
f FS
p,r

+ dp,r+1

∑

s∈S

ℙ(s)f SS
p,r+1,s

)
+ �pf

rsk
p,s

(1b)f FS
p,r

= bpN
FS
p,r

− cf
p
FFS
p,r

− ce
p
EFS
p,r

− cRD
p
XRD
p

(1c)f SS
p,r+1,s

= bpN
SS
p,r+1,s

− cf
p
FSS
p,r+1,s

− ce
p
ESS
p,r+1,s

− cu
p,s
(Up,s)
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cost-effectively maintain a locality’s population. Because of its convexity, Conditional 
Value at Risk (CVaR) (Conejo et al 2010) is used to model this risk:

where Zp helps calculate the payoff at the (1 - �p)-quantile of the net-benefit distribu-
tion and Vp,s is net-benefit shortfall in scenario s with respect to this quantile. The 
term �p ∈ [0, 1] is an arbitrary model parameter.

Sub-model 1 is non-linear due to the binary variable XRD
p

 and the assumed piece-
wise structure of cu

p,s
 . As will be shown, these non-linear terms make Sub-model 1 a 

mixed-integer linear program (MIP). This model structure has implications for most 
of the constraints that follow, (1e)–(1t). Specifically, each constraint has a Greek letter 
in parenthesis, which represent a shadow price. These prices are only valid for contin-
uous-valued linear programs. However, in Section 4.2 onward, the non-linear, integer 
variables are either treated as exogenous parameters or represent the decisions of an 
upper-level policymaker.

Constraint (1e) calculates Zp and Vp,s , for each Scenario s:

This is Zp minus the payoff (i.e., R&D ROI) in a given scenario. Vp,s is also con-
strained to be non-negative for all scenarios s. Further, the Vp,s variables are mini-
mized in (1a). Therefore, Vp,s is intuitively zero whenever a scenario’s payoff is 
greater than the threshold payoff Zp.

Objective Function (1a) is also subject to the constraints of population growth. We 
assume that an individual in NFS

p,r
 (or NSS

p,r+1,s
 ) nets on average gp additional individuals 

via reproduction or invitation to the region during each Time Period t. The population 
thus grows exponentially from an initial population ni

p
 via the difference equations 

NFS
p,r

= gpn
i
p
 and NSS

p,r+1,s
= gpN

FS
p,r

.
Unless resources are unlimited, exponential growth is not possible indefinitely. 

Thus, Player p may need to cap the accommodations made for future population 
growth. Although this capping mechanism is not explicitly modeled, it could represent 
the reduction of land zoned for new residents. We assume that prospective residents 
above this cap will locate elsewhere instead. Thus, (1f) and (1g) modify the difference 
equations in the previous paragraph reflecting the possibility of population caps:

The population cap could be less than the current population if insufficient resources 
exist to sustain it. Such a case implies emigration, Ep,t , out of the region. The 

(1d)f rsk
p

= Zp −
1

1 − �p

∑

s∈S

ℙ(s)Vp,s

(1e)

Zp −
(
bpN

FS
p,r

− cf
p
FFS
p,r

− ce
p
EFS
p,r

− cRD
p
XRD
p

+

dp,r+1

(
bpN

SS
p,r+1,s

− cf
p
FSS
p,r+1,s

− ce
p
ESS
p,r+1,s

− cu
p,s
(Up,s)

))
≤ Vp,s (�rsk

p,s
) ∀s ∈ S

(1f)NFS
p,r

≤ gpn
i
p

(�max1
p,r

)

(1g)NSS
p,r+1,s

≤ gpN
FS
p,r

(�max2
p,r+1,s

) ∀s ∈ S
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possibility of population loss can be expressed mathematically for both the first 
stage and second stage as follows:

To quantify the notion of sufficient resources, the population in Player p’s region 
demands a quantity qp of resources (e.g., water) per capita. Supply of this finite 
resource in the first stage, FFS

p,r
 (e.g., groundwater), must be greater than or equal to 

the quantity demanded by the current population:

Empirical research has validated the linear relationship in (1j) and (1k) between 
resource consumption and population levels for both household electrical and water 
consumption (Bettencourt et al 2007).

Resource consumption in the second stage is the same except that the resource 
pool is expanded to include the practically unlimited resource, Up,s:

The inclusion of Up,s in principle allows exponential growth to continue per (1g). 
However, the degree to which Player p uses Up,s is dependent on the cost cu

p,s
.

To quantify finite resources, a resource limit l constrains the supply of FFS
p,r

 unless 
a withdrawal WFS

p,t
 is made from a depletable reserve at time t = r . This limit is asso-

ciated with an ESB (e.g., air, water, land, etc.). For instance, l could represent the 
amount of groundwater recharged by rainfall, while W could represent the extraction 
of groundwater reserves. For simplicity, we assume that withdrawal from the reserve 
does not occur any additional unit costs beyond cf  . This accounting of resource lim-
its, supply, and withdrawals is stated mathematically as follows:

The variable WFS
p,t

 is not summed across multiple players because this sub-model 
assumes the players do not share resources.

Withdrawals can be used for supply until the reserve is completely depleted. We 
do not assume the reserve can be recharged because this paper is primarily focused 
on resource-depletion issues. The reserve available for supply is mathematically 
expressed as follows:

where a is the initial accumulation at the beginning of the current roll.
In the second stage for each scenario, FSS

p,r+1,s
 can be as high as the limit l plus any 

reserves left over after the first stage withdrawal:

(1h)NFS
p,r

≥ ni
p
− EFS

p,r
(�min1

p,r
)

(1i)NSS
p,r+1,s

≥ NFS
p,r

− ESS
p,r+1,s

(�min2
p,r+1,s

) ∀s ∈ S

(1j)FFS
p,r

≥ qpN
FS
p,r

(�dem1
p,r

)

(1k)FSS
p,r+1,s

+ Up,s ≥ qpN
SS
p,r+1,s

(�dem2
p,r+1,s

) ∀s ∈ S

(1l)WFS
p,t

≥ FFS
p,r

− l (�w
p,r
)

(1m)FFS
p,r

≤ l + a (� lim1
p,r

)
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We do not explicitly represent the second stage withdrawals in the model for parsi-
mony. Instead, we assume that a is updated in the two-stage problem for the next roll 
(i.e., r = t + 1 ) based on the slack in (1n) for the realized scenario.

