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A B S T R A C T

The cost-efficiency of individual reinforcement actions in mitigating risks of external hazards in
distribution grids depends on the entire portfolio of implemented actions. Thus, when seeking
to reinforce distribution grids, it is pertinent to assess portfolios of reinforcement actions to
account for dependencies between them. Motivated by this recognition, we develop a systemic
framework to support Distribution System Operators (DSOs) in allocating scarce resources
to portfolios of reinforcement actions that help protect multiple grids against hazards in the
light of complementary reliability indices. This decision problem is structured as an influence
diagram that contains scenarios representing combinations of realizations for different types of
hazards. For cases where scenario probabilities, perceived importance of the grids, and relevance
of reliability indices are known, the framework solves a mixed-integer linear programming
problem to determine optimal portfolios. If this is not the case, the framework accommodates
partial information about these parameters. Building on this partial information, it computes
all the non-dominated portfolios by obtaining optimal portfolios for specific parameters and
screening the other feasible portfolios. The non-dominated portfolios are analyzed to guide the
choice of reinforcement actions at different budget levels. The framework is illustrated with a
case study where the DSO seeks to mitigate risks associated with three types of hazards in
three distribution grids. The novelty of the proposed optimization-based framework lies in (i)
combining Portfolio Decision Analysis (PDA) and reliability models to determine cost-efficient
reinforcement portfolios and (ii) accommodating partial information about parameters required
by PDA and reliability models.

1. Introduction

As a result of trends such as the electrification of industrial processes, the reconversion of heating systems, and the

integration of electromobility, electricity has become the primary energy source in most countries. In this context, the

reliability of electricity supply is crucial to ensure the continuity of services offered by critical infrastructures. Because

disruptions in electricity supply can cause unacceptable societal impacts, advanced societies expect a highly reliable

system. However, achieving a fully reliable system cannot be guaranteed due to the inherent failure rates of technical

components and the possibility of excessive loads due to external conditions. There are also intrinsic trade-offs, as

introducing more stringent reliability requirements increases the total cost of the power system [1]. Moreover, there

is a diminishing marginal utility in safety investments [2]. Consequently, the standard approach is to require that the

power system provides energy as economically as possible while meeting the agreed safety and reliability criteria [3].
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Power interruptions can occur due to failures in the generation, transmission, and distribution systems [4]. However,

interruptions affecting end consumers are caused primarily by failures at the distribution level [5]. This has driven the

development of approaches to reinforce distribution grids to meet specified safety and reliability requirements while

minimizing costs. These costs include energy losses, the acquisition of new components, and penalties for violating

reliability requirements, which can be monetized and aggregated to facilitate cost-effectiveness analyses. In turn,

achieving reliability requirements can be quantified by employing global or local reliability indices. Optimization

approaches have been proposed to manage trade-offs between cost and reliability when designing the reinforcement

of distribution grids. For example, it is possible to employ single-objective approaches to minimize costs, subject

to reliability requirements. Alternatively, one may seek to maximize reliability subject to constraints on the costs

of required investments and associated operational expenses. These two objectives can also be pursued jointly. For

example, Shang et al. and Zhang et al. propose multi-objective methods to minimize cost and losses while maximizing

reliability [6, 7].

Planning reinforcement actions to protect the grids is also challenging due to uncertainties related to different types

of hazards, technical faults, and future trends in demand and generation capacity [8, 9]. Thus, to guide investments into

reinforcement actions to improve the reliability of distribution grids, one needs first to identify what hazards can affect

them. For example, Mahmoud et al. define 14 different categories of hazards that can affect power systems [10]. Hazards

that affect grids are usually not mutually exclusive because it is possible that several hazards occur simultaneously or

that some hazards may cause others. Accordingly, it is essential to develop scenarios that capture different combinations

of hazard realizations instead of treating hazards independently.

From the viewpoint of comprehensiveness, there are benefits to developing the full set of scenarios that represent all

relevant uncertainties. This is especially the case in the context of safety-critical systems whose risk analyses are usually

required to be conservative (i.e., the results should err on the side of too much caution rather than too little caution [11]).

Because hazards may occur jointly, omitting scenarios depicting the joint occurrence of several hazards would violate

the principle of comprehensiveness, especially if the resulting loss of reliability is aggravated by such joint occurrence

[12]. Šarūnienė et al. propose a methodology based on a Bayesian network and simulation to assess simultaneous risks

on interdependent critical infrastructures due to multiple hazards [13]. While this approach successfully identifies

critical elements in failure scenarios, it relies heavily on data availability, as estimating conditional probabilities is

required in addition to the initial failure probabilities of components. More broadly, the comprehensive modeling of

scenarios is often difficult due to the inability to build and access relevant empirical data sets, the lack of time that can

be devoted to effective risk communication with decision-makers, or even the challenges of computational complexity

[14, 15]. Reasons such as these can make it hard to justify the assignment of exact probabilities to scenarios, particularly

those that represent extreme events or pertain to multiple hazard realizations with poorly understood correlations. It is,
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therefore, instructive to retain the full set of scenarios, including joint realizations of hazards, while seeking to overcome

the difficulties of employing exact probability by admitting partial information about the scenario probabilities.

Once the possible realizations of hazards that may affect distribution grids have been identified, the next step is to

assess how these hazards impact system performance. Technically, there are well-established computational models for

estimating the reliability of grids in the face of hazards. For example, Ji et al. show that extreme weather exacerbates

the vulnerabilities of distribution grids [5]. Hou et al. propose a framework to assess the impact of ice storms on

the resilience of distribution systems [16]. Jasiūnas et al. propose a fragility-based power disruption model against

windstorms that focuses on the impact on multiple grids in large areas [17]. Atrigna et al. study the effect of heat waves

on power distribution grid failures and propose a fault prediction system based on machine learning [18]. Diao et al.

evaluate the system failure rates associated with alternative defense strategies against cyber-attacks [19]. The authors

acknowledge that it is difficult to predict the likelihood of cyber-attacks, and rather than providing estimations for

them, they assume that the attacks are certain events and compute the failure probability of the systems by evaluating

the defense actions. Ding et al. present a broad review of cyber-threats and potential responses to them [20]. Bagheri

et al., Fan et al. and Pan et al. explore the effects of demand uncertainties and the increasing generation of renewable

electricity on the reliability of the distribution grid [21, 22, 23].

In addition to relying on model-based approaches, experts can be consulted to harness a complementary source of

information. Expert judgments can be useful both in the early stages of the analysis, when the aim is to characterize

possible realizations of hazards, and in the later stages, when the focus is on assessing the impacts of these realizations

on critical infrastructures such as distribution grids. In general, expert judgments are particularly relevant in settings

where there is a lack of historical data or when the grids must be prepared against hazards that have not occurred, such

as intentional attacks [24]. For example, the report [25] illustrates how an extensive range of expert judgments can be

generated in developing a national risk assessment study. In the context of power grids, Wu et al. combine Bayesian

networks, system dynamics, and the analytic hierarchy process to optimize the investment in safety on the grid [2].

They developed a tool to help decision-makers select power grid safety investments. The five most typical accidents

were selected based on the statistical information of the grid to perform the analysis. Choosing accidents based solely

on their frequency overlooks low-probability hazards that can significantly impact the grid. Furthermore, this approach

fails to account for the potential evolution of hazards that threaten the system since their frequency and severity can

increase. The contribution rate of different safety levels is obtained from three safety managers, one safety engineer,

and a researcher on safety management. The judgments of these experts are later combined using weights. Combining

the expert’s judgments makes the optimization problem more tractable and can reduce the number of alternatives; in

some cases, however, keeping the judgments separated provides additional information on the system’s performance.
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Following hazard characterization, the impact of alternative reinforcement actions on the grids’ reliability needs

to be assessed to build a basis for selecting and implementing actions that mitigate the risks posed by hazards cost-

efficiently. Specifically, depending on their technical design and other characteristics, reinforcement actions can be

local, in which case they affect just a portion of the grid, or systemic, in which case they affect a more extensive part

of the grid or even multiple grids. Capital-intensive measures like infrastructure upgrades are discussed by Amjady

et al. and Muñoz-Delgado et al. [26, 27], while operational solutions such as grid reconfiguration are presented by

Ahmadi et al. and Azizivahed et al. [28, 29]. Tian et al. enhance the reconfiguration approach by combining it with

the pre-allocation of unmanned aerial vehicles to support the restoration of the system [30]. Importantly, the authors

acknowledge that these actions are usually planned independently and highlight the benefits of combining them.

Sambasivam et al. analyze the effect of the network topology in the optimal placement of generators and storage systems

for its restoration after a disaster [31]. Zhao et al. increase the system’s resilience against cyber-attacks by strategically

allocating energy storage [32]. Hou et al. propose a tri-level optimization framework to increase the resilience of

networks against typhoons by hardening the lines, dispatching generation units, and reconfiguring the topology [33].

de la Barra et al. and Franco et al. propose less intensive capital solutions for installing protective devices [34, 35],

which has become a timely approach due to the integration of distributed generation [36] and the installation of more

sophisticated communication systems [37]. Extensive surveys on ways to improve the reliability of grids, including

discussions of relevant objectives and computational algorithms, are presented in [38, 36, 39].

Although each grid can be individually reinforced against specific hazards with the above procedures, there are

benefits to reinforcing multiple grids simultaneously by selecting a portfolio of several reinforcement actions. By

design, choosing such a portfolio is a problem that needs to be approached with Portfolio Decision Analysis (PDA)

[40] as the assessment of individual reinforcement actions that focus on one hazard at a time will not reveal how

combinations of multiple reinforcement actions help mitigate risks posed by several hazards. Against this background,

there is a need for systemic approaches that are equipped to accommodate several information sources, such as

reliability models and expert consultation, as part of a comprehensive framework that helps assess the cost-efficiency

of portfolios of reinforcement actions.

In this paper, we work toward this end by presenting an optimization-based framework to select cost-efficient

portfolios of reinforcement actions. This selection problem is structured as an influence diagram, which is then solved

with mixed-integer linear programming (MILP) using Decision Programming [41] to identify optimal portfolios of

reinforcement actions. The framework accounts for the costs of reinforcement actions and their impacts on the reliability

of the grids. Specifically, these impacts depend on the chosen portfolios of reinforcement actions and the scenarios that

represent the occurrence of different combinations of hazards. Additionally, the framework admits partial information

about the scenario probabilities, multiple information sources, and the DSO’s preferences for grids and reliability
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indices. The optimal portfolios for different combinations of parameter values are then computed by solving the

MILP model. These portfolios are then exploited to identify non-dominated portfolios across the partial information

specification. Furthermore, by solving the selection problem at different levels of investment costs, the framework

identifies non-dominated portfolios that are cost-efficient in maximizing the reliability of the grids at a given level of

total costs, allowing the DSO to make risk-informed decisions about reinforcement actions. The framework is illustrated

with a stylized case study1 in which a DSO evaluates portfolios of reinforcement actions to mitigate the risks posed

by three types of hazards in three adjacent distribution grids. We illustrate how differences in the judgments expressed

by several experts, illustrated by five vectors of scenario probabilities concerning the occurrence of hazards, can be

handled through partial information representing the full range of information sources.

This work contributes to the literature by integrating reliability models for distribution grids and information

sources, such as the elicitation of expert judgments, with the use of partial information in PDA to identify cost-efficient

risk mitigation portfolios. By incorporating partial information, the proposed framework expands the scope of analysis

to situations where decision-makers cannot fully quantify preferences or assign deterministic probabilities to scenarios

due to limited information or uncertainty about the future. Moreover, incorporating partial information supplements

existing models, enabling their application in contexts where the requisite information for their utilization is not fully

available. The framework allows DSOs to adopt a holistic approach to selecting reinforcement actions, addressing

multiple hazards while assessing the reliability impacts of portfolios of such actions. Furthermore, by presenting results

across different investment levels, the framework illustrates the relationship between investment and reliability, helping

DSOs set appropriate investment levels based on the impact of those levels on system reliability.

