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Abstract
We propose methods for improving the relaxations obtained by the normalized multipara-
metric disaggregation technique (NMDT). These relaxations constitute a key component for
some methods for solving nonconvex mixed-integer quadratically constrained quadratic pro-
gramming (MIQCQP) problems. It is shown that these relaxations can be more efficiently
formulated by significantly reducing the number of auxiliary variables (in particular, binary
variables) and constraints. Moreover, a novel algorithm for solving MIQCQP problems is
proposed. It can be applied using either its original NMDT or the proposed reformulation.
Computational experiments are performed using both benchmark instances from the liter-
ature and randomly generated instances. The numerical results suggest that the proposed
techniques can improve the quality of the relaxations.
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1 Introduction

In this study, the following general nonconvex (mixed-integer) quadratically constrained
quadratic programming ((MI)QCQP) problems with box constraints are considered.

min xT Q0x + f0(x, y) (1)

s.t.:

xT Qr x + fr (x, y) ≤ 0, ∀r ∈ I1,m (2)

xi ∈ [XL
i , XU

i ], ∀i ∈ I1,n1 (3)

yi ∈ {Y L
i , . . . , YU

i }, ∀i ∈ I1,n2 , (4)

where Ia,b = {a, . . . , b} is the subset of integers between a and b (inclusive), Qr , for all
r ∈ I0,m , is a symmetric matrix, f0 : R

n1 × R
n2 → R is a linear function, and fr :

R
n1 × R

n2 → R, for all r ∈ I1,m , are affine functions. The variable x can assume any value
between its bounds XL and XU , and y can assume any integer value between Y L and YU .
One implicit assumption in formulation (1)–(4) is that all variables that appear in product
terms are continuous, as a product term containing at least one integer variable can be trivially
linearized. If n2 = 0, the problem is reduced to a nonconvex QCQP problem.

(MI)QCQP can naturally be used for modeling various important processes in areas
such as heat integration networks, separation systems, reactor networks, batch processes,
pooling problems, and refinery operation planning problems [2,5,23,32,46]. It is a gen-
eral method with important subclasses including (nonconvex) quadratic programming (QP),
mixed-integer programming (MIP), (nonconvex) quadratically constrained quadratic pro-
gramming (QCQP), and linear programming (LP).

An (MI)QCQP problem is called convex if its continuous relaxation is convex, regardless
of the nonconvexity introduced by the integrality constraints of the decision variables. This
problem is convex if Qr is positive semi-definite for all r ∈ I0,m , and nonconvex otherwise.
In this study, the latter case is considered, i.e., when Qr is not positive semidefinite.

The (MI)QCQP problem with box constraints is known to be NP-hard [35], even without
quadratic constraints. It should be noted that if the box constraints are removed, the problem
is undecidable [22]. A detailed definition and implications of undecidability andNP-hardness
may be found in [18].

It is known that MIQCQP problems are equivalent to QCQP problems, as any integer
variable can be defined as a sum of binary variables, and the constraint y = y2 can be added
to represent the integrality condition y ∈ {0, 1}. Although this transformation is possible, it is
usually undesirable because it generally results in more computationally difficult nonconvex
problems.

As (MI)QCQP problems and their variants are difficult to solve, many alternative solution
methods have been proposed. They can be classified into exact methods, such as spatial
Branch-and-Bound (BnB), and heuristic methods. The former can ensure that a globally
optimal solution will be achieved, whereas the latter can only ensure local optimality of the
solutions. Furthermore, nearly all methods involve relaxation techniques.

A commonly used exact algorithm for solvingMIQCQP problems is BnB and its variants.
If the problem is convex, BnB obtains bounds and eventually globally optimal solutions by
relaxations of the integrality constraints. If the problem is nonconvex, spatial BnB is typically
used, and the nonconvexity that arises from nonlinearity must also be relaxed via convex
relaxations. In spatial BnB, both integer and continuous variables are usually branched by
partitioning the feasible region into hyper-rectangles within the search space. Other forms
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of branching using different types of polyhedra have also been employed [27]. In general,
it is recommended that a domain reduction step be performed to accelerate BnB [19,43]. A
survey on BnB applied to nonconvex problems may be found in [40].

The relaxations for MIQCQP problems can be classified into five categories. The first
category consists of linear relaxations whereby the problem is relaxed to a mixed-integer
programming (MIP) problem without auxiliary integer variables. A classic approach of this
type relies onMcCormick envelopes [31], where bounded auxiliary variables representing the
product of two variables are added to the problem. If the variables that appear in the product
assume their bounds, the auxiliary variable will assume the value of the product; therefore,
the relaxation will then be exact. Al-Khayyal and Falk [1] showed thatMcCormick envelopes
represent the convex and concave envelopes of the function f (x1, x2) = x1x2 defined in a
rectangle, that is we assume, f : [x L1 , xU1 ] × [x L2 , xU2 ] → R. Bao et al. [7] proposed a
tighter relaxation, namely a polyhedral multiterm relaxation obtained by determining the
convex envelope of the sum of the quadratic terms. Sherali and Adams [38] proposed the
reformulation-linearization technique (RLT), which is a systematic approach for generating
valid constraints to a problem using linear equations and inequalities including the bounding
constraints, and thus strengthening its linear relaxation. In particular, McCormick envelopes
can be derived using RLT.

The second category uses convex relaxations. The resulting relaxed problem is still non-
linear, possibly with integer variables, but its continuous relaxation is convex. This can be
achieved by adding convex terms with sufficiently large coefficients [3] or by decomposing
the quadratic matrices into a sum of positive and negative matrices and then linearizing the
second term only. Thismethod is known as the difference of convex functions (DC) approach.
Fampa et al. [16] proposed several approaches for decomposing the quadratic functions as
sums of a convex and a concave function. Another possible strategy is to determine envelopes
for the quadratic terms over regions other than rectangles [27].

The third category uses Lagrangian relaxations and Lagrangian bounds [33,44,45].
Although the relaxed problem is convex, the resulting Lagrangian relaxation subproblem
is usually nonconvex and as difficult to solve as the original problem. To obtain a tighter
relaxation with convex subproblems, augmented Lagrangian relaxation [9,36] can be used,
at the expense of introducing nonlinear terms. Moreover, both traditional Lagrangian relax-
ation and the augmented version usually result in nonsmooth problems.