Additional constraints are needed to define the piece-wise cost function cu
p
 and 

its argument Up,s . A combination of linear and binary variables are used to acti-
vate the piece-wise segments of cu

p
 . These are modeled as two-segment functions 

as described in Winston (2004). Examples are plotted in the results section (Sec-
tion 5.2) as red lines on Figures 3b and 4b. The three break-points are denoted as 
A, B, and C. The domain values at these break-points are 0, iB

p
 , and iC

p
 , respectively, 

while the function values are cA
p
 , cB

p,s
 , and cC

p,s
 , respectively. The weighting terms YA

p,s
 , 

YB
p,s
, YC

p,s
∈ [0, 1] quantify how close the domain value Up,s is to the corresponding 

break-point.
Mathematically, (1o) - (1x) model these piece-wise aspects. Expressions (1o) and 

(1p) model the function cu
p,s

 and its argument Up,s , respectively. These expressions 
are defined in terms of the breakpoints A, B, C and the weighting terms between 
each breakpoint. Expressions (1q) - (1v) control the activation of each piece-wise 
segment. In these expressions, the binary terms XA

p,s
 and XB

p,s
 activate the piece-wise 

segments between A and B and B and C, respectively (Winston 2004).

(1n)FSS
p,r+1,s

≤ l + a −WFS
p,t

(� lim2
p,r+1,s

) ∀s ∈ S

(1o)cu
p,s
(Up,s) = cA

p
YA
p,s

+ cB
p,s
YB
p,s

+ cC
p,s
YC
p,s

− cRD
p
XRD
p

(�pw
p,s
) ∀s ∈ S

(1p)Up,s = iA
p
YA
p,s

+ iB
p
YB
p,s

+ iC
p
YC
p,s

(�u
p,s
) ∀s ∈ S

(1q)YA
p,s

≤ XA
p,s

(�A
p,s
) ∀s ∈ S

(1r)YB
p,s

≤ XA
p,s

+ XB
p,s

(�B
p,s
) ∀s ∈ S

(1s)YC
p,s

≤ XB
p,s

(�C
p,s
) ∀s ∈ S

(1t)YA
p,s

+ YB
p,s

+ YC
p,s

= XRD
p

(�rd
p,s
) ∀s ∈ S

(1u)XRD
p

∈ {0, 1}

(1v)XA
p,s
,XB

p,s
∈ {0, 1} , XA

p,s
+ XB

p,s
= XRD

p
∀s ∈ S

(1w)YA
p,s
, YB

p,s
, YC

p,s
≥ 0 ∀s ∈ S
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The last two constraints establish which of the model variables are nonnegative:

4.2 � Social learning model features

Sub-model 2 considers multiple players, P, who make decisions that are consistent 
with Sub-model 1. Each player p ∈ P is still a local developer or a local government 
within a broader region. The region could represent a watershed with a shared surface 
or groundwater system. Each locality could have a geographical niche for alternative 
water technologies. For example, a coastal city might be more likely to implement 
desalination compared to an inland city. Similarly, a farming community on an urban 
fringe might use recycled wastewater for irrigation.

As will be explained, some adjustments and extensions are made to Sub-model 1 
to account for the interactions among the players. Only these changes are stated in this 
section to avoid repeating many unchanged expressions. However, the full formula-
tion for Sub-model 2 is provided in the supplementary information associated with this 
paper. Players share finite resources with each other as one form of interaction. How-
ever, social learning is the primary interaction considered per the ST frameworks. This 
framework accounts for how players learn from the R&D investments of others.

Players can also learn from their own R&D investments over multiple rolls of a roll-
ing-horizon model (e.g., Sub-model 1). Mathematically, the Bayesian probabilities ℙ(s) 
can be updated between each roll using a learning model (e.g., Bayes’ Theorem). This 
approach is called endogenous learning and has been applied to decision-making in 
energy markets (Devine et al 2016). The details of such an algorithm are excluded from 
the current study and are left to future research.

4.2.1 � Formulation for each player

The formulation for each player in Sub-model 2 uses all the expressions from Sub-
model 1 with two changes, which account for resource sharing among the players. 
Throughout this subsection, a specific player, denoted p, is considered. Firstly, Expres-
sions (2a) and (2b) replace Expressions (1m) and (1n), respectively: 

(1x)cu
p,s
(Up,s) free ∀s ∈ S

(1y)NFS
p,t
,EFS

p,t
,FFS

p,t
,WFS

p,t
≥ 0 , t = r

(1z)NSS
p,t,s

,ESS
p,t,s

,FSS
p,t,s

,Up,s,Vp,s ≥ 0 ∀s ∈ S , t = r + 1

(2a)
∑

p�∈P

FFS
p�,r

≤ l + a (� lim1
p,r

)

(2b)
∑

p�∈P

FSS
p�,r+1,s

≤ l + a −WFS
r

(� lim2
p,r+1,s

) ∀s ∈ S
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 Secondly, Expression (1l) is removed because a specific player can no longer com-
pletely control the first-stage withdrawal, WFS

r
 . As will be shown, this withdrawal is 

now a consequence of all players consuming beyond the sustainable limit, l. These 
two adjustments make Sub-model 2 a type of Generalized Nash Equilibrium Model 
because the player’s can now affect the constraint set (i.e., resource availability) of 
others (Harker 1991).

The players’ optimization problems, which incorporate these two adjustments 
into Sub-model 1, are solved simultaneously. To achieve this, each player’s opti-
mization problem is re-expressed as the Karush-Kuhn Tucker (KKT) conditions 
(Gabriel et al 2012). The KKT conditions are necessary and sufficient for linear pro-
grams (LPs), but Sub-model 1 is an example of a MIP. To represent Sub-model 2 as 
an LP, the binary “X" variables are considered exogenous decisions eventually to be 
determined by an upper-level player. These binary variables could be interpreted as 
government funded research.

