An exact algorithm for the Green Vehicle Routing Problem

J. Andelmin E. Bartolini

Department of Mathematics and Systems Analysis Aalto University School of Science, Finland

> EURO 2015, Glasgow, UK July 14th 2015

Outline

Problem description

- Existing literature and motivations
- Modeling the G-VRP by using a multigraph
- Set Partitioning formulation and valid Inequalities
- Separation of k-path cuts
- Exact Algorithm
- Preliminary Computational Results Instances by [Erdoğan and Miller-Hooks(2012)] New Instances
- Conclusions
- Bibliography

Green Vehicle Routing Problem (G-VRP)

Defined on a complete graph $G = (N \cup F, A)$ where N is a set of n customers plus a depot 0, and F is a set of s refueling stations

- An unlimited number of vehicles with fuel level Q are available at 0
- Each vehicle can be assigned a trip (called route) that visits a subset of the customers and returns back to 0
- Traversing an arc (i, j) ∈ A (i.e., traveling from i to j) consumes a fuel amount c_{ij} (cost of (i, j)) and a travel time t_{ij} = κc_{ij} (κ is a constant)
- A vehicle can visit a station during its route to restore its fuel level back to *Q*. Refueling consumes a refueling time δ

Constraints:

- The fuel level must remain positive during each trip (fuel constraints)
- $\circ~$ Each customer must be visited by exactly one route. A customer visit consumes a service time τ
- The duration of a route cannot exceed a maximum driving time T

Objective A set of routes that minimize the total fuel consumption

Literature Review

The G-VRP was introduced by [Erdogan and Miller-Hooks(2012)]

- Motivated by growing popularity of low-emission alternative-fuel vehicles (biodiesel, electricity, hydrogen..): limited fuel autonomy and limited refueling infrastructure
- · Refueling stops, and resulting delays need to be modeled explicitly

Applications to electric vehicles: Routing of vehicles with replaceable batteries (battery swap systems)

Heuristic Algorithms

 Modified savings [Erdoğan and Miller-Hooks(2012)], VNS/TS [Schneider et al.(2014a), Schneider et al.(2014b)], modified MSH [Montoya et al.(2014)], local search and SA [Felipe et al.(2014)]

Exact Algorithms

- There are no exact algorithms for the G-VRP
- [Desaulniers et al.(2014)] develop an exact algorithm for a generalization of G-VRP called Electric VRPTW. They do not consider the G-VRP

Refueling paths

A refueling path is a simple path P = (i, s, ..., k, j) from $i \in N$ to $j \in N$ such that s, ..., k are refueling stations and all arcs (u, v) it traverses have cost $c_{uv} \leq Q$

The cost of a refueling path is the sum of the costs of its arcs

The time of a refueling path from *i* to *j* is the sum of the travel times of its arcs, plus the refueling times of its stations, plus the service time τ (if $i \neq 0$)

Refueling-path multigraph

Some refueling paths are dominated: We can assume they are not traversed by any vehicle in an optimal solution

- Dominance of a refueling path depends on (i) the cost of its first and last arc, (ii) the total path cost (iii) the number of stations it visits
- The non-dominated refueling paths can be efficiently computed a-priori

We model the G-VRP on a multigraph \mathcal{G} with an arc (i, j, p) for each non-dominated refueling path p, plus the arcs $(i, j) \in A$ with $c_{ij} \leq Q$

G-VRP routes and Set Partitioning formulation

A G-VRP route is a simple circuit in \mathcal{G} starting from 0, having duration less than or equal than \mathcal{T} and satisfying the fuel constraints

Define:

- 𝔐: index set of all G-VRP routes
- $x_{\ell}, \forall \ell \in \mathscr{R}$: 0-1 variables taking value 1 if route R_{ℓ} is in solution
- c_{ℓ} : cost of route R_{ℓ}
- $a_{i\ell}$: 0-1 coefficient equal to 1 if route R_{ℓ} visits $i \in N$