This paper is structured as follows. Section 2 presents the framework and discusses relationships between reliability

models and expert judgments. Section 2.6 formulates the problem of selecting reinforcement actions by presenting the

influence diagram and the objective function. Section 3 presents an illustrative case study in which a DSO aims to

reinforce three adjacent distribution grids. Section 4 discusses the numerical results, limitations of the framework, and

possible extensions. Finally, Section 5 summarizes the contributions of the work and outlines future research areas.

2. Methodology

Our framework helps identify at different investment levels those portfolios of reinforcement actions that are most

effective in improving the reliability of multiple interconnected grids. This is achieved by building a structured decision

model that accounts for (i) the relevance of reliability indices, (ii) the perceived importance of the grids, and (iii) the

probabilities of scenarios representing the occurrence of hazards that impact the grids’ reliability. Because complete

information about the model parameters may be hard to obtain, the framework admits partial information, which
1Possibilities for providing real data on hazards affecting the grids are limited by concerns on confidentiality.
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extends its usability to cases where it is not possible or practical to acquire complete information due to resource

or time constraints.

In the following, we summarize the main framework assumptions and the employed notation. Then, we describe the

required information and the decision model from which the optimal and non-dominated portfolios of reinforcement

actions are computed. Because data availability can vary from system to system, we first discuss the characterization of

required parameters and partial information. This allows us to provide recommendations for adopting the framework

in different contexts.

2.1. Framework assumptions

The main assumptions of the framework are as follows: (i) the portfolio optimization is carried out for the situation

where all the selected reinforcement actions will have been implemented (i.e., no intermediate results are provided for

the situation where only some of the selected actions have been implemented); (ii) the costs of all reinforcement actions

are available before determining which ones will be implemented; (iii) the hazards can be represented by a discrete set

of scenarios whose probabilities can be estimated by relying information sources (e.g., simulation, statistical models,

expert elicitation, or a combination of these); (iv) failure events are quantified through estimates about failure rates

and restoration times; (v) these estimates depend on scenarios and selected reinforcement actions; (vi) the line-specific

failure rates can be expressed aggregating the failure rates for different hazards types; (vii) the impacts of failure

events can be quantified through reliability indices; (viii) the reliability of one grid does not affect that of others; (ix)

reinforcement actions have no impact on scenario probabilities.

2.2. Notation

Table 1 defines the sets in the framework. The decision variables for selecting local and global reinforcement actions

are itemized in Table 2. Table 3 lists the reliability parameters for line failure events and parameters that encode the

impacts of reinforcement actions and scenarios defined by combinations of alternative realizations of hazards. The

parameters that represent scenario probabilities as well as the DSO’s preferences for reliability indices and distribution

grids are in Table 4. The notation for the influence diagram presented in Section 3.4 and its corresponding MILP

formulation is in Table 5.

2.3. Accounting for multiple risk indices and distribution grids

The reliability of distribution grids can be quantified by reliability indices2 that account for different reliability

attributes, such as the frequency or duration of interruptions. The system average interruption duration index (SAIDI)

and the system average interruption frequency index (SAIFI) are systemic indices that quantify the average duration
2See IEEE guide for electric power distribution reliability indices [42].
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Table 1
Definition of sets.

𝐼 Set of hazards types, 𝐼 = {1, ..., 𝑛𝑖}
𝐸 Set of information sources (e.g., experts), 𝐸 = {1, ..., 𝑛𝑒}
𝐺 Set of grids, 𝐺 = {1, ..., 𝑛𝑔}
𝑅 Set of reliability indices, 𝑅 = {1, ..., 𝑛𝑟}
𝐻𝑖 Set of realizations for hazard type 𝑖 ∈ 𝐼
𝐻 Set of scenarios
𝐴 Set of portfolios of local and global reinforcement actions
𝐴𝐹 Set of feasible portfolios
𝐴𝑔

𝑞 Set of local reinforcement actions of type 𝑞 ∈ {1, ..., 𝑛𝑞} for grid 𝑔 ∈ 𝐺
𝐴0

𝑘 Set of global reinforcement actions of type 𝑘 ∈ {1, ..., 𝑛𝑘}
𝑆𝐸 Set of scenario probabilities
𝑆𝑔
𝑅 Set of importance weights for reliability indices in grid 𝑔 ∈ 𝐺

𝑆𝐺 Set of importance weights for grids
𝑆 Aggregate information set defined by 𝑆𝐸 , 𝑆

𝑔
𝑅, 𝑆𝐺

𝐴𝑁 (𝑆) Set of non-dominated portfolios for the information set 𝑆

Table 2
Definition of decision variables.

𝑎0𝑘 Decision variable for selecting a global reinforcement action of type 𝑘 from 𝐴0
𝑘, 𝑘 ∈ {1,… , 𝑛𝑘}

𝑎𝑔𝑞 Decision variable for selecting a local reinforcement action of type 𝑞 for grid 𝑔 from 𝐴𝑔
𝑞 , 𝑔 ∈ 𝐺, 𝑞 ∈ {1,… , 𝑛𝑞}

𝑎 Portfolio of reinforcement actions containing all selected global and local actions, i.e., 𝑎 = (𝑎0𝑘)
𝑛𝑘
𝑘=1 ∪ (𝑎𝑔𝑞 )

𝑛𝑞
𝑔∈𝐺,𝑞=1

Table 3
Definition of parameters associated with the reliability of the grids and the impact of reinforcement actions and hazards.

𝜆𝑙𝑏 Basal failure rate of line 𝑙 [failures/year]
𝜆𝑙𝑖𝑏 Basal failure rate of line 𝑙 for hazard type 𝑖 ∈ 𝐼 [failures/year]
𝜏 𝑙𝑏 Basal restoration time of line 𝑙 [hours/failure]
𝑓 𝑙
𝑖 (ℎ𝑖) Multiplicative factor by which hazard realization ℎ𝑖 ∈ 𝐻𝑖 affects line 𝑙 failure rate 𝜆𝑙𝑖, for hazard type 𝑖 ∈ 𝐼

𝑡𝑙(ℎ𝑖) Multiplicative factor by which hazard realization ℎ𝑖 ∈ 𝐻𝑖 affects line 𝑙 restoration time 𝜏 𝑙, for hazard type 𝑖 ∈ 𝐼
𝜄𝑙𝑖(𝑎

𝑔
𝑞 ) Multiplicative factor by which local reinforcement action 𝑎𝑔𝑞 ∈ 𝐴𝑔

𝑞 affects line 𝑙 failure rate 𝜆𝑙𝑖 for hazard type 𝑖 ∈ 𝐼
𝜄𝑙𝑖(𝑎

0
𝑘) Multiplicative factor by which global reinforcement action 𝑎0𝑘 ∈ 𝐴0

𝑘 affects line 𝑙 failure rate 𝜆𝑙𝑖 for hazard type 𝑖 ∈ 𝐼
𝜚𝑙(𝑎𝑔𝑞 ) Multiplicative factor by which local reinforcement action 𝑎𝑔𝑞 ∈ 𝐴𝑔

𝑞 affects line 𝑙 restoration time 𝜏 𝑙

𝜚𝑙(𝑎0𝑘) Multiplicative factor by which global reinforcement action 𝑎0𝑘 ∈ 𝐴0
𝑘 affects line 𝑙 restoration time 𝜏 𝑙

𝜆𝑙 Failure rate of line 𝑙 [failures/year]
𝜆𝑙𝑖 Failure rate of line 𝑙 for hazard type 𝑖 ∈ 𝐼 [failures/year]
𝜏 𝑙 Restoration time of line 𝑙 [hours/failure]
𝑅𝑔

𝑟 Normalized value of reliability index 𝑟 ∈ 𝑅 of grid 𝑔 ∈ 𝐺
𝑅𝑔 Normalized values of all reliability indices 𝑟 ∈ 𝑅 for grid 𝑔 ∈ 𝐺, i.e., 𝑅𝑔 = (𝑅𝑔

𝑟 )𝑟∈𝑅
𝑈 𝑔 Unreliability of grid 𝑔 ∈ 𝐺
𝑈𝑡𝑜𝑡 Aggregate disutility

and frequency of interruptions that affect all grid customers. In contrast, customer interruption duration (CID) and

customer interruption frequency (CIF) are local indices for the duration and frequency of interruptions in a particular

node. The average system availability index (ASAI) is the ratio of hours that the system was available during a given

period. Expected energy not supplied (EENS) estimates the amount of energy the system does not deliver due to failures

or insufficient generation capacity. In general, the relevance of these reliability indices depends on the characteristics
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Table 4
Definition of parameters associated with scenario probabilities and the DSO’s preferences for grids and reliability indices.

ℎ𝑖 Realization of hazard type 𝑖 ∈ 𝐼
ℎ Scenario, defined as a combination of one realization per each hazard type, i.e., ℎ = (ℎ𝑖)𝑖∈𝐼 ∈ 𝐻
𝑝𝑒ℎ Probability of scenario ℎ ∈ 𝐻 as reported by information source 𝑒 ∈ 𝐸
𝛼𝑒 Importance weight associated with information source 𝑒 ∈ 𝐸
𝑤𝑔 Importance weight of grid 𝑔 ∈ 𝐺
𝜔𝑔

𝑟 Importance weight of reliability index 𝑟 ∈ 𝑅 on grid 𝑔 ∈ 𝐺
𝑝𝑒 Vector of scenario probabilities based on information source 𝑒, i.e., 𝑝𝑒 = (𝑝𝑒ℎ)ℎ∈𝐻
𝑤 DSO’s importance weights for grids, i.e., 𝑤 = (𝑤𝑔)𝑔∈𝐺
𝜔𝑔 DSO’s importance weights for reliability indices in grid 𝑔 ∈ 𝐺, i.e., 𝜔𝑔 = (𝜔𝑔

𝑟 )𝑟∈𝑅

Table 5
Definition of influence diagram notation.

𝐶 Set of chance nodes
𝐷 Set of decision nodes
𝑉 Value node
𝑁 Set of all nodes in the influence diagram, 𝑁 = 𝐶 ∪𝐷 ∪ 𝑉
𝑆𝑗 Set of possible states for node 𝑗 ∈ 𝐶 ∪𝐷
𝑠 A path 𝑠 = (𝑠𝑗)𝑗∈𝐶∪𝐷
 Set of arcs in the influence diagram,  = {(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝑁}
𝐼(𝑗) Information set of node 𝑗, 𝐼(𝑗) = {𝑖 ∈ 𝐶 ∪𝐷 ∣ (𝑖, 𝑗) ∈ }
𝑠𝐼(𝑗) Realization of states of nodes in 𝐼(𝑗)
𝑆𝐼(𝑗) Set of all possible realizations 𝑠𝐼(𝑗)
𝑋𝑗 Random or decision variable associated with node 𝑗 ∈ 𝐶 ∪𝐷
𝑧(𝑠𝑗) Binary variable for decision node 𝑗 ∈ 𝐷, equals 1 if 𝑋𝑗 = 𝑠𝑗 , 0 otherwise
 (𝑠) Disutility associated with path 𝑠
𝜋(𝑠) Probability of path 𝑠
𝑝(𝑠) Upper bound of path probability, 𝑝(𝑠) =

∏

𝑗∈𝐶 ℙ(𝑋𝑗 = 𝑠𝑗 ∣ 𝑋𝐼(𝑗) = 𝑠𝐼(𝑗))

of the grid and even on regulations that may require some specific indices to attain minimum levels. Because several

indices can be relevant to the DSO, the priorities ascribed to them represent the specific requirements in a given

planning context.

Furthermore, the grids are not all equally important to the DSO and can thus be prioritized depending on the

context and the needs of the areas served by the grids. For example, due to their significant social impact, the DSO

can focus on protecting critical networks that enable essential services, such as those provided by hospitals. Similarly,

it is common practice to prioritize the reliability of residential sectors over industrial ones, especially when industrial

customers have backup systems to mitigate potential disruptions.