The fourth category is based on conic programming, which can be considered a gener-
alization of linear programming. The most common approach is semidefinite programming
(SDP) [20,29,30]. Another common approach is second-order conic programming (SOC).
Sherali and Fraticelli [39] proposed a cutting plane generation method using SDP. Anstre-
icher [4] compared SDP and RLT relaxations and proposed an integrated approach for using
SDP to tighten RLT relaxations. Linderoth [27] showed that the relaxation of quadratic
terms over triangular regions of the form {(x1, x2, w)|w = x1x2, x L1 ≤ x1 ≤ xU1 , x L2 ≤
x2 ≤ xU2 , x1 + x2 ≤ c} can be formulated using SOC. More recently, Bomze et al. [11]
and Bomze [10] proposed copositive programming (a subclass of conic programming) for
solving quadratic problems. Although it provides a tighter relaxation, the resulting conic
programming is nonconvex.

The fifth category is based on partitioning the solution space and relaxing each partition
independently. The partitions can be obtained by adding binary variables or using disjunc-
tive programming [6]. The most traditional approach is based on piecewise McCormick
envelopes [12,21,24,47]. A recent alternative method, which also relies on convex envelopes,
is the normalized multiparametric disaggregation technique (NMDT) proposed by Cas-
tro [13]. NMDT and its variations will be reviewed in more detail in Sect. 2.
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A relaxation method of the fifth class was chosen in this study because this class can
generate arbitrarily tight relaxations without using spatial BnB. Moreover, these relaxations
yield problems that can be solved using off-the-shelf MIP solvers, such as CPLEX [14],
GUROBI [34], and XPRESS [17], which are known to be reliable and efficient.

In this study, we provide a formal proof that NMDT can be used for generating arbitrarily
tight relaxations for (MI)QCQP problems. Moreover, we investigated whether NMDT can
be improved using a more efficient reformulation that requires fewer additional binary and
continuous variables and constraints as compared to the formulation in [13]. Furthermore,
we propose an improvement to the traditional algorithm for solving the (MI)QCQP problems
using this relaxation. The new algorithm requires fewer binary variables to be added per
iteration by choosing the variables that have more potential to impact on the quality of the
relaxation via the refinement of the underlying discretization. To assess the effectiveness of
these improvements a comparison is made with the corresponding implementation of the
original algorithm proposed by Castro [13] with that proposed in this paper. We compare
these two implementations using the instances available in the literature and also using a
novel class of randomly generated instances.

The paper is organized as follows. In Sect. 2, a review of NMDT and its variations is
provided. In Sect. 3, it is shown thatNMDTcan be reformulated so that the number of required
additional variables and constraints may be reduced. Furthermore, numerical experiments are
presented in Sect. 4, where the proposed methods are assessed considering both instances in
the literature and randomly generated instances. Finally, in Sect. 5, conclusions are drawn
and future research directions are discussed.

2 Normalizedmultiparametric disaggregation

In this section the mathematical background of NMDT is reviewed, and the related notation
is introduced. Moreover, an initial formulation of NMDT is presented that will be central to
the subject matter of this study.

NMDT appears as a natural progression of relaxations that have recently been used for
solving either (MI)QCQP problems or certain subclasses of these problems such as bilinear
programming problems. The ideas that led to the development of NMDT are reviewed below.

Li and Chang [26] proposed an approximation to the quadratic problem using a binary
expansion of all variables. Based on this idea, Teles et al. [42] proposed the multiparametric
disaggregation technique (MDT) as an approximation to polynomial programming.

Kolodziej et al. [25] proposed a relaxation for QCQP problems based onMDTby perform-
ing a decimal expansion on a subset of the variables and by including additional continuous
variables with arbitrarily tight bounds. The products of binary variables and continuous vari-
ableswere linearized exactly, and the products of two continuous variableswere relaxed using
McCormick envelopes. Additionally, they showed that their formulation can be obtained
using disjunctive programming.

Later, Castro [13] proposed the normalized multiparametric disaggregation technique
(NMDT) and showed that it is advantageous to normalize the variables before performing
the decimal expansion, as the number of partitions for all variables is more controllable.

In the remainder of this section, the formulationofNMDT is presented.Given a (MI)QCQP
problem, let QT = {(i, j) ∈ I 21,n1 | j ≥ i, ∃r ∈ I0,m, |Qr ,i, j | > 0} and DS = { j ∈ I1,n1 |∃i ∈
I1,n1 , (i, j) ∈ QT }. The set QT consists of the indices of variables that appear in at least
one quadratic term, whereas DS corresponds to the set of variables that will be discretized.

123



Journal of Global Optimization (2019) 73:701–722 705

The variables x j for all j ∈ DS are normalized as follows:

x j = (XU
j − XL

j )λ j + XL
j , ∀ j ∈ DS. (5)

λ j ∈ [0, 1] is discretized in partitions of size 10p each, where p corresponds to a precision
factor. The variablesΔλ j are added to allow λ j to attain all values in the interval [0, 1]. Thus,

λ j =
∑

k∈I0,9,l∈Ip,−1

k10l z j,k,l + Δλ j , ∀ j ∈ DS (6)

0 ≤ Δλ j ≤ 10p, ∀ j ∈ DS. (7)

The following relations are obtained by multiplying both sides of (5) and (6) by xi for all
i ∈ I1,n .

xi x j = (XU
j − XL

j )xiλ j + xi X
L
j , ∀i, j ∈ QT (8)

xiλ j =
∑

k∈I0,9,l∈Ip,−1

k10l xi z j,k,l + xiΔλ j , ∀i, j ∈ QT . (9)

Subsequently, the auxiliary variables wi, j , x̂i, j,k,l , vi, j , and Δvi, j are included to represent
the products xi x j , xi z j,k,l , xiλ j , and xiΔλ j , respectively. Using these auxiliary variables,
we obtain

wi, j = (XU
j − XL

j )vi, j + xi X
L
j , ∀i, j ∈ QT (10)

vi, j =
∑

k∈I0,9,l∈Ip,−1

k10l x̂i, j,k,l + Δvi, j , ∀i, j ∈ QT . (11)

Constraints (12) and (13) are known as the McCormick envelopes and provide a relaxation
of the product of two continuous variables. The product of binary and continuous variables
is exactly linearized by constraints (14)–(16).