The G-VRP can be modeled as a Set Partitioning problem:

$$(SP) \quad z(SP) = \min \sum_{\ell \in \mathscr{R}} c_{\ell} x_{\ell}$$
$$s.t. \sum_{\ell \in \mathscr{R}} a_{i\ell} x_{\ell} = 1 \quad i \in N \setminus \{0\}$$
$$x_{\ell} \in \{0, 1\} \qquad \ell \in \mathscr{R}$$

We call LSP the LP relaxation of SP

Valid Inequalities

We use three types of valid inequalities to tighten LSP

- Subset Row inequalities (SR3) [Jepsen et al.(2008)]
- Weak Subset Row inequalities (WSR3) [Baldacci et al.(2011)]
- k-path cuts [Laporte et al.(1985)]

$$\sum_{\ell \in \mathscr{R}} b_{\mathcal{S}\ell} x_\ell \geq r(\mathcal{S}) \quad orall \mathcal{S} \subseteq \mathcal{N} \setminus \{0\}, |\mathcal{S}| > 2$$

where $b_{S\ell}$ equals 1 if route R_{ℓ} visits *S*, and 0 otherwise, and r(S) is the minimum number of routes needed to visit *S*

Separation of k-path cuts I

Consider any set $S \subseteq N \setminus \{0\}$. If we can find a vector $\pi \in \mathbb{R}^n_+$ satisfying

- (*i*) $\pi_i = 0, \forall i \in N \setminus S$,
- (*ii*) $\sum_{i\in N\setminus\{0\}} a_{i\ell}\pi_i \leq 1, \forall \ell \in \mathscr{R}$
- (iii) $\sum_{i\in N\setminus\{0\}}\pi_i > r(S) 1$

then the k-path cut defined by S can be rewritten as the following rank-1 (w.r.t. LSP) Chàvatal-Gomory cut (rank-1 CG cut)

$$\sum_{\ell \in \mathscr{R}} \left[\sum_{i \in N \setminus \{0\}} a_{i\ell} \pi_i \right] x_{\ell} \ge \left[\sum_{i \in N \setminus \{0\}} \pi_i \right]$$
(1)

Moreover, we have $S = \{i \in N : \pi_i > 0\}$, and $r(S) = \left[\sum_{i \in N \setminus \{0\}} \pi_i\right]$

Observation: A violated CG cut (1) defined by a π satisfying (i) – (iii) provides a violated *k*-path cut defined by the set $S = \{i \in N : \pi_i > 0\}$

Separation of *k*-path cuts II

Separation problem: Given a fractional solution $\bar{\mathbf{x}}$, find a violated rank 1 CG cut defined by a $\pi \in \mathbb{R}^n_+$ with $\sum_{i \in N \setminus \{0\}} \pi_i \leq 1$, $\forall \ell \in \mathscr{R}$

The problem of finding a maximally violated rank-1 CG cut can be modeled as a MILP and solved by a MILP solver [Fischetti, Lodi(2007)]. In our case, it is

$$(SEP) \max z - \sum_{\ell \in \bar{\mathscr{R}}} \bar{x}_{\ell} y_{\ell}$$

s.t. $\sum_{i \in N \setminus \{0\}} a_{i\ell} \pi_i \leq y_{\ell}, \forall \ell \in \bar{\mathscr{R}}$
 $\sum_{i \in N \setminus \{0\}} a_{i\ell} \pi_i \leq 1, \forall \ell \in \mathscr{R}$
 $\epsilon - 1 \leq \sum_{i \in N \setminus \{0\}} \pi_i - z \leq 0$
 $y_{\ell} \in \{0, 1\}, \forall \ell \in \bar{\mathscr{R}}$
 $\pi_i \geq 0, \forall i \in N \setminus \{0\} \text{ and } z \in \mathbb{Z}_+$

where $\bar{\mathscr{R}}$ is the index set of routes R_{ℓ} with $\bar{x}_{\ell} > 0$

Exact solution algorithm I

2-phase method based on the schema proposed by [Baldacci et al. 2008, 2011] for the Capacitated VRP and VRP with Time Windows

Phase I:

- Compute a lower bound *z*(LB) as the cost of an optimal dual solution of LSP plus SR3, WSR3 and *k*-path cuts (called LSP₊)
- $\circ\,$ Compute an upper bound z(UB) by running an ALNS heuristic which uses the multigraph \mathcal{G}

