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Green Vehicle Routing Problem (G-VRP)

Defined on a complete graph G = (N ∪ F ,A) where N is a set of n
customers plus a depot 0, and F is a set of s refueling stations
◦ An unlimited number of vehicles with fuel level Q are available at 0

◦ Each vehicle can be assigned a trip (called route) that visits a subset of
the customers and returns back to 0

◦ Traversing an arc (i , j) ∈ A (i.e., traveling from i to j) consumes a fuel
amount cij (cost of (i , j)) and a travel time tij = κcij (κ is a constant)

◦ A vehicle can visit a station during its route to restore its fuel level back
to Q. Refueling consumes a refueling time δ

Constraints:
◦ The fuel level must remain positive during each trip (fuel constraints)

◦ Each customer must be visited by exactly one route. A customer visit
consumes a service time τ

◦ The duration of a route cannot exceed a maximum driving time T

Objective A set of routes that minimize the total fuel consumption



Literature Review

The G-VRP was introduced by [Erdog̃an and Miller-Hooks(2012)]
◦ Motivated by growing popularity of low-emission alternative-fuel vehicles

(biodiesel, electricity, hydrogen..): limited fuel autonomy and limited
refueling infrastructure

◦ Refueling stops, and resulting delays need to be modeled explicitly

Applications to electric vehicles: Routing of vehicles with replaceable
batteries (battery swap systems)

Heuristic Algorithms
◦ Modified savings [Erdog̃an and Miller-Hooks(2012)], VNS/TS

[Schneider et al.(2014a), Schneider et al.(2014b)], modified MSH
[Montoya et al.(2014)], local search and SA [Felipe et al.(2014)]

Exact Algorithms
◦ There are no exact algorithms for the G-VRP

◦ [Desaulniers et al.(2014)] develop an exact algorithm for a generalization
of G-VRP called Electric VRPTW. They do not consider the G-VRP



Refueling paths

A refueling path is a simple path P = (i , s, ..., k , j) from i ∈ N to j ∈ N
such that s, ..., k are refueling stations and all arcs (u, v) it traverses
have cost cuv ≤ Q

The cost of a refueling path is the sum of the costs of its arcs

The time of a refueling path from i to j is the sum of the travel times of its
arcs, plus the refueling times of its stations, plus the service time τ (if i 6= 0)



Refueling-path multigraph

Some refueling paths are dominated: We can assume they are not
traversed by any vehicle in an optimal solution
◦ Dominance of a refueling path depends on (i) the cost of its first and last

arc, (ii) the total path cost (iii) the number of stations it visits

◦ The non-dominated refueling paths can be efficiently computed a-priori

We model the G-VRP on a multigraph G with an arc (i , j ,p) for each
non-dominated refueling path p, plus the arcs (i , j) ∈ A with cij ≤ Q



G-VRP routes and Set Partitioning formulation

A G-VRP route is a simple circuit in G starting from 0, having duration
less than or equal than T and satisfying the fuel constraints

Define:
◦ R: index set of all G-VRP routes

◦ x`, ∀` ∈ R: 0-1 variables taking value 1 if route R` is in solution

◦ c`: cost of route R`

◦ ai`: 0-1 coefficient equal to 1 if route R` visits i ∈ N

The G-VRP can be modeled as a Set Partitioning problem:

(SP) z(SP) = min
∑
`∈R

c`x`

s.t.
∑
`∈R

ai`x` = 1 i ∈ N \ {0}

x` ∈ {0, 1} ` ∈ R

We call LSP the LP relaxation of SP



Valid Inequalities

We use three types of valid inequalities to tighten LSP

◦ Subset Row inequalities (SR3) [Jepsen et al.(2008)]

◦ Weak Subset Row inequalities (WSR3) [Baldacci et al.(2011)]

◦ k -path cuts [Laporte et al.(1985)]

∑
`∈R

bS`x` ≥ r(S) ∀S ⊆ N \ {0}, |S| > 2

where bS` equals 1 if route R` visits S, and 0 otherwise, and r(S)
is the minimum number of routes needed to visit S