XL
i Δλ j ≤ Δvi, j ≤ XU

i Δλ j , ∀i, j ∈ QT (12)

10p(xi − XU
i ) + XU

i Δλ j ≤ Δvi, j ≤ 10p(xi − XL
i ) + XL

i Δλ j , ∀i, j ∈ QT (13)
∑

k∈I0,9
z j,k,l = 1, ∀ j ∈ DS, l ∈ Ip,−1 (14)

∑

k∈I0,9
x̂i, j,k,l = xi , ∀i, j ∈ QT (15)

XL
i z j,k,l ≤ x̂i, j,k,l ≤ XU

i z j,k,l , ∀i, j, k, l. (16)

Furthermore, using the variablewi, j , the objective function (1) and the original constraints (2)
are replaced by Eqs. (17) and (18), respectively.

min
∑

i |(i,i)∈QT

Q0,i,iwi,i + 2
∑

(i, j)∈QT | j>i

Q0,i, jwi, j + f0(x, y) (17)

∑

i |(i,i)∈QT

Qr ,i,iwi,i + 2
∑

(i, j)∈QT | j>i

Qr ,i, jwi, j + fr (x, y) ≤ 0, ∀r ∈ I1,m . (18)

We need to define one additional constraint that will serve the purpose of simplifying the
technical results stated later on. Constraint (19) represents an alternative nonlinear definition
of the variable Δv.

Δvi, j = xiΔλ j (19)
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Definition 1 For every p, EQUIVp is defined as the problem of minimizing the objective
function (17), subject to the constraints (5)–(7), (10), (11), (14)–(16), (18), and (19).

Definition 2 For every p, the set FS-EQUIVp is defined as the feasible set of problem
EQUIVp . That is, (x, y, w, z, v, x̂, λ,Δλ,Δv) ∈ FS-EQUIVp if and only if it satisfies
constraints (5)–(7), (10), (11), (14)–(16), (18), and (19).

Lemma 1 For all p ≤ 0, EQUIVp is equivalent to the original problem (1)–(4).

Lemma 1 is trivial, as all additional constraints (and associated variables) are redundant
and the linearizations are exact. ProblemEQUIVp is useful as an intermediate step in proving
that NMDTp is a relaxation of the original (MI)QCQP problem.

Definition 3 For every p, NMDTp is defined as the problem of minimizing the objective
function (17) subject to the constraints (5)–(7), (10)–(16), and (18).

Definition 4 For every p, the set FS-NMDTp is defined as the feasible set of problem
NMDTp . That is, (x, y, w, z, v, x̂, λ,Δλ,Δv) ∈ FS-NMDTp if and only if it satisfies con-
straints (5)–(7), (10)–(16), and (18).

Proposition 1 NMDTp is a relaxation of EQUIVp for every p ≤ 0.

Proof Both problems have the same objective function. Thus, NMTDp will be a relaxation of
EQUIVp if FS-NMDTp ⊇ FS-EQUIVp . The constraints that are used to define both feasible
sets are nearly the same. The only difference is that FS-NMDTp has constraints (12) and (13)
instead of (19). As the former are theMcCormick envelopes of the product that appears in the
latter, it follows that constraints (12) and (13) are implied from constraint (19), whereas the
converse is not true. Therefore, FS-NMDTp ⊇ FS-EQUIVp , and the proposition follows. 	

Proposition 2 NMDTp is a relaxation of the original (MI)QCQP problem for every p ≤ 0.

Proof The result follows directly from Lemma 1 and Proposition 1. 	

Theorem 1 For any pair (p1, p2) with p1 < p2 ≤ 0, NMDTp2 is a relaxation of NMDTp1 .

Proof It should be noted that NMDTp1 has more variables than NMDTp2 . Thus, the feasible
sets FS-NMDTp1 and FS-NMDTp2 cannot be compared directly, as they have different
dimensions. To allow such a comparison, a mapping M : FS-NMDTp1 → FS-NMDTp2 is
constructed so that every element (x, y, w, z, v, x̂, λ,Δλ,Δv) ∈ FS-NMDTp1 evaluated in
the objective function of NMDTp1 is equal to M(x, y, w, z, v, x̂, λ,Δλ,Δv) evaluated in
the objective function of NMDTp2 . Let M be defined as

x
NMDTp2
i = x

NMDTp1
i , ∀i ∈ I1,n1

y
NMDTp2
i = y

NMDTp1
i , ∀i ∈ I1,n2

w
NMDTp2
i = w

NMDTp1
i , ∀i, j ∈ QT

z
NMDTp2
j,k,l = z

NMDTp1
j,k,l , ∀ j ∈ DS, k ∈ I0,9, l ∈ Ip2,0

v
NMDTp2
i, j = v

NMDTp1
i, j , ∀i, j ∈ QT

x̂
NMDTp2
i, j,l = x̂

NMDTp1
i, j,l , ∀i, j ∈ QT , k ∈ I0,9, l ∈ Ip2,0
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λ
NMDTp2
j = λ

NMDTp1
j , ∀ j ∈ DS

Δλ
NMDTp2
j = Δλ

NMDTp1
j +

∑

l∈Ip1,p2−1

k2l z
NMDTp1
j,k,l , ∀ j ∈ DS

Δv
NMDTp2
i, j = Δv

NMDTp1
i, j +

∑

l∈Ip1,p2−1

k2l x̂
NMDTp1
i, j,l , ∀i, j ∈ QT

It is straightforward to verify that the image of this mapping is in the feasibility set FS-
NMDTp2 , completing the proof. 	

Theorem 2 For any pair (p1, p2) with p1 < p2 ≤ 0, NMDTp1 is a tighter (or equal)
relaxation of the original (MI)QCQP problem than NMDTp2 .

