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A B S T R A C T

Frequently, parameters in optimization models are subject to a high level of uncertainty coming from several
sources and, as such, assuming them to be deterministic can lead to solutions that are infeasible in practice.
Robust optimization is a computationally efficient approach that generates solutions that are feasible for re-
alizations of uncertain parameters near the nominal value. This paper develops a data-driven robust optimization
approach for the scheduling of a straight pipeline connecting a single refinery with multiple distribution centers,
considering uncertainty in the injection rate. For that, we apply support vector clustering to learn an uncertainty
set for the robust version of the deterministic model. We compare the performance of our proposed robust model
against one utilizing a standard robust optimization approach and conclude that data-driven robust solutions are
less conservative.

1. Introduction

Around the clock, refined product pipelines ship huge volumes of oil
derivatives over long distances from production to distribution sites,
making transportation planning crucial for the oil supply chain. Pipe-
lines bring multiple benefits to the oil industry because they are the
safest, cleanest, and most economical means of transportation,
conveying roughly 70 % of oil products in the US (Cafaro and Cerdá,
2008a). They also contribute to sustainability as they generate fewer
CO2 emissions than rail and road. Furthermore, refined product pipe-
lines are multiproduct systems, transporting different types of oil de-
rivatives (e.g., gasoline, diesel, home heating oil, and kerosene) in the
same duct, in batches. Unique features of pipelines compared to other
transportation means are that they are always full and there is no
physical separation between adjacent products. The latter is responsible
for volume contamination at the interface that grows with the distance
travelled. Some interfaces are directed to depots that contain low-degree
products (e.g., the interface between premium gasoline and regular
gasoline is directed to regular gasoline depots), whereas contaminated
volumes are discharged into separate tanks and sent back for reproc-
essing (by tanker trucks).

In the pipeline scheduling problem (PSP), the goal is to generate a
detailed plan that meets product demand at the distribution centers

(DCs) at the lowest cost. A detailed scheduling answers the following
questions that have been addressed by Mostafaei et al. (2021a) and
others: When/what/how much to inject into the pipeline? When/-
what/how much to deliver from the pipeline to a specific DC? What
should the inventory profiles at tanks be to avoid overflow or running
out of stock? In the different segments of the pipeline, flow rate limi-
tations must be respected and since restart costs are high, stoppages
should be avoided. To prevent schedules with large interfaces, forbidden
product sequences are often enforced (e.g., gasoline cannot be next to
gasoil).

The PSP can be classified according to the topology, ranging from
straight pipelines with a single input and output node studied by, e.g.,
Dimas et al. (2018), Kirschstein (2018) and Cafaro and Cerdá (2008a) to
tree-like pipelines with multiple input and output nodes, which were
studied by e.g., Castro and Mostafaei (2019) and Mostafaei et al.
(2015a). Another criterion is the flow direction. Most articles assume
unidirectional flow, while Cafaro and Cerdá (2014) and Castro (2017a)
tackled bidirectional pipelines. Most nodes along the pipeline system are
single-purpose, but Castro and Mostafaei (2017b) and Cafaro et al.
(2015) studied dual-purpose intermediate nodes that increase flexibility
by alternating the reception and delivery of material from/into the
pipeline. Time representation is also important. In discrete-time models
by Chen et al. (2017), Herran et al. (2010), Magatão et al. (2004) and
Rejowski and Pinto (2003), the time horizon is divided into time periods

* Corresponding author.
E-mail address: fabricio.oliveira@aalto.fi (F. Oliveira).

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

https://doi.org/10.1016/j.compchemeng.2024.108924
Received 15 August 2024; Received in revised form 5 October 2024; Accepted 10 November 2024

Computers and Chemical Engineering 193 (2025) 108924 

Available online 14 November 2024 
0098-1354/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:fabricio.oliveira@aalto.fi
www.sciencedirect.com/science/journal/00981354
https://www.elsevier.com/locate/compchemeng
https://doi.org/10.1016/j.compchemeng.2024.108924
https://doi.org/10.1016/j.compchemeng.2024.108924
https://doi.org/10.1016/j.compchemeng.2024.108924
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2024.108924&domain=pdf
http://creativecommons.org/licenses/by/4.0/


of equal size and the events (e.g., the start time of a new product in-
jection) coincide with a subset of the interval boundaries. In
continuous-time models developed by Mostafaei et al. (2021a) and
Moradi et al. (2019), the number of events is specified by the user, with
the optimization determining their preferred location. The main draw-
back of discrete-time models is their larger size, whereas their main
advantage is that some model constraints can be handled linearly.

The first PSP formulation was developed by Rejowski and Pinto
(2003), consisting of a discrete-time MILP model suitable for a straight
system with one refinery and multiple terminals. Cafaro and Cerdá
(2004, 2008b) presented a continuous-time model for the same topol-
ogy, which was later extended to systems with multiple refineries and
DCs by Cafaro and Cerdá (2009, 2010), structured as a tree (Cafaro and
Cerdá, 2011), or as a mesh (Cafaro and Cerdá, 2012). Over the last two
decades, researchers such as Castro and Mostafaei (2017b, 2019), Liao
et al. (2019b), Dimas et al. (2018), Ghaffari-Hadigheh and Mostafaei
(2015), Mostafaei et al. (2015a, 2015b, 2016, 2021a, 2021b), Zaghian
and Mostafaei (2016) have extended the scope of PSP by developing a
variety of formulations that can handle real-life constraints in a
computationally efficient manner.

The above articles share the assumption that all data is deterministic,
whereas in real-world applications, parameters are subject to uncer-
tainty. The realization of the uncertainty may render an operational plan
useless, forcing the decision-makers to reschedule operations. For
instance, a drop in the injection flow rate, which has a probability of
occurrence of 17 %, according to Muhlbauer (2004), may lead to major
delays in demand fulfillment. Incorporating flow rate uncertainty in

optimization models will lead to more robust solutions, mitigate the
need for rescheduling efforts and improve service levels.

The two main adopted methodologies to address uncertainty are
stochastic and robust optimization. In stochastic optimization, uncer-
tainty is incorporated by using either a discrete (known as scenario-
based approach) or a continuous probability distribution, despite the
real distribution function being often unknown. Chatterjee and
Chowdhury (2017) showed that for the discrete distribution, the number
of scenarios enormously increases with the number of uncertain pa-
rameters. The disadvantage of using a continuous probability distribu-
tion is that it leads to intractable nonlinear optimization problems. In
robust optimization, uncertain parameters take their values from an
uncertainty set, with each realization corresponding to a different
optimization problem. The aim is then to find a solution that remains
feasible for all possible realizations and optimal for the worst-case value
of the objective function. However, such a solution may be too conser-
vative to implement in practice.