In summary, the formulation of the decision model may benefit from explicitly incorporating the DSO’s preferences

regarding (i) the relevance of reliability indices and (ii) the perceived importance of the grids, as these priorities matter

in guiding the selection. Such priorities can be elicited, for example, by treating the reliability indices of different grids

as multiple criteria so that well-established techniques from multi-criteria decision analysis can be employed to elicit
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weight information. An authoritative overview of applicable state-of-the-art elicitation techniques is presented by Dias

et al. [24].

2.4. Identification of hazards and quantification of scenario probabilities

Identifying the salient external hazards that can cause disruptions sets the stage for evaluating alternative reinforce-

ment actions. Requisite information about these hazards– stated in terms of (i) the alternative realizations in which the

(non)-occurrence of these hazards can manifest and (ii) how probable these realizations are–can be aggregated from

many information sources, including systematic reviews of reports on earlier incidents, the development of statistical

models, and the consultation of experts. In particular, it is pertinent to consider the possibility that several hazards may

occur together. This is because the performance of the grids may then degrade much more than what would be the case

if interactions between multiple hazards are not accounted for.

There are numerous techniques for estimating the joint probability distribution of scenarios [43]. For example,

one may first elicit marginal probabilities for the possible realizations of individual hazards. If there are dependencies

between the hazards, one may elicit first-order or even second-order conditional probabilities to obtain a more accurate

description of the joint probability distribution. This description can be based either on point estimates or intervals

[44, 45].

In addition, cross-impact analysis methods, such as the approach proposed by Roponen and Salo [46], can be

employed to derive scenario probabilities for each expert. For illustrative purposes, we explain how this approach can

be implemented once the hazards and their possible realizations have been specified:

1. Experts are presented with historical information on earlier disruptions as well as forecasts concerning relevant

variables such as weather conditions or pollution levels. Based on this and other accompanying relevant

information, experts are invited to identify relevant hazards and specify viable realizations for them. The resulting

characterization needs to be consensual, as it provides the backdrop for the estimation of probabilities.

2. The marginal probabilities for the realizations of each hazard are elicited from every expert. These marginal

probabilities convey how likely these realizations are relative to each other when no particular assumptions are

made about the occurrence of other hazards.

3. Experts are requested to estimate cross-impacts between realizations for selected hazard pairs. Each cross-impact

estimate indicates how much the probability of a given realization of one hazard would change if another hazard

has one of its possible realizations.

4. The cross-impact estimates of each expert are transformed into numerical values, known as cross-impact

multipliers, which are synthesized to derive the joint probability distribution over all scenarios.
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Thus, the above process gives a joint probability distribution over scenarios for each expert. Still, experts may

continue to have divergent beliefs about scenario probabilities and need not agree. These divergent beliefs can be

captured through partial information, defined as the smallest convex set of probabilities that contains the probabilities

provided by the different experts.

2.5. Reliability of distribution grids

The failure events of a line 𝑙 are traditionally represented by two parameters: the failure rate 𝜆𝑙 [failures/year] and

the restoration time 𝜏𝑙 [hours/failure]. These widely used parameters can be estimated from the fault records maintained

by the DSO, either to comply with national regulations or for internal risk management purposes. We denote the basal

parameters for failure rates and expected restoration time by 𝜆𝑙𝑏 and 𝜏𝑙𝑏, respectively, referring to the numerical values

that apply at the outset before the implementation of reinforcement actions and the occurrence of hazards.

Specifically, we quantify the reliability of distribution grids with a model based on [47] that computes the reliability

indices SAIDI, SAIFI, MCIF (maximum CIF among the nodes), and MCID (maximum CID among the nodes) from

the input parameters 𝜆 and 𝜏 of each distribution line on the grid, the number of customers per node, and the location

of the protective devices. Failures of demand nodes are not considered, but this entails no loss of generality because

such failures can be, in principle, represented by introducing additional virtual nodes and lines between them. We do

not consider perfectly coordinated reclosers. However, elements of more detailed models can also be included, such as

[34, 48] to accommodate different protective devices and coordination requirements between them.

2.5.1. Reliability impact of hazards

The reliability of distribution grids is affected by many types of hazards. Examples include cyber-attacks, major

traffic accidents, excessive pollution, or extreme weather conditions. Thus, the first step in risk-informed selection

of mitigation actions is to identify what hazards are included in the analysis based on their anticipated impacts and

estimated likelihood.

Our framework considers a set of hazards classified into 𝑖 ∈ 𝐼 = {1,… , 𝑛𝑖} hazard types. A scenario is defined

as ℎ = (ℎ1,… , ℎ𝑛𝑖 ), ℎ𝑖 ∈ 𝐻𝑖, 𝑖 ∈ 𝐼 where 𝐻𝑖 is the set of alternative realizations (outcomes) for the 𝑖-th hazard

type. For example, if there are two hazard types cyber-attack (CA) and weather conditions (WC) with two possible

realizations for each, we have 𝐻𝐶𝐴 = {𝐶𝐴0, 𝐶𝐴−} and 𝐻𝑊𝐶 = {𝑊𝐶0,𝑊 𝐶−} and there are four scenarios

(𝐶𝐴0,𝑊 𝐶0), (𝐶𝐴0,𝑊 𝐶−), (𝐶𝐴−,𝑊 𝐶0), and (𝐶𝐴−,𝑊 𝐶−). In what follows, the realizations with the sub-index

"0" represent less harmful realizations associated with the basal reliability parameters.

To account for the impact of the hazards (and later on for reinforcement actions), the basal reliability parameters

are modified with multiplicative parameters whose values depend on the occurrence of hazards and implementation

of reinforcement actions. For failure rates, we employ the additive model 𝜆𝑙𝑏 =
∑𝑛𝑖

𝑖=1 𝜆
𝑙
𝑖𝑏 where 𝜆𝑙𝑖𝑏 is the basal failure
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rate of line 𝑙 for hazard type 𝑖. This extension to multiple failure rates associated with the hazard types requires more

analysis, which can limit the number of hazards considered. When there is enough data, it is possible to use statistical

models to compute the failures associated with different hazards directly. In other cases, it is possible to estimate them.

For example, Wang et al. computes different failure rates for temperature, rainfall, wind, and humidity based on scarce

fault records [49].

The impact of the hazard realization ℎ𝑖 on the failure rate 𝜆𝑙𝑖 is accounted for by the multiplicative factor 𝑓 𝑙
𝑖 (ℎ𝑖) so

that the resulting failure rate is 𝜆𝑙𝑖(ℎ𝑖) = 𝜆𝑙𝑖𝑏𝑓
𝑙
𝑖 (ℎ𝑖). Consequently, 𝜆𝑙(ℎ) =

∑𝑛𝑖
𝑖=1 𝜆

𝑙
𝑖(ℎ𝑖) is the failure rate of the line 𝑙

in scenario ℎ. These multiplicative factors are indexed by 𝑙 because hazards may not affect all lines. If the hazard does

not impact the line, the multiplicative factor is 1.

The expected restoration time 𝜏 [hours/failure] does not depend on the type of hazard that causes the failure. This

means that we assume that if a hazard affects the restoration time, it will affect it for any disruption. For example,

adverse weather conditions can delay maintenance crews, increasing the restoration time of disruptions caused by

other hazards. Still, the reliability indices that quantify the duration of failures (SAIDI and CID) depend on the hazard

types because the duration is also affected by the number of failures. The framework can be readily extended to include

restoration times depending on hazard types by using the same structure used for failure rates.

The multiplicative factors can be obtained by applying statistical analysis to the historical data. The primary source

of this data is the DSOs, who are obliged by law to register the failure events affecting the distribution grids [50]. The

statistical analysis depends on the data availability and the nature of the hazards affecting the system. We provide

some instructive examples for analyzing the failure events on distribution systems to quantify failures for different

hazards. Clavijo-Blanco and Rosendo-Macías create a methodology to estimate failure rates for different hazards [50].

Alvehag and Soder present a model in which the failure rate of an over headline is the sum of the failure rate during

normal weather conditions and the failure rate during high winds [51]. Zhou et al. propose a Bayesian Network, which

uses conditional probabilities of failures given different weather states [52]. Macedo et al. propose a methodology

to assess the reliability of transmission lines for uncertain wind speed and tornado trajectories [53]. Liang and Xie

quantify the probabilities of correlated failures of components in a substation during a seismic event [54]. Shafieezadeh

et al. propose a framework for developing age-dependent fragility curves of utility wood poles exposed to harsh wind

conditions [55]. Ghasemi et al. present an overview of modeling methods to estimate failure rates, including models

that study explanatory variables such as environmental conditions [56].

2.5.2. Reliability impact of reinforcement actions

Reinforcement actions modify failure rates and restoration times or install protective devices, which are included

directly in the reliability model [47]. We consider a multiplicative model for the case in which the reinforcement
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actions modify the failure rates or the restoration times. These actions modify specific failure rates 𝜆𝑙𝑖, associated with

the 𝑖-th hazard type. For example, the underground of a line reduces the failure rates associated with extreme weather

conditions, but it does not modify the failure rates associated with cyber-attacks. The impact of the reinforcement

actions on specific failure rates is modeled by categorizing the reinforcement actions into different types and estimating

corresponding multiplicative factors depending on the hazard type and action type.

We distinguish between global actions, which affect all the grids, and local actions, which affect a single grid.

𝐴𝑔
𝑞 denotes the set of local actions of type 𝑞 = 1,… , 𝑛𝑞 on grid 𝑔 = 1,… , 𝑛𝑔 . Similarly, 𝐴0

𝑘 is the set of global

actions of type 𝑘 = 1,… , 𝑛𝑘. The set of all portfolios, defined as all combinations of local and global actions, is

𝐴 =
∏𝑛𝑔

𝑔=1
∏𝑛𝑞

𝑞=1 𝐴
𝑔
𝑞
∏𝑛𝑘

𝑘=1 𝐴
0
𝑘. A local action is denoted by 𝑎𝑔𝑞 ∈ 𝐴𝑔

𝑞 , a global action by 𝑎0𝑘 ∈ 𝐴0
𝑘, and a portfolio by

𝑎 ∈ 𝐴. Typically, resource constraints and logical dependencies between reinforcement actions reduce the number of

feasible portfolios. For example, a local action may only be viable if a specific global action is implemented. Actions

may be mutually exclusive due to resource constraints, for example, when there is not enough personnel to implement

them. Lastly, the total investment budget may restrict what actions can be implemented. The set of feasible portfolios

𝐴𝐹 ⊆ 𝐴 consists of those combinations of actions that satisfy all relevant constraints.

The failure rate of a line 𝑙 in the grid 𝑔, considering the combined effects of hazards and reinforcement actions, is

calculated using (1). In this equation, 𝜄𝑙𝑖(𝑎
𝑔
𝑞 ) and 𝜄𝑙𝑖(𝑎

0
𝑘) are the multiplicative factors of the 𝑞-th local action type and

𝑘-th global action type in the failure rate associated with the 𝑖-th hazard type. If an action does not impact the failure

rate, this factor equals one.

𝜆𝑙(ℎ, 𝑎) =
𝑛𝑖
∑

𝑖=1
𝜆𝑙𝑖(ℎ𝑖, 𝑎) =

𝑛𝑖
∑

𝑖=1
𝜆𝑙𝑖𝑏𝑓

𝑙
𝑖 (ℎ𝑖)

𝑛𝑘
∏

𝑘=1
𝜄𝑙𝑖(𝑎

0
𝑘)

𝑛𝑞
∏

𝑞=1
𝜄𝑙𝑖(𝑎

𝑔
𝑞 ). (1)

The expected restoration time is given by (2), with 𝑡𝑙(ℎ𝑖), 𝜚𝑙(𝑎
𝑔
𝑞 ), and 𝜚𝑙(𝑎0𝑘) the multiplicative factors of the 𝑖-th

hazard type, 𝑞-th local action type and 𝑘-th global action type on the restoration time of line 𝑙. If the hazard type 𝑖 does

not impact the restoration time of the line, 𝑡𝑙(ℎ𝑖) is equal to one. Similarly, if an action does not impact the restoration

time, the associated factor equals one.