Proof ByProposition 2, both problems are relaxations of the original problem.ByTheorem1,
NMDTp2 is a relaxation of NMDTp1 , it follows that NMDTp1 is a tighter relaxation of the
original problem than NMDTp2 . 	


2.1 Algorithm

Algorithm 1 was originally proposed in Castro [13] for solving an (MI)QCQP problem using
NMDT. It is similar to the algorithm in Kolodziej et al. [25].

Algorithm 1 Algorithm to NMDT
Step 0. Choose p = 0 and let UB = +∞ and i teration = 0.
Step 1. i teration = i teration + 1.
Step 2. Solve relaxation NMDTp , obtaining LB and (x R , yR).
Step 3. Solve original problem with a local solver with initial solution (x R , yR) and fix integer variables at
yR . If a new best solution is found, store the incumbent solution (x∗, y∗) and update UB.
Step 4. If one of the stopping criteria (discussed below) is met, stop. Otherwise, set p = p − 1 and return
to Step 1.

The principle of this algorithm is to tighten the relaxation as the iterations progress by
decreasing the parameter p, thus gradually increasing the lower bound (LB). Feasible solu-
tions are obtained using local methods with warm starts and fixing integer variables, which in
turn provides upper bounds (UB).An incumbent solution is the best feasible solution obtained
during the execution of the algorithm. Common stop criteria are the maximum number of
iterations, the maximum time elapsed, and the relative or absolute gap with respect to a
certain threshold.

If the feasible space of the original (MI)QCQP problem is not empty, the algorithm
converges to the optimal value of the (MI)QCQP problem since limp→−∞ Δλ j = 0 and, if
ΔλJ = 0, then wi, j = xi x j . Thus, the relaxed solution is feasible for the original problem
and UB = LB.

Although convergence is only asymptotically guaranteed, it is often observed (as will also
be seen in the computational experiments presented later) that feasible solutions are obtained
within a few iterations of the algorithm. Furthermore, the lower bound in each iteration is at
least as good as the bound in the previous iteration, as stated in the following theorem.

Theorem 3 The sequence of lower bounds generated by Algorithm 1 is monotonic.

Proof As in each iteration, the value of p is decreased, the result follows from Theorem 2. 	
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3 Reformulated normalizedmultiparametric disaggregation

Herein, the main contributions of this study are presented. It is first shown that a binary
expansion is preferable to a decimal expansion in NMDT. Subsequently, a reformulation of
the problem is presented in which the number of variables (both binary and continuous) and
constraints are reduced. Finally, an alternative algorithm is developed.

3.1 Reformulation using binary expansion

The first reformulation consists in changing from 10 to 2 the numerical base that is used for
representing the continuous variables. It should be noted that this idea is not new and has
already been successfully applied to other techniques related to RNMDT [41]. Nevertheless,
Castro [13] used decimal representation for the NMDT. Despite a brief mention in that other
bases may be chosen, to the best of our knowledge [13], base-2 (or binary) expansions have
not been applied in this context. Other key difference between the base-2 expansion used in
Teles et al. [41] and the proposed approach is that, while the former uses base-2 for the MDT
only as a means to reduce the total of auxiliary variables while approximately maintaining
the same precision level, our focus is to use the base-2 formulation to control how the model
grows as the precision level increase between iterations.

The formulation using a binary expansion (i.e., a representation in which each variable is
replaced by a base-2 expansion) instead of the traditional decimal expansion is obtained by
modifying constraints (6), (7), (11), (13), (14), and (15). The new constraints are obtained
by replacing the number 10 by 2 and 9 by 1, respectively, wherever they appear in these
constraints. This procedure results in the new constraints (20)–(25).

λ j =
∑

k∈I0,1,l∈I p,−1

2l kz j,k,l + Δλ j , ∀ j ∈ DS (20)

0 ≤ Δλ j ≤ 2p ,∀ j ∈ DS (21)

vi, j =
∑

k∈I0,1,l∈I p,−1

2l k x̂i, j,k,l + Δvi, j , ∀i, j ∈ QT (22)

2p(xi − XU
i ) + XU

i Δλ j ≤ Δvi, j ≤ 2p(xi − XL
i ) + XL

i Δλ j , ∀i, j ∈ QT (23)
∑

k∈I0,1
z j,k,l = 1, ∀ j ∈ DS, l ∈ Ip,−1 (24)

∑

k∈I0,1
x̂i, j,k,l = xi , ∀i, j ∈ QT (25)

Despite its simplicity, this reformulation allows a significant reduction in the number of
auxiliary binary variables required in the variable expansion for a given precision 10p . The
following propositions allow the comparison of the total number of binary variables required
in the base-10 and the base-2 expansions.

Proposition 3 The number of auxiliary binary variables z for NMDT in base 10 is
10(−p)|DS| for a given value of the parameter p < 0, where |DS| is the cardinality of
the set QT , i.e., the number of quadratic terms in the original (MI)QCQP problem.

123



Journal of Global Optimization (2019) 73:701–722 709

Fig. 1 Discretization using decimal expansion

Fig. 2 Discretization using binary expansion

Proof For every j ∈ DS,
∑

k∈I0,9
∑

l∈Ip,−1
1 binary variables are added to the problem.

Therefore, the number of added auxiliary binary variables z is

|DS|
∑

k∈I0,9

∑

l∈Ip,−1

= |DS| × |I0,9| × |Ip,−1| = 10(−p)|DS|. 	


Proposition 4 The number of auxiliary binary variables z for NMDT in base 2 is 2(−p)|DS|
for a given value p < 0.

Proof For every j ∈ DS,
∑

k∈I0,9
∑

l∈Ip,−1
1 binary variables are added to the problem.

Therefore, the number of added auxiliary binary variables z is

|DS|
∑

k∈I0,9

∑

l∈Ip,−1

= |DS| × |I0,1| × |Ip,−1| = 2(−p)|DS|. 	


Figures 1 and 2 illustrate the discretization ofλusing decimal and binary base, respectively.
Even though for a given p, the binary expansion provides less precision than the decimal
expansion, it also requires fewer binary variables. Alternatively, for a given desired precision,
fewer binary variables are required, as will be further discussed in Sect. 3.4.