Asl and MirHassani (2019) tackled the uncertainty in pipeline in-
jection flow rate due to pump failure, with a two-stage stochastic pro-
gramming approach. The case study is a straight line composed of a
single refinery and a receiving node and the aim is to schedule it for long
horizon times: from 10 to 30 days. Due to a long scheduling horizon and
the approach chosen to model the uncertainty being based on multiple
scenarios, the problem becomes computationally hard to be dealt with.

While robust optimization is a computationally efficient methodol-
ogy to deal with uncertainty, its application for pipeline scheduling is
rare (Li et al., 2021). Moradi and Mirhassani (2016) applied

Nomenclature

Sets/indices
I Batches
K Pumping runs
J Distribution centers
P Products
A Set indexing the variables of Constraint (32)
B Set indexing support vectors

Parameters
δ|J| Total volume of the pipeline
δj Location of distribution center j on the pipeline
vrmin Minimum allowable volume of a batch injected into the

pipeline during a run
vrmax Maximum allowable volume of a batch injected into the

pipeline during a run
vsminj Minimum allowable flow rate through segment j
vsmaxj Maximum allowable flow rate through segment j
M A sufficiently large constant
vmin

p Minimum injection rate for product p
vmax

p Maximum injection rate for product p
demp,j Demand for product p in depot j
BMp,pʹ Binary parameter indicating whether product p and pʹ can

be injected consecutively
Q Weighting matrix of the generated data
θ A parameter introduced in the robust counterpart model
Mp The mean value for the v1v2…vp− 1vp+1…v|P| component of

the data points
G The mean value for the − v1v2…v|P| component (first

component) of the data points
DI1p Difference between minimum and maximum values for

v1v2…v̂p…v|P| component in data set
DI2 Difference between minimum and maximum values for −

v1v2…v|P| component in data set

Continuous Variables (nonnegative)
MS Makespan
Sk Start time of pumping run k
Lk Duration of pumping run k
Fi,k Right coordinate of batch i at the completion time of run k
Wi,k Volume of batch i at the completion time of run k
VPRi,p,k Volume of product p injected in batch i during run k
VPDi,p,j,k Volume of product p delivered from batch i to depot j

during run k
VRi,k Volume of batch i injected during run k
VDi,j,k Volume of batch i delivered to depot j during run k
IDp,j,k Volume of product p in depot j at time k
LCp,j,k Volume of product p shipped from depot j to local markets

during run k
μa,b,k Variable of data-driven robust model
λa,b,k Variable of data-driven robust model
ηk Variable of data-driven robust model
CV1i,p,k Variable of the Γ-robust model
CV2k Variable of the Γ-robust model
CV3k Variable of the Γ-robust model
CV4i,p Variable of the Γ-robust model
CV5 Variable of the Γ-robust model

Binary variables
Yi,p Binary variable indicating batch i contains product p
Xref

i,k Binary variable indicating batch i is injected into the
pipeline during run k

Xdep
i,j,k Binary variable indicating batch i is delivered to

distribution center j during run k
Xseg

j,k Binary variable indicating pipeline segment j is active
during run k
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Γ-robustness (Bertsimas and Sim, 2004) to schedule a pipeline
comprised of a single input and output node, aiming at finding feasible
solutions for most of the demand scenarios by varying the budget
parameter. Their results show that robustness can be increased up to a
desired level without significantly affecting the complexity of the model.
However, the Γ-robustness approach does not leverage the underlying
statistical information of the historical data as much as possible.
Therefore, in this paper, we aim at developing a data-driven approach to
construct the uncertainty set.

From the machine learning (ML) perspective, building such a data-
driven uncertainty set falls into unsupervised and pattern recognition
problems. ML has itself diverse learning models (e.g., kernel density
estimation (Bishop (2006)) but because the conventional kernels
contain nonlinear terms, major computational challenges arise. For
instance, the radial basis (RBF) and the sigmoid functions may lead to
intractable robust counterpart formulations. To overcome this problem,
Shang et al. (2017) used linear kernel-based Support Vector Clustering
(SVC). Their approach has a few crucial benefits from a practical
standpoint. It: (i) ensures that the uncertainty set is convex; (ii) pre-
serves the linearity of the deterministic problem in the case of linear
programming (LP) problems; and (iii) considers the correlation between
uncertain parameters.

Shang et al. (2017) approach has been adopted by several authors in
their LP or MILP models. Mohseni and Pishvaee (2020) used it to deliver
robust decisions at a lower cost, compared to conventional methods,
when considering the multiperiod optimization of a wastewater
sludge-to-biodiesel supply chain. Qiu et al. (2020) developed a mathe-
matical model for multi-product inventory optimization under demand
uncertainty. They concluded that the proposed data-driven robust
optimization approach offers improved protection against demand un-
certainty compared to box and ellipsoid uncertainty sets.

In this paper, we use a data-driven robust optimization approach to
handle flowrate uncertainty in pipelines. The formation of the uncer-
tainty set is automatically constructed with the linear kernel SVC and is
interpretable against the number of data points it covers. Then, the
formulation of the robust counterpart is automatically done by imple-
menting the algorithm in Shang et al. (2017). Unlike the Γ-robust
method that uses a single predefined shape for every problem and
dataset, our data-driven robust approach uses historical data points to
automatically and efficiently define an uncertainty set. It ensures both
robustness and optimality by tuning a hyperparameter, which adjusts
the uncertainty set size around the mean value. This data-fitting un-
certainty set ensures the worst-case scenario is one of the historical data
points, providing better solutions at all robustness levels.

The article is organized as follows: Section 2 outlines the problem,
followed by the development of a deterministic continuous-time model
in Section 3. Section 4 discusses synthesizing data for uncertain injection
rates and introduces the support vector clustering method for forming a
data-driven uncertainty set. This section also gives the robust counter-
parts of Γ-robust and data-driven optimization approaches for pipeline
scheduling with uncertain injection rates. Section 5 validates the
deterministic model by comparing it with two other continuous time
models from the literature. Then, Section 6 demonstrates the efficiency
of the robust solutions generated by the data-driven approach compared
to those of the Γ-robust approach, before the conclusions in section 7.

2. Problem statement

In the pipeline scheduling problem (PSP), refined oil products p ∈ P
are transported from a single refinery (input node, located at one end of
the pipeline) to multiple distribution centers j ∈ J (output nodes) along
the line, at volumetric coordinates δj. The goal is to meet product de-
mand demp,j as quickly as possible, i.e., to minimize the makespan. The
following assumptions are made:

1) The pipeline is always full. Since we are dealing with incompressible
fluids (liquids), the volume injected by the refinery must be equal to
the total volume delivered to distribution centers.

2) Simultaneous delivery to multiple distribution centers, not neces-
sarily involving the same product, is possible.

3) The flow rate inside the pipeline is subject to given lower vsmin
j and

upper bounds vsmaxj , which may vary between segments. Note that
the number of segments is equal to the number of output nodes and
so the same index is used.

4) The initial inventory level at the refinery, Inp, is known for all
products.