Within this LP context, the KKT conditions represent the three characteristics of 
optimal LP solutions: those that satisfy primal feasibility, dual feasibility, and com-
plementary slackness Winston (2004). Henceforth, the KKT conditions are some-
times described in terms of these characteristics as KKTprim , KKTdual , and KKTcomp , 
respectively. The KKT conditions for Sub-model 2 are provided in the supplemen-
tary material of this paper, and a description is added to relate each KKT condition 
to these LP characteristics.

4.2.2 � System constraints

In addition to the KKT conditions, other system constraints are included outside of 
each player’s optimization problem. These constraints provide additional details into 
how the players interact. In this sub-model, the system constraints specify (1) with-
drawals beyond the sustainable limit, (2) the distribution of finite resources among 
the players, and (3) the dynamics of social learning. In related work, system con-
straints are often related to market-clearing conditions (Gabriel et  al 2012; Boyd 
et al 2023).

The first system constraint determines the first-stage withdrawals, WFS
r

 , as a con-
sequence of the joint, finite-resource consumption of all the players.

In words, we assume that WFS
r

 is zero unless the finite resource consumed across all 
players exceeds the sustainable limit l. The “ ⟂ " operator is shorthand for the product 
of two variables (e.g., a,b) to be equal to zero (i.e., a ⟂ b ). This is also called a com-
plementarity relationship. Thus, in (2c), WFS

r
(WFS

r
+ l −

∑
p∈P F

FS
p,r
) = 0.

The second set of system constraints characterize how the players access the 
shared resources as described in (2a) and (2b). While the players share these same 
constraints, their shadow prices (i.e., “ � " terms) for these constraints could be dif-
ferent. To see this, (2a) and (2b) are summed over the index p′ , while the shadow 

(2c)0 ≤ WFS
r

+ l −
∑

p∈P

FFS
p,r

⟂ WFS
r

≥ 0



	 N. T. Boyd, S. A. Gabriel 6  Page 16 of 36

prices are indexed by p. In our water example, different shadow prices can result 
from differing costs to pump groundwater.

To model this mathematically, each shadow price is assumed to be a weighted 
sum of the other players’ shadow prices:

where the “v" terms are non-negative parameters representing these weights. Both 
(2d) and (2e) require only |P| − 1 equations each to make Sub-model 2 a square sys-
tem of equations. Additionally, (2d) and (2e) only influence the output of Sub-model 
2 if at least one expression in (2a) are (2b) are binding, respectively. Otherwise, the 
shadow prices associated with (2a) and (2b) will equal zero per the complementary 
slackness condition in linear programming.

The third set of system constraints model social learning. In a qualitative sense, 
social learning reflects how the one player can learn and/or benefit from the techno-
logical investments of other players. For example, a desalination design approach 
from one location could be repurposed for use in another location saving design 
costs. Players could also pay to connect to an existing desalination network instead 
of building a separate facility. Another conception of social learning could be cor-
recting the failures of another player’s previous R&D efforts.

These social learning possibilities are relevant because the players may have het-
erogeneous costs for sustainable technologies. For instance, solar power technolo-
gies are likely to be initially most cost-effective in niches that are very sunny and 
dry. Similarly, wastewater recycling is likely to first emerge near sites with high 
treatment standards. However innovation in these niches can transfer into the pre-
vailing regimes in most other settings, such as power generation derived from fossil 
fuels and surface-water depletion.

Social learning is modeled as systematic reductions to the costs at the piece-wise 
linear break-points. The costs without any social learning at Break-points A and B 
are cA′

p
 and cB′

p,s
 , respectively. This reflects no technological investment from the other 

players. In contrast, ΔcA
p
 and ΔcB

p,s
 represent the maximum decrease of the break-

point function values if other players (i.e., p� ∈ {P ∶ p
�

≠ p} ) invest. The impact of 
one player’s investment on that of another is given as wp

′
,p . As in Sub-model 1, the 

technology is considered mature at a constant cost cm
p,1

 beyond break-point B.
Social learning represents a band of possible costs, which are shown as the dark 

gray region on Figures 3b and 4b of Sect. 5.2. The top of this dark gray region rep-
resents the case when no other players invest. The bottom of the region represents 
the case when all other players invest as much as possible. The intermediate region 
represents all other cases where some players invest at different levels.

These social learning relationships are summarized mathematically as the follow-
ing system constraints:

(2d)𝛾 lim1
p,r

=
∑

p�≠p

vFS
p,p�

𝛾 lim1
p�,r

, p < |P|

(2e)𝛾 lim2
p,r+1,s

=
∑

p�≠p

vSS
p,p�,s

𝛾 lim2
p�r+1,s

, p < |P| , s ∈ S
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 These system constraints specify how cA
p
 , cB

p,s
 , and cC

p,s
 show up as exogenous data 

for each player. The piece-wise curves start at cA
p
 , which also represents the first-

stage cost cRD
p

 . In (2f), the fixed R&D decisions of other players, XRD
p′

 , decrease the 
fixed costs, cA

p
 , for Player p. Similarly, other players’ continuous investment deci-

sions (i.e., Up′,s ) decrease the continuous investment costs of Player p. The sum 
YB
p�,s

+ YC
p�,s

 is a normalized indicator of this continuous investment level in (2g). This 
sum increases from zero to one as Up′,s approaches iB

p′
.

In summary, Sub-model 2 consists of the KKT conditions from multiple players’ 
optimization problems and system constraints. These constraints govern the interac-
tions among the players. The KKT conditions for each player are derived from Sub-
model 1 except that (1) Expressions (1m) and (1n) are replaced with (2a) and (2b), 
respectively. (2) Expression (1l) is omitted, and lastly, (3) the binary decisions are 
taken as data. The system constraints consist of (2c)–(2h). Sub-model 2 is solved as 
a mixed-complementary problem (MCP) (Gabriel et al 2012). For completeness, the 
full mathematical details of Sub-model 2, including the KKT conditions, are pro-
vided in the supplementary information associated with this paper.

4.3 � Multi‑level model features

Multi-level features are added to Sub-model 2 to form the full bi-level optimiza-
tion model. Our bi-level optimization problem adds a single, upper-level, regional 
policymaker to manage resources for the lower-level players. This upper-level player 
could be a state or national government who is responsible for balancing economic 
benefits in Sub-models 1–2 with environmental damage.