Separation of k -path cuts I

Consider any set S ⊆ N \ {0}. If we can find a vector π ∈ Rn
+ satisfying

(i) πi = 0, ∀i ∈ N \ S,

(ii)
∑

i∈N\{0} ai`πi ≤ 1, ∀` ∈ R

(iii)
∑

i∈N\{0} πi > r(S)− 1

then the k -path cut defined by S can be rewritten as the following rank-1
(w.r.t. LSP) Chàvatal-Gomory cut (rank-1 CG cut)

∑
`∈R


∑

i∈N\{0}

ai`πi

 x` ≥


∑

i∈N\{0}

πi

 (1)

Moreover, we have S = {i ∈ N : πi > 0}, and r(S) =
⌈∑

i∈N\{0} πi

⌉
Observation:
A violated CG cut (1) defined by a π satisfying (i) – (iii) provides a
violated k -path cut defined by the set S = {i ∈ N : πi > 0}



Separation of k -path cuts II

Separation problem: Given a fractional solution x̄, find a violated rank
1 CG cut defined by a π ∈ Rn

+ with
∑

i∈N\{0} πi ≤ 1, ∀` ∈ R

The problem of finding a maximally violated rank-1 CG cut can be modeled as
a MILP and solved by a MILP solver [Fischetti, Lodi(2007)]. In our case, it is

(SEP) max z −
∑
`∈R̄

x̄` y`

s.t.
∑

i∈N\{0}

ai`πi ≤ y`, ∀` ∈ R̄

∑
i∈N\{0}

ai`πi ≤ 1, ∀` ∈ R

ε− 1 ≤
∑

i∈N\{0}

πi − z ≤ 0

y` ∈ {0, 1}, ∀` ∈ R̄

πi ≥ 0, ∀i ∈ N \ {0} and z ∈ Z+

where R̄ is the index set of routes R` with x̄` > 0



Exact solution algorithm I

2-phase method based on the schema proposed by [Baldacci et al.
2008, 2011] for the Capacitated VRP and VRP with Time Windows

Phase I:

◦ Compute a lower bound z(LB) as the cost of an optimal dual solution of
LSP plus SR3, WSR3 and k -path cuts (called LSP+)

◦ Compute an upper bound z(UB) by running an ALNS heuristic which
uses the multigraph G

Phase II:

◦ Enumerate all routes R∗ having reduced cost ≤ z(UB)− z(LB) with
respect to the dual solution obtained in Phase I

◦ R∗ is computed by dynamic programming. It is guaranteed to contain an
optimal set of routes

◦ An optimal solution is obtained by solving SP with R replaced by R∗



Exact solution algorithm II

z(LB) in Phase I is computed by cut-and-column generation methods

Pricing problem: Find a least cost G-VRP route:

◦ It is an elementary shortest path problem with resource constraints in
the multigraph G. Solved by a forward dynamic programming algorithm

◦ Bounding functions based on the ng-path relaxation
[Baldacci et al.(2011)] are used to fathom sub-optimal states

◦ The same algorithm is used when solving the separation problem for
k -path cuts to detect violated constraints

∑
i∈N\{0} ai`πi ≤ 1, ∀` ∈ R



Computational Experiments

[Erdog̃an and Miller-Hooks(2012)] proposed two sets of instances
with 20 and 109–500 customers, respectively
◦ Based on data from an U.S. medical textile supply company in Virginia

◦ Max. driving time of T = 11 hours and max. travel distance without
refuel Q = 300 miles. Vehicles travel at a constant speed of 40 miles/h.

◦ Customers service time is τ = 30 min., refueling time is δ = 15 min.

