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Abstract

In an emergency situation, the evacuation of a large crowd from a complex building can become slow or even
dangerous without a working evacuation plan. The use of rescue guides that lead the crowd out of the building
can improve the evacuation efficiency. An important issue is how to choose the number, positions, and exit
assignments of these guides to minimize the evacuation time of the crowd. Here, we model the evacuating crowd
as a multi-agent system with the social force model and simple interaction rules for guides and their followers.
We formulate the problem of minimizing the evacuation time using rescue guides as a stochastic control problem.
Then, we solve it with a procedure combining numerical simulation and a genetic algorithm (GA). The GA
iteratively searches for the optimal evacuation plan, while numerical simulations evaluate the evacuation time
of the plans. We apply the procedure on a test case and on an evacuation of a fictional conference building. The
procedure is able to solve the number of guides, their initial positions and exit assignments in a single although
complicated optimization. The attained results show that the procedure converges to an optimal evacuation
plan, which minimizes the evacuation time and mitigates congestion and the effect of random deviations in
agents’ motion.
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1. Introduction

Large complex buildings like airport terminals, high-rise buildings and subway stations need crowd man-
agement to ensure safety. In an emergency situation, like a fire or a bomb threat, a well-planned operation is
needed to ensure a fast and safe evacuation. It is known that people are willing to follow authorities (Proulx,
2002; Nishinari et al., 2004), and that the strategic use of trained safety personnel, or rescue guides, that lead
the crowd out of the building, improves evacuation efficiency (Hou et al., 2014). However, as the crowd size and
complexity of the building increases, codes of practice and human intuition are not sufficient to form an optimal
evacuation plan. Rather attention needs to be paid to mathematical optimization approaches (Haghani, 2020)).

In this paper, we are interested in what will happen in a complex building containing a large crowd, after the
sound of a whistle or a fire alarm, in a serious situation, when there is enough yellow-coated rescue personnel,
whose members have enough skill and authority to guide the crowd out of the building in minimum time. Even
more so, how should these guides be coordinated so that they manage in their task in an optimal way. To our
knowledge, this problem has not been solved using a rigorous mathematical optimization approach.

In the research field of crowd and evacuation dynamics, three distinct research streams can be distinguished:
experimental research on pedestrian behavior, descriptive mathematical modeling of crowd movement and
interactions, and mathematical optimization of evacuation. A good source of references on crowd movement
models and optimization approaches is (Vermuyten et al., 2016)). The most popular crowd movement model due
to its ability to produce realistic physical movement is the microscopic agent-based social force model (Helbing
& Molnar} [1995). In it the movement of individual agents are described by Newton’s equations of motion.

A typical concern is that focusing mainly on physical movement in crowd evacuation modeling may poten-
tially lead to an underestimation of the evacuation time, since evacuees can engage in a variety of activities
that do not move them towards the exits (Gwynne et al., 2016). We assume, that in an evacuation of a large
crowd controlled by guides, such activities can be important but rare. From a modeling perspective, these
behavioral deviations are small compared to the systemic, deterministic part of motion (Helbing & Johansson,
2013). Deviations from the usual rules of motion can be approximated by adding a Gaussian noise term to the
equations of motion (Helbing & Molnar, [1995). So, in this study, our main focus is not to tackle various human
behaviors, but rather to consider how the guides should be positioned and what kind of routes they should take
in a minimum time evacuation, provided some simple assumptions about the crowd behavior in such a situation
are made.

There is a need for mathematical approaches for evacuation optimization (Kurdi et al., 2018; Haghani, 2020).
Typically, the optimal guided evacuation has been studied by comparative analysis, where the evacuation is
simulated and compared for different guide configurations. The optimal number of guides has been studied
in, e.g., (Pelechano & Badler, [2006; [Wang et al.l 2012; McCormack & Chen, |2014). Also, initial positioning of
guides has been studied in, e.g., (Aubé & Shield} 2004; Wang et al., 2012;|Cao et al.,[2016). It has been suggested



that embedded, peripheral, near exit and uniformly distributed positions improve the evacuation efficiency. The
importance of coordination has been noted in (Hou et al.,2014; Cao et al.2016|). Actually, without strategically
planned initial positions and exit assignments of guides, their use can worsen the evacuation instead of improving
its efficiency.

To our knowledge, there are only two noteworthy studies that use mathematical optimization to study the
evacuation of a crowd using guides (Albi et al., 2016; Zhou et al., 2019). The lack of research is probably due to
the large state space caused by a moving crowd and the stochastic nature of the problem. In (Albi et al., 2016)
the crowd evacuates from a simple building. Its members are assumed to be unfamiliar with the environment.
Hence, their movement is a combination of random walk and following nearby agents. Invisible guides are added
to the crowd, i.e., the other agents in the crowd do not recognize them as guides. The minimum evacuation
time problem is formulated as a stochastic control problem, where the trajectories of the guides are solved.
However, the number of guides is not an optimization variable. |Albi et al.| (2016) do not directly generate an
implementable evacuation plan for rescue guides, but rather do a mathematical study on optimal herding of
a crowd to an exit. Still, with small changes, their modeling framework can be used for visible rescue guides.
Nevertheless, we are skeptical that the solution methods they propose for the problem would be applicable for
a more complicated building geometry with the crowd scattered over it.

The study of Zhou et al.| (2019) is a simultaneous but independent line of work with ours, and the two works
were done without knowledge of each other. Zhou et al.| (2019) use a deterministic version of the social force
model to describe the crowd movement. At the start they optimize the number and initial positions of the guides
using a suitable criterion. After that, they optimize their routes and exits given their starting positions. The
two optimization problems are independent of each other, and neither the criterion nor the starting positions
of the guides are corrected based on the information got from the second problem. It should be noted that in
the first problem any suitable criterion, not only that used by Zhou et al|(2019), can be used to fix the number
and starting positions of the guides. All they give a different value for the evacuation time; the minimum value
can be obtained only by chance. The model of |Zhou et al.| (2019) returns an evacuation plan that does not
minimize the evacuation time, but does something else.