3.2 Eliminating redundant variables and constraints

The original formulation of NMDT presents redundancy in both variables and constraints.
Therefore, the first step of the reformulation process is to eliminate these redundant terms.
The variables λ and v can be eliminated by replacing them in every constraint they appear
with the form given by constraints (20) and (22), respectively.

The second step consists of replacing z j,0,l with 1 − z j,1,l for all j ∈ DS, l ∈ Ip,−1.
This renders Eq. (24) redundant. Similarly, variable x̂i, j,0,l is replaced by xi − x̂i, j,0,l , thus
rendering Eq. (25) redundant.

The last two steps do not involve elimination of constraints, but rather rearrangement
of variable labels and indices to accomodate the previous simplifications. First, index k
can be dropped, as it refers to the singleton set ({1}). It should be noted that k = 0 can be
disregarded [see, for example, constraint (20)], as it only adds variableswith null coefficient to
the summation. The last step consists of replacingΔλ andΔv withΔx andΔw, respectively,
as λ and v no longer exist.
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The simplified model (26)–(37) is hereinafter referred to as reformulated normalized
multiparametric disaggregation technique (RNMDT). For every p ≤ 0 it is denoted as
RNMDTp , following the notation used for the previous models.

min
∑

i |(i,i)∈QT

Q0,i,iwi,i + 2
∑

(i, j)∈QT | j>i

Q0,i, jwi, j + f0(x, y) (26)

s.t.:
∑

i |(i,i)∈QT

Qr ,i,iwi,i + 2
∑

(i, j)∈QT | j>i

Qr ,i, jwi, j + fr (x, y) ≤ 0, ∀r ∈ I1,m (27)

x j = (XU
j − XL

j )

⎛

⎝
∑

l∈Ip,−1

2l z j,l + Δx j

⎞

⎠ , ∀ j ∈ DS (28)

wi, j = (XU
j − XL

j )

⎛

⎝
∑

l∈Ip,−1

2l x̂i, j,l + Δwi, j

⎞

⎠ , ∀i ∈ I1,n, j ∈ I1,n |(i, j) ∈ QT

(29)

0 ≤ Δx j ≤ 2p, ∀ j ∈ DS (30)

2p(xi − XU
i ) + XU

i Δx j ≤ Δwi, j ≤ 2p(xi − XL
i ) + XL

i Δx j , ∀i, j |(i, j) ∈ QT
(31)

x Li Δx j ≤ Δwi, j ≤ xUi Δx j , ∀i, j |(i, j) ∈ QT (32)

XL
i z j,l ≤ x̂i, j,l ≤ XU

i z j,l , ∀i, j, l ∈ QT × I0,p (33)

XL
i (1 − z j,l) ≤ xi − x̂i, j,l ≤ XU

i (1 − z j,l), ∀i, j, l ∈ QT × I0,p (34)

xi ∈ [XL
i , XU

i ], ∀i ∈ I1,n1 (35)

yi ∈ {Y L
i , . . . , YU

i }, ∀i ∈ I1,n2 (36)

z j,l ∈ {0, 1}, ∀ j, l ∈ DS × I0,p. (37)

The following technical results concern the reduction in the number of binary variables
necessary for representing the expansions, to a given precision 10p , after performing the
proposed reformulations. The total reduction in the number of binary variables is such that
only one tenth of the original number of binary variables is required when combining the
proposed reformulation and the change of base.

Proposition 5 The number of auxiliary binary variables z for RNMDT is (−p)|DS| for a
given parameter p < 0.

Proof For every j ∈ DS,
∑

l∈Ip,−1
1 binary variables are added to the model. Therefore, the

number of added binary variables z is |DS| × ∑
l∈Ip,−1

1 = |DS| × |Ip,−1| = (−p)|DS|. 	

Theorem 4 For every p ≤ 0, the number of auxiliary binary variables z for RNMDTp is one
tenth of the number of binary variables of the problem NMDTp.

Proof The proof follows from Propositions 3 and 5. 	

Moreover, most of the technical results previously presented concerning the reformulation

and the change of base still hold. They are reproduced for the sake of completeness.

Proposition 6 RNMDTp problem is a relaxation of the original (MI)QCQP problem of every
p ≤ 0.
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Proof The proof is analogous to that of Proposition 2. 	

Theorem 5 For any pair of (p1, p2) with p1 < p2 ≤ 0, RNMDTp2 is a relaxation of
NMDTp1 .

Proof The proof is analogous to that of Theorem 1. 	

Theorem 6 For any pair of (p1, p2) with p1 < p2 ≤ 0, RNMDTp1 is a tighter (or equal)
relaxation of the original (MI)QCQP problem than RNMDTp2 .

Proof The proof is analogous to that of Theorem 2. 	


3.3 Dynamic-precision RNMDT algorithm

One disadvantage of Algorithm 1 is that all discretized variables are expanded using the same
number of partitions (or the same precision in the MDT case), which can result in a rapid
increase in the number of binary variables that are added to the problem. In this section,
an alternative algorithm is proposed for solving the (MI)QCQP problem using RNMDT,
whereby the number of partitions is increased only for the variables that will potentially
improve (i.e., tighten) the relaxation. Initially, the single precision parameter p is replaced
with a parameter vector p j for all j ∈ DS, where each entry represents the number of
partitions that will be used to expand the variable x j for all j ∈ DS. The variables that will
have their precision increased are then chosen dynamically in each iteration.