In this bi-level optimization problem, environmental damage is a function of the 
withdrawals beyond the sustainable limit. In the water-resources context, saltwater 
intrusion from the over-extraction of groundwater could cause environmental dam-
age. In the energy context, this damage could be climate-induced, biodiversity loss 
from the over-extraction and burning of fossil fuels. One approach to internalizing 
such damages could involve estimating the costs to restore damaged ecosystems.

In mathematical terms, let f dmgs (WFS
r

+WSS
r+1,s

) represent the function to estimate 
environmental damage in Scenario s. This damage is a function of the sum of with-
drawals across Time Period t = r and t = r + 1 . The withdrawal in Time Period t = r 
is the same as WFS

r
 in Sub-model 2. The withdrawal in Time Period t = r + 1 is in 

(2f)cRD
p

= cA
p
= cA

�

p
− ΔcA

p

∑

p�∈{P∶p�≠p}

wp,p�X
RD
p�

(2g)cB
p,s

= cB
�

p,s
− ΔcB

p,s

∑

p�∈{P∶p�≠p}

wp,p� (Y
B
p�,s

+ YC
p�,s

) ∀s ∈ S

(2h)cC
p,s

= cB
p,s

+ cm
p,s
(iC
p
− iB

p
) ∀s ∈ S
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the second-stage and thus is dependent on Scenario s. Accordingly, the second-stage 
withdrawal is denoted as WSS

r+1,s
.

One policy instrument for the upper-level player is a set of tariffs that are levied 
against Player p’s consumption of the finite resource. These tariffs are indexed in the 
usual way for first and second stage variables: TFS

p,r
 and TSS

p,r+1,s
 . The lower-level play-

ers perceive these tariffs as increased unit costs for the consumption of the finite 
resource. Thus, this perception discourages low-value uses of the finite resource. 
Additionally, these tariffs also serve as a potential revenue source for funding R&D 
investments.

Leveraging revenue from tariffs, the second instrument is a set of subsidies 
that are used to reimburse the lower-level players for investments in the unlimited 
resource. These reimbursements are player and scenario dependent and are modeled 
as cost reductions at point B and C of the piecewise cost curves. These reimburse-
ments are denoted as: RB

p,s
 and RC

p,s
 , accordingly.

As alluded to in Sub-model 1, the policymaker also decides the binary variables 
related to technology investment. These decisions can be interpreted as government-
funded research for the green technology. Mathematically, having XRD

p
= 1 enables 

Player p to continue to invest and commercialize this technology. Furthermore, for 
a given Scenario s, having XB

p,s
= 1 indicates that the policymaker develops capacity 

for iB
p
 units of Up,s . This capacity installation could represent the government build-

ing a desalination facility and then transferring the facility’s operation to a munici-
pal government.

Program (3) formalizes the bi-level model. The terms without subscripts are vec-
tors that contain all the related set-indexed variables. In (3a), the policymaker seeks 
to maximize the sum of the lower-level objective functions (i.e., f ll

p
 as Expression 

(3b)) minus environmental damage. This objective function captures social and 
environmental trade-offs. The lower-level players’ KKT conditions are Expressions 
(3c), (3d), and (3e), which enforce primal feasibility, dual feasibility, and comple-
mentary slackness for LPs, respectively. Expressions (3f)–(3q) represent constraints 
with variables that the lower-level players do not directly control. 

s.t.

(3a)max
∑

p∈P

f ll
p
− ��s∈S{f

dmg
s

(WFS
r

+WSS
r+1,s

)}

(3b)

f ll
p
=

(
1 − �p

)(
bpN

FS
p,r

− (cf
p
+ TFS

p,r
)FFS

p,r
− ce

p
EFS
p,r

− cRD
p
XRD
p

+ dp,r+1

∑

s∈S

ℙ(s)
(
bpN

SS
p,r+1,s

− (cf
p
+ TSS

p,r+1,s
)FSS

p,r+1,s
− ce

p
ESS
p,r+1,s

− cu
p,s
(Up,s)

))

+ �p

(
Zp −

1

1 − �p

∑

s∈S

ℙ(s)Vp,s

)
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(3c)
{NFS,NSS,EFS,ESS,FFS,FSS,

U,V ,Z,YA,YB,YC, cu} ∈ KKTprim(TFS,TSS,XRD,XA,XB)

(3d)
{�rsk, �dem1, �dem2, � lim1, � lim2, �max1, �max2,

�min1, �min2, �pw, �u, �A, �B, �C, �rd} ∈ KKTdual(TFS,TSS)

(3e)

{NFS,NSS,EFS,ESS,FFS,FSS,U,V , YA, YB, YC,

�rsk, �dem1, �dem2, � lim1, � lim2, �max1, �max2,

�min1, �min2, �A, �B, �C} ∈ KKTcomp

(3f)RB
p,s
(YB

p,s
+ YC

p,s
) + RC

p,s
YC
p,s

≤ TFS
p,r
FFS
p,r

+ TSS
p,r+1,s

FSS
p,r+1,s

∀s ∈ S

(3g)
∑

p∈P

FSS
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− l ≤ WSS
r+1,s

∀s ∈ S

(3h)0 ≤ WFS
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+ l −
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FFS
p,r
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≥ 0

(3i)𝛾 lim1
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=
∑

p�≠p

vFS
p,p�

𝛾 lim1
p�,r

, p < |P|

(3j)𝛾 lim2
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=
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p�≠p

vSS
p,p�,s

𝛾 lim2
p�r+1,s

, p < |P| , s ∈ S

(3k)XRD
p

∈ {0, 1}

(3l)XA
p,s
,XB

p,s
∈ {0, 1} ∀s ∈ S

(3m)XA
p,s

+ XB
p,s

= XRD
p

∀(p, s) ∈ P × S
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− ΔcA
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The upper-level objective function (3a) relies on a weighted sum involving both 
the social benefits and the environmental damage. The social benefits are simply the 
sum across all the lower-level players’ objective functions. These objective functions 
are the same as those in Sub-models 1 and 2 except for the introduction of tariffs, 
TFS and TSS . Environmental damage is calculated as an expected value across sce-
narios, and its weight relative to social benefits in the upper level objective function 
is specified with a new parameter, �.