Furthermore, both (Albi et al., [2016; Zhou et al., 2019)) use their modified versions of the social force model,
which are in some sense more sophisticated than typically, but they can only be used for optimization and
evacuation simulations in simple building geometries. In them, the follower agents might get lost and are
unable to follow the guide, if the guide goes into another room, or even behind a corner (Li et al., [2016).

In this paper, we formulate and solve the problem of minimizing the evacuation time of a crowd from a
complex building using rescue guides. The problem is formulated as a stochastic control problem, where the
objective is to minimize the expected evacuation time. The optimization variables are the number of guides,
and their routes represented as origin-destination pairs. The state of the system is modeled with social force

equations and simple rules of interaction between guides and exiting agents. The resulting problem solution



space is very large, and it cannot be solved with derivative-based optimization. Thus, we first reformulate
the problem as a scenario optimization problem (Calafiore & Campi, 2006), where the expected evacuation
time is replaced by its sampled mean. Then we apply a hybrid numerical simulation and genetic algorithm
(GA) approach (Goldberg, 1989)). In it, the GA iteratively searches for the optimal solution, and numerical
simulations evaluate their sample mean evacuation time and steers the randomized search process. We ensure
the accuracy and efficiency of the algorithm on a test case, and then apply it on a more complex conference
building case. Our three main contributions are that our method applies for complex buildings, it takes into
account stochasticity and gives the number of guides, their initial positions and exit assignments needed to
minimize the crowd evacuation time in a single optimization.

The paper is structured as follows. In Sec. [2] we discuss the assumptions and mathematical details of the
crowd movement model. In Sec. [3] we formulate the optimization problem, and present the GA approach used
to solve it. The performance of the GA is analyzed on a test case in Sec. [4] and after that the GA is applied
on a more complex conference building case in Sec. Then, in Sec. [6] we revisit and discuss the behavioral
assumptions made. Sec. [7]is for implementation details and performance of our algorithm. Finally, Sec. [§]is
for conclusion. For more information about parameter values and exact mathematical expressions of the social
force model, see Appendix A. And, for a detailed analysis on the effect of stochasticity on our problem, see

Appendix B.

2. Evacuation model with guides

The social force model was first presented by Helbing & Molnar| (1995)). In it the motion of a pedestrian is
described by Newton’s equations of motion. The model is based on a paradigm from social theory, where an
action taken by a pedestrian is understood as a measure of her personal motivation to perform that action. That
action is taken according to her psychological processes of assessment of alternatives and utility maximization.
In the case of pedestrian behavior, this motivation evokes the physical production of an acceleration force.
One can say that a pedestrian acts as if she would be subject to external forces (Helbing & Molnér, 1995;
Hoogendoorn & Bovy, 2003; Helbing & Johansson, 2013). Additional physical interaction forces, inspired from
driven granular flows, are assumed to come into play, when pedestrians get so close to each other that they
have physical contact.

The social force model has been integrated into the Fire Dynamics Simulator with Evacuation (FDS+Evac)
of the National Institute of Standards and Technology (NIST, 2020). We will use the version of the social
force model found in the FDS+FEvac user manual (Korhonen, 2018). But instead of approximating the hu-
man body with three overlapping circles (Heliovaara et al., 2012a)), we use a single circle. Also, we make a
small modification to the social force term. In the original social force model, a distance-dependent term is
assumed. However, [Karamouzas et al.| (2014)) have analyzed a large amount of publicly available crowd data,

from several outdoor environments and controlled laboratory settings, showing that the social force depends on



the time-to-collision between agents rather than their distance. We will use the social force term presented in

(Karamouzas et al., |2014).

2.1. Detailed description

The evacuation model describes the evacuation of a crowd of agents N U G from a space Q C R? after the
alarm has been given. The space includes obstacles O C 2 and exits £ C €. The obstacles are line segments,
or walls, with index set W. The crowd consists of exiting agents N and guide agents, or guides, G. Here
N ={1,..,n} and G = {n+1,....,n+m} are the index sets of the exiting agents and guides, respectively.
Exiting agents represent regular people that do not have full knowledge of the exits in the building, and head
to their familiar exits by default. The guides represent trained safety personnel that use routes instructed by
the evacuation planner. They are assumed to have enough authority to influence the route choices of exiting
agents. More specifically, the first time an exiting agent is within the interaction range r9%““e from a guide,
it receives information of the exit the guide is moving towards, and starts also heading there. However, in a
threatening situation, we assume that an exiting agent wants to get out of the building as fast as possible. That

erit it starts to head there instead, regardless of where it was

is why, if an exit is within the visibility range r
previously heading. In all situations, the exiting agents move to the exits using a shortest path (for information
on its numerical computation see Sec. [1]).

It is assumed that a mixture of socio-psychological and physical forces influence the agents’ motion in the
crowd. At time ¢, agent i € N UG with mass m; and radius r; likes to move with a certain desired velocity

des

des (1), where vies(t) = ves(t)edes(t). Here, v (t) is its desired speed, and e¢®*(t) is a unit vector that points

v i i i

to the direction that gives the shortest path to the exit it is heading towards. Agent ¢ attempts to change its
des

actual velocity v;(t) to v{®*(t) with a reaction time 77,

If agents ¢ and j, j € N UG, j # i, are about to collide, they experience a repulsive social force fi“}oc(t).
When agent 7 is in contact with another agent j or wall w € W, the physical contact forces ff;(t) or £f (¢),
respectively, arise. Additionally, we assume that agent i is affected by a small random fluctuation force &;(t).
Typically, the social force model includes a random force term in each agent’s equation of motion. This force
represents random deviations in behavior; more precisely, situations where two or more behavioral alternatives
are equivalent, i.e., whether to pass an obstacle from the left or right hand side. It can also be thought to
describe accidental or intentional deviations from the usual rules of motion (Helbing & Molnar, 1995)). The
force &;(t) is drawn from a truncated bivariate normal distribution with zero 0 mean. However, for guides this
force equals a zero vector 0. For the parameter values used and the exact mathematical expressions of the

forces, see Appendix A.

The change of velocity at time t for agent ¢ is then given by the equation of motion:

dv; vdes _ .
mzditl ZmizTTacl‘i‘ (fisgpc+ficj)+zficw+£i§ (1)
J(#1) w



the change of position vector x;(t) is given by the velocity

dXi (t)
dt

= vi(1). (2)
In addition, we assume the following interactions to take place in the evacuation:

Assumption 1. An exiting agent heads to its familiar exit by default.