𝜏𝑙(ℎ, 𝑎) = 𝜏𝑙𝑏

𝑛𝑖
∏

𝑖=1
𝑡𝑙(ℎ𝑖)

𝑛𝑘
∏

𝑘=1
𝜚𝑙(𝑎0𝑘)

𝑛𝑞
∏

𝑞=1
𝜚𝑙(𝑎𝑔𝑞 ). (2)

Estimating multiplicative factors for the impact of reinforcement actions on failure rates or restoration times is

difficult due to the paucity of relevant data. Recognizing these challenges, we provide some references that can guide

the estimation of multiplicative factors for further studies. One common practice is to compare data from similar

systems to isolate the effect of the reinforcement action. For example, Fenrick and Getachew estimate the reliability
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impact of underground lines based on data from 163 distribution utilities in the US [57]. Although this procedure

helps quantify the reliability impact, it cannot be taken for granted that this impact will be the same on a different

system. Hughes et al. propose a hybrid physical and data-driven model to assess the impacts of pole replacement,

pole class upgrade, improved pole chemical treatment, and undergrounding to reduce pole failures [58]. Taylor et al.

propose a machine learning outage prediction model to assess the impact of vegetation management on outages in the

distribution grid during storm events [59]. Hughes et al. propose a hybrid mechanistic-data-driven outage prediction

model to assess the impact of tree trimming and pole replacements in reducing the failures in the grid [60].

2.6. Problem representation

2.6.1. Influence diagram

Influence diagrams give a visual representation of uncertainties (e.g., chance node for scenarios representing

hazards), decisions (e.g., decision nodes for reinforcement actions), and consequences (e.g., value node for the

reliability of the grids), which helps communicate the structure of multi-stage decision problems under uncertainty.

Therefore, they have been used in practical applications to support decision makers (see e.g., [61, 62]).

The influence diagram for the problem of reinforcing 𝑛𝑔 grids is shown in Figure 1. The arcs between the nodes

denote dependencies: the realization of uncertain events at a chance node is conditionally dependent on its parent

nodes from which there is an incoming arc to the chance node. Similarly, arcs pointing to a decision node indicate

what information is available at the decision node, while the consequences at the value node are determined by a

function whose arguments consist of the states of its parent connected nodes.

The chance node 𝑊 represents the occurrence of hazards. Its states are scenarios ℎ ∈ 𝐻 that represent

combinations of realizations of hazard types. Decision node 𝐷𝐺 represents the selection of global reinforcement

actions, and its states represent portfolios of such actions. Decision nodes 𝐷𝑔 , 𝑔 ∈ {1, ..., 𝑛𝑔} represent the selection

of local reinforcement actions for each grid 𝑔, where each state corresponds to a specific portfolio of actions for that

grid. When reinforcement actions are selected, it is unknown which hazards will occur, if any. This is conveyed by

the absence of arcs from node 𝑊 to decision nodes 𝐷𝐺 and 𝐷𝑔 , 𝑔 ∈ {1, ..., 𝑛𝑔}. Instead, the actions fortify the grids

by improving their reliability to an extent that depends on what other actions are implemented and what hazards

occur. Although the decision nodes are presented separately for clarity, these decisions are made simultaneously in a

coordinated manner. This coordination accounts for interdependencies, such as those arising from budgetary constraints

or logical relationships between decisions.

Chance node 𝐺𝑔 represents the realized reliability of the grid 𝑔 ∈ {1, ..., 𝑛𝑔}. This reliability depends on (i) the

occurrence of hazards, represented by the scenario (state at 𝑊 ) and (ii) the selection of global and local reinforcement

actions at nodes 𝐷𝐺 and 𝐷𝑔 , respectively. In Figure 1, these dependencies are shown in red and blue. The probability
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distribution at node 𝐺𝑔 depends on the chosen reliability model to compute its reliability indices. We employ a

deterministic model that attaches a unique value to each reliability index for a given scenario and a portfolio of

reinforcement actions. This facilitates the interpretation of the ensuing numerical results as uncertainties pertain to

scenarios and their probabilities only. Yet, other models, such as [63, 64], can also be employed to accommodate

probability distributions for the reliability indices without altering the framework’s structure or computational

performance. The states of the nodes 𝐺𝑔 are defined by discretizing the range of reliability index values across all

reinforcement actions and scenarios into five equal-length intervals. This discretization provides a representation of

continuous indices and can be refined by increasing the number of states to achieve higher granularity.

W

D1

D2

DG

Dn

G1

G2

Gn

V

Figure 1: Influence diagram for selecting portfolios of reinforcement actions in the face of external hazards. Chance nodes
(circles) represent uncertain events. Decision nodes (squares) represent selections of reinforcement actions. The value node
(diamond) represents the consequences of the reinforcement decisions and the realization of uncertainties at the chance
nodes.

2.6.2. Unreliability and disutility functions

We frame the portfolio selection problem as minimizing the unreliability of the grids. This is consistent with the

interpretation of reliability indices for which higher values represent a less reliable system. For each reliability index

𝑟 ∈ 𝑅 and grid 𝑔 ∈ 𝐺, the indices are represented with a real-valued index function 𝑅𝑔
𝑟 ∶ ℝ → [0, 1] that maps

the values of the reliability index of the grid onto the interval [0, 1]. The vector 𝑅𝑔(ℎ, 𝑎) = (𝑅𝑔
1(ℎ, 𝑎),… , 𝑅𝑔

𝑛𝑟 (ℎ, 𝑎))

contains these evaluations based on the reliability indices 𝑟 ∈ {1,… , 𝑛𝑟} for a given scenario ℎ and a portfolio of

actions 𝑎.
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In [65], reliability indices are combined into a single value representing the grid’s unreliability. We follow a similar

approach, combining the index functions 𝑅𝑔
𝑟 into a grid unreliability function

𝑈𝑔(𝜔𝑔 , ℎ, 𝑎) =
𝑛𝑟
∑

𝑟=1
𝜔𝑔
𝑟𝑅

𝑔
𝑟 (ℎ, 𝑎), (3)

where the DSO’s priorities concerning the significance of reliability indices (see Section 2.3) are represented by the

weights 𝜔𝑔
𝑟 . The vector 𝜔𝑔 = (𝜔𝑔

1,… , 𝜔𝑔
𝑛𝑟 ) contains the weights for each index 𝑟 reliability index of grid 𝑔. These

weights can vary for different grids to address specific planning requirements. For example, the SAIDI is more critical

than the SAIFI if a grid has backup systems, such as batteries. The weights for the reliability indices are contained in

a matrix of dimensions 𝑛𝑔 × 𝑛𝑟 , i.e., 𝜔 = (𝜔1;… ;𝜔𝑛𝑔 ).

Finally, the reliability indices for the grids are combined in an aggregate disutility function

𝑈𝑡𝑜𝑡(𝑤,𝜔, ℎ, 𝑎) =
𝑛𝑔
∑

𝑔=1
𝑤𝑔𝑈

𝑔(𝜔𝑔 , ℎ, 𝑎), (4)

which reflects the DSO’s priorities regarding the different grids and their unreliability. This function takes values

from 0 to 1 so that 1 represents the maximum unreliability the hazards may cause if no reinforcement actions are

implemented. This additive function 𝑈𝑡𝑜𝑡 allows different priorities to be assigned to the grids. For example, more

weight can be given to grids whose reliability is of particular importance because they secure the electricity supply to

critical infrastructures.

Combining all of the above, the expected disutility for the portfolio of reinforcement actions 𝑎 and scenarios ℎ ∈ 𝐻

is

𝔼[𝑈𝑡𝑜𝑡(𝑝𝑒, 𝑤, 𝜔, ℎ, 𝑎)] = 𝔼[𝑈𝑡𝑜𝑡] =
𝑛ℎ
∑

ℎ=1
𝑝𝑒ℎ𝑈𝑡𝑜𝑡(𝑤,𝜔, ℎ, 𝑎), (5)

where 𝑝𝑒ℎ is the probability of scenarioℎ in the vector of scenario probabilities 𝑝𝑒 obtained from the source 𝑒. This source

can be, for example, an expert who provides estimations about the scenario probability. Because the expectation (5)

depends on the scenario probabilities 𝑝𝑒 = (𝑝𝑒1,… , 𝑝𝑒𝑛ℎ ), the expected disutilities of reinforcement portfolios typically

vary from one expert to the next. This implies that optimal portfolios can also vary.

2.7. Inclusion of partial information

In this framework, portfolios of reinforcement actions that minimize expected disutility in (5) can be computed by

using Decision Programming [41] to solve the mixed-integer linear programming problem for the influence diagram in

Figure 1. The key parameters in this problem are (i) the basal reliability parameters of the grids, (ii) the multiplicative
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factors for the impact of the actions in scenarios, (iii) scenario probabilities, and (iv) priority weights for the reliability

indices and the grids.

However, information about these parameters may be uncertain. The basal reliability parameters may not be valid

if they have been derived from scarce data or if reference values have been taken from a different system. The same

uncertainty affects the accuracy of the multiplicative factors in the impact assessment of hazards and reinforcement

actions. Moreover, the DSO may need to consider a range of priorities for the grids, depending on foreseen demands

and even the regulatory context. Also, if additional reliability indices are incorporated, their relevance relative to the

ones employed previously needs to be re-evaluated, which may motivate changes in the respective weights. Similarly,

connecting new demand points with specific reliability requirements may imply that the DSO needs to ascribe higher

priority weights to some indices. Lastly, when multiple experts are consulted to obtain estimates about the scenario

probabilities, retaining the full diversity of these probabilities in the analysis may be instructive instead of synthesizing

a single vector of scenario probabilities from them. The same situation may apply when considering priority weights for

reliability indices and grids because, within the DSO, there may be different viewpoints on what weights are adequate.

Thus, instead of presuming that complete information about the above model parameters can be specified, we

consider what decision recommendations can be offered when these parameters are not specified as point estimates but

can assume any values within their feasible information sets. Thus, these information sets represent partial information

that can be synthesized with Portfolio Decision Analysis [66, 40] to support decisions in the presence of partial

information. In particular, we accommodate partial information about the scenario probabilities and the weights

representing priorities for grids and reliability indices. The extension to admit partial information about the basal

reliability parameters and the multiplicative factors employed in impact assessment can be pursued analogously.

Because the probabilities of the 𝑛ℎ scenarios add up to one, the set of all possible scenario probabilities 𝑆0
𝐸 is the

absence of any constraining information is

𝑝 ∈ 𝑆0
𝐸 =

{

𝑝 ∈ ℝ𝑛ℎ ∣ 𝑝ℎ ≥ 0,
𝑛ℎ
∑

ℎ=1
𝑝ℎ = 1

}

,

where 𝑝ℎ is the probability of the scenario ℎ in the vector of scenario probabilities 𝑝 = (𝑝1, ..., 𝑝𝑛ℎ ). We model partial

information about scenario probabilities by assuming that these probabilities belong to the set 𝑆𝐸 ⊆ 𝑆0
𝐸 . Thus, at one

extreme, if there is no information about the scenario probabilities, this set contains all the probability vectors in 𝑆0
𝐸 .

At the other extreme, the case of complete information would be represented by the situation where 𝑆𝐸 contains only

a single vector from 𝑆0
𝐸 .