The KKT conditions for this final model are identical to those used in Sub-model 
2 with one exception. Tariffs (i.e., TFS , TSS ) enter into the primal and dual feasibil-
ity KKT conditions (3c) and (3d) because they are part of (3b). These additions do 
not change the linear nature of the problem. Thus, these KKT conditions are still 
necessary and sufficient conditions for optimal solutions to the lower-level players’ 
optimization problems. These updated KKT conditions are included in the supple-
mentary material for this paper.

Constraints (3f) and (3g) are new expressions relative to the previous sub-models. 
Constraint (3f) states that the reimbursement given to the lower-level players is less 
than or equal to the revenue collected from tariffs. Using the same mathematical 
approach as Expression (1o), the variables RB and RC are multiplied by the weight-
ing variables YB and YC . These products calculate the actual value of the reimburse-
ment along the piecewise curve. Constraint (3g) states that second stage withdrawals 
must occur whenever the second-stage resource consumption exceeds the sustain-
able limit.

Lastly, Constraints (3h) - (3p) are the remaining system constraints carried over 
from Sub-model 2. These constraints are unchanged except for an additional term 
added to both Constraints (3o) and (3p). Specifically, the unlimited-resource costs at 
breakpoints B and C are adjusted to incorporate the reimbursements from the upper-
level player.

5 � Water resources application

5.1 � Overview

Water-Resource transitions parallel energy systems, the latter having received a lot 
of attention in the literature (Chang et al 2021). For instance, both systems have a 
limited quantity of economically accessible resources (e.g., fossil fuels, freshwater). 
Furthermore, these systems have additional resources that are very abundant but are 
difficult to access. In energy systems, these are renewable energy sources such as 
wind and solar. In water systems, the equivalent involves water treatment of alterna-
tive water sources such as saltwater or wastewater.

The illustrative results in this section focus on desalinated seawater because 
the scale of its future implementation is a major unknown in water policy. Desali-
nation is an example of a large, capital improvement that often generates a large 
quantity of water supply. In this sense, desalination is similar to other physical 

(3q)TFS, TSS,RB,RC ≥ 0
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infrastructure developed widely in the twentieth century such as dams, reservoirs, 
and large water treatment facilities. However, the continuation of water extraction 
is not likely to be sustainable in the long term (Gleick 2003).

Other water systems place less emphasis on physical capital and more empha-
sis on behavioral changes (i.e., social capital). For example, home retrofits can 
increase the efficiency of water fixtures or enable wastewater to be recycled for 
gardening. Similarly, market-based approaches like dynamic water pricing can 
be used to regulate water demand. Solutions that emphasize these behavioral 
changes over “hard" infrastructure investment are called “soft path" solutions 
(Gleick 2003).

Both hard and soft infrastructure need to be considered together in water poli-
cies. Two case studies investigated how the premature adoption of water desalina-
tion hindered the adoption of alternatives like wastewater reuse (Fuenfschilling 
and Truffer 2016; Miörner et al 2022). On the other hand, a degree of abundance 
is necessary to create the conditions for intermediate scarcity, which is necessary 
for soft solutions to actually work (Kuhn et  al 2016). Desalination can provide 
this water abundance in some settings where it would otherwise be lacking.

Desalination occupies a water-supply niche in high-income, water-scarce 
countries, but obstacles still exist for larger-scale deployment (Jones et al 2019). 
First, removing salt from water is very energy-intensive. Second, the desalina-
tion process yields hyper-concentrated “brine", which requires environmentally 
responsible disposal. The management of desalination brine is part of a broader 
set of challenges with wastewater resource recovery in general (Palmeros Parada 
et al 2022). Thus, in most cases, freshwater treatment and distribution comprises 
the prevailing regime for water supply.

Within this context, these illustrative results use the program of Sect.  4 to 
model the role of desalination in sustainability transitions. Table  1 provides an 
interpretation of the abstract model terminology as applied to these results. The 
subscripts for these terms are dropped for parsimony. In general, the model terms 
that are related to the finite resource pertain to traditional freshwater sources. 
These could include rivers, lakes, and groundwater. In contrast, the terms that are 
related to the alternative, unlimited resource pertain to desalination.

The stylized input data used to produce these illustrative results is provided in 
the supplementary information associated with this paper. This data specifies the 
environmental damage function and the characteristics of the players. A general 
overview of the data is described presently.

Environmental damage from the over-extraction of water is assumed to grow 
rapidly as groundwater and surface water reserves are depleted (i.e., WFS,WSS ). 
For simplicity, this assumption is modeled using f dmgs = (WFS

r
+WSS

r+1,s
)2 . For the 

weighting value, � = 0.1 is used. As will be shown in subsequent computational 
experiments, this value for � illustrates plausible trade-offs between environmen-
tal damage and social benefits.

The players are identical in terms of the input data with several exceptions. 
First, Player 2 has lower technology investment costs than Player 1. In the desal-
ination example, this could mean that Player 2 is closer to the ocean. Second, 
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Player 1’s desalination costs can be decreased via social learning from Player 
2’s investments, but the reverse is not true. Lastly, Player 1 is assumed to have 
a slightly smaller shadow price for the finite resource in the first stage (i.e., 
vFS
1,2

= 0.5 ). In the water context, this could mean that Player 1’s distance from the 
ocean could place it upstream on a river relative to Player 2.

For instance, suppose that Player 2’s desalination investments lower the cost 
of membrane filtration technology to treat sea water. Player 1 is located farther 
inland and can’t directly apply the technology in the same way. However, suppose 
Player 1 can adapt the cheaper membrane filtration technology for another pur-
pose. For example, cheaper membrane-treatment-technologies could be used to 
treat brackish water (i.e., less salty) water to drinking-water standards.