Assumption 2. The guides’ initial positions and target exits are optimization variables. A guide moves from

its starting position to its target exit using the shortest path.

Assumption 3. If an exiting agent is moving towards its familiar exit, and a guide comes within the interaction
range r9%de it starts to move to the same exit as the guide. If multiple guides are within the r9%¢ range, it

starts to follow the closest one.
Assumption 4. If an exiting agent follows a guide, it will not switch to follow another guide.

Assumption 5. If an exit is within the visibility range r*** from an exiting agent, it heads there, whether it

exit

previously was following a guide or heading to its familiar exit. If multiple exits are within the r range, it

heads to the closest one.

3. Optimization model

We are interested in minimizing the evacuation time of the crowd, or equivalently the evacuation time of the
last evacuated agent Tj,s. If we denote the evacuation times of the agents in the crowd with 1, ..., ¢, 4m, the
maximal element of the set is Tj,s. Because of the random fluctuation force term &;(¢) in Eq. , our problem
is stochastic. Thus, as objective function we choose to minimize the expected value of T}, with respect to
&i(t),t €[0,Tiast), 1 < i < n. Recall that for i € G the random fluctuation force term is equal to 0.

We discretize the space € into square grid cells w, so that  C Uw = . Also, we denote the points
associated with an exit by € C &, so that & = Ue. Each guide g € G = {n + 1,...,n + m} is associated with a
starting grid cell w, C Q, and a target exit eg C €. The optimization variables are (wy,e4), 9 € G. We assume
that the number m of the possible guides is sufficiently large, so that one or more guides can remain idle in the
simulation. The idle guides are mapped to a dummy grid cell outside €2, and their evacuation time is defined to
be zero. Our focus here is either a fixed number of active guides used in optimization, or a set of active guides
obtained as a result of optimization.

The initial position of a guide g, x4(0) € wy, is a prespecified point in its corresponding starting grid cell wy.
The end position of a guide g, x4(ty) € €4, is any point in its corresponding target exit ¢,. The initial positions
of the exiting agents are prespecified x;(0) = x;0,¢ = 1,...,n. The exiting agents can evacuate using any of the

available exits; thus it holds for the end positions x;(¢;) € £.



The agents move to the exits according to Egs. , and Assumptions 1-5 defined in Sec. These
equations constitute the constraint equations of this problem. Now we can formulate the problem of minimizing
the evacuation time of a crowd using rescue guides:

min E[ﬂast‘gi(t)v 1 S ? S n,t S [Oyﬂast]];
(wg,eg

wgCQ,agC&geG

subject to Eqgs. , ; Assumptions 1-5;

x;(0) = x;,0,%i(ti) € £,7 € N;x4(0) € wy,x4(tg) € €g,9 € G.

To solve problem Eq. we will use scenario optimization (Calafiore & Campi, [2006). The expected evacu-
ation time of the last agent is replaced by its sampled empirical version: M independent identically distributed
samples of the random force &;,1 < i < n, are generated which we denote by 6, ..., 8(™) and then we define

the sample mean,
1 ZM (k)
T'last = M o Tlast' (4>

Here, Tz(fs)t is calculated for given (wy, £4), g € G, by numerically simulating the system equations Eqgs. ,
with a numerical integration scheme, given the sample vector %) Assumptions 1-5 and the initial and end
conditions (see more implementation details in Sec. [7]).

The scenario optimization problem is solved with a genetic algorithm (GA) (Goldberg, [1989). The GA
iteratively searches for the optimal solution, while the numerical simulations evaluate the fitness of the found
solutions and steer the randomized search process. In our optimization problem, the fitness is the sample mean
Eq. , and a solution, or chromosome, is an evacuation plan {(wp41,&n+1), -+, (Wntm, Entm)}- A single gene in
a chromosome contains both the starting grid cell and target exit of a guide. Because a solution has a variable
number of active guides, we apply the hidden genes GA (Abdelkhalik, 2013)). In it each gene gets a tag, which
tells if the gene is active, or if it is hidden or idle. Only the active genes affect the evacuation simulation.
However, the genetic information of the idle genes is carried on in the process.

In the GA, a population of a predefined number of solutions is maintained in the consecutive iterations, or
generations. At the initial iteration, a population of random solutions is generated. After that, the population
goes through three operations, which are selection, crossover and mutation. In selection, the solutions with
smallest fitness values are chosen to undergo the next two operations. In this paper, we use elitist selection,
where we replace a few of the worst solutions in the current generation with the best solutions of the previous
generation.

In the crossover operation, genetic information is combined to create new solutions. In this paper, we use

the single-point crossover operator, meaning that the offspring solutions of the two parent solutions contain half



of the genetic material of both parents. The crossover operator is applied with a certain probability, and it is
applied on both genes and the tags. If it is not applied, the offspring solutions have exactly the same genetic
information as their parents. See Fig. [I] for a depiction of the mechanism; if the gene is colored gray, the gene
is hidden, which means that the guide corresponding to the gene is not present in the evacuation, i.e., is idle.
In the single-point crossover, the genetic material on the right side of the crossover point of the two parent

chromosomes is changing places to create offspring chromosomes.
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Figure 1: The single-point crossover operation applied on the two parent chromosomes to create offspring solutions.

Then, a mutation operator is applied on the offspring solutions. The mutation operator is applied separately,
with a certain probability, on each gene and tag. When applied on a gene, it can either alter the starting grid
cell, or the target exit, or both of them. The mutation operator applied on a tag can switch the gene from
hidden to active, or vice versa. Finally, the GA goes back to evaluating the fitness values of the solutions of
the new generation, i.e., the offspring solutions, and then proceeds to the selection operation, and the iteration
continues. The algorithm has converged, when the best solution has not changed in a predefined number of

successive iterations.

4. Evacuation of a hexagon-shaped area

Typically, to solve an optimization problem with a GA, the algorithm parameters are tuned manually in a
problem-specific manner. Hence, we will first apply the GA on a test case, of which we have some idea what the
optimal evacuation plan might be. The algorithm parameters are tuned, so that it converges as efficiently and
accurately as possible to the near-optimal solution. The same parameters are also used for the more complex
case presented in the next section.