5) Certain product sequences are forbidden (BMp,ṕ = 0).

3. Deterministic scheduling formulation

The deterministic formulation below can be seen as an improvement
of the continuous-time batch-centric formulation of Ghaffari-Hadigheh
and Mostafaei (2015), which models the transportation of products as
the movement of batches i ∈ I. Following recent developments in the
literature (Liao et al., 2019a), we propose an alternative version of the
model that allows for multiple batches to be injected by the refinery
during a pumping run k ∈ K (which represents a time slot) and delivered
to the farthest active output node. The model constraints are briefly
described in the next sections.

3.1. Objective function

The objective function is to minimize the makespan:

min MS (1)

3.2. Timing constraints

The start of pumping run k, Sk, should occur only after completion of
the previous run. In Eq. (2), Lk− 1 represents the duration of run k − 1 and
S0 = 0. Eq. (3) states that the completion time of the last pumping run
cannot exceed the makespan.

Sk ≥ Sk− 1 + Lk− 1 ∀ k ∈ K (2)

S|K| + L|K| ≤ MS (3)

3.3. Batch coordinates

We assume that the movement is from left to right on the diagrams
and that batch i + 1 enters the pipeline after batch i. Let Fi,k be the right
coordinate of batch i andWi,k the batch volume inside the pipeline at the
completion time of run k. Then, the right coordinate of batch i + 1 is
equal to the right coordinate of i minus the volume of i, as stated by Eq.
(4). Another way to compute the right coordinate of i is to add the
volumes of all batches í ≥ i, as can be seen in Eq. (5).

Fi+1,k = Fi,k − Wi,k, ∀ i ∈ I, i < |I|, k ∈ K (4)

Fi,k =
∑

í≥i
Wí ,k, ∀ i ∈ I, k ∈ K (5)

3.4. Relation between batches and products

Batch i is assigned to product p by making binary variable Yi,p = 1
(note that the volumes and batch-product assignments of batches
initially inside the pipeline are known a priori). Eq. (6) declares that
each batch can be of a single product, while Eq. (7) prevents forbidden
sequences at the injection point. If the batch does not hold product p,
then no volume of product p can be injected nor delivered through that
batch, as stated by Eqs. (8)-(9), where M is a sufficiently large volume.
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∑

p∈P
Yi,p = 1, ∀ i ∈ I (6)

Yi,p + Yi+1,ṕ ≤ 1+ BMp,pʹ , ∀ i ∈ I, i < |I|, p, ṕ ∈ P, p ∕= ṕ (7)

∑

k∈K

VPRi,p,k ≤ M.Yi,p, ∀ i ∈ I, p ∈ P (8)

∑

k∈K

∑

j∈J
VPDi,p,j,k ≤ M.Yi,p, ∀ i ∈ I, p ∈ P (9)

Eq. (10) says that the total volume injected in the pipeline from the
refinery storage tanks cannot exceed the initial inventory levels Inp.
Since a batch will hold a single product, the volume leaving the refinery
through batch i during run k can be computed by summing all product
volumes, as seen in Eq. (11). The same can be said for the volume
entering the tanks of a distribution center j, Eq. (12). The volume inside
the dedicated product tanks of a distribution center increases when
receiving material from the pipeline and decreases when shipping the
product to local markets (LCp,j,k), as stated by Eq. (13). Then, the total
shipments must be sufficient to meet demand.
∑

i∈I

∑

k∈K
VPRi,p,k ≤ Inp, ∀ p ∈ P (10)

VRi,k =
∑

p∈P
VPRi,p,k, ∀ i ∈ I, k ∈ K (11)

VDi,j,k =
∑

p∈P
VPDi,p,j,k, ∀i ∈ I, j ∈ J, k ∈ K (12)

IDp,j,k = IDp,j,k− 1 +
∑

i
VPDi,p,j,k − LCp,j,k, ∀p ∈ P, j ∈ J, k ∈ K (13)

∑

k
LCp,j,k ≥ demp,j, ∀p ∈ P, j ∈ J (14)

3.5. Volumetric balances

The global volumetric balance in Eq. (15) tells us that the volume
injected is equal to the sum of the volumes delivered. Eq. (16) states that
the total volume of batches inside the pipeline at the end of every run k is
equal to the pipeline volume δ|J|. The injection of batch i during run k
will increase its size, whereas delivery to a depot will reduce it, as can be
seen in Eq. (17).
∑

i∈I
VRi,k =

∑

i∈I

∑

j∈J
VDi,j,k, ∀ k ∈ K (15)

∑

i∈I
Wi,k = δ|J|, ∀ k ∈ K (16)

Wi,k = Wi,k− 1 + VRi,k −
∑

j∈J
VDi,j,k ∀ i ∈ I, k ∈ K (17)

3.6. Triggering batch injection

Let binary variable Xref
i,k = 1 indicate that batch i is injected in the

pipeline during run k. For this injection to take place, the left coordinate
of i at the start of k (computed as Fi,k− 1 − Wi,k− 1) must be equal to zero, as
stated by Eq. (18). Notice that Xref

i,k = 1 implies Fi,k− 1 − Wi,k− 1 = 0, with
Eq. (19) forcing the injected volume VRi,k to belong to the given interval
[vrmin, vrmax]. In contrast, Xref

i,k = 0 relaxes the constraint, making it
possible for the left coordinate to take any value between 0 and the
pipeline volume δ|J|.

Fi,k− 1 − Wi,k− 1 ≤ δ|J|
(
1 − Xref

i,k

)
, ∀ i ∈ I, k ∈ K (18)

vrminXref
i,k ≤ VRi,k ≤ vrmaxXref

i,k , ∀ i ∈ I, k ∈ K (19)

3.7. Triggering batch delivery

Let binary variable Xdep
i,j,k = 1 indicate that batch i is delivered to

distribution center j during run k. This is possible only if the left coor-
dinate of i at the end of k has not passed (isn’t to the right of) the dis-
tribution center, and the right coordinate of i has reached it, as can be
seen in Eqs. (20)-(21), respectively. Activating the depot will allow for
the delivery of a certain batch volume, Eq. (22).

Fi,k − Wi,k ≤ δj +
(
δ|J| − δj

)(
1 − Xdep

i,j,k

)
, ∀ i ∈ I, j ∈ J, k ∈ K (20)

Fi,k ≥ δjXdep
i,j,k, ∀ i ∈ I, j ∈ J, k ∈ K (21)

vrminXdep
i,j,k ≤ VDi,j,k ≤ vrmaxXdep

i,j,k, ∀ i ∈ I, j ∈ J, k ∈ K (22)

Eqs. (20)-(21) will allow multiple batches to be delivered to a dis-
tribution center during a run. As discussed in Liao et al. (2019a) and
illustrated in Fig. 1, this may result in infeasible solutions unless
nonlinear equations are used or the downstream segment is idle. Eq. (23)
ensures that only the farthest active center is allowed to receive material
from multiple batches during a run.