To illustrate the modeling of partial information that draws on multiple sources of expertise 𝑒 ∈ 𝐸, consider a

situation in which there are 𝑛𝑒 experts such that each expert 𝑒 provides a point estimate 𝑝𝑒 ∈ 𝑆0
𝐸 for the scenario
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probabilities. In this case, the relevant set of scenario probabilities can be represented by the feasible information set

𝑆𝐸 ⊂ 𝑆0
𝐸

𝑝 ∈ 𝑆𝐸 =

{ 𝑛𝑒
∑

𝑒=1
𝛼𝑒𝑝

𝑒 ∈ ℝ𝑛ℎ ∣ 𝛼𝑒 ≥ 0,
𝑛𝑒
∑

𝑒=1
𝛼𝑒 = 1

}

, (6)

which contains the estimates provided by all experts as well as all convex combinations of such estimates, obtained as

weighted averages of these estimates.

In the same way, partial information about the DSO’s priorities for the reliability indices, reflected by the weights

𝜔𝑔 = (𝜔𝑔
1,… , 𝜔𝑔

𝑛𝑟 ), can be specified by choosing a relevant subset 𝑆𝑔
𝑅 from the set 𝑆0

𝑅 defined by (7). The absence

of any information about priorities for reliability indices would correspond to 𝑆𝑔
𝑅 = 𝑆0

𝑅. Conversely, if 𝑆𝑔
𝑅 contains

only a single weight vector, then there is complete information about the priorities. Finally, priorities concerning the

grids, represented by the weights 𝑤 = {𝑤1,… , 𝑤𝑛𝑔}, can be modeled as in the case of reliability indices so that these

weights are constrained to belong to the set (8).

𝑆0
𝑅 =

{

𝜔𝑔 ∈ ℝ𝑛𝑟 ∣ 𝜔𝑔
𝑟 ≥ 0,

𝑛𝑟
∑

𝑟=1
𝜔𝑔
𝑟 = 1

}

(7)

𝑆0
𝐺 =

{

𝑤 ∈ ℝ𝑛𝑔 ∣ 𝑤𝑔 ≥ 0,
𝑛𝑔
∑

𝑔=1
𝑤𝑔 = 1

}

(8)

To explore the full implications of these three sets of partial information, we define the aggregate information

set 𝑆 ≡ 𝑆𝐸 × 𝑆𝐺 × 𝑆𝑅 as their Cartesian product. A singleton element of this set (𝑝,𝑤, 𝜔) ∈ 𝑆 thus corresponds

to a situation with complete information about the parameters, i.e., the probabilities of the scenarios as well as the

weights that are employed to represent priorities for the grids and the reliability indices. For such specification of model

parameters, a well-defined optimal portfolio of reinforcement actions would exist that minimize the aggregate disutility

function in (5). Yet, given the specification of partial information, there is a need for analytical concepts that permit

such information to be processed into defensible decision recommendations as to which portfolios of reinforcement

actions outperform others in view of all this information. Towards this end, we introduce the following dominance

relation between pairs of feasible portfolios of reinforcement actions 𝑎, 𝑎′ ∈ 𝐴𝐹 as follows;

Definition 1. Let 𝑎, 𝑎′ ∈ 𝐴𝐹 . Then portfolio 𝑎 dominates 𝑎′ with regard to the information set 𝑆, denoted by

𝑎 ≻𝑠 𝑎′, if and only if 𝔼[𝑈𝑡𝑜𝑡(𝑝,𝑤, 𝜔, ℎ, 𝑎)] ≤ 𝔼[𝑈𝑡𝑜𝑡(𝑝,𝑤, 𝜔, ℎ, 𝑎′)]∀(𝑝,𝑤, 𝜔) ∈ 𝑆 and the inequality is strict for

some (𝑝,𝑤, 𝜔) ∈ 𝑆.
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Specifically, if the portfolio 𝑎′ is dominated by portfolio 𝑎, the expected aggregate disutility reduction in (5) for

𝑎′ cannot be greater than that for 𝑎. Moreover, for some parameters, (𝑝,𝑤, 𝜔) in the information set 𝑆, portfolio 𝑎

gives a greater reduction in disutility. Thus, a DSO that seeks to minimize the expected disutility should not choose

dominated portfolios and can focus its attention on non-dominated portfolios. Although Definition 2 is in terms of

expected disutility, other metrics such as Conditional Value at Risk (CVaR) can be considered, particularly for focusing

on extreme adverse outcomes (see, e.g., [67]). The non-dominated portfolios depend on the information set 𝑆 and the

constraints determining what portfolios are feasible.

Definition 2. A feasible portfolio 𝑎 ∈ 𝐴𝐹 is non-dominated for the information set 𝑆 if and only if there is no feasible

portfolio 𝑎′ ∈ 𝐴𝐹 such that 𝑎′ ≻𝑠 𝑎.

The set of non-dominated portfolios for the information set 𝑆, denoted by 𝐴𝑁 (𝑆), is computed by first identifying

the portfolios that minimize the expected aggregate disutility at the extreme points of 𝑆. These portfolios are, by

construction, non-dominated. Next, other feasible portfolios are compared against this initial set to assess whether

they are non-dominated. If this is the case, they are added to 𝐴𝑁 (𝑆); otherwise, they are excluded from consideration.

Algorithm 2 in Appendix A gives a step-by-step description of this approach, which is computationally efficient because

portfolios of reinforcement action can be compared based on their aggregate expected disutility at the extreme points

of the information set.

Because the non-dominated portfolios contain different actions 𝑎 ∈ 𝐴𝑁 (𝑠), further solution concepts are needed

to generate recommendations for making choices between actions. For this purpose, the core index of Robust Portfolio

Modeling [66, 68] is useful as it indicates the share of all non-dominated portfolios in which a given reinforcement

action is contained.

Definition 3. The core index of the global reinforcement action 𝑎0𝑘 ∈ 𝐴𝑘 for the information set S is

𝐶𝐼(𝑎0𝑘, 𝑆) =
|{𝑎 ∈ 𝐴𝑁 (𝑆) ∣ 𝑎0𝑘 ∈ 𝑎}|

|𝐴𝑁 (𝑆)|

and similarly, for the local action 𝑎𝑔𝑞 ∈ 𝐴𝑞 in grid 𝑔, the core index is given by

𝐶𝐼(𝑎𝑔𝑞 , 𝑆) =
|{𝑎 ∈ 𝐴𝑁 (𝑆) ∣ 𝑎𝑔𝑞 ∈ 𝑎}|

|𝐴𝑁 (𝑆)|

where |{⋅}| denotes the number of portfolios in the set.

If the core index of a reinforcement action is 1, this action is in all non-dominated portfolios and should be selected

in light of the parameters in the information set. Conversely, if the core index of an action is 0, this action is not
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in any non-dominated portfolio. It can thus be rejected because selecting such an action would inevitably lead to a

dominated portfolio. If the specification of the partial information becomes more conclusive in the sense that the

updated information set becomes a proper subset of the initial one, some previously non-dominated portfolios may

become dominated, but no new non-dominated portfolios will be found. This implies that if gradual information

refinement converges to a singleton point in the interior of the initial information set, any action with core index 1

will be contained in the optimal portfolio for this singleton point.

3. Case study

We present an illustrative case study in which a DSO is about to invest in a portfolio of reinforcement actions

to mitigate the risks arising from three types of hazards (i.e., adverse weather conditions, cyber-attacks, and grid

overloading) that affect three adjacent distribution grids. As access to real-world grid information and failure events

is limited due to security and privacy concerns, for example, because sharing detailed grid topologies can increase

vulnerability to cyber-attacks or physical threats, we adopt the topologies of well-established synthetic networks: the

IEEE 33-bus system (Grids 1 and 2) and the IEEE 69-bus system (Grid 3), representing radial distribution systems.

Baseline reliability parameters before reinforcement on the number of customers and detailed network topologies are

from [69].

The DSO seeks to choose a portfolio of reinforcement actions that maximizes the reliability of grids in view of

the four reliability indices that quantify the frequency and duration of disruptions. We consider complete and partial

information about the scenario probabilities as well as the DSO’s preferences for reliability indices and grids. For

complete information, in which case there are exact point estimates for all model parameters, the optimal portfolios

are determined by using Decision Programming to formulate a MILP model that corresponds to the influence diagram

[41]. For partial information, in which case parameter values are characterized by feasible information sets, we employ

Algorithm 2 (see Appendix A) to determine all non-dominated portfolios and analyze these to derive the corresponding

core index values for global and local reinforcement actions. These core index values are then examined to generate

decision recommendations.

3.1. DSO’s priorities for reliability indices and grids

The relevance of reliability indices may depend on the grid characteristics and regulations. We assume that the

DSO has four distinct estimates concerning the relevance of the reliability indices, which are referred to as cases. In

Case 1 and Case 2, all attention is paid to a single reliability index, considering only SAIDI and SAIFI, respectively.

In Case 3, SAIDI and SAIFI are equally important. In Case 4, the four indices are considered simultaneously; the most
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weight is given to the systemic indices SAIDI and SAIFI, while two local indices MCIF and MCID have less weight.

The weights 𝜔 for these four cases are in Table 6.

Table 6
Weights for reliability indices weights in the four cases.

Cases 𝜔 = (𝜔𝑆𝐴𝐼𝐷𝐼 , 𝜔𝑆𝐴𝐼𝐹𝐼 , 𝜔𝑀𝐶𝐼𝐹 , 𝜔𝑀𝐶𝐼𝐷)

Case 1 (1, 0, 0, 0)
Case 2 (0, 1, 0, 0)
Case 3 (0.5, 0.5, 0, 0)
Case 4 (0.4, 0.4, 0.1, 0.1)

If there is no information on the importance of the four reliability indices, the weight set for these indices is

𝜔 ∈ 𝑆0
𝑅 = {𝜔 ∈ ℝ4 ∣ 𝜔𝑟 ≥ 0,

∑𝑛𝑟=4
𝑟=1 𝜔𝑟 = 1}. To consider the four cases in Table 6, we use the information

set 𝜔 ∈ 𝑆𝑅 = {
∑4

𝑐=1 𝛽𝑐𝜔
𝑐 ∈ ℝ4 ∣ 𝛽𝑐 ≥ 0,

∑4
𝑐=1 𝛽𝑐 = 1} ⊂ 𝑆0

𝑅, which contains the weights 𝜔𝑐 , 𝑐 = 1,… , 4 for the

four cases and all the convex combination thereof. Note that because Case 3 is a convex combination of Cases 1 and

2, it need not be explicitly retained to produce numerical results.

Analogously, the DSO’s priorities for the three grids are given by the weights 𝑤 = (𝑤1, 𝑤2, 𝑤3) where 𝑤𝑔 is

the weight of grid 𝑔. We first consider a situation in which there are no restrictions on these weights, reflecting the

assumption that the DSO is either reluctant or unable to specify priorities for the grids. The set of feasible grid weights

is 𝑆0
𝐺 = {𝑤 ∈ ℝ3 ∣ 𝑤𝑔 ≥ 0,

∑𝑛𝑔=3
𝑔=1 𝑤𝑔 = 1}.

In this situation, non-dominated portfolios are combinations of reinforcement actions that improve the reliability

of at least one grid significantly without necessarily improving the reliabilities of the other grids. Thus, it represents a

conservative approach in seeking to achieve a balance between the three grids. At the other end of the spectrum, we

consider equal weights such that 𝑤1 = 𝑤2 = 𝑤3 =
1
3

or, in vector notation, 𝑤 =
(1
3
, 1
3
, 1
3
)

∈ 𝑆0
𝐺.