Here, we consider a hexagon-shaped area. We assume it to be an outdoor space with six exits. All the
exiting agents have entered through one door, and are thus familiar only with that one. Also, we assume this

to be an unhurried situation, where people want to move out of the area, but do not sense such an urgency that



they would by themselves try other exits. Thus, we do not use Assumption 5. The interaction range of a guide

guide

is set to r =5 m.

For exiting agents ¢ € N, the initial positions X?, radii r;, masses m;, and desired speeds U;jes are fixed for

all simulations. Before fixing the values, the parameters m;, r;, and vfes are drawn from a truncated normal
distribution with a cutoff at three times the standard deviation. The mean and standard deviations are 73.5
kg and 8.0 kg, 0.255 m and 0.035 m, and 1.25 m/s and 0.3 m/s, respectively for m;, 7; and v#*. On the
other hand, for guide agents g € G, we set the values of a typical male: my, = 80 kg, ry = 0.27 m, and

d

vges = 1.15 m/s. The reaction time is 77¢%¢

= 0.5 s. These values are all taken from the FDS+Evac user manual
(Korhonen| 2018), and will also be used for the more complex case in the next section.

At the beginning of the evacuation, there are six groups of agents, each of them containing 25 agents, and
each of them are located close to an edge of the hexagon; see Fig. When the agents start to evacuate,
they all head towards the familiar exit (Assumption 1), and form a jam in front of it; see Fig.
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Figure 2: Evacuation of a hexagon-shape area. @ Initial situation. Without guides, a jam forms after a while. Feasible

starting grid cells for guides. @ The near-optimal evacuation plan.



The guides are added to the crowd by applying the hidden genes GA. First, we discretize the space into
seventy-four 3 m x 3 m grid cells, which are the feasible starting grid cells for the guides; see Fig. The
six exits in the area are the feasible target exits. Because there are only six exits, and the space is highly
regular, we expect that no more than six guides should be needed to obtain the optimal evacuation plan, thus a
chromosome in the GA contains at most six active genes. A good guess is that the optimal solution most likely
utilizes all six exits evenly. Thus, the evacuation time of the optimal solution should be close to the evacuation
that utilizes evenly all six exits. Thus, the algorithm parameters are tuned so as to reach that solution as
efficiently and accurately as possible. The crossover probability is set to 0.85, the mutation probability to 0.10,
population size to 40, with 30 samples of each chromosome. The two worst individuals are always replaced with
two best individuals of the previous generation. The algorithm is considered to have converged to a near-optimal
solution, when the best solution has not changed for 15 generations.

The near-optimal solution of the GA is depicted in Fig. It includes only five guides (depicted by the
yellow circles). The guides head from their initial positions to their prespecified exits along the shortest paths
depicted by the red arrows (Assumption 2). The exiting agents start to follow their closest guides, within the
r9%ide yange, and do not switch to follow another guide (Assumptions 3 and 4). As it was mentioned earlier, all
of the exiting agents have already a single familiar exit, so it is enough to redirect the majority of the exiting
agents to the other five exits, thus utilizing all six exits in the evacuation.

One could have expected that the guides would be in symmetric positions close to their target exits. It is
not needed, because the evacuation time is affected both by the walking and the queuing time of the agents.
Additionally, the flow at the exit is known to be a nonlinear function of the size of the crowd in front of it
(Schadschneider et al. 2008). Thus, up to a certain point, the flow can be increased by increasing the size of the
crowd in front of the exit. However, after a certain point the flow will start to decrease. Due to these effects, the
near-optimal solution is not very sensitive to the starting positions of the guides, as long as the exit utilization
is fairly even, and each guide influences about 1/6 of the exiting agents. If the interaction range r9%% would
be increased, the positions of the guides would have to be chosen more carefully, so that the guides do not also
influence exiting agents farther away. In Fig. [3] we see how the hidden genes GA converges to the near-optimal
evacuation plan. Starting from the 11th generation, the best solution does not change for 15 generations, and
the GA is considered to have converged.

We also try how the solution changes with a fixed number of active guides, i.e., using the GA without
hidden genes. We use a larger mutation probability 0.40 for the 30 first generations, and after that we change
it to only 0.05. We are able to have a clear exploration phase in the beginning of the algorithm. It is needed
for convergence accuracy, when the hidden genes are not used. Otherwise, we use the same settings as with
the hidden genes GA. In Fig. [ we see a comparison of the sample mean evacuation time for the near-optimal
evacuation plans with different numbers of guides. We see that adding guides speeds up the evacuation, up to

five guides. The slight increase in evacuation time with six guides is a statistical deviation rather than the sixth
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Figure 3: The sample mean evacuation time for the best solution of each generation of the GA, when applied to the test case.

guide slowing the evacuation, as we will soon see from the depictions of the evacuation plan. Notice also that
the marginal utility of adding guides is decreasing, i.e., adding the first guide cuts the sample mean evacuation

time almost in half, but increasing from four to five guides has only a 5 % benefit.

90

100.0%

80 -

(O] )] ~
o o o
! ! !

Evacuation time (s)
S
o

Figure 4: The sample mean evacuation time of the near-optimal evacuation plan for different fixed numbers of guides.

The resulting near-optimal solutions can be seen in Fig. If there is only one guide, it leads half of the
exiting agents to the exit on the opposite side of their familiar exit. If there are two guides, the crowd is split
into three parts heading towards three different exits. With three guides, the crowd is split into four parts
heading towards four different exits. With four guides, the crowd is split into five parts heading towards five
different exits. With five guides, we get almost the same solution as with the hidden genes GA, only the starting
positions of the guides are slightly altered. With six guides, the sixth guide is put aside to evacuate with the

group that is heading to Exit 0. When adding the extra guide, the GA assigns a starting position and target
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exit to it so that it does not interfere with the minimum time evacuation plan.

Figure 5: The near-optimal evacuation plans with @ one guide, @ two guides, three guides, @ four guides, @ five guides
and |(f)| six guides.
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5. Evacuation of a conference building

We have now tuned the GA parameters suitable for the test case, and will apply it to the evacuation of a

crowd from a conference building in an emergency situation. The initial situation is depicted in Fig. [6]
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Figure 6: The initial situation of the unguided evacuation of the conference building.