Fi,k− 1 ≥ δjXdep
i,j,k − δ|J|

(
1 − Xseg

j+1,k

)
, ∀ i ∈ I, j ∈ J, k ∈ K (23)

Eq. (24) limits the volume of batch i that can be delivered to depot j
during run k.

VDi, j,k ≤ VRi,k +
(
δj − Fi+1,k− 1

)
+vrmax

(
1 − Xdep

i,j,k

)
, ∀ i∈ I, j∈ J, k∈ K

(24)

3.8. Logic constraints

If the refinery is injecting batch i, then the first pipeline segment
(connecting the refinery to the first distribution center) must be active.
This logic proposition can be reformulated into the inequality constraint
in Eq. (25). On the other hand, if no batch of i is being injected, then the
first segment will be idle, leading to Eq. (26). Since the only input node is

Fig. 1. Batch centric models like the current one, do not allow an intermediate depot to receive multiple batches during an injection run if the next segment is active.
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the refinery, if segment j + 1 is active, so will segment j, as seen in Eq.
(27). Eq. (28) states that if the distribution center located at the end of
segment j is receiving a batch during run k, then the segment must be
active. Finally, if segment j is active, then at least one batch must be
delivered to a downstream distribution center.

Xseg
1,k ≥ Xref

i,k , ∀ i ∈ I, k ∈ K (25)

Xseg
1,k ≤

∑

i∈ I
Xref

i,k , ∀ k ∈ K (26)

Xseg
j,k ≥ Xseg

j+1,k, ∀ j ∈ J, j > 1, k ∈ K (27)

Xseg
j,k ≥ Xdep

i,j,k, ∀ i ∈ I, j ∈ J, k ∈ K (28)

Xseg
j,k ≤

∑

i∈I

∑

j́≥j
Xdep

i,j́ ,k, ∀ j ∈ J, k ∈ K (29)

3.9. Flow rate limitations

During run k, the volume going through segment j is equal to the total
volume delivered to downstream depots. Considering that run k lasts Lk
hours, the minimum and maximum flow rate limits of operation can be
enforced through Eq. (30).

Lk vsmin
j − M

(
1 − Xseg

j,k

)
≤
∑

i∈ I

∑

j́ ≥ j
VDi, j́ ,k ≤ Lk vsmax

j , ∀ j∈ J, k∈ K (30)

Let us now assume that product p is injected into the pipeline at a
certain flow rate vp. Since there are no constraints related to these var-
iables, it suffices to guarantee that the actual flow rate is within given
lower vmin

p and upper bounds vmax
p . This is ensured by Eq. (31), where the

summation accounts for the possibility of multiple batch injections per
pumping run.
∑

i∈I,p∈P

VPRi,p,k

vmax
p

≤ Lk ≤
∑

i∈I, p∈P

VPRi,p,k

vmin
p

, ∀ k ∈ K (31)

4. Synthetic data set generation

The product flow rates at the injection points are subject to uncer-
tainty due to a number of reasons, including: (i) the electric motors
powering the pumps may fail or need to undergo maintenance opera-
tions; (ii) demand variability and their influence on product inventory
inside storage tanks at the refinery or distribution centers can limit the
amount of the product being injected; (iii) the volumes of the products
inside the pipeline (of different densities) and the number of active
segments also impact the maximum flow rate that can be achieved.

The only set of constraints involving injection rates are (31), which
are crucial to consider during the data set generation. If we enforce that
the generated data set will never fall below the minimum flow rate
(1vp

≤ 1
vmin

p
), to guarantee turbulent flow and low volumes for the interfaces

between consecutive batches, then, when seeking the robust solution,
one does not need to account for the inequality on the right-hand side
(RHS). Two reasons support this observation. The first is that since the
objective is to minimize the makespan, the optimization will naturally
drive the system towards higher pumping rates, as it will be apparent
later, when solving the deterministic examples. So, it is reasonable to
assume that the pumping rate will be close to its mean value, which is
the maximum of the flow rate interval (achieved when all pumps are
working at full capacity). Thus, while the flow rate can fluctuate be-
tween the maximum and minimum allowable levels, our primary
concern is the uncertainty surrounding the maximum flow rate.

The second reason is that the data-driven robust solution derived for
the left-hand side inequality remains feasible for the RHS (Lk =
∑

i∈I, p∈P
VPRi,p,k

vp
≤
∑

i∈I, p∈P
VPRi,p,k

vmin
p

). Nevertheless, the parameters in (31)

are all in the form of 1
vp
, which can pose computational challenges. To

mitigate this, we opt to normalize (31) by multiplying both sides of it by
v1v2…v|p|, leading to:

− v1v2…v|P|Lk +
∑

i∈I
v2v3…v|P|VPRi,p1 ,k +

∑

i∈I
v1v3…v|P|VPRi,p2 ,k + …

+
∑

i∈I
v2v3…v|P|− 1VPRi,p|P| ,k

≤ 0 (32)

For example, if we assume four products and two batches to be
injected into the pipeline, the reformulated constraint introduces nine
uncertain parameters. To generate the synthetic data, we employ two
multivariate Normal distributions to generate a data set that is repre-
sentative of the problem at hand. This is because the pumping rates
present not only correlation but also dependency on external factors, e.
g., product viscosity.

Table 1 presents the mean values used for the uncertain parameters
of the reformulated constraint. Out of the 2000 data points generated,
represented in Fig. 2, we randomly selected 300 as our historical dataset
to form the uncertainty set, reserving the remaining points for testing
purposes. This set is then used to create the robust counterpart, and then
the robust solutions are tested against the remaining 1700 data points, to
determine the number of constraint violations. The vector [v1v2v3v4,
v2v3v4, v1v3v4, v1v2v4, v1v2v3, v2v3v4, v1v3v4, v1v2v4, v1v2v3] indicates
the order in which the values of the nine parameters appear in each data
point. To compute the injection rates for each product, it suffices to
divide the first component by the others. Note, however, that in order to
scale our model, instead of using v1v2v3v4 = 12004 = 20736⋅108 and
v1v2…v̂i…v4 = 12003 = 17.28⋅108, we divided them by 108 and used
the smaller values.

4.1. The Γ-robustness approach

Bertsimas and Sim (2004) proposed a robust optimization approach
aimed at mitigating the over-conservatism prevalent in earlier methods.
Their work addresses the strict conservatism of the primary approach by
Soyster (1973) by strategically selecting a subset of uncertain parame-
ters to take their worst-case values. In essence, if the optimization
problem is formulated as:

max ctx

s.t. Ax ≤ b, x ≥ 0,

and if Ji represents the index of all uncertain parameters for the ith
constraint, and Γi is a real number within the interval [0, |Ji|], the
following optimization problem provides its robust counterpart:

max ctx

s.t.
∑

j
aijxj + max

{Si∪{ti}|Si⊆Ji , |Si |=⌊Γi⌋, ti∈Ji\Si}

{
∑

j∈Si

âijyj +(Γi − ⌊Γi⌋)âiti yt

}

≤ bi, ∀i

− yj ≤ xj ≤ yj, ∀j

l ≤ x ≤ u, y ≥ 0,

Table 1
Mean values of nine uncertain flowrates (data for the examples in Section 6).