This procedure is summarized in Algorithm 2. In each iteration, the variables for which
the number of partitions will be increased are chosen by ranking them using the function frank
given in (38). The first term of this function represents the absolute error of the relaxation
for the pure quadratic terms in which a given variable is present. The second term is the error
in the bilinear terms in which the variable appears. The first N1 variables with the largest
function value are selected and their precision is increased, i.e., p j is reduced by one unit.
For every N2 iterations, each p j for all j , is reduced by one unit to ensure convergence (i.e.,
to ensure that for every j ∈ DS, p j → −∞; therefore, wi, j → xi x j ).

frank( j) =
∑

r

|Qr , j (w j, j − x2j )| + 2
∑

((r ,i)|i> j |(i, j)∈QT )

|Qr ,i, j (wi, j − xi x j )| (38)

Algorithm 2 Dynamic-precision RNMDT algorithm
Step 0. For all j ∈ DS, set p j = 0 and let UB = +∞ and i teration = 0.
Step 1. i teration = i teration + 1.
Step 2. Solve relaxation and obtain LB and point (x R , yR).
Step 3. Solve original problem with a local solver with initial solution (x R , yR) and fixing integer variables
at yR . If a new best solution is found, save the incumbent solution (x∗, y∗) and update UB.
Step 4. If some of the stopping criteria is met, stop. Otherwise continue.
if i teration + 1 is not a multiple of N2 then

Step 5. Rank j using frank , and for the first N1 indexes j ranked by frank , set p j = p j − 1. return to
step 1.
else

Step 5. For all j , set p j = p j − 1. return to Step 1.
end if
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Table 1 Precision×number of binary variables

p NMDT—base 10 NMDT—base 2 RNMDT

Precision Binary variables Precision Binary variables Precision Binary variables

0 1.00E+00 0 1.00E+00 0 1.00E+00 0

−1 1.00E−01 10 5.00E−01 2 5.00E−01 1

−2 1.00E−02 20 2.50E−01 4 2.50E−01 2

−3 1.00E−03 30 1.25E−01 6 1.25E−01 3

−4 1.00E−04 40 6.25E−02 8 6.25E−02 4

−5 1.00E−05 50 3.13E−02 10 3.13E−02 5

−6 1.00E−06 60 1.56E−02 12 1.56E−02 6

−7 1.00E−07 70 7.81E−03 14 7.81E−03 7

−8 1.00E−08 80 3.91E−03 16 3.91E−03 8

−9 1.00E−09 90 1.95E−03 18 1.95E−03 9

−10 1.00E−10 100 9.77E−04 20 9.77E−04 10

Theorem 7 The sequence of lower bounds generated by Algorithm 2 is monotonic.

Proof As the parameter p is point-wise decreased in each iteration, monotonicity follows
from Theorem 6. 	


3.4 Discussions

It should be noted that the proposed changes aim at reducing the total number of binary
variables required for obtaining the relaxation at each iteration. In that sense, the change of
base reduces the number of binary variables necessary for expanding the continuous variables,
the elimination of redundant variables and constraints reduces the overall model size. The
proposed algorithm controls the increase in the model size between iterations.

Table 1 shows the precision and the number of additional binary variables for each choice
of the parameter p. The first column represents different choices of p. The remaining columns
are grouped in pairs. The first column for each pair represents the precision for the chosen p,
i.e., the tightness of the bounds of Δλ or Δx depending on whether the model is NMDT or
RDNMT, respectively. The second column represents the number of auxiliary variables z that
are added for each continuous variable that is discretized. There are three pairs of columns,
the first is for NDMT using base 10, the second for NMDT using base 2, and the last for
RNMDT.

It is easily seen that the binary expansion has two major advantages compared to the
decimal expansion; namely, it allows more control over accuracy and generates fewer binary
variables for each chosen accuracy. As an illustrative example, if NMDT in base 10 is chosen,
ten binary variables are necessary for a precision of 10−1, whereas for RNMDT, the same
number of variables results in a precision of 9.77E−04.

Table 2 shows the model size before and after the elimination of redundant variables
and constraints. It is noticeable that the number of additional binary variables (represented
by variable z) is reduced by a factor of 5, owing to the base change, and by half after
the redundancy elimination. Clearly, the remainder of the model size decreases as well.
However, it should be noted that comparing the model sizes for the same parameter p value

123



Journal of Global Optimization (2019) 73:701–722 713

Table 2 Model sizes

NMDT—base 10 NMDT—base 2 RNMDT

x n1 n1 n1
y n2 n2 n2
w |QT | |QT | |QT |
z 10(−p)|DS| 2(−p)|DS| (−p)|DS|
λ |DS| |DS| 0

Δx/Δλ |DS| |DS| |DS|
v |QT | |QT | 0

x̂ 10(−p)|QT | 2(−p)|QT | (−p)|QT |
Δv/Δw |QT | |QT | |QT |
Binary variables 10(−p)|DS| 2(−p)|DS| (−p)|DS|
Integer variables n2 n2 n2
Continuous variables n1 + (10(−p) +

3)|QT | + 2|DS|
n1 + (2(−p) +
3)|QT | + 2|DS|

n1 + ((−p) +
2)|QT | + |DS|

Constraints m + (2 + (−p))DS +
(4 + 11(−p))|QT |

m+(2+(−p))|DS|+
(4 + 3(−p))|QT |

m + (−p)|DS| +
(3 + 2(−p))|QT |

can be misleading, since the same value of p leads to different precisions in the different
formulations. Nevertheless, if one compare the formulations for a given precision level, the
reduction in the number of auxiliary binary variables frombase 10 to theRNMDT formulation
is approximately by a factor of 3, as can be observed in Table 1.

As the Algorithm 2 (dynamic-precision algorithm) may require different number of iter-
ations from Algorithm 1, and each iteration may have different computational cost, their
efficiency is not directly comparable by theoretical analysis. However, the advantage of the
dynamic-precision RNMDT algorithm will become clear in the next section in which com-
putational experiments are presented.

4 Computational experiments

In this section, the results obtained using the proposed relaxation and algorithm are presented.
The QCQP problem instances were obtained from the literature and we also consider some
randomly generatedMIQCQP problem instances. All instanceswere solved by fourmethods:
(1) Algorithm 1 andNMDT in base 10, (2) Algorithm 1 andNMDT in base 2, (3) Algorithm 1
and RNMDT, and (4) Algorithm 2 and RNMDT.

The algorithms were implemented in GAMS on an Intel i7-3612QM with 8GB. The
LP/MIP solver was CPLEX 12.6, and the local nonlinear solver was CONOPT 3.17. For the
dynamic-precision RNMDT algorithm, N1 and N2 were set to 3 and 10, respectively. These
values were selected based on early experiments that will be discussed next. A time limit
of 1000s and an absolute gap |UB − LB| (optimality tolerance) of 0.001 were set as stop
criteria.