3.2. Hazards and scenarios

We consider three types of hazards, denoted by 𝑖: (i) adverse weather conditions, (ii) cyber-attacks, and (iii)

overloading due to unexpected operational conditions. Each hazard type 𝑖 can realize in one of several states ℎ𝑖:

for weather conditions, ℎ𝑖 ∈ {𝑊𝐶0,𝑊 𝐶−,𝑊 𝐶=}; for cyber-attacks, ℎ𝑖 ∈ {𝐶𝐴0, 𝐶𝐴−}; and for overloading,

ℎ𝑖 ∈ {𝑂𝐿0, 𝑂𝐿−}. The impacts caused by the hazards realizations are quantified by the triplets (affected lines, 𝑓 𝑙
𝑖 ,

𝑡𝑙) in Table 7, whose numerical values are illustrative yet aligned with some earlier studies (e.g., [52, 53]). In general,

realistic values can be generated using the references in Section 2.5.1. The "affected lines" indicator in the triplet

indicates how many lines in the entire distribution grid are affected by hazards. For example, some lines may be more

exposed to weather events than others. The symbol ∀ indicates that all lines are affected. A line that is not affected by

a hazard has the corresponding multiplicative factor 1.
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Weather conditions affect the failure rate parameter 𝜆 and the restoration time 𝜏 for each line.3 For example, the

weather conditions 𝑊𝐶− are represented by the triplet (∀, 1.4, 1.4), which means that the failure rates and the expected

repair times of all lines will increase by a factor of 1.4. This can be contrasted with 𝑊𝐶=, which represents more

severe weather conditions in which the failure rates and expected repair times of all lines increase by a factor of 2.

Cyber-attacks primarily affect the failure rate of specific lines, targeting the most vulnerable and critical ones. To

quantify this, we rank the lines based on the product of their failure rate and the number of downstream customers

(i.e., the number of customers without supply if the line is disrupted). For instance, a cyber-attack 𝐶𝐴, represented by

the triplet (4, 3.0, 1.0), increases the failure rate of the four most critical lines by a factor of 3, based on this ranking.

The impacts of overloads can be evaluated using power flow models to assess the consequences of increased demand.

However, for consistency and comparability, we aggregate these consequences using the same technique as in the

case of cyber-attacks, but with different criteria. The lines subject to overload are selected based solely on the number

of customers they supply. Note that the ranking criteria used for cyber-attacks and overloading are illustrative and

not restrictive. The framework allows flexibility, enabling the specification of affected lines directly instead of using

rankings. One could also define another ranking system.

Table 7
Possible hazards and illustrative factors representing their impacts on the grids.

Hazard realization (ℎ𝑖) Hazard type (𝑖) (affected lines, 𝑓 𝑙
𝑖 , 𝑡

𝑙)

𝑊𝐶− Weather conditions (∀, 1.4, 1.4)
𝑊𝐶= Weather conditions (∀, 2.0, 2.0)
𝐶𝐴 Cyber-attacks (4, 3.0, 1.0)
𝑂𝐿 Overloading (4, 2.0, 1.0)

Because there is a distinct scenario for every combination of realizations for the three types of hazards (three

alternative realizations of weather conditions plus two representing the (non)occurrence of cyber-attacks and overload),

the total number of scenarios is 𝑛ℎ = 12. For illustration purposes, a hypothetical situation is considered, where

estimates of the probabilities of these scenarios are elicited from 𝑛𝑒 = 5 experts who first assess the marginal

probabilities for extreme weather conditions, followed by the assessment of conditional probabilities for cyber-attacks,

and finally, conditional probabilities for overloads. Section 2.4 describes one possible procedure for obtaining these

values, but other methodologies can also be employed.

For example, the probabilities of Expert 1 are in Table 8, proceeding from the elicitation of marginal probabilities

for the weather conditions to the elicitation of conditional probabilities for cyber-attacks and, finally, overloading. The

scenario probabilities in Table 9 for the five experts can be readily inferred from this table. For example, the probability

of scenario ℎ0 = (𝑊𝐶0, 𝐶𝐴0, 𝑂𝐿0) for Expert 1 is 𝑝1(ℎ0) = ℙ[𝑊𝐶0] ×ℙ[𝐶𝐴0 ∣ 𝑊𝐶0] ×ℙ[𝑂𝐿0 ∣ (𝑊𝐶0 ∩𝐶𝐴0)] =
3We do not address differences in how the geographical variability in the weather patterns would affect the restoration time for different lines.
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Table 8
Vector of scenario probabilities for Expert 1.

Hazards Realizations

Weather Conditions
𝑊𝐶0
60%

𝑊𝐶−
30%

𝑊𝐶=
10%

Cyber-attacks
𝐶𝐴0
50%

𝐶𝐴−
50%

𝐶𝐴0
30%

𝐶𝐴−
70%

𝐶𝐴0
10%

𝐶𝐴−
90%

Overloading
𝑂𝐿0
80%

𝑂𝐿−
20%

𝑂𝐿0
70%

𝑂𝐿−
30%

𝑂𝐿0
50%

𝑂𝐿−
50%

𝑂𝐿0
40%

𝑂𝐿−
60%

𝑂𝐿0
20%

𝑂𝐿−
80%

𝑂𝐿0
10%

𝑂𝐿−
90%

Scenario probabilities 24% 6% 21% 9% 5% 5% 8% 13% 0% 1% 1% 8%

0.6×0.5×0.8 = 24%. The information set of scenario probabilities consists of the convex combinations of the experts’

estimates 𝑝 ∈ 𝑆𝐸 = {
∑𝑛𝑒=5

𝑒=1 𝛼𝑒𝑝𝑒 ∈ ℝ12 ∣ 𝛼𝑒 ≥ 0,
∑𝑛𝑒=5

𝑒=1 𝛼𝑒 = 1}.

Table 9
Scenario probabilities by expert.

Scenario Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

(𝑊𝐶0, 𝐶𝐴0, 𝑂𝐿0) 24% 26% 16% 10% 5%
(𝑊𝐶0, 𝐶𝐴0, 𝑂𝐿−) 6% 6% 4% 10% 5%
(𝑊𝐶0, 𝐶𝐴−, 𝑂𝐿0) 21% 6% 14% 8% 4%
(𝑊𝐶0, 𝐶𝐴−, 𝑂𝐿−) 9% 2% 6% 12% 6%
(𝑊𝐶−, 𝐶𝐴0, 𝑂𝐿0) 5% 14% 6% 4% 3%
(𝑊𝐶−, 𝐶𝐴0, 𝑂𝐿−) 5% 14% 6% 8% 6%
(𝑊𝐶−, 𝐶𝐴−, 𝑂𝐿0) 8% 5% 11% 6% 4%
(𝑊𝐶−, 𝐶𝐴−, 𝑂𝐿−) 13% 7% 17% 22% 17%
(𝑊𝐶=, 𝐶𝐴0, 𝑂𝐿0) 0% 2% 0% 0% 1%
(𝑊𝐶=, 𝐶𝐴0, 𝑂𝐿−) 1% 8% 2% 2% 4%
(𝑊𝐶=, 𝐶𝐴−, 𝑂𝐿0) 1% 1% 2% 2% 5%
(𝑊𝐶=, 𝐶𝐴−, 𝑂𝐿−) 8% 9% 16% 16% 41%

3.3. Reinforcement actions

The six types of reinforcement actions in Tables 10 and 11 have either a global impact, affecting the reliability of

the three grids, or a local impact, limited to a single grid. The second column indicates for which hazard the failure rate

is reduced. For example, reinforcing the communication system reduces the failure rates for cyber-attacks but not for

overloading. Some reinforcement actions, such as dispatching maintenance crews or introducing protective devices,

are not linked to hazards because they have no direct impact on failure rates.

Specifically, the impacts for reinforcement action are modeled using triplets of illustrative parameter values

(affected lines, 𝜄𝑙𝑖, 𝜚
𝑙). As in the case of modeling hazards, the "affected lines" specify how many lines are impacted by

the action. For example, if the selected reinforcement action is 𝑈𝐿+, the most critical line based on failure rates and

the number of customers served will be underground. If the decision is to implement the reinforcement action 𝑈𝐿++,

then the two most critical lines are underground. In practice, these values can be quantified by employing reliability
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models or eliciting expert judgments (see 2.5.2 for some references). The impacts are deterministic in that the factors

in Tables 10 and 11 quantify the impact of the actions unequivocally.

Table 10
Global actions. 𝑆𝑇 : Spare Transformer, 𝑀𝐶: Maintenance Crew.

Action (𝑎0𝑘) Type (𝑘) Hazard type (𝑖) (affected lines, 𝜄𝑙𝑖, 𝜚
𝑙) Cost

𝑆𝑇+ ST Overloading/Weather (1, 0.5, 1.0) 200
𝑀𝐶+ MC - (∀, 1.0, 0.8) 200

Table 11
Local actions. 𝑃𝑅: Protective devices, 𝑈𝐿: Underground line, 𝐶𝑆: Communication system update.

Action (𝑎𝑔𝑞) Type (𝑞) Hazard type (𝑖) (affected lines, 𝜄𝑙𝑖, 𝜚
𝑙) Cost

𝑃𝑅+ 𝑃𝑅 - (3, 1.0, 1.0) 20
𝑃𝑅++ 𝑃𝑅 - (9, 1.0, 1.0) 120
𝑈𝐿+ 𝑈𝐿 Weather (1, 0.0, 1.0) 50
𝑈𝐿++ 𝑈𝐿 Weather (2, 0.0, 1.0) 100
𝐶𝑆+ 𝐶𝑆 Cyber-attacks (1, 0.5, 1.0) 30
𝐶𝑆++ 𝐶𝑆 Cyber-attacks (5, 0.5, 1.0) 150

The set of feasible portfolios consists of all possible combinations of reinforcement actions that satisfy the following

constraints: (i) only one action for a given reinforcement type can be implemented in each grid, and (ii) the total cost

of the reinforcement actions does not exceed the budget representing the investment level (this level can be varied

to explore the impacts of the budget on the recommended portfolios). There are two implementation options for the

two global reinforcement actions on spare transformers and maintenance crews, and consequently, there are 22 = 4

alternative global reinforcement decisions. There are three types of actions for local reinforcement actions with three

implementation options for each action, so each grid has 33 = 27 decision alternatives. This leads to a total of

4 ∗ 273 = 78, 732 portfolios.

The cost of a portfolio4 is the sum of the reinforcement actions contained in it. Thus, we do not account for

possible cost synergies (i.e., the aggregate cost associated with implementing two or more actions jointly is the same

as what would be the case if these actions were to be implemented separately). However, such cost synergies can be

incorporated into the optimization model by introducing dummy variables because they only affect the cost feasibility

of the portfolios.

3.4. Influence diagram and MILP formulation

Figure 2 presents the influence diagram. For the case of complete information of model parameters, the solution

of this diagram gives the optimal portfolio of reinforcement actions that minimizes the disutility at the value node.
4This cost data is system-dependent as the costs for different grids can be very different. Thus, these numerical cost parameters are illustrative

and should be considered as examples rather than as precise values that could be applied to all systems.
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To obtain this solution, we use Decision Programming [70] to formulate the corresponding MILP model. In the

following, we summarize the influence diagram and present an overview of this MILP. For details on converting

influence diagrams into MILP models, see [41] and [70].

W

D1

D2

DG

D3

G1

G2

G3

V

Figure 2: Influence diagram for selecting reinforcement action portfolios to protect three distribution grids from external
hazards.

Let 𝐶 = {𝑊 ,𝐺1, 𝐺2, 𝐺3} and 𝐷 = {𝐷𝐺, 𝐷1, 𝐷2, 𝐷3} denote the sets of chance and decision nodes, respectively,

and 𝑉 be the value node in the influence diagram, with 𝑁 = 𝐶 ∪𝐷∪𝑉 . Every node 𝑗 ∈ 𝐶 ∪𝐷 has a finite set of states

𝑆𝑗 . At the decision node 𝐷𝐺, the state 𝑠𝑗 corresponds to a decision about global reinforcement actions. Analogously,

the states at decision nodes 𝐷1, 𝐷2, and 𝐷3 correspond to the decisions about respective local reinforcement actions.

Portfolios of reinforcement actions consist of combinations of decisions that are taken across all decision nodes. The

states of the chance node 𝑊 correspond to the 12 scenarios in Table 9. The states of chance nodes 𝐺1, 𝐺2, and 𝐺3

represent possible realizations of the reliability of the three grids.

Arcs  = {(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝑁} represent the dependencies between chance nodes, decision nodes, and the value node.