First use of multivariate Normal
distribution

Second use of multivariate Normal
distribution

v1v2v3v4 20,732 v1v2v3v4 20,737
v2v3v4 16 v2v3v4 18
v1v3v4 16 v1v3v4 18
v1v2v4 16 v1v2v4 18
v1v2v3 16 v1v2v3 18
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where âij represents the extent to which uncertain parameter j in
constraint i can change and aij is its mean value. Using linear optimi-
zation duality, the above formulation can be transformed into the
following linear mathematical optimization problem:

max ctx

s.t.
∑

j
aijxj + ziΓi +

∑

j∈Ji

pij ≤ bi

zi + pij ≥ âijyj, ∀i, j ∈ Ji

− yj ≤ xj ≤ yj, ∀j

lj ≤ xj ≤ uj ∀j

pij ≥ 0, ∀i, ∀j ∈ Ji

yj ≥ 0, ∀j

zi ≥ 0, ∀i.

Fig. 2. First two components of the 300 data points (a) and v1 and v2 injection rates (b).

Fig. 3. Process of finding the data-driven uncertainty set with support vector clustering. The orange points represent the projection of the support boundary vectors
— the points located on the boundary of the uncertainty set — from the original 9-dimensional space to the Cartesian plane. The convex hull of the outer orange
points then creates the projection of the uncertainty set into this two-dimensional space.
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4.2. Support vector clustering (SVC)

Support Vector Clustering (SVC), introduced by Ben-Hur et al.
(2001), is a machine learning approach designed to identify patterns and
cluster data points into groups with shared similarities and is known for
excelling in solving a wide range of complex clustering or outlier
detection problems. In the SVC algorithm, input data is transformed into
a high-dimensional feature space using an unknown function ϕ, with the
goal of locating the smallest sphere that encompasses the mapped data
(for a visualization, refer to Fig. 3).

Let D =
{
u(i)}N

i=1 be our dataset derived from historical data. SVC
explores the smallest sphere of radius R that covers all mapped data.
This is conceptualized as the following optimization problem:

min
R,P

R2

s.t. ‖ ϕ
(
u(i)) − P‖2 ≤ R2, ∀i,

where ϕ : Rr→ Rt is a non-linear unknown transformation, mapping the
dataset into a higher-dimensional feature space (with r being the num-
ber of uncertain parameters and t being unknown), P is the center of the

sphere to be determined, and ‖ ‖ is the Euclidean norm. To counter the
fact that the model incorporates a hard margin, and to prevent outliers
from being enclosed by the sphere, we introduce the following relaxed
problem:

min
P,R,ξ

R2 +
1
Nε
∑N

i
ξi,

s.t. ‖ ϕ
(
u(i)) − P‖2 ≤ R2 + ξi ∀i = 1,…,N

ξi ≥ 0, ∀i = 1,…,N,

which includes additional slack variables ξi, i = 1,…,N. Note that ε < 1
is a positive hyperparameter that aids in balancing robustness and
optimality by regulating the impact of slack variables, thus controlling
the inclusion of outliers (refer to Fig. 4).

Solving the original problem is impractical due to the unknown
function ϕ. To solve it, we proceed by formulating its Lagrangian dual
and applying the kernel trick to remove the mapping ϕ. The Lagrangian
function is stated as follows:

Fig. 4. In the relaxed problem of SVC, conservativeness decreases by increasing ε. Note that as ε→1, the uncertainty set concentrates around the mean (17.20734).
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L(P,R, ξ,α, β) = R2 +
1
Nε
∑N

i
ξi −

∑N

i
αi
(
R2 + ξi− ‖ ϕ

(
ui) − P‖2

)

−
∑N

i
βiξi, (33)

where αi, βi, i = 1,…,N are the Lagrange multipliers. By using the first-
order optimality conditions, we obtain:

∑N

i
αi = 1, P =

∑N

i
αiϕ
(
u(i)), αi + βi =

1
Nε. (34)

To obtain a tractable formulation to the Lagrange function, we
combine Eqs. (34) into (33) and obtain

L(P,R, ξ,α, β) =
∑

i
αi ‖ Φ

(
ui) −

∑

j
αjΦ
(
uj)
⃒
⃒
⃒
⃒
⃒
|
2
,

with the conditions of
∑

iαi = 1 and 0 ≤ αi ≤
1
Nε for all i. Expanding the

norm ‖ Φ
(
ui) −

∑
jαjΦ

(
uj)||

2 gives:

Now, using the kernel trick, one can replace the inner products by the
kernel K (K will be explicitly introduced later) using the equality

〈
Φ
(
ui),

Φ
(
uj)〉 = K

(
ui, uj), which leads to:

L(P,R, ξ,α, β) =
∑N

i=1
αiK
(
u(i), u(i)) −

∑N

i=1

∑N

j=1
αiαjK

(
u(i), u(j)).

We then solve the following dual problem and then use the com-
plementary slackness to find the radius R (all the computations leading
to radius R are given in the next paragraphs).

max
α

∑N

i=1
αiK
(
u(i), u(i)) −

∑N

i=1

∑N

j=1
αiαjK

(
u(i), u(j))

s.t. 0 ≤ αi ≤
1
Nε, i = 1,…,N,

∑N

i=1
αi = 1.

Suppose the above problem is solved to optimality with a given
kernel function K. The complementary slackness equations:

αi
(
R2+ ξi− ‖ ϕ

(
ui) − P‖2

)
= 0, ∀i,

βiξi = 0, ∀i,

lead to the following results (notice that in the primal problem the
constraints are ‖ ϕ

(
u(i)) − P‖2 ≤ R2 + ξi and ξi ≥ 0 for all i and more-

over, we have αi + βi =
1
Nε for dual variables):

1) αi = 0, βi =
1
Nε if and only if ‖ ϕ

(
u(i) ) − P ‖< R (note that βi > 0 and

so ξi = 0);

2) 0 < αi <
1
Nε and 0 < β < 1

Nε if and only if ‖ ϕ
(
u(i)) − P ‖= R;

3) αi =
1
Nε and βi = 0 if and only if ‖ ϕ

(
u(i)) − P ‖> R.

The second item shows that after solving the dual problem, one can

choose an arbitrary index i for which 0 < αi <
1
Nε and calculate the radius

as follows:

R2=‖ ϕ
(
u(i)) − P‖2 = K

(
u(i), u(i)) −

∑

j
αjK
(
u(i), u(j)), (35)

Now, everything is ready to introduce the uncertainty set but before
going ahead, let us define three different types of data points inD based
on the conditions for αi and βi listed above.