4.1 Literature instances

These instances were originally presented in [7]. They were provided by the Optimization
Firm, which is responsible for the development of the BARON solver [37].
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Table 3 Instances sizes

Variables Constraints Density (%) Number of instances

Small 8–10 8–40 25 18

10–20 10–40 50 18

10–20 10–40 100 18

Medium 28–40 28–80 25 18

30–40 30–80 50 18

30–40 30–80 100 18

Large 48 48–96 25 9

50 50–100 50 9

50 50–100 100 9

Fig. 3 Setting parameter N1 and N2 (logarithm)

All instances are QCQP minimization problems. All variables are continuous except for
the auxiliary z variables in the relaxation, which are discrete.

There are 135 instances, and all were nonconvex. The number of variables ranged from 10
to 50, and the number of constraints from 10 to 100. The density of the quadratic matrices Q
was 25%, 50%, or 100%. The linear part was 100% dense for all problems. The coefficients
from both the quadratic and the linear terms were chosen to be randomly generated numbers
chosen uniformly between 0 and 1. Table 3 classifies instances according to problem size
and density.

4.1.1 Parameterizing the dynamic-precision algorithm

Algorithm 2 requires the parameters N1 and N2 to be set beforehand. To select these values, a
representative instance was chosen from the group of large instances and solved with a time
limit of 48h using Algorithm 1 (classic algorithm) and Algorithm 2 (Dynamic-precision
algorithm) setting the parameter pair (N1, N2) to (1, 20), (3, 10), (5, 10), and (10, 5). The
results are shown in Fig. 3 using log-transformation on the time axis. In this figure, each dot
represents an iteration and each line a different setting.

As can be seen in Fig. 3, Algorithm 2 was more efficient than Algorithm 1, as the latter
required considerably more time to complete iteration 2, primarily owing to the number
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Table 4 Solved instances

Size Density (%) Total
instances

NMDT +
base 10

NMDT +
base 2

RNMDT +
Algorithm 1

RNMDT +
Algorithm 2

Small 25 18 18 18 18 18

50 18 18 18 18 18

100 18 9 16 16 16

Total 54 45 52 52 52

Medium 25 18 18 18 18 18

50 18 9 9 9 10

100 18 – – – –

Total 54 27 27 27 28

Large 25 9 1 5 5 6

50 9 – – – –

100 9 – – – –

Total 27 1 5 5 6

Total 135 66 84 84 86

of binary variables added in the relaxation. If a significantly small number of continuous
variables have their discretization refined per iteration, then several consecutive iterations
with little or no improvement may be observed. For example, this can be seen in the setting
(1, 20). In contrast, if a considerably large number of variables are expanded the algorithm
requires a larger amount of time to complete the first iterations, as can be seen, for example,
in the setting (10, 5). Figure 3 shows that the two intermediate settings are nearly equivalent;
however, the setting (3, 10) was chosen as a conservative option in terms of problem growth
(as it expands fewer variables per iteration). This experiment showed that, in this case, the
performance of the dynamic-precision algorithm for the given parameters was, to a certain
degree, robust. A similar behavior was also observed in preliminary experiments with other
instances.

4.1.2 Numerical results

Given the choice of parameters (N1, N2) = (3, 10) for the dynamic-precision algorithm,
all four methods were used for solving the 135 instances. In these experiments, the same
optimality tolerance of 0.001 was used; however, the time limit was reduced to 1000s. One
can concluded from the numerical results, the three proposed improvements surpassed, in
terms of performance, the relaxation and the algorithm in Castro [13]. The instances solved
are summarized in Table 4.

NMDT using base 2 and RNMDT solved 18 additional instances when compared with
NMDT using base 10. In particular, they solved seven additional small instances with 100%
density. RNMDTwith the dynamic-precision algorithm solved two additional instances com-
pared with RNMDT combined with the classic algorithm, namely, one large instance with
25% density and one medium instance with 50% density. To compare the performance of the
methods in the instances for which the optimality gap was not closed, Table 5 presents the
average relative gaps after termination of the algorithm due to the time limit criterion.

The proposed improvements over the NMDT formulation and the algorithm presented in
Castro [13] were both successful in terms of the number of instances solved and also the

123



716 Journal of Global Optimization (2019) 73:701–722

Table 5 Relative gaps

Size Density (%) NMDT + base
10 (%)

NMDT + base
2 (%)

RNMDT +
Algorithm 1 (%)

RNMDT +
Algorithm 2 (%)

Small 25 0.0 0.0 0.0 0.0

50 0.0 0.0 0.0 0.0

100 14.5 0.0 0.0 0.0

Total 4.8 0.0 0.0 0.0

Medium 25 1.9 0.0 0.0 0.0

50 30.3 3.4 3.5 3.7

100 112.0 65.8 65.7 53.3

Total 48.1 23.1 23.1 19.0

Large 25 23.8 2.0 2.2 2.4

50 98.0 56.4 53.5 49.4

100 185.8 155.2 152.2 115.6

Total 102.5 71.2 69.3 55.8

Total 41.7 23.5 23.1 18.8

quality of the bounds obtained for the instances that could not be solved to optimality. The
single most significant improvement was due to the change in the base of the expansion
from 10 to 2 which reducing the average relative gap by nearly half. Furthermore, additional
gains were obtained, albeit to a lesser degree, using the reformulation and Algorithm 2. The
reformulation and proposed algorithm were significantly more successful for the larger and
denser instances, as these instances had many quadratic terms and thus, many variables are
needed to be expanded.

4.2 Generated instances

SixMIQCQP instanceswith 100%densitywere generated to test the proposed reformulations
and algorithms in themixed-integer case. These instances are available from the authors upon
request. AsMIQCQPproblems are typicallymore computationally demanding, the time limit
was increased to 7200s.