Phase II:

- Enumerate all routes \mathscr{R}^* having reduced cost $\leq z(UB) z(LB)$ with respect to the dual solution obtained in Phase I
- Is computed by dynamic programming. It is guaranteed to contain an optimal set of routes
- An optimal solution is obtained by solving SP with \mathscr{R} replaced by \mathscr{R}^*

Exact solution algorithm II

z(LB) in Phase I is computed by cut-and-column generation methods

Pricing problem: Find a least cost G-VRP route:

- It is an elementary shortest path problem with resource constraints in the multigraph *G*. Solved by a forward dynamic programming algorithm
- Bounding functions based on the ng-path relaxation [Baldacci et al.(2011)] are used to fathom sub-optimal states
- The same algorithm is used when solving the separation problem for *k*-path cuts to detect violated constraints $\sum_{i \in N \setminus \{0\}} a_{i\ell} \pi_i \leq 1, \forall \ell \in \mathscr{R}$

Computational Experiments

[Erdogan and Miller-Hooks(2012)] proposed two sets of instances with 20 and 109–500 customers, respectively

- Based on data from an U.S. medical textile supply company in Virginia
- Max. driving time of T = 11 hours and max. travel distance without refuel Q = 300 miles. Vehicles travel at a constant speed of 40 miles/h.
- Customers service time is $\tau = 30$ min., refueling time is $\delta = 15$ min.
- Each vehicle incurs an initial refueling time at the depot before starting its route (i.e., in practice $T = T \delta$)

We have considered all Erdogan, Miller-Hooks instances with up to 109 customers, and created an additional set of problems with \sim 50, 75 and 100 customers by extracting customers from the larger ones

Computer used: Intel Xeon X3450, 2.67 GHz with 12 GB RAM (CPLEX is used as MILP and LP solver)

Preliminary Computational Results

Instances proposed by [Erdogan and Miller-Hooks(2012)]

All instances with 20 customers are solved within a few seconds (Phase I always terminates with an integer solution after solving LSP_+)

Table: Instances of [Erdogan and Miller-Hooks(2012)] with 109 customers

Inst.	n	s	Opt	% <i>LB</i> 0	%LB _{SR}	% <i>LB</i>	T_{LB}	# kP	# SR	Time
111c_21s	109	21	*	97.59	98.09	99.82	17994	88	509	18714
111c_22s	109	22	*	97.59	98.09	99.92	19920	89	606	20223
111c_24s §	109	24		97.59	98.09	99.70	21912	98	662	22560
111c_26s	109	26	*	97.59	98.09	99.95	16419	81	533	16547
111c_28s	109	28	*	97.58	98.09	99.90	13737	85	423	14261
Average				97.59	98.09	99.86	17996			

§: found new best known upper bound

- LB₀: optimal cost of LSP without valid inequalities, (%LB₀: % ratio of LB₀)
- LB_{SR}: optimal cost of LSP plus WSR3 and SR3 inequalities, (%LB_{SR}: % ratio of LB_{SR})
- LB: optimal cost of LSP plus WSR3, SR3 and k-path cuts, (%LB: % ratio of LB)
- T_{LB}: cpu time (sec.) to compute LB
- o # kP and # SR: total number of k-path cuts and SR3 plus WSR3 inequalities added to LSP
- Time: Total cpu time (sec.)

Preliminary Computational Results New instances

Table: Instances derived by taking the first 75 and 100 customers from 111c_21s and 111c_28s

Inst.	n	s	Opt	% <i>LB</i> 0	%LB _{SR}	%LB	T_{LB}	# kP	# SR	Time
75c_21s	75	21	*	97.38	98.04	100.00	4860	41	140	4861
75c_28s	75	28	*	97.38	98.04	100.00	7999	63	140	8000
100c_21s	98	21	*	98.80	99.25	100.00	9850	74	124	9852
100c_28s	98	28	*	98.80	99.25	99.89	9894	17	335	10166
Average			-	98.09	98.64	99.97	8151			

Table: Average results on new instances derived by randomly extracting customers from the large [Erdoğan and Miller-Hooks(2012)] instances