The information (parent) set 𝐼(𝑗) of a node 𝑗 contains the chance or decision nodes from which there is a direct arc to

it (i.e.; 𝐼(𝑗) = {𝑖 ∈ 𝐶 ∪𝐷 ∣ (𝑖, 𝑗) ∈ }). The Cartesian product of the possible states of the nodes in the parent set of

𝑗 is denoted by 𝑆𝐼(𝑗). Thus, for each 𝑖 ∈ 𝐼(𝑗), the information state 𝑠𝐼(𝑗) ∈ 𝑆𝐼(𝑗) specifies the corresponding state of

node 𝑖.

For a chance node 𝑗 ∈ 𝐶 , the state 𝑠𝑗 is a realization of the random variable 𝑋𝑗 . For a decision node 𝑗 ∈ 𝐷, 𝑋𝑗 is

a decision variable whose state 𝑠𝑗 indicates the decision taken at that node. Technically, the decisions are represented

by binary variables 𝑧(𝑠𝑗) = 1 if and only if 𝑋𝑗 = 𝑠𝑗 .
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The state of a chance node 𝑗 ∈ 𝐶 depends on the states of the nodes in its parent set, so that the probability of state

𝑠𝑗 at chance node 𝑗 ∈ 𝐶 is conditioned on the states of the nodes in its parent set

ℙ(𝑋𝑗 = 𝑠𝑗 ∣ 𝑋𝐼(𝑗) = 𝑠𝐼(𝑗)), (9)

where 𝑋𝐼(𝑗) = 𝑠𝐼(𝑗) means that variables 𝑋𝑖, 𝑖 ∈ 𝐼(𝑗) take the corresponding value 𝑠𝑖, 𝑖 ∈ 𝐼(𝑗).

A path in the influence diagram corresponds to a sequence 𝑠 = (𝑠𝑗)𝑗∈𝐶∪𝐷 which contains one state for each

chance and decision node. In particular, a path specifies a combination of realizations for hazards, global and local

reinforcement actions, and the ensuing reliability of the grids associated with hazards and actions. Therefore, each

path 𝑠 has an associated disutility  (𝑠) as stated in (4). Because the states of chance nodes are governed by probability

distributions, these distributions, together with the decisions taken at decision nodes, imply that the paths occur with

some probabilities. Specifically, the probability of path 𝑠 is denoted by 𝜋(𝑠).

The expected disutility, expressed in (5), can now be expressed as
∑

𝑠 𝜋(𝑠) (𝑠) where the summation is taken over

all paths. An upper bound of the probability of path 𝜋(𝑠) is given by accounting only for the chance nodes in the path

𝑝(𝑠) =
∏

𝑗∈
ℙ(𝑋𝑗 = 𝑠𝑗 ∣ 𝑋𝐼(𝑗) = 𝑠𝐼(𝑗)). (10)

The portfolio of reinforcement actions that minimizes the expected disutility of the DSO can now be determined by

solving the MILP (11)-(15). Constraints (12) ensure that only one decision is made at each decision node, for example,

at 𝐷𝐺, one can choose the state 𝑠𝑗 = (𝑀𝐶0, 𝑆𝑇1) or 𝑠𝑗 = (𝑀𝐶1, 𝑆𝑇1) but not both. Constraints (13) impose upper

bounds on path probabilities. Constraints (14) enforce that the path probabilities can be positive only if the decisions

along this path are taken. Constraints (15) define the binary decision variables.

min
𝑧

∑

𝑠
𝜋(𝑠) (𝑠) (11)

s.t.
∑

𝑠𝑗∈𝑆𝑗

𝑧(𝑠𝑗) = 1, ∀𝑗 ∈ 𝐷 (12)

0 ≤ 𝜋(𝑠) ≤ 𝑝(𝑠), ∀𝑠 (13)

𝜋(𝑠) ≤ 𝑧(𝑠𝑗), ∀𝑠, 𝑗 ∈ 𝐷 (14)

𝑧(𝑠𝑗) ∈ {0, 1}, ∀𝑗 ∈ 𝐷, 𝑠𝑗 ∈ 𝑆𝑗 (15)
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3.5. Numerical results: complete information

We first present results under the assumption of complete information about the scenario probabilities and the

DSO’s priorities for reliability indices and grids. The grids are taken to be of equal importance, using uniform grid

weights 𝑤 = ( 13 ,
1
3 ,

1
3 ). The scenario probabilities are the estimations of Expert 1 in Table 9. The optimal portfolios are

computed at different investment levels for each of the preferences about the reliability indices in Table 6.

3.5.1. Optimal portfolios

The optimal portfolios for each case and the varying total investment levels are in Figure 3. These portfolios

minimize the aggregate expected disutility for a given investment level and reliability index case. The optimal

portfolios are unequivocal, given that the information about DSO’s priorities is completely specified. For example,

if the investment level is 800, and the DSO is focused on improving the SAIDI reliability index (Case 1), the DSO

should choose the portfolio5 𝑎59247 which consists of both global actions: spare transformer and maintenance crew,

𝐶𝑆+ and 𝑈𝐿++ for Grid 2 and 𝐶𝑆++, 𝑈𝐿+ for Grid 3. On the other hand, if the DSO seeks to improve SAIFI (Case

2), the recommended portfolio is 𝑎15129. In general, the distribution of the points in Figure 3 allows the DSO to make

informed decisions about the investment level in recognition of the corresponding reliability impacts. In particular, this

figure shows how increasing the investment level offers diminishing marginal improvements in reliability because the

most impactful reinforcement actions are implemented first. This is common in reliable systems in which additional

reinforcement actions tend to contribute less to improving reliability than those in unreliable systems.
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Figure 3: Optimal portfolios for different investment levels and priorities for reliability indices (Cases), based on the scenario
probabilities of Expert 1.

5The composition of the portfolios in terms of the global actions and local actions for each grid can be found in [69]
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3.5.2. Probability distribution over aggregate disutilities

Because the reliability of the grids depends on the scenarios, the aggregate disutility realized for the DSO is

uncertain. It is, therefore, instructive to examine the cumulative distribution functions (CDF) to assess the probabilities

with which the realized aggregate disutility will be below any given level. We denote by 𝐹𝑈𝑡𝑜𝑡
the cumulative

distribution function of the aggregate disutility. Thus, the CDF 𝐹𝑈𝑡𝑜𝑡
(𝑈̄ ) = ℙ[𝑈𝑡𝑜𝑡 ≤ 𝑈̄ ] gives the probability of

having a disutility lower than or equal to the disutility level 𝑈̄ .

The CDFs of aggregate disutilities (4) are shown on the left and right sides of Figure 4 for Case 1 (focus on SAIDI)

and Case 2 (focus on SAIFI), respectively. Generally, CDFs associated with higher investment levels are above those

for lower levels because increased investments decrease the probability of higher disutilities. CDFs are more sensitive

to the investment level for the SAIFI reliability index, suggesting that increasing investment will have a more significant

impact on reducing aggregate disutility when measured by this index. On the other hand, if SAIDI is the only index,

the CDFs are less sensitive to investment level, and increments beyond 500 do not reduce the aggregate DSO disutility

in the first ≈ 60% of the scenarios. Still, it reduces it for ≈ 40% of the worst cases.
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Figure 4: Cumulative distribution function of the disutility for Case 1 (SAIDI, left) and Case 2 (SAIFI, right). Probabilities
correspond to the estimate of Expert 1.

3.6. Numerical results: partial information

We analyze partial information by examining non-dominated portfolios for four increasingly informative informa-

tion sets representing the specification of scenario probabilities and the DSO’s priorities for reliability indices and the

grids. The first information set 1 (IS1) contains no preferences over the grids and thus allows for the possibility that
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the focus is on any one of the three grids; the combination of the five experts represents the scenario probabilities

and priorities for the reliability indices, including all combinations of the four cases listed in Table 6. The second

information set 2 (IS2) is the same as IS1 regarding grid weights and scenario probabilities, but priorities for the

reliability indices are narrowed down to Case 4. The third information set 3 (IS3) is the same as IS1, except that

equal weights are assigned to the distribution grids. Note that IS3 is not contained in IS2 because it makes less

restrictive assumptions about the priorities for reliability indices. The fourth information set 4 (IS4) contains complete

information, considering the probabilities of Expert 1, the grids equally important, and the preferences over reliability

indices of Case 4.

3.6.1. Non-dominated portfolios

Table 12 lists the number of non-dominated portfolios for the above information sets and alternative investment

levels. The number of feasible portfolios depends on the investment level, which also affects the number of non-

dominated portfolios. At a very low investment level, only a few reinforcement actions can be afforded; hence,

there are relatively few non-dominated portfolios. When the available investment increases above 700, the number

of non-dominated portfolios becomes smaller. This is because it is possible to implement relatively costly portfolios

of reinforcement actions that outperform other portfolios. Also, because a reinforcement action cannot degrade the

performance of the grids in any scenario, it is always better to implement an action than not to do so. Thus, if feasible,

a portfolio that includes all possible reinforcement actions will perform at least as well as any other one that does not

include all these actions.

Overall, incorporating additional information reduces the number of non-dominated portfolios. The information

set IS1 is the least informative and leads to more non-dominated portfolios at all investment levels. Moreover, any

non-dominated portfolio for the other information sets is also non-dominated for IS1. Incorporating information about

priorities for the distribution grids (IS3) reduces the number of non-dominated portfolios more than incorporating

information about priorities for the reliability indices (IS2). The DSO can use this result to identify which uncertainty is

worth reducing to guide further elicitation toward achieving more conclusive results. For example, if the non-dominated

portfolios are not that sensitive to the preferences regarding reliability indices but change depending on the scenario

probabilities, focusing the effort on refining these probabilities would be recommended. On the other hand, eliciting

priorities between reliability indices would not be necessary.

3.6.2. Core indices for reinforcement actions

The core index values for the global reinforcement actions in Figure 5 help the DSO choose reinforcement actions

based on partial information. For example, if the priorities for the reliability indices are fully specified (IS2), the

maintenance crew should be selected if the investment level is 1000 or higher. Moreover, the core index values also
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Table 12
Number of non-dominated portfolios for different investment levels and information sets.

Investment level IS1 IS2 IS3 IS4

400 264 83 26 1
700 432 140 20 1
1000 114 57 22 1
1300 6 5 2 1
1600 2 2 2 2

help discard some actions. For example, in IS2, the spare transformer has a core index of zero at investment level 400.

Therefore, the spare transformer should be discarded if the DSO cannot increase the investment level beyond this. The

same recommendation applies to information sets IS3 and IS4.
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Figure 5: Core index of the global reinforcement actions for different information sets and investment levels.

The core index values for the local underground lines in Grid 1 are in Figure 6. Using the grid priorities of the

information set IS3 increases the core index of 𝑈𝐿++. If the investment level exceeds 1300, the index becomes one,

so 𝑈𝐿++ is a clear recommendation. On the other hand, 𝑈𝐿+ can be discarded for investment levels below 700. In

some cases, providing more information can improve the relative standing of reinforcement actions with a small core

index. For example, for an investment level of 1000, the action 𝑈𝐿0 has a core index of 0.25 in IS1. However, if the

model parameters are fully specified, as in IS4, this action becomes part of the optimal portfolio. Thus, actions with a

small but positive core index should not be discarded without a more detailed assessment of their contribution.

The core indices for the local reinforcement actions on Grid 3 are in Figure 7. Obtaining more information about

grid priorities (S1 to S3) impacts recommendations concerning communication system updates and underground lines.

Nevertheless, it has no impact on the recommendations regarding installing protective devices. Moreover, installing
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Figure 6: Core index values for local reinforcement actions associated with underground lines on Grid 1 for different
information sets and investment levels.

protective devices on three lines of Grid 3 (𝑃𝑅+) can be discarded because its core index is zero, meaning that this

reinforcement action does not appear in any non-dominated portfolio.
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Figure 7: Core index of the local reinforcement actions on Grid 3 for different information sets and investment levels.

