Title: Dynamic complexities in host-parasitoid interaction

Authors: Veijo Kaitala, Janica Ylikarjula and Mikko Heino

Date: February 1999

Status: Journal of Theoretical Biology, 197, pp. 331-341

Keywords: Bifurcation diagram, chaos, ecology, host-parasitoid interaction, population dynamics

In the 1970s ecological research detected chaos and other forms of complex dynamics in simple population dynamics models, initiating a new research tradition in ecology. However, the investigations of complex population dynamics have mainly concentrated on single populations and not on higher dimensional ecological systems. Here we report a detailed study of the complicated dynamics occurring in a basic discrete-time model of host–parasitoid interaction. The complexities include (a) non-unique dynamics, meaning that several attractors coexist, (b) basins of attraction (defined as the set of the initial conditions leading to a certain type of an attractor) with fractal properties (pattern of self-similarity and fractal basin boundaries), (c) intermittency, (d) supertransients, (e) chaotic attractors, and (f) "transient chaos". Because of these complexities minor changes in parameter or initial values may strikingly change the dynamic behavior of the system. All the phenomena presented in this paper should be kept in mind when examining and interpreting the dynamics of ecological systems.