Initially, the crowd of 1100 exiting agents is split into subgroups in seven different rooms: Concert Hall A,
Cafeteria, Piazza, Restaurant, Foyer, Concert Hall B and Orchestra Foyer. There are five exits in the building.
All agents in a subgroup have the same familiar exit towards which they initially intend to head (depicted by
the blue arrows in Fig. @ In the evacuation model, the agents move to their target exit using their shortest
path; note however that even in a small group the agents may take different (shortest) paths to their target
exit. This is the case for the group of agents initially in Piazza, which are heading to Exit 4 in Orchestra Foyer.
Half of the group heads first to Concert Hall A and move along its left wall to Orchestra Foyer, while the other
half takes the route through Restaurant, Foyer and Concert Hall B. The development of one realization, or
scenario, of the unguided evacuation is seen in Figs. to

Almost immediately a large jam emerges at the bottom leftmost entrance of Concert Hall A. Half of the
exiting agents from Piazza try to enter Concert Hall A, through the same entrance that the exiting agents in
Concert Hall A use to enter Piazza. This jam is cleared out very slowly, and it is the main source of inefficiency
for the evacuation.

Here, all Assumptions 1-5 are used. We set 9% = 10 m. It is larger compared to the 5 m interaction
range used for the hexagon-shaped case. We could use the same value in both cases. The parameter seems to
have an effect on how close the guide should be positioned to the exiting agents under its influence, and how
large these groups of exiting agents are. We here set it larger so that the guide could collect more exiting agents
from the large crowd. Perhaps, if it is set smaller here, more guides would be needed to have an effect on the

exit

crowd. The exit visibility range is set smaller than the interaction range of the guide, r*** = 9 m. As a result of
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Figure 8: Snapshots of one realization of the unguided evacuation of the conference building at @t =50 s;|(b)|t = 205 s.

this, in some situations, the guides are able to influence exiting agents before they notice a nearby exit. So, the

rgm'de exit

relation between the values of and 7" can have an effect on the exiting agents’ exit choice in situations
where both a guide and an exit are nearby. Otherwise, the same evacuation model parameter values are used

as in the hexagon-shaped case.

5.1. Numerical results

In the GA, we set the number of genes in a chromosome to 10, meaning that the solution can have a
maximum of 10 guides. When the GA has converged, all solutions in the final population have less than 10
genes active, which strongly indicates that the optimal solution should have less than 10 guides. The feasible
starting grid cells are obtained again by discretizing the building into sixty-two 10 m x 10 m grid cells; see
Fig.[9] The five exits in the conference building are the feasible target exits.

As in the test case, the crossover probability is set to 0.85, the mutation probability to 0.10, and the
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Figure 9: Feasible starting grid cells for the guides in the conference building.

population size to 40, with 30 samples of each chromosome. The two worst individuals are always replaced with
the two best individuals of the previous generation. The near-optimal solution given by the hidden genes GA

is illustrated in Fig. [I0]
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Figure 10: The near-optimal evacuation plan of the conference building.

The total number of active guides is eight (depicted by the yellow circles). They head to their target exits
(Assumption 2) along the routes depicted by the red arrows. The exiting agents start to follow their closest
guides, within the 79% range, and do not switch to follow another guide (Assumptions 3 and 4). One guide is
set in the Orchestra Foyer to head towards Exit 2. Four guides are in Concert Hall A, to herd the large crowd.
Out of those four, three are heading towards Exit 3, and one towards Exit 0. In the upper part of Piazza, there
is a guide, which leads half of the exiting agents in Piazza to Exit 0. The other half of the exiting agents in

Piazza are initially free to move towards Exit 4 using the route through Restaurant, Foyer and Concert Hall B.
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The exiting agents located in Cafeteria, Restaurant and Foyer move as they would without guidance. There is
also one guide in Foyer and another in Concert Hall B that lead half of the exiting agents from Concert Hall B
to Exit 2. The other half of the exiting agents in Concert hall B go to Exit 3 without guidance. Finally, there
is one guide located in the Orchestra Foyer, and it is heading towards Exit 2.

The convergence pattern of the GA can be seen in Fig.[[1l Starting from the 23rd generation, the best
solution does not change for 15 generations, and the GA is considered to have converged.

130
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90
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0 4 8 12 16 20 24 28 32 36
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Figure 11: The sample mean evacuation time of the best solution of each generation of the GA, when applied to the conference

building case.

In the unguided situation, a large jam forms at the bottom leftmost entrance to Concert Hall A. It is evident
that it should be solved to increase efficiency. However, the question is where to redirect this part of the crowd,
as not to create a jam somewhere else. In Figs. to the full evolution of one realization of the
near-optimal guided evacuation is illustrated with snapshots.

There are many changes to the unguided evacuation. First and foremost, a big jam never emerges at the
bottom leftmost entrance of Concert Hall A. This is because the crowd in Concert Hall A is taken to Exit 3
through Orchestra Foyer, and the rest to Exit 0 via the rightmost door of Concert Hall A. Only a couple of
exiting agents from Concert Hall A are left out without a guide and move by themselves to their familiar exit,
Exit 1.

A large part of the crowd is heading towards Exit 3, and no guide is going towards Exit 4. However, guiding
exiting agents to Exit 4 would be unnecessary, as about half of the exiting agents initially heading to Exit 3,
once they are in the Orchestra Foyer, detect Exit 4 by themselves, and head there instead of Exit 3 (Assumption
5).

Now without guidance, the exiting agents from Piazza would be heading to Exit 4, which would cause too
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Figure 12: Snapshots of one realization of the near-optimal guided evacuation of the conference building at t=>5s; @ t=10
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Figure 13: Snapshots of one realization of the near-optimal guided evacuation of the conference building at [(a)| ¢ = 25 s;|(b)|t = 40

S.

much traffic there. However, in the near-optimal solution, a guide takes half of the exiting agents from Piazza
to Exit 0 through Concert Hall A. The second half of the exiting agents in Piazza that head to Exit 4 through
Restaurant, Foyer and Concert Hall B are stopped at the Foyer and redirected to Exit 2.