Table 1   Interpretation of our ST model for water-resource systems

a The letters in parenthesis indicate the term’s type. SE: set element, PR: parameter, MV: model variable

Term (s)a General description Water-resources interpretation

t = r,

t = r + 1 (SE)
time periods within
the rolling-horizon

Interval between developments of water supply
master plans (e.g., 5–10 years)

s = 1 (SE) Transition scenario where
the technology improves

R&D yields promising technology to decrease
brine management cost

s = 2 (SE) Scenario where technology
stagnates (i.e., no transition)

R&D does not yield promising brine
management technology

l (PR) Quantity of the finite resource Replinishable supply of fresh water sources
(e.g., rivers, lakes, groundwater)

a (PR) Initial accumulation of the
finite resource at the start
of the rolling-horizon

Non-replinishable supply of fresh water
sources (e.g., deep groundwater reserves)

q (PR) Resource required per unit
of population supported

Water-use per capita

cf  (PR) Cost of accessing
the finite resource

Marginal cost to treat and distribute fresh
water sources

FFS,FSS (MV) Finite resources consumed across
all players in the first
and second stages, respectively

Average monthly fresh water withdrawals in the
current and next planning period, respectively

U (MV) The alternative, unlimited resource
that is harnessed using technology

Desalinated seawater

cA (MV) Cost at the first piece-wise point Fixed cost to install desalination facilities and
R&D for brine management

cB (MV) Cost at the second piece-wise point Minimum investment required to discover
cheaper brine management alternatives

cC (MV) Cost at the third piece-wise point Maximum desalination investment possible
given limitations to brine discharge

w (PR) Weight relating the impact of
one player’s technology
investment to another

Making minor adjustments to existing
desalination designs, inland communities
connecting pipelines to a desalination network

cm (PR) Marginal cost of the technology
after reaching maturity

Marginal cost of mature desalination technology
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This illustrative model was solved as a specific instance of the bi-level optimiza-
tion problem (Program 3). It was compiled using Pyomo: an open source, Python-
based modeling language.1 Within Pyomo, this model is solved to global optimality 
as a non-convex, mixed integer quadratically constrained program (MIQCP) using 
the Gurobi solver.2 Two separate model runs were performed for �1 = �2 ∈ {0.1, 0.5} 
to see how the results were sensitive to varying degrees of risk aversion by the two 
players.

In addition to the two Program 3 model runs, three additional computational 
experiments are performed for both of the two risk-parameter levels (for 2+6=8 
experiments total). These experiments are variations of Program 3, which are 
designed to justify the upper-level player’s use of tariffs and subsidies to medi-
ate the lower-level player’s water-usage decisions. The remainder of this section is 
dedicated to describing these experiments, and a high-level summary is provided in 
Table 2.

The values of M were chosen in an iterative manner. Each experiment was rerun 
with progressively larger values of M until the upper bounds were no longer binding 
constraints. The specific values of M obtained for each experiment are provided as 
supplementary information associated with this paper.

The Centralized Computational Experiments identify conflicts between the 
upper-level and lower-level players objectives to justify the complexity of the bi-
level structure of Program (3). These experiments relax the optimality requirement 
for the lower-level players (i.e., the high-point relaxation), which place both the 
upper and lower variables under “centralized" control of the policymaker. In mathe-
matical terms, the constraints for dual feasibility (3d) and complementary slackness 
(3e) are removed to achieve this control.

The Bi-level, Full Computational Experiments simply use Program (3) without 
any adjustments or bounds on the upper-level variables (i.e., the full bi-level model). 

Table 2   Summary of computational experiments

Adjustments to
program 3

Upper bound,
T
FS,TSS

Upper bound,
R
B,RC

Purpose

Centralized Dual feasibility (3d)
and complementary
slackness (3e)
constraints removed

N/A N/A Justify bi-level structure 
of (3)

Bi-level, Full None M M Basis for comparison 
across experiments

Bi-level, No Subsidy None M 0 Illustrate the role of 
subsidies

Bi-level, No Tariff None 0 0 Illustrate tariffs as scarcity 
pricing

1  www.pyomo.org/
2  www.gurobi.com.
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They serve as the primary contribution of this paper in terms of the ST frame-
works. Additionally, it serves as the point of comparison for the other computational 
experiments.

Fig. 2   Comparison of computational experiments
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Fig. 3   a Resource usage in the final model, b Social learning and cost curves for the final model
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Fig. 4   a Resource usage in the final model, b Social learning and cost curves for the final model



	 N. T. Boyd, S. A. Gabriel 6  Page 28 of 36

The Bi-level, No Subsidy and No Tariff experiments illustrate how removing 
these upper-level variables from Program (3) impacts the upper-level objective func-
tion (3a). The No Subsidy Experiments show how the upper-level player use tariffs 
for the purpose regulating freshwater consumption. The No-Tariff Experiments also 
imply no subsidies because of the revenue constraint (3f). Thus, these experiments 
demonstrate the impact of a laissez-faire approach to water management.

5.2 � Results

Figure 2 summarizes the computational experiments and their similarities and dif-
ferences in terms of several key metrics: overall objective function value, expected 
net economic growth, expected inequality, expected environmental damage, and 
expected tariff charges. These metrics are described qualitatively in this section and 
are also defined mathematically in Table 3.

The relationship between the experiment’s risk-aversion level and each metric 
are shown using blue and orange points for �1 = �2 = 0.1 and �1 = �2 = 0.5 , respec-
tively. If only an orange is visible, then the metric for both risk-aversion levels are 
equal.

Per Fig.  2, the upper-level objective function (3a) gradually decreases as the 
upper-level player’s control decreases across the computational experiments. A con-
flict between the upper and lower-level objectives is present because the centralized 
computational experiments and the full bi-level experiments have different objec-
tive function values. This conflict is indicative of the upper-level player’s inability 
to control all the lower-level player’s decisions in the full bi-level experiments (e.g., 
population growth).

Furthermore, risk aversion makes the most difference in the objective function 
value for the computational experiments featuring tariffs (i.e., Bi-Level, Full and Bi-
level, No Subsidy). This observation provides two insights. Firstly, this paper’s bi-
level model enables tariffs to be quantified in terms of risk preferences. Secondly, 
tariffs provide benefits but also induce costs. Balancing these costs and benefits pro-
vide a potential explanation for the computational difficulty of this bi-level model.

The expected net economic growth is higher in the full bi-level experiments 
than the centralized experiments. This finding suggests that economic growth is 
an incentive associated with the upper-level player’s tariffs and subsidies. How-
ever, this incentive contributes less to the upper-level player’s objectives. Fur-
thermore, the centralized experiments are associated with the least inequality 
between the lower-level players.