# of inst.	n	s	% <i>LB</i> 0	%LB _{SR}	%LB	T _{LB}	# kP	# SR	Time	Opt
7	50	21	95.98	97.87	99.84	2464	50	108	2477	7/7
8	75	22	97.24	99.16	99.67	2988	45	179	4384	8/8
8	98	24	97.62	99.11	99.56	7068	27	466	10409	7/8

Optimal solution of instance 111c_28s

Conclusions

- We have proposed an exact algorithm for solving the Green Vehicle Routing Problem which can be viewed as a basic model for alternative-fuel vehicle routing optimization
- We have modeled the problem by using a multigraph which does not explicitly model the refueling stations and excludes a-priori sub-optimal refueling paths
- We have characterized a subset of the *k*-path cuts as Chàvatal-Gomory cuts of rank 1. This permitted to use *k*-path cuts within a cut-and-column generation algorithm
- We reported computational results on benchmark instances based on a case study from [Erdoğan and Miller-Hooks(2012)]
- The exact algorithm provides tight lower bounds and optimally solves instances with up to 109 customers

Optimal solution of the distance-constrained CVRP instance CMT6

Inst.	n	s	UB*	Opt	% <i>LB</i> 0	%LB _{SR}	%LB	T _{LB}	# kP	# SR	Time
CMT6	50	0	555.43	*	96.83	99.01	100.00	573	9	294	573

Optimal solution of the distance-constrained CVRP instance CMT7

Inst.	n	s	UB*	Opt	% <i>LB</i> 0	%LB _{SR}	%LB	T _{LB}	# kP	# SR	Time
CMT7	75	0	909.68	*	98.35	99.81	99.85	1272	3	317	1290

Bibliography I

- [Baldacci et al.(2008)] Baldacci, R., N. Christofides, A. Mingozzi. 2008. An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts. *Mathematical Programming Ser. A*, **115**, 351–385.
- [Baldacci et al.(2011)] Baldacci, R., A. Mingozzi, R. Roberti. 2011. New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem. *Operations Research*, **59**, 1269–1283.
- [Desaulniers et al.(2014)] Desaulniers, G., F. Errico, S. Irnich, M. Schneider. 2014. Exact algorithms for electric vehicle-routing problems with time windows . *Les Cahiers du GERAD*, **G-2014-110**, Montrèal, Canada.
- [Erdoğan and Miller-Hooks(2012)] Erdoğan, S., E. Miller-Hooks. 2012. A Green Vehicle Routing Problem. *Transportation Research, Part E*, **48**, 100–114.
- [Felipe et al.(2014)] Felipe, A., M. T. Ortuño, G. Righini, G. Tirado. 2014. A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges. *Transportation Research Part E: Logistics and Transportation Review*, **71**, 111–128.
- [Fischetti, Lodi(2007)] Fischetti, M., A.Lodi. 2007. Optimizing over the first Chvtal closure. *Mathematical Programming, Ser. B*, **110**, 3–20.

Bibliography II

[Montoya et al.(2014)] Montoya, A., C. Guéret, J. E. Mendoza, J. G. Villegas. 2014. A modified multi-space sampling heuristic for the green vehicle routing problem. *Technical Report LARIS-EA 7315*, Laboratoire Angevin de Recherche en Ingénierie des Sytémes, Université dAngers.

[Jepsen et al.(2008)] Jepsen, M., B. Petersen, S. Spoorendonk, D. Pisinger. 2008. Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows. *Operations Research*, 56, 497–511.

[Laporte et al.(1985)] Laporte, G., Y. Nobert, M. Desrochers. 1985. Optimal Routing under Capacity and Distance Restrictions. *Operations Research*, 33, 1050–1073.

[Schneider et al.(2014a)] Schneider, M., A. Stenger, D. Goeke. 2014. The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations. *Transportation Science*, **48**, 500–520.

[Schneider et al.(2014b)] Schneider, M., A. Stenger, J. Hof. 2014. An adaptive VNS algorithm for vehicle routing problems with intermediate stops. *OR Spectrum*, 2014. doi: 10.1007/s00291-014-0376-5.