In a more complicated model, the guide could be set to wait in place for exiting agents crossing paths with
it later on. Here, the optimization model circumvents this lack of feature, by setting guides to start moving
from farther away, to cross paths with exiting agents just at the right time. This is illustrated by the guide
from the upper right corner of Orchestra Foyer, that crosses paths with the exiting agents from Piazza at Foyer,
and redirects them to Exit 2. To conclude, the main feature of a good guidance seems to be that all exits are
utilized, while none of them are overutilized. Also, jams or counterflows should not either emerge at other parts
of the building.

Fig. [[4) shows a histogram and a kernel density estimate of the evacuation time of both the unguided
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and near-optimal evacuation. For the unguided evacuation, the sample mean is 320.72 s, whereas the sample
standard deviation is 20.75 s. For the near-optimal evacuation, the respective values are 83.11 s and 3.23
s. The improvement is tremendous, as the quantities are only about 25 % and 15 %, respectively, of those
values of the unguided evacuation. The improvement in standard deviation probably is due to the near-optimal
guidance solving the large jam witnessed in the unguided evacuation. The nonlinear physical forces come into
play in close contact of agents. When a large crowd is jammed at a bottleneck, the agents in it are in close
contact for a prolonged time. Hence, even small movement fluctuations can affect the evacuation time. This
has also been experimentally verified in (Helbing et al., |2003; Huang & Guo, 2008). In Appendix B, we have
further analyzed the effect of stochasticity on the problem by using metrics from the literature of stochastic

programming (Birgel |1982).
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Figure 14: Histograms (staple diagrams) and kernel density estimates (solid lines) of the evacuation times of 30 scenarios.

Also, from another point of view, even though the initial positions of the agents are fixed for all simulations,
as time goes on, due to the random force term, the positions will differ between scenarios. Thus, in some sense,

the near-optimal evacuation plan is robust to reasonable variations in agents’ positions.

6. Behavioral considerations

To emphasize, what we have in mind with our model, or the basic question we ask is this: what will happen
in a complex building containing a large crowd, after the sound of a whistle or a fire alarm in a serious situation,
when there is enough trained yellow-coated rescue personnel, whose members have enough skill and authority
to guide the crowd out of the building as soon as possible. So, our main modeling question here is how to

coordinate the guides so that they manage with their task in an optimal way.
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A typical concern in modeling crowd evacuation, is that the crude assumption of focusing only on physical
movement may potentially lead to an underestimation of the time for the crowd to reach safety, since evacuees
are likely to engage in a variety of activities during the operation (Gwynne et al., 2016|). We believe that in
our situation guided by trained personnel, such evacuation activities, although can be important, are very rare,
since people in serious situations are willing to follow authorities (Proulx, |2002; Nishinari et al., 2004)).

Even more to the point, it does not matter if some individuals, at some time, would have turned to the
right, or stopped for a while, since now guides more or less control their movement. In fact, even for a large
group of people, a few guides are enough to control the whole crowd to their target (Dyer et al., 2009; (Cao
et al. [2016). For a more irregular building geometry, where the crowd is more scattered, more guides are
needed. In that case, the coordination between guides becomes very important to facilitate the evacuation.
A useful quantitative information that a model should deliver in this case is a suitable macroscopic one, such
as the evacuation time of the crowd. It is in fact less prone to globally unnecessary details and fluctuations
than microscopic information (Helbing & Johansson, [2013). Our paper solves the number of guides, their
initial positions and exit assignments to minimize the crowd evacuation time in a single although complicated
optimization problem.

Nevertheless, we acknowledge the importance of taking into account behavioral aspects in crowd evacuation
modeling. It has been the focus of our previous research (Heliovaara et al., [2012b} [2013; von Schantz & Ehtamo,
2015} 2019). For example, in (von Schantz & Ehtamo, 2019) we model crowd behavior in an exit congestion.
We couple a local decision-making model to the social force model. The decision-making model is based on
behavioral assumptions that are verified in our experiment with real humans (Heliovaara et al., 2012b). With
our integrated treatment of behavioral and physical aspects, we are able to simulate when, why and how typical
phenomena of an evacuation through a bottleneck occur. Most importantly, we attain non-monotonous speed
and kinetic pressure patterns near exits in threatening situations. These kind of behavioral phenomena are
interesting as such. However, to include them into the optimization would require us to increase the already
very heavy computation.

Instead of studying a single agent deviating from its usual movement, it would be interesting to study the
possibility of a larger group doing so. For example, it could happen like this: an agent decides to go to another
exit and a large 20% part of the crowd decides to follow this agent. However, to add this behavior to a crowd
movement model takes careful calibration. It is not a simple task to alter the microscopic dynamics to generate
this effect. Moreover, a larger amount of Monte Carlo simulations would probably be needed to estimate the
mean of the evacuation time for a given evacuation plan. Perhaps, an easier way than for the model to generate
this effect, is to construct representative scenarios. They would describe all drastically different alternative ways
the evacuation could develop. In one of the scenarios, 20% of the crowd would go to another exit as opposed
to where it goes in the other scenarios. Then, the optimal evacuation plan would be calculated over all these

scenarios.
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7. Implementation details and performance

Let us first start by discussing the implementation details of the evacuation model. In it, the shortest
paths that agents use to move to the exits were calculated using the detailed method presented in depth in
(Kretz et al.,2011)). The method involves solving the continuous shortest path to an exit. It is solved using
the fast marching method (Sethian, [1999), which first discretizes the continuous space into a meshgrid. Then
the method works almost like Dijkstra’s algorithm for finding shortest paths between nodes in a graph. The
solution is a distance map from each point, or grid, in the building to the exit. The direction to which an agent
should head towards at each point can be calculated using the gradient direction. The distance maps, i.e., the
distances from each grid to every exit are calculated and stored before the optimization simulations.

Interaction forces in the social force equations should be calculated between all agents, but to speed up
the computation, we subdivided the simulation domain with a blocklist algorithm with a cut-off distance of 3
m (Yao et al., [2004). This should not affect the crowd dynamics, since the social force term is exponentially
decaying.