The first group, with αi = 0 and βi = 1
Nε, resides inside the sphere

(‖ ϕ
(
u(i)) − P ‖ < R); the second lies exactly on the sphere (‖ ϕ

(
u(i)) −

P ‖= R) with 0 < αi <
1
Nε; and the third is situated outside of the sphere

(‖ ϕ
(
u(i)) − P ‖> R), for which αi attains its maximum value. The points

with non-zero αi are referred to as support vectors. Among them, those
with 0 < αi <

1
Nε are referred to as boundary support vectors, residing

exactly on the sphere, while those with αi =
1
Nε are labeled as outliers and

lie outside of the sphere. Therefore, we can introduce the indexing set
for the set of support vectors (B) and boundary support vectors (BSV) as
follows:

B = {1 ≤ i ≤ N |αi >0},

BSV =

{

1 ≤ i ≤ N
⃒
⃒
⃒
⃒0< αi <

1
Nε

}

.

Excluding the outliers, we define the set of all data inside and on the
sphere as the uncertainty set (U(H)). In other words, it includes all
points u in the domain of ϕ, such that the distance between ϕ(u) and the
center is at most R (recall Fig. 3), i.e.,

U(H) =
{

u
⃒
⃒ ||Φ(u) − P||2 ≤ R2},

where it simplifies to the following set:

U(H) =

{

u

⃒
⃒
⃒
⃒
⃒

K(u, u) − 2
∑N

i=1
αiK
(
u, u(i))+

∑h

i

∑f

l
αiαjK

(
u(i), u(j)) ≤ R2

}

.

(36)

The set in (36) represents the general form of a data-driven uncer-
tainty set using the kernel function K. However, it is crucial to select a
kernel function that simplifies the definition of set U(H) with linear
bounds. Conventional kernel functions, such as polynomial, sigmoid,
and RBF, introduce complexity to the uncertainty set by adding
nonlinearity, rendering the robust counterpart computationally intrac-
table. Moreover, these functions often overlook correlations among
uncertain parameters. To address these challenges, we opt for the
Weighted Generalized Intersection Kernel (WGIK) introduced by Shang
et al. (2017). Denoted by K, this function is defined as:

K(d, dʹ) =
∑N

k

ok − |Q(d − dʹ)|1, (37)

where ok for 1 ≤ k ≤ N is the kernel parameter satisfying ok >

max
1≤i≤N

QT
k u(i) − min

1≤i≤N
QT

k u(i), Qk is the kth row of the weighting matrix

computed via the estimated covariance matrix and | |1 is the L1. WGIK is
best tailored for construction of uncertainty sets, especially when the

∑

i
αi ‖ Φ

(
ui) −

∑

j
αjΦ
(
uj)
⃒
⃒
⃒
⃒
⃒
|
2
=
∑

i
αi
〈
Φ
(
ui),Φ

(
ui)〉 −

∑

i

∑

j
αiαj
〈
Φ
(
ui),Φ

(
uj)〉.
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original problem is a linear programming problem since: (1) it is
concave and the resulting uncertainty set is a convex polyhedral set; (2)
it incorporates the correlation between uncertain parameters through
weighting matrix Q in the definition of the kernel function; and (3) its
definition is in a way that each parameter has the same impact on the
kernel expression.

By inserting (35) and substituting the formula of K in (36), we can
explicitly write the SVC-based uncertainty set Uε(H) (for ε < 1) as:

Uε(H)=

{

u |
∑

b∈B
αb
⃒
⃒Q
(
u− u(b))⃒⃒

1≤
∑

b∈B
αb
⃒
⃒Q
(
u(iʹ ) − u(b))⃒⃒

1, forsomeiʹ∈BSV

}

.

(38)

We let θ =
∑

b∈Bαb|Q
(
u(í ) − u(b))|1, which is a constant. Introducing

auxiliary variables ai for b ∈ B satisfying:

− ab ≤ Q
(
u − u(b)) ≤ ab and

(
∑

b∈B
αb
(
1T⋅ab

)
)

≤ θ

leads to a linear expression for our uncertainty set. Here, the auxiliary
variables ab (b ∈ B) form a vector whose length is the number of un-
certain parameters, 1T is a vector of ones, and 1T ⋅ab is the inner product
of the vectors. Thus, the uncertainty set can be expressed as:

Uε(H)=

{

u

⃒
⃒
⃒
⃒
⃒

∑

b∈B

αb
(
1T⋅ab

)
≤ θ and − ab ≤Q

(
u − u(b))≤ ab ∀b∈B

}

(39)

4.3. Robust counterparts for pipeline scheduling

If the uncertainty set has been formulated as Uε(H), then, according
to Shang et al. (2017), one can express the robust counterpart of the
uncertain constraint in the form of the following constraints:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

b∈SV(B)

∑

a∈A
(μabk − λabk)Q

(
u(b))

a + ηkθ ≤ 0, ∀ k ∈ K,
∑

b∈B

∑

aʹ∈A

Qaaʹ(λrbk − μaʹbk) + VvCka = 0, ∀a ∈ A, k ∈ K,

λabk + μabk = ηkαb, ∀ b ∈ B, k ∈ K, a ∈ A,
λabk, μabk, ηk ≥ 0, ∀ b ∈ B, k ∈ K, a ∈ A,

VvCk≽0 ∀ k ∈ K,

(40)

where we set VvCk =
(
Lk, VPR1,1,k,VPR2,1,k,…,VPR1,2,k,VPR2,2,k,…,

VPR|I|,|p|,k
)
as the vector of variables from (32) for a fixed k ∈ K.

Moreover, the set A = {1,…, |I ‖ P| + 1} is an indexing set associated
with VvCk (note that |I ‖ P| + 1 is the length of VvCk). Moreover, Q is the
weighting matrix, B is the set of indices for support vectors, αb for all b ∈

B comes from the solution of the dual problem and θ is defined as before.
The Γ-robust approach counterpart for (32) is formed as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G⋅Lk +
∑

i,p

(
Mp VPRi,p,k + CV1i,p,k

)
+ Γ⋅CV2k + CV3k ≤ 0 ∀k ∈ K,

CV2k + CV1i,p,k ≥ DI1p × CV4i,p ∀k ∈ K, i ∈ I, p ∈ P,
CV2k + CV3k ≥ DI2 × CV5 ∀k ∈ K,

− CV4i,p ≤ VPRi,p,k ≤ CV4i,p ∀k ∈ K, i ∈ I, p ∈ P,
− CV5 ≤ Lk ≤ CV5 ∀k ∈ K,

(41)

where Mp is the mean value for the v1v2…vp− 1vp+1…v|P| component of
the data set, G is the mean value for the − v1v2…v|P| component of the
data set, Γ is a real number between 0 and the number of uncertain
parameters, CV1i,p,k, CV2k,CV3k, CV4i,p, CV5 are the variables intro-
duced when the robust counterpart is formed, DI1p is the difference
between the minimum and maximum values of v1v2…v̂p…v|P| and DI2 is
the difference between the minimum andmaximum of values of − v1v2…
v|P| in the data set. Note that all the variables are nonnegative.