Tariffs and subsidies control environmental damage very effectively despite 
their limited socio-economic value. The computational experiments with no tar-
iffs and subsidies (i.e., Bi-level, No Tariff) have the highest level of environmen-
tal damage. This damage is progressively reduced for the Bi-level, No Subsidy 
and Bi-level, Full experiments. However, environmental damage is not mini-
mized in the centralized experiments relative to the others. Thus, minimizing 
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environmental damage is not the sole factor in the upper-level objective function 
(3a).

Risk aversion influences these metrics differently depending on whether sub-
sidies are used in conjunction with tariffs or not. Higher tariffs are used in the 
Bi-level, Full experiment for �1 = �2 = 0.5 than for �1 = �2 = 0.1 . However, the 
impact of risk aversion on tariffs is opposite for the Bi-level, No Subsidy experi-
ments. In these experiments, the upper-level player is unable to fund subsidies 
with tariff revenues as described in Sect.  4.3. Consequently, the upper-level 
player levies less tariffs for �1 = �2 = 0.5 than �1 = �2 = 0.1 , which allows more 
economic-growth and subsequent environmental damage.

Figures 3 and 4 illustrate detailed resource-consumption quantities and costs 
for �1 = �2 = 0.1 and �1 = �2 = 0.5 , respectively. Cost bands for subsidies are 
added to Figs.  3b and 4b, which are shown as light gray shading. The policy-
maker’s interventions enable Player 2 to have a greater access to freshwater than 
Player 1 in t = 15 as shown in Figs. 3a and 4a. For the low cost scenario, this 
greater access enables Player 2’s population to grow and consequently use more 
desalination in t = 20 . In the High Cost Scenario, both players are able to main-
tain their populations.

Player 2’s greater freshwater access relative to Player 1 ultimately creates 
incentives for social learning. In the Low Cost Scenario, the net benefits of 
desalination increase the more it is utilized, as shown by the differences between 
the dashed blue and red lines in Figs. 3b and 4b. These benefits justify Player 2’s 
desalination investment, and in turn enable Player 1’s desalination costs to come 
down via social learning (dark gray shading in Figs. 3b and 4b).

Subsidies are still needed to control for factors that undermine desalination 
investment. In Fig.  3b, subsidies are used to decrease Player 2’s costs in the 
High Cost Scenario. Additionally, subsidies are used for Player 1 in the Low 
Cost Scenario. Their desalination quantity is too low to generate a high net pay-
off otherwise. In Fig. 4b, risk aversion decreases desalination utilization overall 
relative to Fig. 3b. Thus, more subsidies are needed to compensate for the lower 
net benefits.

Interestingly, risk aversion ( �1 = �2 = 0.5 ) decreases the differences in resource 
consumption between Players 1 and 2 relative to �1 = �2 = 0.1 . In Fig. 3a, Player 
2’s resource consumption increases substantially in the Low Cost Scenario rela-
tive to Player 1. In Fig.  4a, this effect is comparatively reduced. Additionally, 
Player 1 is able to grow in the High Cost Scenario for �1 = �2 = 0.5 , which is not 
possible otherwise.  

6 � Conclusions

In conclusion, the bi-level model with two lower-level players in this paper ena-
bles tariffs, subsidies, and other benefits and costs to be quantified in terms of 
risk aversion to adopting new technologies. Such quantification introduces 
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nuance into diametrically opposed policies such as degrowth and decoupling. 
Furthermore, the ST frameworks in our model illustrate the complex interactions 
involving economic growth, technology, socio-economic interactions, and various 
policy mechanisms over time.

The utility of this bi-level model also depends on how well the water resource 
example generalizes trends with resource usage at large. In energy systems, the 
externalities of greenhouse gas emissions may create ambiguity between resource 
availability and sustainability transitions. In other systems, such as supply chains, 
technological complexity may not be easily represented as latent variables.

One future research direction could be to simulate the bi-level optimization 
problem over multiple rolls of the rolling-horizon. Subsequent rolls would require 
the development of updating rules to carry over population levels, resource 
reserves, and R&D outcomes from one roll to the next. A potential outcome of 
such research could be to understand if limited foresight likely results in long-run 
population growth or decline. Another outcome is to understand how a policy-
maker might equitably manage such long-term population changes.

Another future research direction could consider multiple forms of interaction 
among the players and earth system boundaries. For example, the players could 
also interact in a market to buy or sell rights to natural resources. Secondly, mul-
tiple earth system boundaries and natural resources could be considered in the 
same problem. For instance, the high energy consumption levels of desalination 
could be related to both the climate and water ESBs.

A third research direction could consider different piece-wise cost and benefit 
curves. For instance, a three-segment cost curve for technology could model more 
nuanced resource-consumption levels. Additionally, piece-wise benefit curves 
could be added to show increasing or diminishing returns to population growth. 
Adding these benefit and cost features would likely increase the complexity of the 
model but could also make it more realistic.

Appendix

This appendix summarizes the sets, variables, and parameters of the final model 
for the reader’s convenience.

Sets

•	 p ∈ P : Players utilizing natural resources for economic growth
•	 t ∈ T  : Planning period for which players make or adjust planning decisions 

related to population growth and resource utilization
•	 s ∈ S : Discrete scenarios representing technology ROI outcomes
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Variables

Upper‑Level Variables

•	 TFS
p,t  : The upper-level player’s unit tariff levied on Player p for the consumption of 

finite resources in the current Planning Period t ($/mass/month)
•	 TSS

p,t+1,s
 : The upper-level player’s unit tariff levied on Player p for the consumption 

of finite resources in Scenario s of the next Planning Period t + 1 ($/mass/month)
•	 RB

p,s : Reimbursement (i.e., subsidy) for Player p in Scenario s at point B of the 
piecewise cost curve ($).