3.7. Decision recommendations

A challenge in analyzing non-dominated portfolios is that many of these can exist. For example, at the investment

level 1000, there are 114 non-dominated portfolios for the information set IS1. Here, examination of core index values

helps identify actions that should or should not be selected. Together, the non-dominated portfolios and core indices
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narrow down the set of alternatives. Overall, the incorporation of partial information serves to focus attention on those

reinforcement actions that are viable in view of such information; but because several non-dominated portfolios may

remain, the question as to what principles should be adopted to make choices among these needs to be addressed.

Decision rules (see, e.g., [71]) can be relied on to guide selections among non-dominated portfolios, especially if

partial information cannot be more precisely specified. The choice of the appropriate rule may need to be derived from

broader concerns in justifying the decision. For example, to embrace the notion of conservatism, one may choose the

minimax rule, which, in the present model, recommends the portfolio for which the maximum expected disutility for

all possible parameters in the feasible information sets is the lowest. This is formulated as

𝑃𝑚𝑎𝑥 = argmin
𝑎∈𝐴

max
(𝑝,𝑤,𝜔)∈𝑆

𝑈𝑡𝑜𝑡. (16)

To illustrate the use of the minimax rule, the disutilities for four of the 114 non-dominated portfolios for information

set IS1 at the investment level of 1000 are in Figure 8. Each point represents the expected disutility for different

parameters (𝑝,𝑤, 𝜔) in IS1. Some choices of the parameters (𝑝,𝑤, 𝜔) are indicated in color to emphasize that none of

these portfolios dominate the other three. Nevertheless, the second portfolio has the minimum maximum disutility, so

according to the minimax rule, it should be selected out of these four.
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Figure 8: Disutilities for four 4 of the 114 non-dominated portfolios for a selection of parameters (𝑝,𝑤, 𝜔) in the information
set IS1. The red line marks the minimum maximum disutility.

3.8. Implementation details and computational feasibility

The optimization model for complete information was implemented using Gurobi 9.5.2 as the solver, Julia

1.7.3 as the programming language, and JuMP 1.17 combined with the DecisionProgramming 1.2 package for the
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MILP formulation. The Algorithms in Appendix A to obtain non-dominated portfolios for partial information were

implemented in Python 3.10.5 for data management using the same Gurobi, Julia, and JuMP versions to run the

optimization model. Because Algorithm 2 can be parallelized, the computational bottleneck is the optimization model.

To assess its computational performance, we sampled 30 random scenario probability sets and solved the MILP model

for different investment levels, considering the three grids equally important and the importance of reliability indices

according to Case 1. Table 13 shows the computation times for a standard laptop with an Intel Core i5-1135G7 processor

(2.4 GHz) and 16 GB of RAM. The computation times are relatively low (under three minutes), recognizing that the

framework is intended for planning purposes, where there is more time for optimization than in real-time operational

contexts.

Table 13
Summary statistics of computational time (in seconds) for different budget levels.

Budget 150 250 400 600 900 1300

Average (s) 3.5 11.8 32.1 91.3 91.7 50.4
Min (s) 3.3 10.8 24.0 76.6 61.0 44.5
Max (s) 4.4 14.8 46.9 124.0 130.5 68.4

The number of feasible reinforcement portfolios tends to grow with more alternative reinforcement actions.

However, the number of such actions is usually limited. This is because (i) DSOs generally adhere to standardized

reinforcement procedures; (ii) the parameters associated with the impact of reinforcement actions on failure rates or

restoration times must be estimated. This can be done using models like those described at the end of Section 2.5.2

or through expert elicitation. The number of reinforcement actions that can be meaningfully considered is limited by

the confidence about the estimated parameters and the availability of models or experts to provide them; (iii) the cost

of the reinforcement actions needs to be determined, which in some cases requires further studies. For example, the

construction cost of underground lines depends on many factors such as the type of soil, the price of the land, the

length of the line, etc. In our case study, we have 78,000 feasible portfolios, which suggests that the framework can

handle sizable yet realistic problems with acceptable computation times. Additionally, the computation of portfolios

for different budgets and the sensitivity analyses of model parameters can be conducted in parallel. The framework

is not limited to the solver or the strategy to solve the influence diagrams. In this regard, promising computational

improvements have been made by converting influence diagrams into rooted junction trees [72]. For example, partial

support for rooted junction trees has already been implemented in DecisionProgramming 2.0 [70].

4. Discussion

Our numerical results illustrate the benefits of systematically evaluating portfolios of reinforcement actions within

a structured framework. As the size of the problem increases (e.g., more hazards, grids, or reinforcing actions),
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there will be computational challenges that call for an appropriate level of granularity in modeling hazards and

conditional reliabilities. Even so, the computation of non-dominated portfolios for relatively streamlined models can

be helpful because this can be done relatively easily, and subsequent sensitivity analyses can be carried out to assess

the recommended portfolios. From this perspective, the framework can be viewed as an approach that admits partial

information in the screening of viable portfolios of reinforcement actions, which can then be subjected to closer

scrutiny.

Because the values of numerical parameters, including scenario probabilities, priority weights, and impact factors,

may be uncertain, it is instructive to conduct sensitivity analyses to explore how the recommendations would change

if the parameters are perturbed from their baseline levels. Such analyses may also help direct efforts toward improving

the accuracy of these parameters. They may also help identify joint ranges of parameter values within which the

recommended portfolios remain optimal or determine threshold levels where one portfolio could be replaced by

another.

An assumption in the development of this framework is that the reinforcement actions remain effective for the same

length of time (i.e., planning period) and that the resources they require are also attributed to such a single period. If this

is not the case, one can still use the one-period model as an approximation by considering (i) how long the actions will

remain effective and (ii) how much of their costs can be meaningfully attributed to a single period [73]. Alternatively,

it would be possible to convert the current single-period model into a multi-period one, which would be much larger.

Such dynamic models would be warranted if the hazards are not static. For example, this would be the case with

variable weather conditions during winter and summer.

The current framework assumes that the reliability of one grid does not affect the reliability of the others. This

assumption can be relaxed to examine interconnected systems in which a disruption in one grid can lead to cascading

effects, such as overloading neighboring grids. Such interdependencies are relevant when analyzing not only power

grids but also other critical infrastructures, such as water supply, transportation, or gas networks, where failures in one

system can propagate to others. From a modeling perspective, the influence diagram presented in Section 2.4.1 can

be extended by introducing additional arcs between the chance nodes that represent the reliability of interconnected

networks. From a data perspective, this extension would also require sufficient coordination and information sharing

among the infrastructure managers in charge of these networks to quantify relevant interdependencies and provide a

stronger basis for improving overall system reliability.

Another extension is to incorporate reinforcement actions that affect scenario probabilities: in this case, the

hazards will no longer be exogenous but, rather, endogenous uncertainties as the reinforcement actions can shape the

information set of corresponding scenario probabilities. Methodologically, the influence diagram in Figure 1 would, in
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this case, need to be expanded by another layer containing the initial and revised hazards separately. Such an extension

will lead to a substantially larger model, which could be built along the lines considered by [74].

5. Conclusion

The proposed framework helps DSOs make well-founded selections among reinforcement actions to build

portfolios that offer the desired balance between investment levels and improvements in reliability. It delivers robust

decision-making recommendations based on the assessment of individual reinforcement actions and the analysis of

investment portfolios, recognizing that partial (rather than complete) information may be available from sources such

as reliability models, DSO preferences, and expert judgments. One of the benefits of the framework is that it supports

iterative decision processes that offer preliminary results early on to guide the elicitation of further information as a

step toward more conclusive results. Although computational challenges can be encountered, sensitivity analyses and

suggested model extensions can be used to adapt the framework to a broad range of contexts. Expanding its scope to

account for interdependencies between networks and endogenous uncertainties, for example, can further enhance its

relevance to complex, interconnected systems.
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A. Identification of dominance and computation of non-dominated portfolios

Algorithm 1 determines if portfolio 𝑎 dominates portfolio 𝑎′ for the given information set 𝑆. For a formal proof of

the dominance condition, see Theorem 1 in [66]. In Step 1, the extreme points of the information set 𝑆 are identified.

In Step 2, the maximum difference in disutility between the two portfolios across the information set is computed. In

Step 3, the minimum difference in disutility is calculated. In Step 4, the maximum and minimum differences of the

disutilities are compared to determine whether one portfolio dominates the other. The algorithm returns "True" (Step

5) if 𝑎 dominates 𝑎′, and "False" otherwise (Step 7).

Algorithm 2 computes the non-dominated portfolios for a given information set 𝑆. In Step 1, the extreme points

of the information set 𝑆 are identified. In our case study, these points are input parameters of the model such that

the information set 𝑆 consists of these points and their linear combinations. If the information set is defined by linear

inequality constraints on the parameters, the corresponding extreme points can be efficiently computed using linear

programming techniques [see, e.g., 75]
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Algorithm 1 Check if portfolio 𝑎 dominates 𝑎′ in the information set 𝑆
1: 𝑆∗ ← The set of extreme points of the information set 𝑆
2: Δmax ← max

(𝑝,𝑤,𝜔)∈𝑆∗

{

𝔼[𝑈𝑡𝑜𝑡(𝑝,𝑤, 𝜔, ℎ, 𝑎)] − 𝔼[𝑈𝑡𝑜𝑡(𝑝,𝑤, 𝜔, ℎ, 𝑎′)]
}

3: Δmin ← min
(𝑝,𝑤,𝜔)∈𝑆∗

{

𝔼[𝑈𝑡𝑜𝑡(𝑝,𝑤, 𝜔, ℎ, 𝑎)] − 𝔼[𝑈𝑡𝑜𝑡(𝑝,𝑤, 𝜔, ℎ, 𝑎′)]
}

4: if Δmax ≤ 0 and Δmin < 0 then
5: return True
6: else
7: return False
8: end if

In Step 2, the optimal portfolio of reinforcement actions for each extreme point is determined by solving the

MILP optimization model that corresponds to the influence diagram in Figure 1. These portfolios are, by definition,

non-dominated, as they minimize disutility at some extreme point of the information set. In Step 3, the initial set of

non-dominated portfolios is formed from these optimal solutions. Steps 4–10 iterate over all the portfolios that are

feasible in that they satisfy budget and logical constraints. In Step 5, each new candidate portfolio 𝑎 is compared to

the previously computed set of non-dominated portfolios using Algorithm 1. If the new portfolio 𝑎 is non-dominated,

it is added to the set in Step 6. Moreover, the set of non-dominated portfolios is updated, removing all portfolios

dominated by 𝑎 in Step 7. Otherwise, 𝑎 is dominated and, therefore, is discarded in Step 9. Finally, the algorithm

returns all non-dominated portfolios in Step 12.

Algorithm 2 Compute 𝑁 (𝑆)
1: 𝑆∗ ← The set of extreme points of the information set 𝑆
2: ∗(𝑆) ← The set containing the optimal portfolio at each extreme point
3: 𝑁 (𝑆) ← ∗(𝑆) Initialize the set of non-dominated portfolios
4: for 𝑎 ∈ 𝐹 do
5: if Algorithm 1(𝑎′, 𝑎) = False ∀𝑎′ ∈ 𝐴𝐹 then
6: 𝑁 (𝑆) ← 𝑁 (𝑆) ∪ 𝑎
7: 𝑁 (𝑆) ← 𝑁 (𝑆) ⧵

{

𝑎′ ∈ 𝑁 (𝑆) ⧵∗(𝑆) ∣ Algorithm 1(𝑎, 𝑎′) = True
}

8: else
9: Discard portfolio 𝑎

10: end if
11: end for
12: return 𝑁 (𝑆)

Algorithm 2 can be parallelized to improve computational efficiency. First, the optimal portfolios at each extreme

point can be computed independently. Second, the set of feasible portfolios can be partitioned into subsets so that

the corresponding non-dominated portfolios are first determined within each subset, whereafter the final set of all

non-dominated portfolios is computed by carrying out pairwise dominance checks across these subsets.
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