In summary, the robust counterparts include Eqs. (1) to (30) of the
deterministic MILP model and either Eq. (40), for the data-driven
approach, or Eq. (41), for the Γ-robust approach.

5. Computational results for deterministic scheduling

In this section, we aim to compare the proposed deterministic model
with the models developed by Ghaffari-Hadigheh and Mostafaei (2015),
denoted as GM, and Liao et al. (2019a), denoted as LCLZ, by solving two
real life examples. The MILP mathematical formulation is implemented
in GAMS 43 and the resulting problems are solved to optimality by
solver CPLEX 22.1, using default options. The hardware consisted of an

Fig. 5. Optimal deterministic schedule for Example 1.

Table 2
Problem data related to pipeline segments.

Segment Volume (m3) Flowrate range (m3/h)

Refinery-D1 40,000 800–1200
D1-D2 25,000 600–1200
D2-D3 25,000 600–1200
D3-D4 60,000 600–1200
D4-D5 13,500 400–800
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Intel Core i7 @ 2.70 GHz Processor, 16 GB of RAM running Windows 11
Pro.

5.1. Example 1

Example 1 corresponds to the first example in Ghaffari-Hadigheh and
Mostafaei (2015) and involves a straight pipeline network with one
input node and five output nodes (D1-D5), as depicted in the first line of
Fig. 5. The refinery injects three products—gasoline (P1), diesel (P2),
LPG (P3)—at a flow rate within the interval [800, 1200] m³/h. Note that
as given in Table 2, the flowrate lower and/or upper bounds decrease
when going through the segments. The objective is to fulfill product
demand as fast as possible (see details in Table 3).

An important feature of the proposed continuous-time model is that
it allows multiple batch injections at the refinery as well as multiple
delivery operations at the distribution centers, during a single time slot.
An example of the latter can be seen in Fig. 5: in the last pumping run,
occurring from time 42.083 to 52.083 h (last line), depot D5 receives

material from two batches (I1 and I3; the first and third batches initially
in the pipeline). Note that simultaneous deliveries to different depots are
also allowed (e.g., to D2 and D4 during [8.333, 20,833] h).

Table 4 reports the statistics of the three models, with ours gener-
ating a significantly smaller problem size, particularly with respect to
the LCLZ model, for about the same computational time. Still, example 1
can be solved almost instantaneously and so a more complex example is
required to validate the proposed formulation.

5.2. Example 2

Example 2 corresponds to the second example of Ghaffari-Hadigheh
and Mostafaei (2015), and is a variant of Example 1, since it features the
same pipeline system but with different initial conditions (please refer to
the first row of Fig. 6), and larger values for product demand at the
depots and inventory at the refinery (Table 3). Note that one more
product is being injected: jet-fuel (P4).

The results in Table 4 show that the smaller problem size is now

Table 3
Problem data related to inventory levels at the refinery and product demand at the depots.

Inventory (m3) Demand (m3)

Example Product/Depot Refinery D1 D2 D3 D4 D5

Example 1 P1 30,000 ​ ​ ​ 24,000 4000
P2 72,000 6000 5000 ​ ​ 13,500
P3 10,000 ​ ​ ​ 10,000 ​

Example 2 P1 ​ ​ 9000 6000 49,000 26,000
P2 135,600 ​ ​ 13,600 15,200 38,300
P3 ​ ​ ​ ​ 13,000 7000
P4 42,500 ​ ​ ​ 1000 ​

Table 4
Computational statistics for deterministic problems.

Example Model Makespan Binary variables Continuous variables Equations CPUs

Example 1 GM 52.083 193 1083 1702 0.046
​ LCLZ 454 1684 1790 0.031
​ This work 141 874 1352 0.032
Example 2 GM 150.083 456 2665 3968 8.51
​ LCLZ 148.417 548 1731 2194 5.77
​ This work 225 1434 2172 2.37

Fig. 6. Optimal schedule generated by our model for Example 2.
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reflected in a much faster computational time, about 41 % of LCLZ and
28 % of GM. Furthermore, due to the novel feature of multiple product
injections/deliveries compared to the GMmodel, the makespan has been
reduced from 150.083 to 148.417, which is the optimal value reported
by Liao et al. (2019a). The corresponding schedule is given in Fig. 6.
Notice that the injection rate is 1200 m3/h for all the runs, whereas in
Fig. 7, showing the best solution reported in Ghaffari-Hadigheh and
Mostafaei (2015), there are two injections below such maximum rate,
most notably the third from last, at 1081.48 m3/h.

6. Comparison between the kernel-based and Γ-robust
approaches

The dataset in Table 1 is used in this section to compare Γ-robust and
data-driven approaches. The aim of the robust optimization approach is
to ensure that the obtained optimal solution remains feasible under any
parameter realization that lies within the uncertainty set. To illustrate
this concept in pipeline scheduling, let us consider a scenario with three
pumping facilities at the input station, each featuring a pumping rate of
400 m3/h. Two possibilities may occur:

(1) All pumping facilities are operational (Fig. 8a). The optimal in-
jection rate is equal to 1176.5 m3/h (20,000 m3 pumped over 17 h)
below the maximum of 1200 m3/h, and the inequality on the LHS of Eq.
(31) holds: 20,0001200 ≤ 20,000

1176.5 = 17.
(2) Suddenly, one of the pumping facilities becomes unavailable,

resulting in a drop of 400 m3/h in the injection rate. If the operator
continues injection operations with the information obtained from
deterministic optimization, the operator faces the inequality
20,000

1176.5− 400 > 17, indicating that Eq. (31) no longer holds, resulting in
infeasibility. Therefore, the flow rate of 776.5 m3/h must be considered
as one of the possible realizations (Fig. 8b).

While robust optimization protects the optimal schedule from un-
certainty, there is the drawback of overconservatism. The Γ-robust
approach constructs an uncertainty set that is symmetric around the
mean value and therefore covers areas far away from the historical data
points (see Fig. 9 on the left). This implies that the robust solution loses
quality (in comparison with the deterministic optimal solution) to gain
robustness. On the other hand, the data-driven approach efficiently
defines an uncertainty set covering the historical data points, and

Fig. 7. Optimal schedule reported by GM model for Example 2, which is a suboptimal solution.

Fig. 8. Comparison between deterministic (a) and robust (b) schedules for a pumping run (k ) lasting 17 h Due to the failure of one pumping facility, only 13,200 of
the 20,000 m3 injected in the deterministic schedule can be processed.
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therefore, the worst-case scenario is one of the data points itself (see
Fig. 9 on the right).