Table 6 shows the model sizes for the six instances. The average relative gap for NMDT
in base 10, NMDT in base 2, RNMDT, and RNMDT with the dynamic-precision algorithm
(Algorithm 2) is 163.4%, 121.7%, 124.7%, and 111.3%, respectively. It is clear that Algo-
rithm 2 exhibited the best performance for these instances as well. Moreover, the three meth-
ods outperform the formulation and the algorithm in [13], as the lower boundwas improved in
all cases.Notice that RNMDTpresented similar performance thanNMDT (in fact, the relative
average gap for NMDT is 3% smaller in Table 7) before the introduction of Algorithm 2.

4.3 Comparison with open-source solver

In the experiments thatwe presented so far,we compared our improvementswith the approach
proposed in Castro [13]. Next, we present results obtained from comparing the RNMDTwith
Algorithm 2, the best performing of the four configurations tested, with Couenne [8], a state-
of-art open-source global solver for MINLP (MIQCQP inclusive) made available by the
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Table 6 Mixed-integer instances

Instance Continuous variables Integer variables Constraints Density (%)

1 20 10 20 100

2 30 10 30 100

3 30 30 30 100

4 30 30 60 100

5 50 30 100 100

6 100 100 100 100

Table 7 Relative gaps for generated instances

Instance NMDT + base
10 (%)

NMDT + base
2 (%)

RNDMT +
Algorithm
1 (%)

RNDMT +
Algorithm
2 (%)

1 15.9 0.1 0.1 0.1

2 114.7 51.1 47.2 54.1

3 58.2 20.1 18.6 18.4

4 89.0 50.3 50.8 48.4

5 340.9 258.8 257.5 222.5

6 361.6 349.8 373.4 324.4

Total 163.4 121.7 124.6 111.3

COIN-OR [28] initiative. Couenne relies on convex over and under envelopes and spatial
BnB.

Table 8 details the size of generated instances. Note that, as is the case for the previously
subsections, these are fully dense instances, e.g., an instance with 50 constraints and 50
variables has (50×49/2+50)×(50+1) = 65,025 bilinear terms (that is, nonzero entries in
the Hessian matrices). We opted for this setting so that we could asses the performance of the
algorithm under the most challenging instances possible using a similar number of variables
and constraints of those instances available in the literature. Nevertheless, we highlight that
practical problems of that nature are typically much sparser, meaning that larger instances
could potentially be solved, if those instances were available. Considering the computational
platform used, we were not able to solve instances larger than instance 8 in Table 8 due to
memory shortage caused by the size of the dense Hessian matrix.

Table 9 shows the results in terms of relative gaps for both RNMDTwith Algorithm 2 and
for Couenne. All experiments were terminated due to the time limit of 3600s. In Sect. 4.4
we present the performance profiles for these results.

4.4 Performance profiles

To provide a structured comparison between the configurations being compared, performance
profiles based on Dolan and Moré [15] are presented. Let ts,i p be the time taken by a given
solver or algorithm s to solve the instance problem i p. Let rs,i p be defined as follows rs,i p =
ts,i p/min{ts,i p : s ∈ S}where S is the set of all solvers and algorithm that are being compared
in the experiment. Let the time performance profile ρt (τ ) be defined as ρt (τ ) = |{i p ∈ I P :
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Table 8 Instances size—comparison with open-source solver

Instance Continuous variable Constraints Integer variables

1 50 50 0

2 50 50 10

3 50 50 50

4 60 60 50

5 60 60 60

6 70 70 50

7 100 100 0

8 100 100 10

Table 9 Results—relative
gap—comparison with
open-source solver

Instance Couenne (%) RNMDT + Algorithm 3 (%)

1 315 262

2 294 234

3 229 167

4 305 278

5 267 211

6 302 265

7 530 464

8 554 465

rs,i p ≤ τ }|/|S|, where I P is the set of all instance problems of the experiment and |x | denotes
the cardinality of x . Similarly, let gs,i p be the relative gap achieved by the solver or algorithm
s for the instance problem i p. Let the relative gap performance profile ρg(τ ) be defined as
ρg(τ ) = |{i p ∈ I P : gs,i p ≤ τ }|/|S|. Figures 4 and 5 presents the time and gap performance
profile, respectively, for the computational experiments performed in Sects. 4.1 and 4.2
combined,while Fig. 6 presentes the gap profile for the instances used in Sect. 4.3.Notice that,
in Figs. 4 and 5, the x-axes are plotted in logarithmic scale,while in Fig. 6 it is used linear scale.

TheNMDTwith basis 2 and the RNMDTwithAlgorithm 1 presented similar performance
profiles, and both were faster and achieved better bounds then NMDT with basis 10. The
RNMDTwithAlgorithm2was slower thenwithAlgorithm1, since it requiresmore iterations
for the instances that both could solve, which explains the behavior depicted on the beginning
(left-hand side) of the time performance profile. However, the gap performance profile shows
its superior performance in terms of reaching smaller optimality gaps.

5 Conclusions

In this paper, three key improvements to the NMDTwere proposed. Namely, the replacement
of decimal expansion with binary expansion, the reduction of model size, thus eliminating
redundant variables and constraints in the formulation, and a new algorithm for solving
(MI)QCQP problems using this relaxation that allows the control of the number of binary
variables added per iteration.
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Fig. 4 Time performance profile—Sects. 4.1 and 4.2

Fig. 5 Relative gap performance profile—Sects. 4.1 and 4.2

Instances from the literature and also a set of randomly generated instances were used
to assess the performance of the reformulations and the new algorithm. The results showed
that the reformulation is easier to solve than the formulation available in the literature, thus
providing better bounds at the same computational cost and achieving global optimality for
more instances. The proposed algorithm appears to be particularly useful in the presence
of many quadratic terms, as in the case of high-density problems. Despite having more
parameters to configure, preliminary experiments suggest that its performance is robust for
different parameter settings.

The proposed method (RNMDT +Algorithm 2) also showed good results when compared
to the state-of-art (open-source) global solver Couenne. Future work include to incorporate
cuts and other primal heuristics in ourmethod to increase performance (such as those available
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Fig. 6 Relative gap performance profile—Sect. 4.3

in global solvers such as Coenne), and to compare with other global solvers using instances
derived from real-world problems.
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License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
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