When using numerical simulations to calculate the sample mean evacuation time, we use a pseudorandom
number generator to generate realizations of the random force terms. For each scenario, we store the seed of
the pseudorandom number generator. Thus, the realizations of the random force terms are replicable. Then,
for a specific seed, the social force equations are solved with the Velocity Verlet numerical integration scheme
with the time step At = 0.01 s; see, e.g., appendix of (von Schantz & Ehtamo, |2019) for more details.

The evacuation model is implemented in Python code. Some of the core parts of the code are written as
Numba-decorated functions, which translates Python functions to optimized machine code at runtime. Numba-
compiled numerical algorithms in Python can approach the speeds of C or FORTRAN (Oliphant et al., 2020).
Whereas, the GA is implemented in Bash script that calls the crowd simulation scripts written in Python. For
reproducibility, all codes are published (von Schantz, 2020)).

We ran the numerical experiments on the Aalto University high-performance computing cluster Triton. A
single generation of the GA was run in parallel on Triton using its computing nodes that are Intel Xeon X5650
2.67 GHz with 48 GB or 96 GB memory, and Xeon E5 2680 v2 2.80 GHz with 64 GB or 256 GB memory.
One generation in the GA requires 1200 simulations, because a generation contains 40 solutions, each which
have to be run for all 30 scenarios. Due to the user quotas set for Triton users, we only ran 300 simulations in
parallel, which means that one generation had to be run in four parts. A single simulation of the evacuation
of the hexagon-shaped space could take up to 5 min, while one simulation of the evacuation of the conference
could take up to 1 h. Thus, the simulation of one generation took about 20 min and 4 h, respectively. We ran
the GA for 26 and 38 generations, for the test case and the conference building case, respectively. Thus, for the
test case, the GA converged to the near-optimal solution in 8 h 40 min, whereas, for the conference building

case it converged in 152 h, or 6 days 8 h.
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8. Conclusion

We have studied the problem of minimizing the evacuation time of a crowd from a complex building using
rescue guides. The problem is first formulated as a stochastic control problem, where the objective is the
expected evacuation time, and the optimization variables are the number of guides and their routes defined as
origin-destination pairs. The system equations are the equations of motion, given by the social force model,
and the rules of interaction for exiting agents and guides. The problem is then reformulated as a scenario
optimization problem, which we solve with a hybrid numerical simulation and GA approach. With it, we are
able to solve the number of guides, their initial positions and exit assignments to minimize the crowd evacuation
time in a single optimization.

Typically, to solve an optimization problem with a GA, the algorithm parameters are tuned manually in
a problem-specific manner. In our study, we do this by constructing a test case, the hexagon-shaped space
in Sec. [ for which we know beforehand what the expected minimum evacuation time should be. Then we
extensively try different parameter configurations to get the GA to converge as efficiently and accurately as
possible to the near-optimal solution. This GA parameter configuration is also used for solving the near-optimal
evacuation plan for the conference building.

Moreover, it is known that using GAs for problems with large solution space and large number of local
minima, introducing noise to the fitness function, and evaluating it by taking multiple samples, improves
convergence to the global minimum (Hammel & Back, 1994). Our problem is inherently noisy, and we perform
multiple Monte Carlo simulations to calculate the expected evacuation time for a given evacuation plan. Thus,
this may assure that our GA does not get stuck in a local optimum.

In both cases studied in this paper, the improvement with the near-optimal plan is dramatic, the sample
mean evacuation time is only about 25 % of that of the unguided evacuation. Moreover, for the conference
building case, we also compared standard deviations, and it was only about 15 % of that of the unguided
evacuation. This is probably due to the near-optimal evacuation plan solving all major jams, which decreases
the nonlinear physical effects, and hence small deviations in agents’ movement does not affect the evacuation
time so much.

It is interesting to see how the near-optimal solutions take into account physical phenomena like counterflows,
jam formation and flow at bottlenecks being a nonlinear function of crowd size. There are computationally
faster evacuation models, like cellular automata and network flow models that are good for planning large-
scale evacuations (Lgvas, |1998; |Abdelghany et al. 2014). However, they cannot model the physics of crowds
evacuating from complex confined spaces.

However, it should also be noted that the optimization procedure is computationally very slow. So, as such,
this procedure could not be used for online optimization. Faster computation could be achieved by using an

implicit integration scheme, where the step size can be set in some cases even 40 times larger than with an explicit

23



integration scheme (Karamouzas et al., 2017)). Alternatively, a position-based dynamics approach could be used,
which has been shown to produce real-time simulations (Weiss et al. [2019). Another interesting avenue for
future research would be to use neural networks to deal with the large state space (Bertsekas & Tsitsiklis| [1996)).

In future research, other objective functions could be used as well, and studied how the optimal evacuation
plans differ from that of ours. An evacuation plan should be both fast and safe (Lovas, 1995). If we want to
simultaneously take these two objectives into account, we can solve the problem with multi-objective optimiza-
tion (Saadatseresht et al., [2009). As noted before, one form of risk are rare events that dramatically slow down
the evacuation. To account for this, we cannot only minimize the mean evacuation time, but we also have to
minimize the variance or some other risk-related measure related to the evacuation time distribution. We could
also include physical risks like pressures in the crowd or avoidance of dangerous areas in a building. On the
other hand, if we are considering an unhurried evacuation, objectives related to the quality of service can be
used, e.g., minimization of the average evacuation time or distance travelled by the evacuees, or time spent in

congestions.
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Appendix A. Social force model parameters