To compare the two robust optimization approaches for scheduling
under uncertainty, we now revisit the first example of Section 5.

6.1. Example 1

Example 1 features 4 products and 1 new batch, and part of the
robust solution for the data-driven approach is shown in Fig. 10. During
the first pumping run, L1= 12.538 h, VPR5,1,1= 3770.64 and VPR6,2,1=

11,053.45 m3 of products P1 and P2 enter the pipeline as batches I5 and

Fig. 9. Comparison between Γ-robust (on the left) and data-driven approach (on the right). For about the same level of data coverage, the lowest injection rate on the
left (20,734/21=987 m3/h) is distant from the data points, whereas the lowest injection rate for the SVC approach is one of the data points (20,737/19.8 = 1047
m3/h).

Fig. 10. Robust solution for Example 1 from data-driven approach when using ε = 0.9 (first pumping run).

Fig. 11. Comparison of the conservativeness level of robust optimization ap-
proaches for Example 1. To determine the number of constraint violations of Eq.
(31) for each robust solution (characterized by a certain value of makespan), we
have used a test set with 1700 data points, where counting is done for each of
the pumping runs.

Fig. 12. Uncertainty sets obtained by Γ-robust (diamond shape) and data-
driven (other polygon) approaches for example 1, featuring the same level of
robustness. The worst cases correspond to injection rates of 20,734/21=987
m3/h and 20,737.5/20.75= 999 m3/h, respectively.
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I6, respectively. No other products enter the pipeline, and so VPR5,p,1 =

0 ∀p ∕= P1 and VPR6,p,1 = 0 ∀p ∕= P2. These values can be replaced in Eq.
(32), leading to (for k = 1):

− v1v2v3v4L1 + v2v3v4VPR5,1,1 + v1v3v4VPR5,2,1 + v1v2v4VPR5,3,1 +

v1v2v3VPR5,4,1 + v2v3v4VPR6,1,1 + v1v3v4VPR6,2,1 + v1v2v4VPR6,3,1 +

v1v2v3VPR6,4,1 ≤ 0, which has 9 uncertain parameters (the terms
multiplying the VPR variables). Note that the number of non-zero var-
iables may decrease in subsequent pumping runs, leading to fewer un-
certain parameters. Specifically, if batch I5 is not injected in later runs,
there will be just 5 uncertain parameters. This is the case of run k = 6,
which only injects batch I6 into the pipeline.

After replacing the set of constraints (for all k) by their robust
counterparts, robust solutions can be generated for both approaches.
Then, different robust solutions can be generated by varying Γ from 0 to
9 (Γ-robustness approach), and ε between 0 and 1 (SVC approach).

If we replace the flowrate values v1,…, v4 of the first test data point,
we can check if the above constraint is violated (i.e., LHS > 0). We can
then do the same for all other test data points to get to the total number
of constraint violations for the first run, which is equal to 612. The total
number over all runs is 2312, which is greater than the number of data
points in the test set (1700). The reason for so many violations is because
optimality dominates robustness for values of ε close to 1 (that is, the
uncertainty set has been reduced considerably).

Fig. 11 compares the two approaches by representing makespan as a
function of the total number of constraint violations, with the best
performer being the one fulfilling product demand in the shortest time.
In the region between 0 and 500 violations (high level of robustness), the
orange curve is below the blue curve, indicating the better performance
of the proposed data-driven approach. Then, as the level of robustness is
decreased to about 2900 violations (low level of robustness, approach-
ing the deterministic solution), a similar performance is observed.

The question may be raised why this graph is suitable for illustrating
the differences. Suppose that U1 and U2 are two uncertainty sets ob-
tained by data driven and Γ-robust approaches, respectively, leading to
the same number of constraint violations for their robust solutions. This

is the case of Fig. 12, where the worst cases correspond to injection
flowrates of 999 and 987 m3/h, respectively. The higher flowrate allows
product demand to be fulfilled faster, leading to a lower makespan.
Thus, U1 is a more efficient uncertainty set.

6.2. Example 3

The number of extra variables added to the robust counterpart of the
data-driven approach is obtained by multiplying the number of support
vectors and the number of pumping runs. Therefore, the more complex
the model (e.g., a longer time horizon with several depots demanding
multiple products), the more difficult it is to solve it. Preliminary results
showed no solution being found after a couple of days of computational
time, and so, to validate the data-driven approach, we consider a simpler
instance than Example 2. In Example 3, the time horizon is 160 h, the
initial condition of the pipeline is in Fig. 6, there is unlimited inventory
of P1 in the refinery and only the first depot has product demand (1.781
× 105 m3 of P1).

The number of pumping runs needed is 6 and only one new batch is
pumped. Fig. 13 compares both approaches regarding their conserva-
tism through this example. This figure shows that for larger examples
(larger demand), the data-driven approach performs better, particularly
in the less conservative region of the graph.

6.3. Computational statistics

Reflecting on the advantages and disadvantages, one must mention
that the SVC data-driven approach generates larger mathematical
problems and has steeper computational resource requirements, as seen
in Table 5. Note that both approaches share the number of binary var-
iables with the deterministic formulation.

7. Conclusions

Firstly, a continuous-timeMILPmodel was developed to optimize the
transportation of refined oil products from a single refinery to multiple
distribution centers using a straight pipeline. The numerical results have
shown that our model generates smaller problem sizes and is compu-
tationally faster than two others from the literature. This is because it
requires fewer pumping runs to represent a schedule since it can handle
multiple batch injections and deliveries to the farthest active depot, per
run.

Secondly, this study delved into the realm of pipeline scheduling
optimization under uncertainty by developing the robust counterpart of
the deterministic formulation. Two distinctive approaches were
explored and compared: the Γ-robust and a data-driven approach using
support vector clustering. Through a couple of examples, it became
evident that the data-driven approach offers a more efficient and less
conservative solution, capturing better the information of historical data
points, and leading to robust solutions that align closely with real-world
conditions, particularly in the case with a longer planning horizon. The
drawback is that it is more demanding computationally, which high-
lights the need for more efficient solution methods. Developing such
computationally efficient methods is, therefore, a direction that merits

Fig. 13. Comparison of the conservativeness level of robust optimization ap-
proaches for Example 3.

Table 5
Computational statistics for robust optimization approaches.

Example Data coverage parameter Makespan (h) Binary variables Continuous variables Equations CPUs

Example 1 Γ = 0.25 54 141 923 1457 2
​ Γ = 0.3 56 2
​ ε = 0.8 54 19,094 10,492 61
​ ε = 0.5 63 12,254 7072 51
Example 3 Γ = 0.25 153 197 1337 2119 2
​ Γ = 0.3 155 2
​ ε = 0.8 155 28,598 15,672 175
​ ε = 0.5 180 18,338 10,542 83
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further research.
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