•	 RC
p,s : Reimbursement (i.e., subsidy) for Player p in Scenario s at point C of the 

piecewise cost curve ($)
•	 WFS

t  : Withdrawal of the finite resource from reserve in Planning Period t (mass/
month)

•	 WSS
t+1

 : Withdrawal of the finite resource from reserve in Planning Period t + 1 and 
Scenario s (mass/month)

•	 XRD
p  : Binary investment decision indicating if Player p pays the R&D fixed cost 

(dimensionless)
•	 XA

p,s : Activation term for the first point on Player p’s piece-wise cost curve in 
Scenario s (dimensionless)

•	 XB
p,s : Activation term for the second point on Player p’s piece-wise cost curve in 

transition Scenario s (dimensionless)

Lower‑Level Variables

•	 NFS
p,t  : Population served by Player p during Planning Period t (Thousands)

•	 NSS
p,t+1,s

 : Population served by Player p in Scenario s during Planning Period t + 1 
(Thousands)

•	 EFS
p,t  : Population lost for Player p during Planning Period t (Thousands)

•	 ESS
p,t+1,s

 : Population lost for Player p in Scenario s during Planning Period t + 1 
(Thousands)

•	 FFS
p,t  : Player p’s average monthly consumption of the finite resource during Plan-

ning Period t (mass/month)
•	 FSS

p,t+1,s
 : Player p’s average monthly consumption of the finite resource in Sce-

nario s during Planning Period t + 1 (mass/month)
•	 Up,s : Player p’s average monthly consumption of the practically unlimited 

resource in Scenario s (mass/month)
•	 Vp,s : Player p’s benefit shortfall in Scenario s ($)
•	 Zp : Player p’s threshold payoff for experiencing shortfall ($)
•	 YA

p,s : First domain weighting term for Player p’s piece-wise technology cost 
curve in Scenario s (dimensionless)

•	 YB
p,s : Second domain weighting term for Player p’s piece-wise technology cost 

curve in Scenario s (dimensionless)
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•	 YC
p,s : Third domain weighting term for Player p’s piece-wise technology cost 

curve in Scenario s (dimensionless)
•	 cu

p,s : Player p’s cost to access the practically unlimited resource in Scenario s 
($)

•	 �rsk
p,s  : Shadow price associated with the net-benefit-shortfall constraint for 

Player p in Scenario s (dimensionless)
•	 �dem1

p,t  : Shadow price associated with the natural-resource-demand constraint 
for Player p in Planning Period t ($/mass/mo.)

•	 �dem2
p,t+1,s

 : Shadow price associated with the natural-resource-demand constraint 
for Player p in Planning Period t + 1 and Scenario s ($/mass/mo.)

•	 � lim1
p,t  : Shadow price associated with the limit to the finite-resource for Player 

p in Planning Period t ($/mass/mo.)
•	 � lim2

p,t+1,s
 : Shadow price associated with the limit to the finite-resource for 

Player p in Planning Period t + 1 and Scenario s ($/mass/mo.)
•	 �max1

p,t  : Shadow price associated with the constraint on the maximum popula-
tion growth for Player p in Planning Period t ($/thousand)

•	 �max2
p,t+1,s

 : Shadow price associated with the constraint on the maximum popula-
tion growth for Player p in Planning Period t + 1 and Scenario s ($/thousand)

•	 �min1
p,t  : Shadow price associated with the constraint on maintaining the mini-

mum population level for Player p in Planning Period t ($/thousand)
•	 �min2

p,t+1,s
 : Shadow price associated with the constraint on maintaining the mini-

mum population level for Player p in Planning Period t + 1 and Scenario s ($/
thousand)

•	 �
pw
p,s : Shadow price associated with the definitional constraint for Player p’s 

piece-wise cost function in Scenario s (dimensionless)
•	 �u

p,s : Shadow price associated with the definitional constraint for Player p’s 
utilization of the practically unlimited resource in Scenario s ($/mass/month)

•	 �A
p,s : Shadow price associated with the constraint on the first domain weight-

ing term for Player p in Scenario s ($)
•	 �B

p,s : Shadow price associated with the constraint on the second domain 
weighting term for Player p in Scenario s ($)

•	 �C
p,s : Shadow price associated with the constraint on the third domain weight-

ing term for Player p in Scenario s ($)
•	 �rd

p,s : Shadow price associated with the constraint of R[NONSPACE]&D 
investment on the domain weighting terms ($)

•	 cA
p : Cost at Player p’s first piece-wise point ($)

•	 cB
p,s : Cost at Player p’s second piece-wise point in Scenario s ($)

•	 cC
p,s : Cost at Player p’s third piece-wise point in Scenario s ($)

Parameters

•	 bp : Benefit obtained per unit of population maintained by Player p ($ / thousand / 
month)
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•	 c
f
p : Player p’s unit cost for the finite resource ($ / unit mass / month)

•	 ce
p : Player p’s cost per unit of lost population ($ / thousand)

•	 dp,t : Player p’s discount rate in Planning Period t (dimensionless)
•	 gp : Population growth rate for Player p (dimensionless)
•	 qp : Player p’s resource demand per unit of population (mass / month / thousand)
•	 ni

p : Player p’s starting population (thousands)
•	 l: Extraction limit of the finite resource (mass / month)
•	 a: initial accumulation of finite resources expressed as the quantity that can be 

removed on average each month throughout one planning period (mass / month)
•	 ℙ(s) : Probability of ROI Scenario s (dimensionless)
•	 �p : Complement of the quantile used in the CVaR calculation for Player p 

(dimensionless)
•	 �p : Risk weighting parameter for Player p (dimensionless)
•	 � : Environmental damage weighting term ($ / mass squared)
•	 iB

p : Second break point for Player p’s piece-wise cost curve (mass / month)
•	 iC

p  : Third break point for Player p’s piece-wise cost curve (mass / month)
•	 cA

′

p  : Technology cost at first piece-wise point for Player p without any social 
learning contributions from other players ($ / month)

•	 cB
′

p,s : Technology cost at second piece-wise point for Player p in Scenario s with-
out any social learning contributions from other players ($ / month)

•	 cm
p,s : Player p’s marginal technology cost after reaching maturity in Scenario s ($ / 

mass / month)
•	 ΔcA

p : Player p’s maximum possible decrease of cA
p
 given social learning contribu-

tions from other players ($)
•	 ΔcB

p,s : Player p’s maximum possible decrease of cB
p,s

 given technological learning 
contributions from other players in Scenario s ($)

•	 vFS
p,p′ : First-stage shadow price weight between Player p and Player p′ (dimension-

less)
•	 vSS

p,p′,s : Second-stage shadow price weight between Player p and Player p′ in Sce-
nario s (dimensionless)

•	 wp,p′ : Weight relating the impact of player p′ on the social learning of Player p 
(dimensionless)
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