The social force model parameters have been validated against data, and the collective phenomena observed
with the model are robust to reasonable parameter variations (Karamouzas et al., 2014; Korhonen) [2018)). In

our study, the initial positions X?, radii r;, masses m;, and desired speeds vides, for exiting agents ¢ € N, are

fixed for all simulations. Before fixing them, the parameters m;, r;, and vldes are drawn from a truncated normal
distribution with a cutoff at three times the standard deviation. The mean and standard deviation are 73.5 kg
and 8.0 kg, 0.255 m and 0.035 m, and 1.25 m/s and 0.3 m/s, respectively for m;, r; and Ufles. Whereas, for

guide agents g € G, we set my = 80 kg, ry = 0.27 m, and vges = 1.15 m/s. The reaction time is 77°%¢ = 0.5 s.
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Next, we describe the terms of the social force model. Our derivation of the social force term £7¢,4,7 €
N UG,i # j, follows closely that of (Karamouzas et al., [2014). There, it was inferred from a large public
data set that the interaction energy associated with the repulsive social force follows a power law with a sharp

truncation at large T,
E(r) = %e”/m. (A1)
Here, ko is a constant that sets the units of energy. It is not that clearly documented, but by examining the
codes provided in the supplemental material of (Karamouzas et al.; 2014)), we deduce its value to be kso. = 1.5m;.
The parameter 7y is the interaction time horizon, and it is set to 3 s. The collision time of two agents i and
j is denoted with 7. So, Eq. defines the interaction energy of a pair of agents, which are on a collision
course. This energy is directly related to the social force £ experienced by agent ¢ due to the interaction with

another pedestrian j. In particular,

£50° = —V,, (7). (A.2)

At any given simulation step, we estimate 7 by linearly extrapolating the trajectories of the pedestrians i
and j based on their current velocities, v; and v;, and position vectors, x; and x;. Specifically, a collision is said
to occur at some time 7, if the corresponding circles of the pedestrians of radii r; and r; intersect. If no such

. . . . . . 2
time exists, the interaction force £ is a zero vector 0. Otherwise, 7 = , where a = ||v4j]|%, b = x5 - vij,

2 . . . . .
c = ||xi||° — (ri + )%, and d = b* — ac. Here, x;; = x; — X; is their relative displacement, and v;; = v; — v; is

their relative velocity. By substituting 7 into Eq. (A.2]), the interaction force can be written explicitly as:
Vi |55 = (xij - vig)vig

i [k/ (2 . 1)
A SRz \ 7T 2 2
IviglI*r 0 V6 vip)? = vy Pl = (rip)?)

Here, r;j = r; + r;. Furthermore, the force flfsjoc is truncated from above to 2000 N.

(A.3)

ij T

The original social force model (Helbing & Molnar, 1995) includes also a repulsive social force between

f'SOC

, £59¢. Because, even though the desired velocity v¥ does not point inside walls by construction,

agents and walls
the actual velocity v; could do so, i.e., an agent could be pushed inside a wall by other agents in the crowd. To
avoid this, we use the approach from (Cristiani & Peril 2017). In it, the desired velocity v? is constructed to
heavily point away from a wall, when the agent gets close to it.

Physical contact forces come into play, when agents i and j touch each other, 7;; — [|x;;|| > 0:

£5; = k(ri; — |Ixij|)na; + calvfingg + w(ri; — [[xi ) Avjitig, (A4)

where n;; = (n%j, nfj) = X;;/||xi;|| is the normalized vector pointing from agent j to i, t;; = (—ngj,ngj) is the

tangential direction, Av;‘i = —V;j - n;; is the normal velocity difference, and Avj-i = —v;j - t;; is the tangential
velocity difference. The parameters k = 1.2 - 10° kg/s, ¢g = 500 kg/s, and x = 4.4 - 10* kg/(m-s) are force
constants. The first term in Eq. (A.4) represents a ’body force’ counteracting body compression, the second

term a ’damping force, which reflects the fact that the collision of two humans is not an elastic one, and the
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third term is a ’sliding friction force’ impeding relative tangential motion. The physical agent-wall interaction
force £ is treated similarly and same parameter values are used.
Finally, the components of the random force vector &; follow a truncated normal distribution with mean

zero, standard deviation of 0.1m; m/s?, and are truncated at three times of the standard deviation.

Appendix B. The value of the stochastic solution

Let us evaluate the effect of stochasticity on our optimization problem using terminology from the literature
of stochastic programming (Birgel 1982)). First, recall the mathematical definitions from Secs. 2 and 3. Then,
let us denote &;(t),1 < i < n,t € [0,Tj4s], with 6(t). And, because Tjqs depends on wg, g4, g € G and d through
the constraint equations, we define:

(b(wgaggmg € G; 6) = T’last- (Bl)

The problem of Eq. (3) is called the recourse problem, and using Eq. (B.1]) it can be rewritten:
RP := min E[¢(wg,e4,9 € G;6)]; (B.2)
(wg.eq)

wy C e, CE g€QG,

subject to the constraints defined in Eq. (3). We obtained the sample mean 83.11 s for RP, in the conference
building case, using the detailed solution methodology presented in the paper.
Next, we define the deterministic equivalent problem, or the expected value problem:
EV := min ¢(wg,eq,9 € G;E[8]); (B.3)
(wg:eq)

wy C e, CE g€QG,

subject to the constraints defined in Eq. (3). Recall that the random force terms &;(t),1 <i < n,t € [0, Tjast],
are independent and have zero 0 mean. Hence, E[§] = 0. Furthermore, in the equation of motion Eq.
(1), the random force appears as an additive linear term. Thus, the term disappears and we are left with
the deterministic social force equation. The deterministic equivalent problem is also solved with the solution
methodology presented in the paper. The EV solution (wy,é,),9 € G is seemingly similar to the RP solution.
Only the initial position of one of the guides is moved from Concert Hall A to Orchestra Foyer.

The expected evacuation time for solution (wy,é,),9 € G is:
EEV :=E[¢(@g,£4,9 € G;8)]. (B.4)

To calculate it, we perform Monte Carlo simulations. We obtain the sample mean of 85.59 s for EEV. Thus,

the value of the stochastic solution is:
VSS = EEV — RP = 83.115 — 85.59 s = —2.48s. (B.5)
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So, the sample mean of the evacuation time for the EV solution is close to that of the RP solution. Still, this is
not the only side to the matter. We experienced difficulties in getting the GA to converge to the optimum of the
deterministic equivalent problem. However, because we had solved the stochastic problem first, we knew what
we were seeking. Thus, in the end, we made use of the stochastic problem solution, and performed an exhaustive
local search to find the deterministic equivalent problem solution. This convergence issue seems to be a more
general concern in solving stochastic problems with their deterministic equivalent using a GA (Hammel & Back,
1994). For example, it might be that for a deterministic optimization problem having many local optima, but
only one global optimum, when adding stochasticity or averaging over many such deterministic problems makes

the problem landscape smoother with only a single optimum.
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