◦ Each vehicle incurs an initial refueling time at the depot before starting
its route (i.e., in practice T = T − δ)

We have considered all Erdogan, Miller-Hooks instances with up to
109 customers, and created an additional set of problems with ∼ 50,
75 and 100 customers by extracting customers from the larger ones

Computer used: Intel Xeon X3450, 2.67 GHz with 12 GB RAM (CPLEX is
used as MILP and LP solver)



Preliminary Computational Results
Instances proposed by [Erdog̃an and Miller-Hooks(2012)]

All instances with 20 customers are solved within a few seconds (Phase I
always terminates with an integer solution after solving LSP+)

Table: Instances of [Erdog̃an and Miller-Hooks(2012)] with 109 customers

Inst. n s Opt %LB0 %LBSR %LB TLB # kP # SR Time

111c 21s 109 21 ∗ 97.59 98.09 99.82 17994 88 509 18714
111c 22s 109 22 ∗ 97.59 98.09 99.92 19920 89 606 20223
111c 24s § 109 24 97.59 98.09 99.70 21912 98 662 22560
111c 26s 109 26 ∗ 97.59 98.09 99.95 16419 81 533 16547
111c 28s 109 28 ∗ 97.58 98.09 99.90 13737 85 423 14261

Average 97.59 98.09 99.86 17996

§: found new best known upper bound

◦ LB0: optimal cost of LSP without valid inequalities, (%LB0: % ratio of LB0)

◦ LBSR : optimal cost of LSP plus WSR3 and SR3 inequalities, (%LBSR : % ratio of LBSR )

◦ LB: optimal cost of LSP plus WSR3, SR3 and k -path cuts, (%LB: % ratio of LB)

◦ TLB : cpu time (sec.) to compute LB

◦ # kP and # SR: total number of k -path cuts and SR3 plus WSR3 inequalities added to LSP

◦ Time: Total cpu time (sec.)



Preliminary Computational Results
New instances

Table: Instances derived by taking the first 75 and 100 customers from
111c 21s and 111c 28s

Inst. n s Opt %LB0 %LBSR %LB TLB # kP # SR Time

75c 21s 75 21 ∗ 97.38 98.04 100.00 4860 41 140 4861
75c 28s 75 28 ∗ 97.38 98.04 100.00 7999 63 140 8000

100c 21s 98 21 ∗ 98.80 99.25 100.00 9850 74 124 9852
100c 28s 98 28 ∗ 98.80 99.25 99.89 9894 17 335 10166

Average 98.09 98.64 99.97 8151

Table: Average results on new instances derived by randomly extracting
customers from the large [Erdog̃an and Miller-Hooks(2012)] instances

# of inst. n s %LB0 %LBSR %LB TLB # kP # SR Time Opt

7 50 21 95.98 97.87 99.84 2464 50 108 2477 7/7
8 75 22 97.24 99.16 99.67 2988 45 179 4384 8/8
8 98 24 97.62 99.11 99.56 7068 27 466 10409 7/8



Optimal solution of instance 111c 28s



Conclusions

◦ We have proposed an exact algorithm for solving the Green
Vehicle Routing Problem which can be viewed as a basic model
for alternative-fuel vehicle routing optimization

◦ We have modeled the problem by using a multigraph which does
not explicitly model the refueling stations and excludes a-priori
sub-optimal refueling paths

◦ We have characterized a subset of the k -path cuts as
Chàvatal-Gomory cuts of rank 1. This permitted to use k -path
cuts within a cut-and-column generation algorithm

◦ We reported computational results on benchmark instances
based on a case study from [Erdog̃an and Miller-Hooks(2012)]

◦ The exact algorithm provides tight lower bounds and optimally
solves instances with up to 109 customers



Optimal solution of the distance-constrained CVRP instance
CMT6

Inst. n s UB∗ Opt %LB0 %LBSR %LB TLB # kP # SR Time

CMT6 50 0 555.43 ∗ 96.83 99.01 100.00 573 9 294 573



Optimal solution of the distance-constrained CVRP instance
CMT7

Inst. n s UB∗ Opt %LB0 %LBSR %LB TLB # kP # SR Time

CMT7 75 0 909.68 ∗ 98.35 99.81 99.85 1272 3 317 1290
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